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Abstract: The many problems faced by the theory of general relativity (GR) have always motivated
us to explore the modified theory of GR. Considering the importance of studying the black hole (BH)
entropy and its correction in gravity physics, we study the correction of thermodynamic entropy
for a kind of spherically symmetric black hole under the generalized Brans–Dicke (GBD) theory of
modified gravity. We derive and calculate the entropy and heat capacity. It is found that when the
value of event horizon radius r+ is small, the effect of the entropy-correction term on the entropy is
very obvious, while for larger values r+, the contribution of the correction term on entropy can be
almost ignored. In addition, we can observe that as the radius of the event horizon increases, the
heat capacity of BH in GBD theory will change from a negative value to a positive value, indicating
that there is a phase transition in black holes. Given that studying the structure of geodesic lines is
important for exploring the physical characteristics of a strong gravitational field, we also investigate
the stability of particles’ circular orbits in static spherically symmetric BHs within the framework of
GBD theory. Concretely, we analyze the dependence of the innermost stable circular orbit on model
parameters. In addition, the geodesic deviation equation is also applied to investigate the stable
circular orbit of particles in GBD theory. The conditions for the stability of the BH solution and the
limited range of radial coordinates required to achieve stable circular orbit motion are given. Finally,
we show the locations of stable circular orbits, and obtain the angular velocity, specific energy, and
angular momentum of the particles which move in circular orbits.

Keywords: generalized Brans–Dicke theory; corrected entropy of black hole; stability of particles’
circular orbits; modified gravity theory

1. Introduction

Einstein established the famous theory of special relativity in 1905, which laid the
foundation for the relativistic view of spacetime. Based on his deep thinking about special
relativity, Einstein established the theory of general relativity (GR) in 1915. GR is consid-
ered one of the most elegant theories in the field of physics, and has received significant
experimental support. For example: (1) general relativity passed rigorous tests within the
solar system; (2) its applications in cosmology have also been extremely successful; (3) the
detection of gravitational waves by the advanced Laser Interferometer Gravitational-Wave
Observatory (LIGO) in 2015 provided strong support for the theoretical predictions made by
GR 100 years ago [1]; (4) the fact that the Event Horizon Telescope (EHT) [2] discovered the
existence of supermassive black holes in the center of the Milky Way galaxy in 2019 greatly
enhanced interest and confidence in the research of general relativity theory. However, it
is also evident that many problems and challenges remain in the study of gravitational
physics, such as the problem of gravitational quantization, the nature of dark energy, the
problem of inflationary universe, and the problem of space–time singularity. To address
these issues, many modified gravity theories have been developed and discussed. For
example, the Ricci scalar R in the Einstein–Hilbert action can be generalized to an arbitrary
function f (R), termed as the f (R) theory [3,4]; considering the teleparallel equivalent of GR,
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a torsion-based f (T̃) gravity was given which is the simplest nonlinear torsional modified
theory [5,6] with the advantage that its field equations have up to second-order derivatives;
an extended theory of f (R), f (R, T) theory [7] was proposed by introducing the coupling
between the Ricci scalar R and the trace of energy-momentum tensor T; in f (G̃) theory [8],
f (G̃) is an arbitrary function of the Gauss–Bonnet invariant G̃ that can be constructed by the
Ricci scalar, Ricci tensor, and Riemann tensors; amongst the theories alternative to GR, the
simplest theory is to add a scalar field to GR, known as the scalar–tensor (ST) theory [9–14],
the most straightforward and natural method of modifying GR; Scalar–tensor–vector (STV)
gravity theory was proposed by Moffat [15]. STV theory includes, in addition to the metric
tensor, three scalar fields (related to the Newtonian gravitational constant, the coupling
function of field, and the rest mass of the field) and a vector field (associated with a fifth
force charge) [15,16]. The exploration of modified theories of gravity remain a hot topic
in the current research of gravitational physics. As one type of modified gravity theory,
the generalized Brans–Dicke (GBD) theory has been studied in cosmology, gravitational
wave physics, and other fields [17–19]. In this paper, we will explore some issues in the
framework of GBD theory.

Black holes (BHs) are one of the important predictions of general relativity. After years
of observation and exploration, researchers finally captured the first image of a BH in 2019
through the Event Horizon Telescope. In fact, what the EHT observed was a black hole
shadow [2], the lensed image at infinity of the photon sphere [20,21]. The circular photon
orbit is intimately related to the black hole shadow and can be closely associated with the
spacetime geometric structure. Therefore, it serves as a robust tool for estimating black hole
parameters [22–26] and for testing GR or its alternatives [27–33]. Consequently, to probe
the nature of black holes, the shadows of different black holes have been studied under
various modified theories of gravity [20,26,34–37].

For many years, the research on BH physics has attracted the attention of physicists
and astronomers. Different types of black holes, such as static BHs [38], dynamic BHs [39],
spherically symmetric BHs [40], axially symmetric BHs [41], and exotic BHs [42], have been
intensively discussed. The study of the thermodynamic laws of BH areas suggests that
black holes, as special celestial bodies, seem to have thermal properties. It is well known
that the thermal properties of BHs under different types have been widely explored. The
research on the corrected BH entropy is a hot topic in BH thermodynamics, and some
studies on the correction of black hole entropy under modified gravity theory have been
investigated, such as conformal field theory [43,44], string theory [45,46], and others. This
article mainly explores the relevant properties of thermodynamic correction entropy of
static spherically symmetric BHs within the framework of GBD modified gravity theory.
Additionally, the stability analysis of particles’ circular orbits around a BH is an important
research topic in the field of gravitational physics, which plays a vital role in exploring
the properties of black holes and gravity. Under different contexts of BH, people have
conducted extensive research on the stability of black holes through the application of
geodesic deviation equation, such as charged black holes in f (T̃) theory [47], rotating (anti-)
de-Sitter black holes in f (R) theory [48], and non-trivial black holes [49–53]. In this paper,
we also discuss the stability of particles’ circular orbits around a black hole in the GBD
gravity theory.

The structure of our paper is as follows. The Section 1 is an introduction. In the
Section 2 of this paper, we focus on the correction of thermodynamic entropy of a static
spherically symmetric BH within the framework of GBD modified gravity theory. We
analyze the stability of particles’ circular orbits in black holes in the Section 3. The Section 4
is the conclusion of this article.
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2. Entropy Correction of Black Hole Thermodynamics in GBD Modified
Gravity Theory

We first briefly introduce the GBD theory, whose action is written as [17]:

S =
∫

d4x
√
−g[φ f (R)− ω

φ
∂µφ∂µφ +

16π

c4 Lm(gµν, ψm)]. (1)

Here gµν denotes the metric, R is the Ricci scalar, and f (R) represents an arbitrary
function relative to R. φ denotes the Brans–Dicke scalar field, ω is the coupling constant, Lm
represents the Lagrange density of matter field ψm. By applying the variational principle,
the gravitational field equation and scalar field equation of GBD theory can be derived
as follows:

φ[ fRRµν −
1
2

f (R)gµν]− (∇µ∇ν − gµν�)(φ fR) +
1
2

ω

φ
gµν∂σ∂σφ− ω

φ
∂µφ∂νφ = 8πTµν. (2)

f (R) + 2ω
�φ

φ
− ω

φ2 ∂µφ∂µφ = 0. (3)

We consider a specific parametric model [54,55]: φ(r) = φ0r−a and f (R) = R+ βR(−n).
Under the background of the spherically symmetric space–time line elements:

dτ2 = −B(r)dt2 + A(r)dr2 + r2dθ2 + r2sinθ2dϕ2. (4)

with A(r) = B(r)−1, the solution of the field equation can be calculated when n ≥ −1

B(r) = 1 +
C1

r
+

C2

r2 . (5)

where C1 and C2 are two constant parameters. The speed of light c and the current value
of the gravitational constant G have been taken as the geometrized units in this paper,
c = G = 1. Obviously, expression (5) is similar in form to the Reissner–Nordstrom (RN)
solution for charged celestial bodies in Einstein’s general relativity (if the integration
constants are set to C1 = −2M, C2 = Q2

4π , then the two solutions are the same in form).
Therefore, in the subsequent discussion, we consider that the values of these two parameters
satisfy C1 ≤ 0 and C2 ≥ 0. Given Q is the charge parameter in RN solution, it seems that
there exists a similar scalar charge in GBD theory. In addition, for C1 = −2M and C2 = 0,
Equation (5) is reduced to the Schwarzschild form in GR. It indicates that the parameter C1
represents the mass of BH.

The infinite red-shift surface is defined by gµν ∂ f
∂xµ

∂ f
∂xν = 0. According the solution

(5), we obtain the infinite red-shift surface for the BH in GBD: r± =
−C1±

√
C2

1−4C2
2 with

C2
1 − 4C2 ≥ 0. For the static spherically symmetry solution of BH in GBD theory, the event

horizon rh = r+ is overlapped with the infinite red-shift surface. In addition, the properties
of the spacetime metric of the RN black hole with electric charge Q and its generalized
forms can be seen in [36,56,57]. Obviously, the properties of the BH spacetime metric under
GBD theory differ from those of the generalized RN black holes, e.g., the RN black hole
with the cosmological constant [57] and the regular charged black hole [36].

The study of black hole thermodynamics and entropy correction has always been an
important issue in the gravitational physics. Next, we investigate the corrected entropy of
spherically symmetric BH in the framework of GBD theory. Consider the partition function
in the form [58]:

Z(β) =
∫ ∞

0
ρ(E)e(−βE)dE. (6)
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where T = 1
β is the temperature in units of the Boltzmann constant κB. ρ(E) is the density

of state, which can be given from (6) by performing the inverse Laplace transform (keeping
E fixed) [59,60]:

ρ(E) =
1

2πi

∫ c+i∞

c−i∞
Z(β)eβEdβ =

1
2πi

∫ c+i∞

c−i∞
eS(β)dβ. (7)

In Equation (7), the exact entropy as a function of temperature (not just at equilibrium)
can be written as [61]

S(β) = lnZ(β) + βE. (8)

It is formally defined as the sum of entropies of subsystems of the thermodynamic
system, which are small enough to be themselves in equilibrium [61]. Considering the
method of steepest descent around the saddle point: β0 = 1

T0
, we have S

′
0 ≡

∂S(β)
∂β |β=β0 = 0

with T0 being the equilibrium temperature. On the other hand, we can receive the following
form of entropy function by expanding it about β = β0,

S(β) = S(β0) + S
′
(β0)(β− β0) +

S
′′
(β0)

2
(β− β0)

2 + . . . (9)

Then Equation (9) can be simplified as

S(β) = S0 +
1
2
(β− β0)

2S
′′
(β0) + . . . (10)

with

S0 ≡ S(β0), S
′′
0 ≡

∂2S(β)

∂β2 |β=β0 . (11)

where S(β) represents the entropy at any temperature, and S0 is the entropy calculated by
the Beckenstein–Hawking area law. As can be seen from Equation (9), the correction of
entropy is only described by the term of S

′′
0 . Using Equation (8), it can be deduced that

S
′
(β) =

1
Z(β)

∂Z(β)

∂β
+ E. (12)

S
′′
(β) = − 1

Z2(β)
(

∂Z(β)

∂β
)2 +

1
Z(β)

∂2Z(β)

∂β2 . (13)

Consider the energy of a canonical ensemble [61]:

E = E = − ∂

∂β
lnZ = − 1

Z
∂Z
∂β

. (14)

∂E
∂β

=
1

Z2(β)
(

∂Z(β)

∂β
)2 − 1

Z(β)

∂2Z(β)

∂β2 . (15)

Then we have:

∂E
∂β

= −[< E2 > − < E >2] = −κBT2C. (16)

here C is the heat capacity. So, we finally obtain

S
′′
0 = T2C. (17)
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Applying it to a thermodynamic system of BH, the saddle point is represented as
β0 = 1

TH
by taking Hawking temperature TH instead of T. Following the method used

in reference [62], the entropy can be rewritten by introducing a parameter γ to track the
correction term

S = S0 − γ(CT2). (18)

For GBD modified gravity theory, S0 can be derived as follows

S0 = πr2
+ϕ0

1
rα
+
(1− n

β

Rn+1 ). (19)

Comparing the spherically symmetric BH solution (5) under this theory with the
Schwarzschild BH solution in the GR theory, the integration constant C1 can be easily
expressed as C1 = −2M, namely

B(r) = 1− 2M
r

+
C2

r2 . (20)

Considering relation: R(r) = 2−2B(r)−4rB
′
(r)−r2B

′′
(r)

r2 obtained by line elements (4) and
using Equations (19) and (20), we can derive:

S0 = πr2−α
+ , (21)

letting ϕ0 = 1. Then expression of the event horizon radius can be written as

r+ = π−
1

2−α S
1

2−α
0 . (22)

Obviously, the relationship between the BH mass and the event horizon radius in GBD
theory meets

M =
r+
2

+
C2

2r+
. (23)

Using expression (23), we draw the picture of the black hole mass relative to the event
horizon radius for different parameter values C2, as shown in Figure 1. From Figure 1, we
observe that for the case C2 = 15, the black hole mass reaches the minimum value M ≈ 3.87
when the event horizon radius is r+ ≈ 3.87.

C2=10

C2=15

C2=20

0 2 4 6 8 10
0

2

4

6

8

10

r+

M

α=0.1

Figure 1. Taking the different values of C2, the mass for the spherically symmetric black hole as a
function of the event horizon radius in the framework of GBD modified theory.
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Combining Equations (21) and (23), we obtain

M =
1
2
+ π

1
2−α S

− 1
2−α

0 (π
1

2−α S
2

2−α
0 + C2). (24)

Then we can obtain the concrete expressions of temperature and heat capacity for the
GBD black hole as follows:

T =
∂M
∂S0

=
π−

1
2−α S

−1+α
2−α

0
2− α

−
π

1
2−α S

α−3
2−α
0 (π−

1
2−α S

2
2−α
0 + C2)

2 ∗ (2− α)
(25)

C =
∂M
∂T

= T
∂S0

∂T
= −

S0 ∗ (−2 + α)(π
2

−2+α (−1 + α)− S
2

−2+α
0 C2)

π−
2

2−α (−1 + α)− S
2

−2+α
0 (−3 + α)C2

. (26)

According to these expressions, we plot the variation of BH temperature (upper graph)
and heat capacity (lower graph) with respect to the event horizon radius in Figure 2. From
Figure 2 (upper), we observe that the BH temperature is positive only within a specific range
of the event horizon radius. For instance, for the parameter values α = 0.01 and C2 = 15,
the BH temperature is positive when r+ > 3.87; whereas for r+ < 3.87, it corresponds to a
physically meaningless negative temperature region. Moreover, the black hole temperature
reaches its maximum value when the event horizon radius is r+ ≈ 6.73. The lower graph of
Figure 2 shows that the black hole undergoes a phase transition in the framework of GBD
modified gravity theory, and the location of the phase transition depends on the model
parameter values. For example, for α = 0.01 and C2 = 15, the black hole is in an unstable
phase with negative heat capacity in the range 0 < r+ < 3.87, and the heat capacity of BH
has its minimum value at the event horizon radius r+ ≈ 2.87. On the other hand, for the
range r > 3.87, the black hole is in a stable phase with positive heat capacity. Clearly, the
black hole undergoes a phase transition at r+ ≈ 3.87, where the BH heat capacity C = 0.

C2=10

C2=15

C2=20

0 2 4 6 8 10
-0.02

-0.01

0.00

0.01

0.02

r+

T

α=0.01

α=0.1

α=0.01

α=0.001

0 2 4 6 8 10
-0.02

-0.01

0.00

0.01

0.02

r+

T

C2=15

C2=10

C2=15

C2=20

0 1 2 3 4 5
-15

-10

-5

0

5

10

15

r+

C

α=0.01

α=0.1

α=0.01

α=0.001

0 1 2 3 4 5
-15

-10

-5

0

5

10

15

r+

C

C2=15

Figure 2. Black hole temperature (upper) and heat capacity (lower) as function of the event horizon
radius in GBD theory, where α = 0.01 (or C2 = 15) has been taken in the left (or right) figure.
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By combining Equations (18), (25) and (26), we can derive the corrected entropy
expression for black holes under GBD theory, given by:

S = S0 +
(r2−α

+ )
α

2−α γ[−1 + (r2−α
+ )

2
−2+α C2]

3

4π(−2 + α)[1− α + (r2−α
+ )

2
−2+α (−3 + α)C2]

. (27)

Taking the parameters γ = 1, α = 0.01 and C2 = 15 into account, we can use
Equation (27) to plot the corrected entropy as a function of the event horizon radius (as
shown in Figure 3). From Figure 3, we observe that the entropy S with the correction term
decreases rapidly with increasing event horizon radius and reaches its minimum value
S ≈ 5.44 at r+ ≈ 1.09, then gradually increases. The plot of S0 indicates that it increases
monotonically with r+ increasing. Comparing the two plots of S and S0, we find that
the correction term has a significant effect mainly in the region of small values r+, and
the entropy-increasing effect is very prominent. As for large values r+, the effect of the
correction term can be almost ignored (the two curves almost overlap). In addition, we also
calculate the influence of other model parameter values on the entropy. From Figure 3 (left),
we can see that the variation of the model parameter C2 has little effect on the corrected
entropy when r+ is large.

α=0.1

α=0.01

α=0.001

0 1 2 3 4 5
0

10

20

30

40

50

r+

S

C2=15

C2=10

C2=15

C2=20

0 1 2 3 4 5
0

10

20

30

40

50

r+

S

α=0.1

Figure 3. Black hole thermodynamic correction entropy as function of the event horizon radius in
GBD theory (the red curve denotes the variation of S, and black curve denotes the variation of S0),
where C2 = 15 (or α = 0.01) has been taken in the left (or right) figure.

3. Stability Analysis of Particles’ Circular Orbits around a Black Hole under
GBD Theory

Some works on the circular orbits of particles can be seen in Refs. [36,63–67], e.g.,
the issues on the spherical photon orbits around a Kerr BH [63], the dynamics of charged
particles moving around Kerr BH with inductive charge and external magnetic field [65],
the equivalence between two charged black holes in dynamics of orbits outside the event
horizons [36], and the precessing and periodic orbits around hairy black holes in Horndeskis
theory [67], were discussed. These studies can be utilized to distinguish different BHs,
investigate the properties of spacetime in strong gravitational fields, and subsequently test
theories of gravitational interaction. In this section, we analyze the motion and properties
of particles around a black hole within the framework of GBD theory. The motion of a free
particle in a gravitational field is described by the geodesic equation:

d2xµ

dp2 + Γµ
νλ

dxν

dp
dxλ

dp
= 0. (28)

Here, p represents the orbital parameter. The component forms of geodesic equation
can be written as
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d2t
dp2 +

B
′

B
dt
dp

dr
dp

= 0. (29)

d2r
dp2 +

BB
′

2
(

dt
dp

)2 − 1
2B

(
dr
dp

)2 − rB(
dθ

dp
)2 − rBsin2θ(

dϕ

dp
)2 = 0. (30)

d2θ

dp2 +
2
r

dθ

dp
dr
dp
− sinθcosθ(

dϕ

dp
)2 = 0. (31)

d2 ϕ

dp2 +
2
r

dϕ

dp
dr
dp

+ 2cotθ
dϕ

dp
dθ

dp
= 0. (32)

where the prime represents the derivative with respect to the radial coordinate r. For a
gravitational field with spherical symmetry, without loss of generality, we select the initial
position and velocity of the particle to be on the equatorial plane, i.e., θ = π

2 and dθ
dp = 0.

Using Equation (31), we obtain d2θ
dp2 = 0, which indicates that the particle motion will always

remain on the equatorial plane. For particles with non-zero rest mass, the orbital parameter
is taken to be the proper time τ. Further derivation leads to two equations for the motion
of particles in a gravitational field:

dt
dτ

=
E
B

. (33)

r2 dϕ

dτ
= J. (34)

Here, E and J are two constants of integration, representing the energy and angular
momentum of a unit mass particle. Additionally, using the normalization condition of the
four-velocity gµνUµUν = ε and Equations (33) and (34), we obtain:

(
dr
dτ

)2 = E2 − B(r)(−ε +
J2

r2 ), (35)

where ε = −1 denotes the case of a massive particle, while ε = 0 corresponds to the case of
a massless particle. We define the effective potential as:

Ve f f (r) ≡ B(r)(−ε +
J2

r2 ). (36)

Then Equation (35) becomes:

(
dr
dτ

)2 = E2 −Ve f f (r). (37)

Clearly, the properties of the gravitational potential in the GBD theory can be described
by Equation (36), which depends on the relative position and angular momentum of the
particles. Obviously, for the case of massive particles, we see that when the radius is r → ∞,
the effective potential is Ve f f = 1 by combining Equations (5) and (36). Furthermore,
Equation (37) indicates that when E2 = Ve f f , i.e., dr

dτ = 0, the orbital radius r is constant,
and the trajectory of the particle is circular.
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The effective potential is crucial to particle radial motions, since the local minimal and
maximal values of the effective potential correspond to stable and unstable circular orbits,
respectively [26,36,37,68–70]. Considering

dVe f f

dr
= 0, (38)

d2Ve f f

dr2 = 0, (39)

one can derive the innermost stable circular orbit (ISCO). In black hole physics, it is
meaningful to discuss the ISCO, as it is not only the inner boundary but also the start-
ing position of electromagnetic radiation of the accretion disk in the Novikov–Thorne
model [37,71,72]. For massless particles (e.g., photon) in our GBD theory, Equation (38)
provides (−2r2 + 3rC1 + 4C2)/r5 = 0, which gives the location of the photon sphere:

rph = 1
4 (−3C1 ±

√
9C2

1 − 32C2). Obviously, for | C1 | > 4
√

2
3
√

C2 there are two photon

spheres, while for | C1 | = 4
√

2
3
√

C2, there is one photon sphere. Equation (39) gives the

location of the ISCO for photon: rISCO−ph = −C1 ±
√

C2
1 −

10C2
3 .

For the GBD theory, we derive that the relationship that the ISCO with the massive
particles needs to satisfy:

3r2C2
1 + 8C2

2 + C1(r3 + 9rC2)

r2(rC1 + 2C2)
= 0. (40)

Solving the above equation numerically, for the case of massive particles we can plot
the variation of the ISCO radius with respect to the parameters (as shown in Figure 4). For
this case, our calculations show that the radius of the ISCO in the GBD modified gravity
theory framework will continuously increase with increasing values of the parameters C1
and C2.

C2=10

C2=15

C2=20

-5 -4 -3 -2 -1 0
0

5

10

15

20

25

30

c1

r I
S
C
O

Figure 4. The radius of the ISCO as function of the parameter C1 in GBD theory for the case of
massive particles, where the different values of C2 have been taken.

We also investigate the properties of angular momentum of massive particles in the
GBD theory. Considering the condition of circular orbits in the equatorial plane:

θ =
π

2
,

dθ

dτ
= 0,

dr
dτ

= 0, (41)

we obtain the expressions for t and ϕ by calculating the components of the motion
Equation (28):

(
dϕ

dτ
)2 =

B′(r)
r[2B(r)− rB′(r)]

(42)
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(
dt
dτ

)2 =
2

B(r)− rB′(r)
. (43)

From Equations (42) and (43), we derive the expression for angular velocity as:

Ω =
ϕ̇

ṫ
=

√
∂rB(r)

2r
. (44)

Furthermore, substituting Equation (5) into Equation (44) yields

Ω =

√
r3 − C1r− 2C2

2r4 . (45)

Using Equation (45), we plot the picture of angular velocity as a function of the radius
r in Figure 5, where parameter values C1 = −10 and C2 = 15 are selected (corresponding
to the two thin solid lines in Figure 5). For this case we can see that for these parameter
values, the angular velocity sharply increases in the range of radius r: 2.09–3.05, reaches
its maximum value Ω ≈ 0.41 at radius r ≈ 3.05, and then Ω decreases to a steady state.
In addition, to discuss the variation of angular velocity with respect to the parameters C1
and C2, we also plot the curves for different values of these parameters in Figure 5. For
example, in the left panel of Figure 5, we consider C2 = 15, C1 with values of −8, −10, and
−12, respectively. In the right panel of Figure 5, we consider C1 = −10, C2 with values of
10, 15, and 20, respectively. From Figure 5, we observe that the values of angular velocity
decrease with increasing values of C1 or C2.
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Figure 5. Angular velocity as function of the radius r in the framework of GBD modified theory,
where C2 = 15 (or C1 = −10) has been taken in the left (or right) figure.

In addition, we can derive to obtain the specific expressions of energy and angular
momentum of unit mass particles in GBD modified theory as follows:

E =
r2 + C1r + C2

r2

√
2r2

2r2 + 3C1r + 4C2
(46)

J =

√
− r2(C1r + 2C2)

2r2 + 3C1r + 4C2
(47)

Figure 6 shows the variation of energy and angular momentum of a unit mass particle
with radius. From the figure, it can be seen that when the parameter values are taken as
C1 = −10 and C2 = 15, the energy sharply decreases in the radius interval 12.62–24.86, and
reaches its minimum value E ≈ 0.93 at the radius r ≈ 24.86. It then gradually increases.
The variation trend of angular momentum is similar to that of energy, also reaching its
minimum value J ≈ 15.67 at the radius r ≈ 24.86. The variation of E and J for different
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parameter values C1 and C2 can be seen in detail in Figure 6. The plots on the left take the
value of C2 = 15, while the plots on the right take the value of C1 = −10.
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Figure 6. Specific energy (upper) and angular momentum (lower) as function of the radius in GBD
theory, where C2 = 15 (or C1 = −10) has been taken in the left (or right) figure.

To study the issue of circular orbit stability of massive particles moving around a
spherically symmetric black hole in GBD theory, we consider the application of the geodesic
deviation equation. The geodesic deviation equation is given by:

d2ξα

dτ2 + 2Γα
µν

dxµ

dτ

dξν

dτ
+

dxµ

dτ

dxν

dτ
ξβ∂βΓβ

µν = 0, (48)

where ξαis the deviation four-vector. By substituting the spherically symmetric line element
(4) and using Equations (41)–(43), we can derive the expressions for the geodesic deviation
equation components:

d2ξ0

dϕ2 +
B′

B
dt
dϕ

dξ1

dϕ
= 0 (49)

d2ξ1

dϕ2 + BB′
dt
dϕ

dξ0

dϕ
− 2rB

dξ3

dϕ
+ [

1
2
(

dt
dϕ

)2(B′
2
+ BB′′)− (B + rB′)]ξ1 = 0 (50)

d2ξ2

dϕ2 + ξ2 = 0 (51)

d2ξ3

dϕ2 +
2
r

dξ1

dϕ
= 0 (52)



Entropy 2023, 25, 814 12 of 15

Obviously, the solution to Equation (51) can be expressed as ξ2 = ζ2eiϕ. This indicates
that the circular orbits of test particles initially in the equatorial plane will undergo harmonic
vibration under perturbations. Therefore, the circular orbit of particle motion is stable. For
other equations, assuming the solution takes the form:

ξ0 = ζ0eiωϕ (53)

ξ1 = ζ1eiωϕ (54)

ξ3 = ζ3eiωϕ (55)

then substituting Equations (53)–(55) into Equations (49), (50) and (52), and considering the
stability requirement for circular orbit motion, we derive the following constraint:

ω2 = 3B− 2rB′ +
rBB′′

B′
≥ 0. (56)

This constraint (56) can also be obtained by using Equation (39) and the consideration
d2Ve f f

dr2 ≥ 0. By substituting expression (5) into the above Equation (56), we show in Figure 7
the dependence of the parameter ω2 on the circular orbit radius r. When the integral
constants are taken as C1 = −10 and C2 = 15, we find that the stable region of circular
orbits ω2 ≥ 0 is: r & 24.86. The effects of other model parameter values on the parameter
ω2 and the corresponding stable circular orbit regions are shown in Figure 6 (the left figure
with C2 taken as 15 and the right figure with C1 taken as −10).
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Figure 7. ω2 as function of the radius in the framework of GBD modified theory, where C2 = 15 (or
C1 = −10) has been taken in the left (or right) figure.

4. Conclusions

The emergence of challenging problems such as gravity quantization and the origin of
dark matter and dark energy has provided motivation for finding gravity theories beyond
Einstein’s general relativity. Researchers in the field of gravity have made many efforts and
practices in exploring modified or extended theories of general relativity, and the study
of applying modified gravity theories to astrophysics and cosmology has increasingly
received people’s attention. This article focuses on the properties of a BH solution from the
so-called GBD theory. We investigate the thermodynamic corrected-entropy problem of
static spherically symmetric BHs and the stability of particles’ circular orbits around a BH
under the framework of the GBD modified gravity theory. Since studying the structure of
geodesics in strong gravitational fields plays an important role in exploring the physical
characteristics of compact objects, we firstly quantitatively analyze the contribution of the
corrected term to the entropy in the GBD gravity. It is found that the effect of the correction
term on entropy is significant when the value of the event horizon radius r+ is small, while
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its effect can be negligible when r+ is large. Secondly, the article also analyzes and shows
the dependence relationship of black hole mass, temperature, heat capacity, etc., on the
event horizon radius. Based on the motion equations, we investigate the relevant properties
of physical quantities such as energy, gravitational potential energy, angular velocity, and
angular momentum of test particles under the GBD theory. Finally, the article applies the
geodesic deviation equation to analyze the stable circular orbit of test particles in the GBD
theory and finds that the particle undergoes harmonic motion in the equatorial plane, and
the range of the restricted area that the radial coordinate needs to satisfy to achieve stable
circular orbit motion is given.
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