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Abstract: With the development of the Internet, it is more convenient for people to obtain infor-
mation, which also facilitates the spread of rumors. It is imperative to study the mechanisms of
rumor transmission to control the spread of rumors. The process of rumor propagation is often
affected by the interaction of multiple nodes. To reflect higher-order interactions in rumor-spreading,
hypergraph theories are introduced in a Hyper-ILSR (Hyper-Ignorant–Lurker–Spreader–Recover)
rumor-spreading model with saturation incidence rate in this study. Firstly, the definition of hyper-
graph and hyperdegree is introduced to explain the construction of the model. Secondly, the existence
of the threshold and equilibrium of the Hyper-ILSR model is revealed by discussing the model, which
is used to judge the final state of rumor propagation. Next, the stability of equilibrium is studied
by Lyapunov functions. Moreover, optimal control is put forward to suppress rumor propagation.
Finally, the differences between the Hyper-ILSR model and the general ILSR model are shown in
numerical simulations.

Keywords: hyper-ILSR; hypergraph; saturation incidence rate

1. Introduction

Rumors are inaccurate information, which may be subjective assumptions based on
partial facts. With the popularity of social media platforms, rumors propagate faster and
more widely, endangering the social stability and affecting people’s lives [1]. For example,
on the 8 September 2022, a netizen spread a rumor on WeChat that said “The Wuzhou
city in Guangxi Province will be on lockdown at midnight!”, causing public panic and
disrupting the order of epidemic prevention and control. Thus, it is important to inves-
tigate the propagation mechanism of rumors to effectively reduce the harm caused by
rumor transmission.

The study of rumor spreading began decades ago, based on the similarities to the
spread of diseases. Daley and Kendall [2] created the DK rumor transmission model in 1964,
which was modified by Maki and Thompson [3] in 1973; however, they ignored the impact
of the network topology on the spread of rumors. In 2001, a rumor-spreading model in
small-world networks was first constructed by Zanette [4]. Then, many scholars considered
rumor propagation models in complex networks [5–9]. Moreover, because of the different
degrees of nodes, the transmission dynamics of rumors in heterogeneous networks were dis-
cussed in different models, such as the I2SR (ignorants–spreaders1–spreaders2–removers)
model [10], I2S2R (ignorants–spreaders1–spreaders2–stiflers1–stiflers2) rumor model [11],
IE2S2R (ignorants–exposures–spreaders1–spreaders2–stiflers1–stiflers2) model [12], and
SHILR (susceptible–hesitating–infected–latent–recovered) model [13]. These models pre-
sumed that the incidence was to be proportional to the number of spreaders, which was
unrealistic. Because a person’s connection with others is limited, the contact rate tends to
be saturated when the number of spreaders is large enough. Capasso and Serio [14] put
forward a saturation incidence rate g(I)S = kIS

1+αI to replace bilinear incidence, in which
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g(I) = kI
1+αI and α > 0, I and S denotes infective and susceptible individuals, respectively,

k is the infection rate and α is the psychological influence factor. Then, on this basis, epi-
demic models with saturation incidence were established in [15–18]. Chen [19] proposed
an SEIR (susceptible–exposed–infected–recovered) rumor-spreading model with saturated
incidence in heterogeneous networks. An ISCR (ignorants–spreaders–cooled–removers)
model with saturated incidence was investigated by Yue and Huo [20] on a scale-free
network. Nevertheless, the above models ignore the higher-order interactions of rumor
dissemination. In the rumor propagation process, people receive rumors from individuals
or groups. Furthermore, individuals are more likely to believe the rumor if they are exposed
to different spreaders in the same group.

To present higher-order interactions, scholars adopted different tools [21–23]. Schaub
and Benson [24] used the Hodge Laplacian to analyze higher-order interactions. Simplicial
complexes were introduced by Iacopini to study higher-order interactions in social conta-
gion [25]. Additionally, some scholars proposed the stability conditions of different order
interactions [26,27]. Moreover, Arruda and Petri [28] analyzed the dynamics of the social
contagion model on hypergraphs. In [29], some researchers discussed the effect of group
interactions on collaboration. Restrepo and Landry [30] studied the impact of heterogeneity
on the hypergraph spreading model. A Hyper-SIR rumor propagation model was given by
Zhang and Mei [31] based on hypergraph theory. Compared with other tools, hypergraphs
can directly reflect the higher-order interactions between different individuals, which can
describe the topology of the social and communication networks better.

It is worth noting that few scholars have studied the rumor propagation model with
saturation incidence described by the hypergraph. The traditional ILSR (ignorant–lurker–
spreader–recover) model is constructed based on a simple graph, with edges representing
the connection between two nodes. This model only considers the “point-to-point” spread
of rumors, but ignores the “point-to-group” spread. Additionally, because of the band-
wagon effect, the probability that people believe a rumor is not simply proportional to the
number of times they hear the rumor, but there is an additional infection rate. Enlightened
by the discussion above, based on hypergraph theories, a new Hyper-ILSR rumor model in
heterogeneous networks is constructed. The main improvements are as follows:

(1) To represent the higher-order interactions in the process of rumor-spreading, hyper-
graph theories are applied in the model. Individuals do not believe the rumor when
they first hear it, but may believe it when they hear it from multiple individuals—this
is the higher-order interaction.

(2) To formulate a more reasonable rumor model, saturation incidence is used in the
Hyper-ILSR model. Most models take into account only limited contact between the
ignorant and the spreader. In this study, the contact saturation between the lurker and
the spreader is also considered.

(3) The optimal control strategy is proposed, which suppresses the propagation of rumors
with the lowest cost and minimizes the number of spreaders in the network.

(4) The comparisons between the Hyper-ILSR model and the ILSR model are shown in
numerical simulations to confirm that the Hyper-ILSR model is more realistic than the
ILSR model.

The article is organized as follows. In Section 2, hypergraph theories are introduced
and a novel Hyper-ILSR rumor propagation model is considered. Section 3 presents the
threshold and the equilibrium, and discusses the stability of the equilibrium. Optimal
control is given in Section 4. Numerical simulations are provided in Section 5. In Section 6,
the conclusion is given.

2. Preliminaries and Model Description

In this section, the Hyper-ILSR rumor-spreading model with the forgetting mechanism
and saturation incidence rate is considered. Hypergraph theories are presented to reflect
the higher-order interactions in rumor dissemination. In hypergraph H(V, E), V is the
vertex set and E is the hyperedge set. The hyperedge is the improvement of the edge, which
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can be composed of any number of vertices. Similar to the degree, the hyperdegree is the
number of hyperedges containing the vertex.

In this study, the hyperdegree is represented as the vector. Take WeChat for example,
if user U has 60 friends, two groups of 4, and five groups of 30, then the hyperdegree of U
is 67, which can be shown as [60, 0, 2, 0, · · · , 0, 5]. The number of components of the vector
depends on the number of nodes contained by the maximum hyperedge in the hypergraph.
Figure 1 shows a simple hypergraph. The largest hyperedge contains 5 nodes and the
hyperdegree of V5 is represented by [0, 0, 1, 0].

Figure 1. A hypergraph.

The Hyper-ILSR model consists of IKi (t) (ignorants), LKi (t) (lurkers), SKi (t) (spread-
ers), and RKi (t) (recovered individuals), denoting the densities of different groups with
hyperdegree Ki at time t. Ignorants have never heard the rumor and they may propagate
the rumor after hearing it. Lurkers have known the rumor but hesitate to transmit it.
Spreaders mean that the people who spread the rumor. Recovered individuals have heard
the rumor but do not propagate it.

As shown in Figure 2, the transition rules can be summarized as follows:

1. If ignorants receive the rumor from spreaders, then they become lurkers, spreaders,
and recovered individuals with probability α1, α2, and 1− α1 − α2, respectively.

2. After lurkers hear the rumor from spreaders, they become spreaders with probability
β or recovered individuals with probability 1− β.

3. A spreader knows the truth or loses interest in propagating the rumor, then stops
spreading the rumor with probability γ.

4. After a period of time, a recovered individual will become an ignorant with probability
ω because of forgetting the rumor.

We assume that the immigration rate is equal to the removal rate, represented by µ.
Then, the Hyper-ILSR model in heterogeneous networks can be presented by:

dIKi (t)
dt

= µ−
||Ki||IKi (t)Θ(t)

1 + aΘ(t)
+ ωRKi (t)− µIKi (t),

dLKi (t)
dt

=
α1||Ki||IKi (t)Θ(t)

1 + aΘ(t)
−
||Ki||LKi (t)Θ(t)

1 + aΘ(t)
− µLKi (t),

dSKi (t)
dt

=
α2||Ki||IKi (t)Θ(t)

1 + aΘ(t)
+

β||Ki||LKi (t)Θ(t)
1 + aΘ(t)

− (γ + µ)SKi (t),

dRKi (t)
dt

=
(1− α1 − α2)||Ki||IKi (t)Θ(t)

1 + aΘ(t)
+

(1− β)||Ki||LKi (t)Θ(t)
1 + aΘ(t)

+ γSKi (t)− (ω + µ)RKi (t),

(1)
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where Θ(t) =
1

〈||Ki||〉
n

∑
i=1

ϕ(Ki)P(Ki)SKi (t), denoting the possibility that any given hyper-

edge is connected to a spreader.
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Figure 2. Structure of the Hyper-ILSR rumor propagation process.

In model (1), Ki denotes the hyperdegree that is ranked i. Hyperdegree
Ki = [k(2)i , k(3)i , · · · , k(Q)

i ], k(q)i represents the qth order degree, which refers to the quantity
of hyperedges of size q containing the individual with hyperdegree Ki, q = 2, 3, · · · , Q [30].

Q is the quantity of nodes in the maximum hyperedge. ϕ(Ki) =
Q

∑
q=2

βq
k(q)i

q− 1
, indicating the

infectivity of the propagation of rumors by spreaders with the hyperdegree Ki. βq is the

probability that a hyperedge of size q infects the ignorant. ||Ki|| =
Q

∑
q=2

k(q)i [31]. Compare

the different hyperdegrees starting from the 2nd order degree, then sort them in ascending
order, and if they are the same, compare the third degree. For example, [61, 3, 0,· · · , 0] is
behind [60, 3, 0,· · · , 0], and [51, 2, 3, 0,· · · , 0] is behind [51, 2, 2, 0,· · · , 0], and [53, 3, 0, 2,
1,· · · , 0] is in front of [53, 3, 2, 0, 1,· · · , 0].

Remark 1. In general, Θ(t) =
n

∑
i=1

ϕ(Ki)P(Ki|Kj)SKi (t)
||Ki||

, where P(Ki|Kj) denotes the conditional

probability. Considering the uncorrelated network,

Θ(t) =
1

〈||Ki||〉
n

∑
i=1

ϕ(Ki)P(Ki)SKi (t),

where P(Ki) is the hyperdegree distribution [31].

Remark 2. There are hyperedges of size 2, 3, 4, and 5 in the hypergraph in Figure 1, then Q = 5.
V3 is only contained in E2, and E2 consists of two nodes. Thus, the second degree of V3 is 1 and
the other degrees are 0. The hyperdegree of V3 is represented by [1, 0, 0, 0]. Similarly, the hyper-
degree of other nodes can be expressed as KV1 = [0, 0, 0, 1], KV2 = [1, 0, 0, 1], KV4 = [0, 0, 1, 1],
KV5 = [0, 0, 1, 0], KV6 = [0, 0, 1, 0], KV7 = [0, 1, 1, 0], KV8 = [0, 1, 0, 0], KV9 = [0, 1, 0, 1],
and KV10 = [0, 0, 0, 1]. Put these hyperdegrees in ascending order and ignore the same hyperde-
gree. Then K1 = [0, 0, 0, 1], K2 = [0, 0, 1, 0], K3 = [0, 0, 1, 1], K4 = [0, 1, 0, 0], K5 = [0, 1, 0, 1],
K6 = [0, 1, 1, 0], K7 = [1, 0, 0, 0], and K8 = [1, 0, 0, 1].
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In model (1), the initial conditions are defined as IKi (0) > 0, LKi (0) ≥ 0, SKi (0) ≥ 0,
RKi (0) ≥ 0 and Θ(0) > 0.

The feasible region is
Γ = {(IKi (t), LKi (t), SKi (t), RKi (t)) ∈ R4n

+ |IKi (t) + LKi (t) + SKi (t) + RKi (t) = 1,
i = 1, 2, · · · , n}.

Next, positivity of the solutions is discussed.

Lemma 1. Let {(IK1(t), LK1(t), SK1(t), RK1(t)), · · · , (IKn(t), LKn(t), SKn(t), RKn(t))} be the so-
lution of system (1) with the initial conditions, then for all t > 0, one can obtain that Θ(t) > 0 and
0 < IKi (t), LKi (t), SKi (t), RKi (t) < 1, where i = 1, 2, · · · , n.

Proof. Proved in Appendix A.

3. Dynamical Analysis

In this section, the equilibrium points and the basic reproduction number are obtained,
and the stability of the equilibrium points is discussed.

The equilibrium points are calculated as follows.

µ−
||Ki||I∗Ki

Θ∗

1 + aΘ∗
+ ωR∗Ki

− µI∗Ki
= 0,

α1||Ki||I∗Ki
Θ∗

1 + aΘ∗
−
||Ki||L∗Ki

Θ∗

1 + aΘ∗
− µL∗Ki

= 0,

α2||Ki||I∗Ki
Θ∗

1 + aΘ∗
+

β||Ki||L∗Ki
Θ∗

1 + aΘ∗
− (γ + µ)S∗Ki

= 0,

||Ki||Θ∗((1− α1 − α2)I∗Ki
+ (1− β)L∗Ki

)

1 + aΘ∗
+ γS∗Ki

− (ω + µ)R∗Ki
= 0,

(2)

where Θ∗ =
1

〈||Ki||〉
n

∑
i=1

ϕ(Ki)P(Ki)S∗Ki
.

Obviously, E0 = (1, 0, 0, 0) is one equilibrium point of Equation (2). Moreover, from
Equation (2), one has

I∗Ki
=

(γ + µ)(1 + aΘ∗)(Θ∗||Ki||+ µ(1 + aΘ∗))(ω + µ)

(Θ∗||Ki||+ µ(1 + aΘ∗))A1 + ωα1||Ki||Θ∗A2
,

L∗Ki
=

α1||Ki||Θ∗(γ + µ)(1 + aΘ∗)(ω + µ)

(Θ∗||Ki||+ µ(1 + aΘ∗))A1 + ωα1||Ki||Θ∗A2
,

S∗Ki
=

((Θ∗||Ki||+ µ(1 + aΘ∗))α2||Ki||Θ∗ + α1β||Ki||2Θ∗2)(ω + µ)

(Θ∗||Ki||+ µ(1 + aΘ∗))A1 + ωα1||Ki||Θ∗A2
,

R∗Ki
= 1− I∗Ki

− L∗Ki
− S∗Ki

,

(3)

where A1 = ω(γ + µ)(1 + aΘ∗) + ωα2||Ki||Θ∗ + (γ + µ)(||Ki||Θ∗ + µ(1 + aΘ∗)), and
A2 = (γ + µ)(1 + aΘ∗) + βΘ∗.

By calculating the next generation for the model (1), one obtains the basic reproduction

number R0 =
1

〈||Ki||〉
n

∑
i=1

ϕ(Ki)P(Ki)
α2||Ki||
γ + µ

.

Remark 3. The effect of different parameters on R0 can be obtained from the expression of R0.
By calculation, one has

∂R0

∂α2
=

1
〈||Ki||〉

n

∑
i=1

ϕ(Ki)P(Ki)
||Ki||
γ + µ

> 0,

∂R0

∂γ
= − 1
〈||Ki||〉

n

∑
i=1

ϕ(Ki)P(Ki)
α2||Ki||
(γ + µ)2 < 0,
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∂R0

∂µ
= − 1
〈||Ki||〉

n

∑
i=1

ϕ(Ki)P(Ki)
α2||Ki||
(γ + µ)2 < 0.

The results suggest that R0 increases as α2 increases. Moreover, if γ and µ become bigger, then
R0 becomes smaller. In the Hyper-ILSR model and ILSR model, the above parameters have the
same influence.

Remark 4. Compared with the degree in the general ILSR model, the effect of hyperdegree on R0 is
less obvious, which is similar to the result in [31].

Next, the stability of equilibrium is studied. Based on the analysis, it can be judged
whether the rumor will disappear or persist.

Theorem 1. When R0 < 1, rumor-free equilibrium point E0 is locally asymptotically stable,
and unstable when R0 > 1.

Proof. Proved in Appendix B.

Theorem 2. If R0 < 1, the rumor-free equilibrium point E0 is globally asymptotically stable.

Proof. Proved in Appendix C.

Remark 5. If we replace saturation incidence with linear incidence, that is, considering a = 0,
the above theorems still hold (similar to Ref. [13]). The model (1) changes to

dIKi (t)
dt

= µ− ||Ki||IKi (t)Θ(t) + ωRKi (t)− µIKi (t),

dLKi (t)
dt

= α1||Ki||IKi (t)Θ(t)− ||Ki||LKi (t)Θ(t)− µLKi (t),

dSKi (t)
dt

= α2||Ki||IKi (t)Θ(t) + β||Ki||LKi (t)Θ(t)− (γ + µ)SKi (t),

dRKi (t)
dt

= (1− α1 − α2)||Ki||IKi (t)Θ(t) + (1− β)||Ki||LKi (t)Θ(t)

+ γSKi (t)− (ω + µ)RKi (t).

Then the stability of E∗(I∗Ki
, L∗Ki

, S∗Ki
, R∗Ki

) is investigated.

Theorem 3. If R0 > 1, the equilibrium point E∗ is globally asymptotically stable.

Proof. Proved in Appendix D.

Remark 6. Hyperdegree Ki = [k(2)i , k(3)i , · · · , k(Q)
i ], considering Q = 2, then Ki = k(2)i = k and

||Ki|| = k, where k is the degree of nodes. Thus, the Hyper-ILSR propagation model becomes the
general ILSR model when Q = 2. As follows:

dIKi (t)
dt

= µ−
kIKi (t)Θ(t)
1 + aΘ(t)

+ ωRKi (t)− µIKi (t),

dLKi (t)
dt

=
α1kIKi (t)Θ(t)

1 + aΘ(t)
−

kLKi (t)Θ(t)
1 + aΘ(t)

− µLKi (t),

dSKi (t)
dt

=
α2kIKi (t)Θ(t)

1 + aΘ(t)
+

βkLKi (t)Θ(t)
1 + aΘ(t)

− (γ + µ)SKi (t),

dRKi (t)
dt

=
(1− α1 − α2)kIKi (t)Θ(t)

1 + aΘ(t)
+

(1− β)kLKi (t)Θ(t)
1 + aΘ(t)

+ γSKi (t)− (ω + µ)RKi (t).
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Remark 7. The above theorems are discussed in the vector form of hyperdegree. When the hyperde-
grees are numbers, the above theorems still hold.

4. Optimal Control

Optimal control is used to reduce the quantity of spreaders with minimum cost. In
reality, when a rumor is generated and widely spread, the official will take some measures
to curb the spread of the rumor, and the intensity of these measures depends on the
spread scope of the rumor. The optimal control strategy can help to find the appropriate
control intensity with low cost. In this section, considering the optimal control strategy for
model (1), the control system is given by

dIKi (t)
dt

= µ−
||Ki||IKi (t)Θ(t)

1 + aΘ(t)
+ ωRKi (t)− µIKi (t),

dLKi (t)
dt

=
α1||Ki||IKi (t)Θ(t)

1 + aΘ(t)
−
||Ki||LKi (t)Θ(t)

1 + aΘ(t)
− µLKi (t)

+ buKi (t)SKi (t),

dSKi (t)
dt

=
α2||Ki||IKi (t)Θ(t)

1 + aΘ(t)
+

β||Ki||LKi (t)Θ(t)
1 + aΘ(t)

− (γ + µ)SKi (t)

− uKi (t)SKi (t),

dRKi (t)
dt

=
(1− α1 − α2)||Ki||IKi (t)Θ(t)

1 + aΘ(t)
+

(1− β)||Ki||LKi (t)Θ(t)
1 + aΘ(t)

+ γSKi (t)− (ω + µ)RKi (t) + (1− b)uKi (t)SKi (t),

(4)

where uKi (t) represents the control strengths.
The objective function is considered as

G(u) =
∫ T

0

n

∑
i=1
{SKi (t) +

AKi

2
u2

Ki
(t)}dt,

where AKi is the weight coefficient.
Define the Lagrangian as follows:

L(SKi (t), uKi (t)) =
n

∑
i=1
{SKi (t) +

AKi

2
u2

Ki
(t)},

and take the Hamiltonian function:

H(IKi (t), LKi (t), SKi (t), RKi (t), uKi (t), λ1Ki (t), λ2Ki (t), λ3Ki (t), λ4Ki (t))

= L(SKi (t), uKi (t))

+
n

∑
i=1
{λ1Ki (t)

dIKi (t)
dt

+ λ2Ki (t)
dLKi (t)

dt
+ λ3Ki (t)

dSKi (t)
dt

+ λ4Ki (t)
dRKi (t)

dt
},

(5)

where λ1Ki (t), λ2Ki (t), λ3Ki (t), and λ4Ki (t) are the adjoint functions.
The following theorem can be obtained by applying Pontryagin’s Minimum

principle [32,33].
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Theorem 4. The optimal solution is (I∗Ki
(t), L∗Ki

(t), S∗Ki
(t), R∗Ki

(t)) with optimal control u∗Ki
(t)

for the model (4). Then, the adjoint functions λ1Ki (t), λ2Ki (t), λ3Ki (t), and λ4Ki (t) satisfying

dλ1Ki (t)
dt

=− λ1Ki (t)(
||Ki||Θ∗(t)
1 + aΘ∗(t)

+ µ)− λ2Ki (t)
α1||Ki||Θ∗(t)
1 + aΘ∗(t)

− λ3Ki (t)
α2||Ki||Θ∗(t)
1 + aΘ∗(t)

− λ4Ki (t)
(1− α1 − α2)||Ki||Θ∗(t)

1 + aΘ∗(t)
,

dλ2Ki (t)
dt

=− λ2Ki (t)(
||Ki||Θ∗(t)
1 + aΘ∗(t)

+ µ)− λ3Ki (t)
β||Ki||Θ∗(t)
1 + aΘ∗(t)

− λ4Ki (t)
(1− β)||Ki||Θ∗(t)

1 + aΘ∗(t)
,

dλ3Ki (t)
dt

= λ1Ki (t)
||Ki||I∗Ki

(t)Ψ(i)

(1 + aΘ∗(t))2 − λ2Ki (t)
α1||Ki||I∗Ki

(t)Ψ(i)

(1 + aΘ∗(t))2

+ λ2Ki (t)
||Ki||L∗Ki

(t)Ψ(i)

(1 + aΘ∗(t))2 − λ2Ki (t)bu∗Ki
(t)

− λ3Ki (t)
α2||Ki||I∗Ki

(t)Ψ(i)

(1 + aΘ∗(t))2 − λ3Ki (t)
β||Ki||L∗Ki

(t)Ψ(i)

(1 + aΘ∗(t))2

+ (γ + µ)λ3Ki (t) + λ3Ki (t)u
∗
Ki
(t) + W

dλ4Ki (t)
dt

= −{λ1Ki (t)ω + λ4Ki (t)(−(ω + µ))},

(6)

with transversality conditions λ1Ki (T) = λ2Ki (T) = λ3Ki (T) = λ4Ki (T) = 0, i = 1, 2, · · · , n.

W = −λ4Ki (t)
(1−α1−α2)||Ki ||I∗Ki

(t)Ψ(i)

(1+aΘ∗(t))2 − γλ4Ki (t) − λ4Ki (t)
(1−β)||Ki ||L∗Ki

(t)Ψ(i)

(1+aΘ∗(t))2 − λ4Ki (t)(1 −
b)u∗Ki

(t). Furthermore, the optimal control

u∗Ki
(t) = max{min{

(−λ2Ki (t)b + λ3Ki (t)− (1− b)λ4Ki (t))S
∗
Ki
(t)

AKi

, 1}, 0}.

Proof. Proved in Appendix E.

5. Numerical Simulations

To demonstrate the validity of the above analysis, some numerical simulations are
presented. The study is based on the network with hyperdegree distribution P(Ki): P(Ki) ∝
(m + 1)!||Ki||−2−m, where m is the minimum value of ||Ki||. Take ||Ki|| from 1 to 200, we
can obtain 〈||Ki||〉 = 3.27 and 〈||Ki||2〉 = 11.75. Furthermore, the average value of ϕ(Ki) is
represented by φ.

5.1. Stability of E0

Take φ = 0.04, a = 0.05, α1 = 0.05, α2 = 0.5, β = 0.63, γ = 0.05, ω = 0.375, and
µ = 0.08, respectively, thus R0 < 1. Based on Theorem 1, E0 is locally asymptotically stable,
which can be confirmed by Figure 3a–d. In addition, E0 is globally asymptotic stable, which
can be shown in Figure 3e. As time goes on, rumors will eventually disappear.
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Figure 3. (a–e) The stability of Hyper-ILSR model when R0 < 1.

Remark 8. The general ILSR model with saturation incidence rate can be regarded as the Hyper-
ILSR model when Q = 2, that is ϕ(Ki) = β2k(2)i . Take a = 0.05, α1 = 0.05, α2 = 0.5,
β = 0.63, γ = 0.05, ω = 0.375, µ = 0.08, and β2 = 0.31. Obviously, R0 < 1. Compared with
Figures 3a,c and 4 illustrates that the ILSR model takes longer to reach the equilibrium. Because the
simple graph only considers the spread of point-to-point, the hypergraph also considers the spread of
groups. In reality, most rumors spread through the Internet and spread quickly. After the rumors
are clarified, the number of rumor spreaders decreases rapidly and the rumors gradually disappear.
Thus, compared with the two models, the Hyper-ILSR model is more realistic.
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Figure 4. (a,b) The stability of ILSR model when R0 < 1.

5.2. Stability of E∗

Take φ = 0.37, a = 0.05, α1 = 0.35, α2 = 0.5, β = 0.26, γ = 0.0075, ω = 0.001, µ = 0.08,
then R0 > 1. From Theorem 3, E∗ is globally asymptotic stable, which is consistent with
Figure 5. In addition, Figure 5a–d illustrates the higher the hyperdegree is, the faster rumors
reach equilibrium. The greater the individual’s hyperdegree, the greater the probability
of contacting and spreading rumors, the faster and wider the spread of rumors in social
networks, and the faster the rumors can stabilize.
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Figure 5. Cont.
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(e)

Figure 5. (a–e) The stability of Hyper-ILSR model when R0 > 1.

Remark 9. Considering Q = 2. Take a = 0.05, α1 = 0.35, α2 = 0.5, β = 0.26, γ = 0.0075,
ω = 0.001, µ = 0.08, and β2 = 0.31. Figure 6 shows the greater the degree, the faster the
equilibrium will be reached. The larger the degree, that is, the more edges the individual has with
other nodes, the greater the probability of contacting and spreading rumors. Thus, the faster and
wider the spread range of rumors in the social network, the rumor stabilizes faster in the network.
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Figure 6. (a,b) The stability of ILSR model when R0 > 1.

5.3. Effects of Parameter A

The impact of parameter a in model (1) will be analyzed in the following. Take φ = 0.37,
α1 = 0.35, α2 = 0.5, β = 0.26, γ = 0.0075, ω = 0.001, and µ = 0.08. Choose a = 0, 2, 4, 6,
and 8. When the system is in equilibrium, Figure 7 shows the value of I20(t) and L20(t)
increases with increasing a, while the value of S20(t) and R20(t) decreases. Thus, the rumor
can be reduced by increasing the psychological factor. In real life, the government can
intensify science popularization or education to increase the effect of psychological factors.
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Figure 7. (a–d) The effects of a on rumor spreading (R0 > 1).

5.4. Optimal Control

Considering the controlled system (4), take φ = 0.37, a = 0.05, α1 = 0.35, α2 = 0.5,
β = 0.26, γ = 0.0075, ω = 0.001, µ = 0.08, and AKi = 2. Figure 8a indicates that the
densities of rumor spreaders go down to zero under optimal control, which means that the
optimal control can control rumor-spreading. Moreover, the cost is shown in Figure 8b.
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Figure 8. Optimal control (a) and control costs (b).

5.5. Model Application

Next, an actual rumor case will be introduced to verify the accuracy of the Hyper-ILSR
model. On 22 December 2017, a rumor was spread on Sina Weibo about “tourists touching
elephant tails in Thailand and causing the leader of the group to be trampled to death”.
The data provided by [34] are shown in Table 1. To better show the difference, the number
of reprints is converted to density in Figure 9.

Table 1. The number of reprints.

Time 1 h 2 h 3 h 4 h 5 h 6 h 7 h 8 h 9 h 10 h 11 h

Reprints 85 89 1117 902 220 1914 1050 919 299 92 20

Time 12 h 13 h 14 h 15 h 16 h 17 h 18 h 19 h 20 h 21 h 22 h

Reprints 346 40 562 381 214 182 83 13 31 6 294

Time 23 h 24 h 25 h 26 h 27 h 28 h 29 h 30 h 31 h 32 h 33 h

Reprints 57 176 226 44 34 79 39 50 119 4 20

Time 34 h 35 h 36 h 37 h 38 h 39 h 40 h 41 h 42 h 43 h 44 h

Reprints 48 86 3 13 30 2 2 22 0 0 0
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Figure 9. The comparison of Hyper-ILSR and ILSR model with factual data.

Take φ = 0.13, a = 0.05, α1 = 0.05, α2 = 0.5, β = 0.93, γ = 0.0005, ω = 0.475, µ = 0.18,
and β2 = 0.13. Figure 9 shows that the Hyper-ILSR model goes to 0 faster and fits the real
data better than the general ILSR model.

6. Conclusions

Due to the expansion of the scale of social networks and the increasingly complex
relationships between individuals, the rumor model based on a simple graph can no longer
fully meet the needs of describing the topology of networks. A simple graph can only
describe the interaction between a couple, but cannot show the interaction among multiple
individuals. In this study, considering the effect of the higher-order interactions on rumor
propagation, a Hyper-ILSR rumor-spreading model with the saturation incidence rate
based on hypergraph theories is studied. The hyperdegree can reflect the interactions
between individuals and groups. At first, the basic reproduction number R0 is calculated.
Second, we verify that rumor-free (rumor-prevailing) equilibrium is globally asymptotically
stable when R0 < 1 (R0 > 1). Furthermore, optimal control is proposed to reduce spreaders.
Finally, numerical simulations demonstrate the impact of parameter a on the number of
spreaders when the equilibrium is reached. In the future, the influence of age structure
and education on the rumor-spreading process will be considered. In addition, more
control strategies will be used to suppress the propagation of rumors, such as acquaintance
immunization control, pulse control, and event-triggered control.
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Appendix A. The Proof of Lemma 1

Proof. First, for all t > 0, Θ(t) > 0 is verified. From model (1), one can obtain

Θ
′
(t) =

1
〈||Ki||〉

n

∑
i=1

ϕ(Ki)P(Ki)S
′
Ki
(t)

=
n

∑
i=1

ϕ(Ki)P(Ki)

〈||Ki||〉
(
||Ki||Θ(t)(α2 IKi (t) + βLKi (t))

1 + aΘ(t)
− (γ + µ)SKi (t))

= Θ(t)(
n

∑
i=1

ϕ(Ki)P(Ki)

〈||Ki||〉
(
||Ki||(α2 IKi (t) + βLKi (t))

1 + aΘ(t)
− (γ + µ)).

(A1)

By integrating (A1), one has

Θ(t) = Θ(0) exp{
∫ t

0

n

∑
i=1

ϕ(Ki)P(Ki)

〈||Ki||〉
(
||Ki||(α2 IKi (t) + βLKi (t))

1 + aΘ(t)
)dt− (γ + µ)t}.

Due to Θ(0) > 0, then for all t > 0, Θ(t) > 0.
Define g(t) = mint{IKi (t), LKi (t), SKi (t), RKi (t)}. Suppose there is a sufficient small

ς > 0 to make g(ς) = 0, g′(t) < 0 and g(t) > 0, where t ∈ (0, ς). If g(ς) = IKi (ς) = 0, then

LKi (ς), SKi (ς), RKi (ς) ≥ 0. In addition, it has
dIKi

(ς)

dt = µ + ωRKi (ς) > 0 from model (1),
that is IKi (ς) > IKi (t), which contradicts IKi (t) > 0 = IKi (ς) for t ∈ (0, ς).

Likewise, one has LKi (t), SKi (t), RKi (t) > 0.

Appendix B. The Proof of Theorem 1

Proof. Model (1) can be written as

dIKi (t)
dt

= µ−
||Ki||IKi (t)Θ(t)

1 + aΘ(t)
+ ω(1− IKi (t)− LKi (t)− SKi (t))

− µIKi (t),

dLKi (t)
dt

=
α1||Ki||IKi (t)Θ(t)

1 + aΘ(t)
−
||Ki||LKi (t)Θ(t)

1 + aΘ(t)
− µLKi (t),

dSKi (t)
dt

=
α2||Ki||IKi (t)Θ(t)

1 + aΘ(t)
+

β||Ki||LKi (t)Θ(t)
1 + aΘ(t)

− (γ + µ)SKi (t).

(A2)

The Jacobian matrix of system (A2) at E0 is

J(E0) =

 A11 A12 A13
0 A22 A23
0 0 A33

,
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where A11 =

−ω− µ · · · 0
...

. . .
...

0 · · · −ω− µ


n×n

, A12 =

−ω · · · 0
...

. . .
...

0 · · · −ω


n×n

,

A13 =

||K1||Ψ(1)−ω · · · ||K1||Ψ(n)
...

. . .
...

||Kn||Ψ(1) · · · ||Kn||Ψ(n)−ω


n×n

, A22 =

−µ · · · 0
...

. . .
...

0 · · · −µ


n×n

,

A23 =

α1||K1||Ψ(1) · · · α1||K1||Ψ(n)
...

. . .
...

α1||Kn||Ψ(1) · · · α1||Kn||Ψ(n)


n×n

,

A33 =

α2||K1||Ψ(1)− (γ + µ) · · · α2||K1||Ψ(n)
...

. . .
...

α2||Kn||Ψ(1) · · · α2||Kn||Ψ(n)− (γ + µ)


n×n

,

and Ψ(i) = ϕ(Ki)P(Ki)
〈||Ki ||〉

.
By calculating, the characteristic equation is

(λ + γ + µ)n−1(λ + ω + µ)n(λ + µ)n(λ + γ + µ−
n

∑
i=1

α2||Ki||Ψ(i)) = 0. (A3)

Clearly,−γ−µ,−ω−µ, and−µ are negative. Additionally,
n

∑
i=1

α2||Ki||Ψ(i)−γ−µ = (γ+

µ)(R0 − 1). Hence, all roots of (A3) are negative if R0 < 1, and E0 is locally asymptotically
stable. Additionally, E0 is unstable if R0 > 1 based on Routh–Hurwitz criteria.

Appendix C. The Proof of Theorem 2

Proof. Consider a Lyapunov function as follows:

V(t) =
1
2

Θ2(t).

Then, one has

V
′
(t) =

Θ(t)
〈||Ki||〉

n

∑
i=1

ϕ(Ki)P(Ki)
α2||Ki||IKi (t)Θ(t) + β||Ki||LKi (t)Θ(t)

1 + aΘ(t)

− Θ(t)
〈||Ki||〉

n

∑
i=1

ϕ(Ki)P(Ki)(γ + µ)SKi (t)

=
Θ2(t)

1 + aΘ

n

∑
i=1

ϕ(Ki)P(Ki)
α2||Ki||(IKi (t) +

β
α2

LKi (t))

〈||Ki||〉

− (γ + µ)Θ2(t)

=
(γ + µ)Θ2(t)

1 + aΘ
(

n

∑
i=1

ϕ(Ki)P(Ki)
α2||Ki||

(γ + µ)〈||Ki||〉
− (1 + aΘ))

=
(γ + µ)Θ2(t)

1 + aΘ
(R0 − (1 + aΘ))

≤ 0.

Following LaSalle’s invariance principle [35], if R0 < 1, then E0 is globally asymptoti-
cally stable.
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Appendix D. The Proof of Theorem 3

Proof. Construct a Lyapunov function as follows:

V(t) =
1
2
((IKi (t)− I∗Ki

) + (LKi (t)− L∗Ki
) + (SKi (t)− S∗Ki

) + (RKi (t)− R∗Ki
))2,

then

V
′
(t) = (IKi (t)− I∗Ki

+ LKi (t)− L∗Ki
+ SKi (t)− S∗Ki

+ RKi (t)− R∗Ki
)×

(I
′
Ki
(t) + L

′
Ki
(t) + S

′
Ki
(t) + R

′
Ki
(t))

= (IKi (t)− I∗Ki
+ LKi (t)− L∗Ki

+ SKi (t)− S∗Ki
+ RKi (t)− R∗Ki

)×
(µ− µIKi (t)− µLKi (t)− µSKi (t)− µRKi (t))

= (IKi (t)− I∗Ki
+ LKi (t)− L∗Ki

+ SKi (t)− S∗Ki
+ RKi (t)− R∗Ki

)×
µ(I∗Ki

+ L∗Ki
+ S∗Ki

+ R∗Ki
− IKi (t)− LKi (t)− SKi (t)− RKi (t))

= − µ(IKi (t)− I∗Ki
+ LKi (t)− L∗Ki

+ SKi (t)− S∗Ki
+ RKi (t)− R∗Ki

)2

≤ 0.

Thus, E∗ is globally asymptotically stable if R0 > 1.

Appendix E. The Proof of Theorem 4

Proof. Let IKi (t) = I∗Ki
(t), LKi (t) = L∗Ki

(t), SKi (t) = S∗Ki
(t), RKi (t) = R∗Ki

(t), and differenti-
ate Equation (5) with respect to IKi (t), LKi (t), SKi (t), RKi (t), one obtains

dλ1Ki (t)
dt

=− ∂H
∂IKi (t)

=− {λ1Ki (t)(−
||Ki||Θ∗(t)
1 + aΘ∗(t)

− µ) + λ2Ki (t)
α1||Ki||Θ∗(t)
1 + aΘ∗(t)

+ λ3Ki (t)
α2||Ki||Θ∗(t)
1 + aΘ∗(t)

+ λ4Ki (t)
(1− α1 − α2)||Ki||Θ∗(t)

1 + aΘ∗(t)
},

dλ2Ki (t)
dt

=− ∂H
∂LKi (t)

=− {λ2Ki (t)(−
||Ki||Θ∗(t)
1 + aΘ∗(t)

− µ) + λ3Ki (t)
β||Ki||Θ∗(t)
1 + aΘ∗(t)

+ λ4Ki (t)
(1− β)||Ki||Θ∗(t)

1 + aΘ∗(t)
},

dλ3Ki (t)
dt

=− ∂H
∂SKi (t)

=− {−λ1Ki (t)
||Ki||I∗Ki

(t)Ψ(i)

(1 + aΘ∗(t))2 + λ2Ki (t)(
α1||Ki||I∗Ki

(t)Ψ(i)

(1 + aΘ∗(t))2

−
||Ki||L∗Ki

(t)Ψ(i)

(1 + aΘ∗(t))2 + bu∗Ki
(t)) + λ3Ki (t)(

α2||Ki||I∗Ki
(t)Ψ(i)

(1 + aΘ∗(t))2

+
β||Ki||L∗Ki

(t)Ψ(i)

(1 + aΘ∗(t))2 − (γ + µ)− u∗Ki
(t))

+ λ4Ki (t)(
(1− α1 − α2)||Ki||I∗Ki

(t)Ψ(i)

(1 + aΘ∗(t))2

+
(1− β)||Ki||L∗Ki

(t)Ψ(i)

(1 + aΘ∗(t))2 + γ + (1− b)u∗Ki
(t))},

dλ4Ki (t)
dt

=− ∂H
∂RKi (t)

=− {λ1Ki (t)ω + λ4Ki (t)(−(ω + µ))}.
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By the optimal conditions, one has

∂H
∂uKi (t)

= AKi u
∗
Ki
(t) + bλ2Ki (t)S

∗
Ki
(t)− λ3Ki (t)S

∗
Ki
(t) + (1− b)λ4Ki (t)S

∗
Ki
(t) = 0.

Then, one can get

u∗Ki
(t) =



0,
BKi (t)

AKi

S∗Ki
(t) < 0,

BKi (t)
AKi

S∗Ki
(t),

BKi (t)
AKi

S∗Ki
(t) ≤ 1,

1,
BKi (t)

AKi

S∗Ki
(t) > 1,

where BKi (t) = −bλ2Ki (t) + λ3Ki (t)− (1− b)λ4Ki (t).
Thus,

u∗Ki
(t) = max{min{

(−λ2Ki
(t)b+λ3Ki

(t)−(1−b)λ4Ki
(t))S∗Ki

(t)
AKi

, 1}, 0}, i = 1, 2, · · · , n.
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