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Abstract: There are different views in the literature about the number and inter-relationships of cog-
nitive domains (such as memory and executive function) and a lack of understanding of the cognitive
processes underlying these domains. In previous publications, we demonstrated a methodology for
formulating and testing cognitive constructs for visuo-spatial and verbal recall tasks, particularly for
working memory task difficulty where entropy is found to play a major role. In the present paper, we
applied those insights to a new set of such memory tasks, namely, backward recalling block tapping
and digit sequences. Once again, we saw clear and strong entropy-based construct specification
equations (CSEs) for task difficulty. In fact, the entropy contributions in the CSEs for the different
tasks were of similar magnitudes (within the measurement uncertainties), which may indicate a
shared factor in what is being measured with both forward and backward sequences, as well as
visuo-spatial and verbal memory recalling tasks more generally. On the other hand, the analyses of
dimensionality and the larger measurement uncertainties in the CSEs for the backward sequences
suggest that caution is needed when attempting to unify a single unidimensional construct based on
forward and backward sequences with visuo-spatial and verbal memory tasks.

Keywords: cognition; visuo-spatial memory; verbal memory; metrology; neuropsychology;
neuropsychological assessments; neurodegenerative diseases; cognitive neuroscience; Rasch

1. Introduction

In order to evaluate individuals’ cognitive abilities and cognitive processes in general,
several neuropsychological tests have been developed to measure different cognitive
domains. Typically, individual neuropsychological tests are designed to measure one or
more discrete abilities. There are, however, different understandings in the literature about
the number and inter-relationships of cognitive domains (such as memory and executive
function) [1,2]. As highlighted by many, memory is the most multidimensional cognitive
domain [3,4]. Among others, it includes working memory, which can be defined in several
ways [4] but has commonly been referred to as the ability to temporarily maintain (verbal
and nonverbal) information in consciousness for adaptive use in information processing [1].

Entropy 2023, 25, 813. https://doi.org/10.3390/e25050813 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25050813
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-3700-3921
https://orcid.org/0000-0001-6592-2493
https://orcid.org/0000-0003-2174-372X
https://orcid.org/0000-0003-4820-6203
https://orcid.org/0000-0003-4349-500X
https://doi.org/10.3390/e25050813
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25050813?type=check_update&version=2


Entropy 2023, 25, 813 2 of 12

Executive functions, for their part, include several actions and processes [2] to real-world
adaptive tasks [1].

Our previous studies of neuropsychological tests in the NeuroMET project have
focused on the recall of forward sequences of blocks or digits (i.e., working memory) [5–7]
or freely recalling words (i.e., declarative memory) [8–10]. The recall of forward sequences
of blocks and digits is typically regarded as engaging the visuo-spatial (blocks) and verbal
(digits) maintenance working memory, respectively [1]. Backward recalling sequences, for
their part, may be used to measure both visuo-spatial and verbal manipulation working
memory, as well as executive functions [11–13]. However, previous studies have not yet
been able to understand the cognitive processes underlying working memory, especially
with regard to differences in forward or backward recalling sequences [14].

The Corsi Block Test (CBT) [15] and Digit Span Test (DST) [16] are two tests, largely free
of cultural and language effects, that are commonly used in neuropsychological tests. Pre-
vious work has shown differences between visuo-spatial and verbal memory tasks [17,18],
and forward and backward sequences seem to have different effects on visuo-spatial or
verbal memory tasks [11–13,18]. It should be noted that visual sequences cannot form
single coherent objects in the same way as verbal sequences do [19] and that digits are
sampled from a smaller pool than other verbal stimuli such as letters or words [20]. Further-
more, despite decades of research, less is known about the tests with backward sequences
compared with the forward sequences [21]. The “visuo-spatial hypothesis” has been ac-
cepted for many years [22,23], according to which backward recall, for instance, relies in
part on visuo-spatial processes where the test person creates a mental list. More recent
research by Guitard et al. [21] has challenged a too strict view of the visuo-spatial processes
in backward recall. Specifically, they propose that phonological encoding is needed in
forward and backward recalling sequences [21], and which test persons may rely more on
when anticipating backward recalls [24–26].

The CBT and DST are two tests which are structured similarly, where the test person is
first asked to recall sequences of increasing difficulty (which depends on sequence structure,
such as length and number of reversals) of either taps on a board of blocks or spoken digits
in a nominal “forward” direction. This is followed by asking the test person to inversely
recall the same sequences of either taps or spoken digits but “backwards” instead. For
either test, if the test person recalls a sequence correctly, the observed, “passed” response is
scored 1, while an incorrect, “failed” response is scored 0. Traditionally, a sum of passes is
then counted as a ‘measure’ of the test person’s ability.

Passes or fails in responses to memory tests are just observations, lying at best on
an ordinal response scale, and simply counting the number of passes cannot be regarded
as measurement, since the latter must be at least on an interval scale [7,27,28]. Ordinal
observations (such as responses to memory tests) are subject to possible scale non-linearity,
which, unless evaluated and corrected for, will lead to uncertainties and decision risks.
Responses also depend on both task difficulty and person ability, and the same score can
be obtained with an easy task performed by a less able person as well as for a difficult task
performed by a more able person. To date, unfortunately, few analyses of memory tests
have accounted for ordinality or addressed separability between item and person attributes.
This has hindered the application of methods for metrological quality assurance to ensure
traceability and declare measurement uncertainties in memory tests. We have previously
pointed this out and argued for the following [29]: (i) applying a measurement system
approach where the human responder acts as an instrument [30]; (ii) exploiting the unique
properties of item response theory (IRT) models—particularly the Rasch model [31]– to
compensate for ordinality and to establish metrological references; and (iii) formulating
construct specification equations (CSE) to provide valid explanations of task difficulty and
person ability [6,7,9,31,32].

CSEs were first introduced in the early 1980′s by Stenner and colleagues [31,32] and are
frequently promoted as a means of ensuring validity [33–36], but the development of such
construct theories has been slow in healthcare [6,36]. The formulation of CSEs, guided by
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an understanding of what is causing variation in a set of items, i.e., task difficulty, has been
encouraged as a means of validating construct theories [32]. CSEs can provide a specific,
causal, and rigorous mathematical conceptualization of working memory constructs (such
as task difficulties [6]) and, in turn, support claims of the highest level of validity [34]. A set
of items is expected to be used to measure one single person attribute, and, when there are
equivalent CSEs for visuo-spatial and verbal memory tasks, they can validly be combined,
thereby improving the reliability in the measurement of person ability [29]. On the contrary,
if the CSE does not support unidimensionality between different sets of items, the validity
in a higher ordered measurement is challenged [31,33], e.g., when combining visuo-spatial
and verbal memory tasks or forward and backward sequences. For instance, in the present
case, if the CSE cannot coherently and equally explain the variation in task difficulties from
forward and backward sequences for both visuo-spatial and verbal memory tests, that may
be an indication of a multidimensional memory domain.

Rasch modelling, according to its principle of specific objectivity, provides estimates
of the level of difficulty of each test sequence across the whole cohort of test persons
and separately estimates of the level of ability of each test person irrespective of test
sequence [37]. The Rasch model is a probabilistic measurement model where a person who
has better memory ability will be more likely to score higher on a difficult item than a person
who has lower memory ability, and, conversely, it is more likely that more persons score
high on an easy item and fewer persons score high on difficult items. By using these separate
estimates of task difficulty in working memory tests in our previous publications, we have
demonstrated both a methodology—CSE—for testing the validity of our understanding of
constructs such as working memory task difficulty, including the particular role played by
entropy when explaining working memory task difficulty [6,8]. Specifically, entropy is a
measure of order—the higher the order, the lower the entropy, and a more ordered task
will generally be easier to perform—which has been demonstrated experimentally [6,38].
Together with entropy, reversals and average distance (further described in the method
section) have provided strong explanatory models for working memory task difficulty in
CBT and DST forward sequences [6]. Moreover, the equal-entropy-based CSEs indicate the
equivalence of different set items, which, together with the conceptual understanding and
design of those working memory tests, is a key to understanding what is being measured.

In the present paper, we applied our previous insights to a new set of working memory
tasks, namely, backward recalling block tapping and digit sequences, to provide a better
understanding of what is being measured with CBT and DST backward. Firstly, we explore
if and how well memory task difficulty can be explained in backward recalling sequences
based on the same set of explanatory variables as for the forward sequences, as well as
compare this between the visuo-spatial and verbal memory tests. Secondly, we aim to
compare traditional Rasch-model-based analyses of dimensionality with CSE for memory
task difficulty between forward and backward sequences, as well as between visuo-spatial
and verbal memory tests.

2. Materials and Methods
2.1. Subjects

The data for this study stemmed from 332 individual assessments of the project
NeuroMET [39] comprising 65 observations of patients with Alzheimer’s dementia (AD),
55 observations of patients with mild cognitive impairment (MCI), 102 observations of par-
ticipants with subjective cognitive decline (SCD) and 110 observations of healthy controls
(HC). The mean age of the participants was 72 years (SD 7, range 53–88 years). A more
comprehensive report on recruitment of subjects and testing can be found elsewhere [29].
The number of observations used here depended on missing data for certain neuropsy-
chological tests or missing data on biomarkers and might, therefore, not be equal to the
number of observations in previous work. Nevertheless, the study population generally
overlaps, and recruitment and testing procedures were identical.
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2.2. Data Analysis

As mentioned in the Introduction, for both CBT and DST, the raw response scores
(a correctly recalled sequence is scored 1; an incorrect response or missing due to the
stopping rule is scored 0) were transformed with the dichotomous Rasch model [37] using
restitution to provide separate and linear measures for individual task difficulties and
person abilities on an interval scale. This restitution process used the RUMM2030Plus
software (www.rummlab.com.au, accessed on 17 May 2023).

In order to explain task difficulty, the same kinds of explanatory variables for task
difficulty, namely, entropy, reversals and average distance, as previously identified for CBT and
DST forward sequences [6] (see Introduction), were also applied here to the corresponding
backward sequences. A detailed presentation of those explanatory variables can be found
in our previous publications [6,38], but, in short, the basic idea—that entropy refers to the
fact that more ordered sequences will be easier to recall than less ordered sequences—as
given in the Introduction was implemented here, specifically, by expecting that memory
task difficulty, δ, would increase in proportion to ln(Gj!), where G is the number of symbols
encountered in a message and applies to sequences where there are no repeated symbols
in the sequence. With repeats, memory task difficulty, δ, would be expected to decrease,
as given by the following equation δ = Entropy = K·

[
ln(G!)−∑M

j=1 ln
(

Nj!
)]

, where N is
the number of repeats in the sequence of symbols of M different types (blocks or digits),
and K is a normalization constant according to Brillouin [40]. Reversal corresponds to a
changed direction in the sequence, i.e., changing from clockwise to anti-clockwise (or the
other way around) in CBT, and from counting forwards to counting backwards (or the
other way around) in DST. Average distance for CBT is the sum of distance in cm divided by
the number of taps, and, for DST, it is the sum of the numerical distance between digits
divided by the number of digits.

The explanatory variables observed may not be the principal components of variation
in task difficulty, and state-of-the-art formulation of CSEs, therefore, includes three steps of
a principal component regression [7,38]:

i. A principal component analysis (PCA) amongst the set of explanatory variables, Xk;
ii. A linear regression of the empirical task difficulty values δj against X′ in terms of the

principal components, P;
iii. A conversion back from principal components to the explanatory variables, Xk.

Analyses of dimensionality based on the Rasch model [37] were conducted accord-
ing to three approaches [41–45] using four subsets of data (CBT forward and backward
sequences combined, DST forward and backward sequences combined, forward sequences
from the CBT and DST combined, and backward sequences from the CBT and DST com-
bined). First, PCAs of item residuals (not to be mixed with the PCA in the formulation
of the CSE [8]) were conducted, and eigenvalues of the first and second principal compo-
nents (PC1 and PC2, respectively) were compared. A large eigenvalue for PC1 (relative
to PC2) may suggest multidimensionality [41]. Residuals are the standardized difference
between observed and expected (Rasch model predicted probabilities) item responses or
task outcomes. Since the analysis involves residuals representing what is left following
the measurement process, the main dimension in the data has already been accounted for
by the Rasch model. Therefore, under unidimensionality, no meaningful associations are
expected among residuals, and PCA of residuals essentially assesses the extent to which
additional dimensions may have influenced item responses. That is, low eigenvalues
that decrease smoothly across PCs support unidimensionality [41,45]. Secondly, since the
CBT and DST consist of forward and backward sequences that may represent different
underpinning constructs, we constructed subtests (i.e., treated individual sequences of
the same kind as a single polytomous item in the analyses) to identify potential multi-
dimensionality in the data. Local independence is an assumption in measurement and
may be violated in two principal ways: either if a secondary trait influences responses
(i.e., multidimensionality, or local trait dependence) or if the outcome of one sequence (or

www.rummlab.com.au
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response to one item) is influenced by the outcome of (or response to) another (i.e., local
response dependence) [46]. Such dependencies may be accounted for by merging depen-
dent items into subtests that are treated as single items in the analysis, and the outcomes
of such analyses (relative to analyses that do not account for potential dependency) can
be used to test for dependency. More specifically, if the reliability estimate (coefficient
alpha) from a subtest analysis is lower than that from the first analysis (where all sequences
are treated as individual items), multidimensionality is suggested. Further information
is gained from the additional parameters c (variance that is unique to the subtests), r (the
latent correlation between the subscales, corrected for attenuation due to measurement
error), and A (the non-error variance common to all subtests), which will return a low value
for c but high values for A and r when data are approximately unidimensional. Finally,
unidimensionality was tested by comparing person locations (measures) based on items
hypothesized to represent different dimensions (e.g., forward and backward sequences)
using the independent t-test approach [41,44,45]. That is, since the Rasch model yields
both locations and associated standard errors of each person in the analysis, the locations
from the two sets of sequences were compared for each individual. If the proportion
(or its 95% CI) of persons with significantly different location estimates is less than 5%,
unidimensionality is considered supported. All dimensionality analyses were conducted
using the RUMM2030Plus software (www.rummlab.com.au, accessed on 17 May 2023).

3. Results

The results section is divided into two parts: first, the CSE analyses are presented, and,
secondly, traditional Rasch-model-based analyses of dimensionality are presented.

3.1. Construct Specification Equations

Equations (1) and (2) provide the CSEs obtained for the CBT forward and backward
sequences (uncertainties in parentheses, coverage factor, k = 2):

zRj, CBT_ f orward = −6 (2) + 1.3 (6)× Entropyj + 0.1 (1.1)× Reversalsj + 0.03 (15)× AveDistj (1)

zRj, CBT_backward = −8 (3) + 1.5 (1.0)× Entropyj − 0.6 (2.0)× Reversalsj + 0.2 (2)× AveDistj (2)

Equations (3) and (4) provide the CSEs obtained for DST forward and backward sequences:

zRj, DST_ f orward = −9 (2) + 1.2 (4)× Entropyj + 0.1 (6)× Reversalsj + 0.04 (37)× AveDistj (3)

zRj, DST_backward = −8 (6) + 1.3 (1.7)× Entropyj − 0.1 (2.9)× Reversalsj + 0.8 (7)× AveDistj (4)

Firstly, as expected, the CSEs for the forward sequences corresponded well with
our previous results [6,38]. Secondly, in all four CSEs, entropy was the only explanatory
variable with measurement uncertainties smaller than the β-coefficient, thereby making
it the dominating explanatory variable, which is what we could expect based on our
previous work [6,38]. However, there were larger measurement uncertainties for the entropy
β-coefficients in the CSEs for the backward sequences (Equations (2) and (4)) compared
with the forward sequences (Equations (1) and (3)). There was also some more variation,
e.g., the sign of the β-coefficient for reversals was changed from positive to negative for the
CBT sequences (Equations (1) and (2)), and there were also larger measurement uncertainties
for the β-coefficients for both reversals and average distance in the CSEs for the backward sequences
(Equations (2) and (4)) compared with the forward sequences (Equations (1) and (3)).

Two further CSEs were derived based on items for forward and backward sequences
in the CBT and on items for forward and backward sequences in the DST. This yielded the
following CSEs:

zRj, CBT = −7 (1) + 1.4 (5)× Entropyj − 0.3 (9)× Reversalsj + 0.1 (1)× AveDistj (5)

www.rummlab.com.au
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zRj, DST = −8 (5) + 1.3 (1.2)× Entropyj − 0.3 (2.1)× Reversalsj + 0.6 (7)× AveDistj (6)

As for the analyses of forward and backward sequences individually, when com-
bined for block recalling sequences (i.e., the CBT) or digit recalling sequences (i.e., the
DST), entropy continued to be the dominating explanatory variable for task difficulty,
i.e., the uncertainties were smaller than the β-coefficients. For all explanatory variables,
however, the uncertainties for the β-coefficients were particularly high for the digit re-
calling sequences (Equation (6)), while the β-coefficient for entropy decreased when CBT
forward and backward sequences were combined (Equation (5)) compared to individually
(Equations (1) and (2)).

Furthermore, CSEs based on a combination of items for forward sequences from CBT
and DST, as well as items for backward sequences from CBT and DST, were derived:

zRj, f orward = −8(1) + 1.3(4)× Entropyj − 0.4(4)× Reversalsj + 0.3(1)× AveDistj (7)

zRj,backward = −6(1) + 1.1(3)× Entropyj − 0.6(1.1)× Reversalsj + 0.1(2)× AveDistj (8)

In these CSEs, entropy was again found to be dominating. Here, it should be noticed
that average distance was also significant (i.e., measurement uncertainties for the β-coefficient
not overlapping zero) and reversals were close to significant for the forward sequences
(Equation (7)), but measurement uncertainties remained large for the backward sequences
(Equation (8)).

Based on the CSEs, quasi-theoretical measures of memory task difficulty could be esti-
mated and from all eight CSEs; those estimates were highly correlated with the empirical
values, i.e., measures of task difficulties, δ, from the Rasch analysis (Pearson correlation
coefficients ranged from 0.87 to 0.99). The lowest correlation was seen for the digit recalling
sequences (Equation (6)), which was also the CSE with the largest measurement uncertain-
ties in the β-coefficients. On the other hand, the strongest correlations were seen for the
forward sequences individually (Equations (1) and (3)).

3.2. Dimensionality Analysis

The results are reported in Table 1. The PCA of forward and backward sequences
combined yielded PC1 and PC2 eigenvalues (Section 2.2) of 1.88 and 1.7, respectively, for
the CBT, with a PC1/PC2 ratio of 1.11. Equivalent results for the DST showed a somewhat
higher PC1 eigenvalue and a PC1/PC2 ratio of 1.38. In both instances, forward and
backward sequences tended to load in different directions for the PC1. When analyzing
all forward sequences together and all backward sequences together, the PC1 eigenvalues
increased to 2.34 (forward sequences) and 2.65 (backward sequences), both with a PC1/PC2
ratio of 1.44. In both instances, CBT and DST sequences tended to load in different directions
for the PC1.

In all instances, coefficient alpha values decreased following the creation of subtests
as compared to analyses based on individual sequences (Table 1). The decreases were
more pronounced in analyses of combined CBT and DST forward and backward sequences
(−0.23 and −0.21, respectively) than in analyses of combined forward and backward
sequences of the CBT and DST (−0.06 and −0.07, respectively). In keeping with these
observations, the values of r and A were relatively high for the combined forward and
backward sequences of the CBT and DST (r was 0.85 and A was 0.92 for the CBT; r was
0.83 and A was 0.91 for the DST), whereas c was lower (0.42 and 0.46, respectively). In
contrast, r and A were more modest for the combined CBT and DST forward (r was 0.54;
A was 0.71) and backward (r was 0.57; A was 0.84) sequences, while the values of c were
higher (0.93 and 0.87, respectively).
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Table 1. Dimensionality analyses.

Title 1 CBT DST Forward Sequences Backward Sequences
Individual

Sequences a Subtests b Individual
Sequences a Subtests b Individual

Sequences c Subtests d Individual
Sequences e Subtests f

PCA:
PC1 eigenv 1.88 2.12 2.34 2.65
PC2 eigenv 1.70 1.54 1.62 1.84

Ratio g 1.11 1.38 1.44 1.44

Subtest
analysis:

α 0.79 0.73 0.83 0.76 0.76 0.53 0.80 0.59
α diff. h −0.06 −0.07 −0.23 −0.21

c i 0.42 0.46 0.93 0.87
r j 0.85 0.83 0.54 0.57

A k 0.92 0.91 0.71 0.84

t-tests:
p < 0.05 l 8.43 4.24 13.55 3.94 20.54 6.71 19.09 3.34
95% CI m 5.86–11.96 2.48–7.05 10.26–17.68 2.25–6.68 16.53–25.23 4.43–9.99 15.20–23.69 1.81–5.96

a Data analysis based on individual forward and backward sequences combined. b Data analysis based on
two subtests: one comprising forward sequences and one comprising backward sequences. c Data analysis
based on individual forward CBT and DST sequences combined. d Data analysis based on two subtests: one
comprising forward CBT sequences and one comprising forward DST sequences. e Data analysis based on
individual backward CBT and DST sequences combined. f Data analysis based on two subtests: one comprising
backward CBT sequences and one comprising backward DST sequences. g Ratio between PC1/PC2 eigenvalues.
h Difference between α from analysis based on individual sequences and subtests. i Variance that is unique
to the subtests. j Latent correlation between subtests corrected for attenuation due to measurement errors.
k Non-error variance common to subtests. l Proportion of persons in the sample with significantly (p < 0.05)
different person locations as estimated from two subsets of items. m 95% binomial Agresti–Coull confidence
interval of the proportion of persons in the sample with significantly (p < 0.05) different person locations as
estimated from two subsets of items. CBT, Corsi Block Test; DST, Digit Span Test; PCA, principal component
analysis; PC1, first principal component; PC2, second principal component; eigenv, eigenvalue; α, coefficient
alpha; diff., difference.

A similar pattern was found when using the independent t-test approach (Table 1).
That is, there was some, but relatively weak evidence against unidimensionality when
comparing person locations based on forward vs. backward sequences in the CBT, with
significant different locations for 8.43% (95% CI, 5.86–11.96%) of the sample. Somewhat
stronger evidence against unidimensionality was found from the equivalent analysis of
the DST, where 13.55% (10.26–17.68%) of the sample had significantly different locations
from the two types of sequences. When comparing forward sequences from the CBT and
DST, there were clearer indications of multidimensionality, with 20.54% (16.53–25.23%)
of the sample having significantly different locations. Very similar results were found
from comparisons of the two backward sequences (Table 1). In all instances, the results
suggested unidimensionality when the same analyses were conducted based on subtests
(significantly different locations for 3.34–6.71% of the sample).

4. Discussion and Conclusions

This study has provided new insights into working memory and executive functions
by means of a new approach to studying recall tests. Specifically, we have successfully
demonstrated experimentally how entropy can be used to explain task difficulty in different
combinations of recalling items, thus complementing our earlier work on forward sequences
(see Introduction) with the corresponding backward sequences studied here. The very
similar entropy contributions in the CSEs—within the measurement uncertainties—may
indicate a shared dimension in what is being measured in both forward and backward
sequences and visuo-spatial and verbal memory recalling tasks. Despite the fact that
backward recalling sequences may be used to measure both visuo-spatial and verbal
manipulation working memory as well as executive functions [11–13], it is often considered
that backward sequences are dominated by executive functions. The present work has
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emphasized the interaction between the different cognitive dimensions. Previous studies
claimed that forward sequences are different from backward sequences [11–13] or claimed
a dissociation between visuo-spatial and verbal memory tasks [17,18]. We could not
confirm these results based on the CSEs when considering our relatively large measurement
uncertainties, (e.g., the entropy β-coefficients have overlapping ranges), Thus, our findings
can be related to the on-going debate about whether working memory is an ability in itself
or rather has to do with experiences relevant to the specific demands of the task [20,47].

Multidimensionality always exists to some extent [48,49], as was largely corroborated
by our results from dimensionality analyses based on the Rasch model. That is, strictly
speaking, there were signs of multidimensionality in all three analytical approaches of all
four subsets of data. However, the dimensionality property is not an absolute but a relative
matter of degree, and overreliance on statistical thresholds may be dangerous [44,50–52].
With this in mind, the observations reported here suggest that forward and backward
sequences within the analyzed tests (i.e., visuo-spatial and verbal working memory, CBT
and DST, respectively) appear to represent related but non-identical constructs. On the
other hand, the different types of forward and backward sequences (i.e., maintenance or
manipulation working memory, CBT and DST, respectively) appear less related and more
likely to represent different underpinning constructs.

The proposed CSE methodology can complement traditional Rasch-model-based di-
mensionality analyses and provide additional nuances when seeking understanding of
dimensionality aspects. The CSE methodology, however, is also an explanatory model in its
own right, thereby providing support for validity. The set of explanatory variables tested here
was similar for backward sequences as in our previous studies of forward sequences [6,38].
The strength of correlations between the quasi-theoretical measures of memory task difficulty
against the empirical values were very similar for all eight combinations. One exception
was when using only the digit recalling sequences (Equation (6)), where the correlation was
lower. This might be related to previous work showing that the DST backward sequences
are more challenging than the DST forward sequences, while task difficulty was similar
in backward and forward recalling sequences of the CBT [17]. In turn, this suggests that
additional variables may be needed to better explain forward and backward sequences and
visuo-spatial and verbal memory recalling tasks.

Being able to explain the variation in task difficulties has been emphasized as a
means of ensuring validity in measurements of person ability [33–36]. We argue that CSEs
for task difficulty and person ability are both of significance for the validity in memory
measurements [38]. This is especially true when one seeks to understand the underlying
cognitive processes, as in the case of forward and backward sequences and visuo-spatial and
verbal memory. Thus, a next proposed step to further understand (or to provide additional
viewpoints) would be to explore if the same set of explanatory variables can be applied
to explain different measures of person ability. Examples of explanatory variables for
measures of person ability could be brain volumes and biomarkers [38,53] or the person’s
ability to pay attention to the task to be performed using his or her executive functions,
but an opening in line with our entropy argument would be to include functional brain
networks and measures of connectivity [6]. Such an extension would also benefit from
including other external structures in the other components of the measurement system
(i.e., Environment, Method, and Operator).

Furthermore, as pointed out above, most analyses of memory tests have, to date,
unfortunately not accounted for ordinality nor addressed separability between item and
person attributes. This includes some of the recent research on forward and backward
sequences and visuo-spatial and verbal memory tests [13,14,17,18,21,22,24]. Not properly
separating item and person attributes hinders understanding of the cognitive processes
underlying different cognitive domains. Thus, we would stress the importance of not
only considering our CSE methodology, but also the significance of properly applying a
measurement system approach where the human responder acts as instrument [30] and
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exploiting the unique properties of the Rasch model [37] in future studies of visuo-spatial
and phonological processes in backward sequences (as suggested in [21]).

It was evident that, for the combined CSEs (Equations (5)–(8)), the measurement uncer-
tainties in the β-coefficients were smaller compared to the individual CSEs (Equations (1)–(4)).
This is not surprising, as they include more items, which are known to lead to reduced
measurement uncertainties [38]. It is, however, worth noting that the CSEs, including
backward recalling sequences, showed larger measurement uncertainties compared to
corresponding CSEs for forward recalling sequences. An explanation of this could be larger
measurement uncertainties for the empirical task difficulties for some of the analyses [38],
such as the backward sequences. This was only true for the easiest item in the CBT, which
reasonably should have the largest impact. Another explanation could be the variation
in explanatory variables owing to the test design, such as differences in reversals and
average distances, and may warrant adding sequences with the same entropy but with
more variation in the other explanatory variables.

The NeuroMET cohort was designed to include subjects having a wide range of
ability—from the least able to the most able. This is well-established practice in psy-
chometrics to ensure maximum variation and, in turn, to make sure that subjects with
different abilities can be measured on the same “ruler”. However, when different groups of
subjects—such as the less cognitively able (e.g., patients with AD and MCI) or the more
cognitively able (e.g., HC or persons with SCD)—perform differently on different kind
of items, this can make it challenging to achieve metrological invariance. For instance,
Muangpaisan et al. [54] proposed that backward recall better predicts MCI than forward
recall. Serial position effects (SPEs) in word learning lists can also be a marker of AD and
MCI [55]. Our previous work [8] on the diagnostic potential of SPEs in AVLT investigated a
potential breakdown in the assumption of specific objectivity of the RMT, which is needed
for metrological invariance. Understanding the limits to unidimensionality was achieved
by successfully explaining PCA loading in both CSE formulation and in logistics regression
residuals in terms of entropy, including SPEs using the Brillouin [40] formula in word learn-
ing list tests. Our work [8] indeed showed some effects of SPE scale distortion that might
be correlated with different diagnostic groups, although measurement uncertainties were
relatively large (reflecting the limited sample size). We suggested, nevertheless, that [8]
what appears to be the case is that, over and above individual variations in a person’s ability, there is
an overall shift in the person’s ability for each clinical group. Whether one regards that as a change
in ability or a change in task difficulty is a moot point.

To conclude, our previously presented methodology—CSE—for testing theory of con-
structs and the role of entropy in explaining memory task difficulty [6,8] has successfully
been replicated for backward sequences. Among the three explanatory variables studied
(entropy, reversals, and average distance), entropy was the dominating term in explaining task
difficulty. Moreover, analyses of dimensionality and the larger measurement uncertainties
in the CSEs for the backward sequences suggest caution when unifying a single unidimen-
sional construct based on forward and backward sequences with visuo-spatial and verbal
memory tasks when measuring a person’s memory ability.
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