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Abstract: In this paper, we construct the metric tensor and volume for the manifold of purifications
associated with an arbitrary reduced density operator ρS. We also define a quantum coarse-graining
(CG) to study the volume where macrostates are the manifolds of purifications, which we call surfaces
of ignorance (SOI), and microstates are the purifications of ρS. In this context, the volume functions
as a multiplicity of the macrostates that quantifies the amount of information missing from ρS. Using
examples where the SOI are generated using representations of SU(2), SO(3), and SO(N), we show
two features of the CG: (1) A system beginning in an atypical macrostate of smaller volume evolves
to macrostates of greater volume until it reaches the equilibrium macrostate in a process in which
the system and environment become strictly more entangled, and (2) the equilibrium macrostate
takes up the vast majority of the coarse-grained space especially as the dimension of the total system
becomes large. Here, the equilibrium macrostate corresponds to a maximum entanglement between
the system and the environment. To demonstrate feature (1) for the examples considered, we show
that the volume behaves like the von Neumann entropy in that it is zero for pure states, maximal
for maximally mixed states, and is a concave function with respect to the purity of ρS. These two
features are essential to typicality arguments regarding thermalization and Boltzmann’s original CG.

Keywords: differential geometry; entanglement entropy; quantum information; statistical physics;
coarse-graining; many-body systems; ignorance; thermalization; Lie groups

1. Introduction

In this paper, we introduce a new volume associated with an arbitrary density operator
ρS that quantifies the ignorance or information missing from ρS relative to purifications
that can generate it. To compute this volume, we generate all purifications of ρS using the
method in Section 9.2.3 (Uhlmann Fidelity) of [1] and construct the metric tensor of the
manifold of purifications. The determinant of the metric tensor gives a volume element
which is integrated to compute volumes. We then study these volumes by presenting
examples for systems whose purifications are generated using unitaries that represent
Lie groups SU(2), SO(3), and SO(N). Because these volumes are related to the amount
of information missing in ρS, we denote the manifolds of purifications as surfaces of
ignorance (SOI).

To study the physical properties of our volume, we formulate the SOI as macrostates
of an entanglement-based quantum coarse-graining (CG) where microstates are the pu-
rifications that belong to each SOI; density operators ρS are also the macrostates since
there is a one-to-one correspondence between them and the SOI. The reason for choos-
ing this context is that the entanglement entropy has been shown to be closely related
to thermal entropy in certain regimes [2–5], and ρS can be treated as a reduced density
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operator, ρS = TrE[|ψES〉〈ψES|], of a closed composite system |ψES〉. Since ρS is a reduced
density operator of a pure composite system, the von Neumann entropy, SVN , of ρS is the
entanglement entropy between the system, S, and the environment, E. This implies that an
increase in volume during an entangling process relates to a loss of information from S to
E that is reminiscent of an information-based thermalization. Although the entanglement
entropy is related to thermal entropy, as stated in [6], “it still primarily measures the infor-
mation exchange rather than heat exchange”. For this reason, our analysis is not a study
of thermalization. Instead, it is an exploration of the SOI and their volumes in the context
of “thermalization” as it relates to information exchange/entanglement. Our choice to use
CG to study our volume is also justified since using reduced density operators as coarse
representations of composite systems is common within the literature [7–12].

With this context in mind, there are two features of Boltzmann’s original CG [13] (see
Figure 1) that we demonstrate in the examples of our entanglement coarse-graining (ECG).
These features are the following: (1) a system beginning in an atypical macrostate of smaller
volume evolves to macrostates of greater volume until it reaches the equilibrium macrostate
in a process in which the system and environment become strictly more entangled, and (2)
the equilibrium macrostate takes up the vast majority of the coarse-grained space especially
as the dimension of the total system becomes large.

Figure 1. Illustration of Boltzmann’s original approach to coarse-graining inspired by Figure 2 in [14].
On the left are examples of distributions on the single particle phase space, the µ-space, while the
right depicts the coarse-graining of the 6N-dimensional phase space, the γ-space. By dividing the
µ-space into equal cells, macrostates are defined by simply counting the number of particles in each
cell. Since each particle is indistinguishable, interchanging which particle occupies each cell does not
change the macrostate; thus, there are many equivalent microstates for each macrostate. The size of
each macrostate depends on the number of microstates it has. Boltzmann showed that distributions
on the µ-space that are more uniform have more microstates, and the largest macrostate, Γeq, is
associated with a gas in equilibrium.

These features are the basis of typicality arguments for understanding the thermaliza-
tion of both classical and quantum closed systems [15,16].

Quantum mechanically, SVN(|ψES〉〈ψES|) = 0 for all evolutions of |ψES〉 in the space
of purifications. Therefore, it is common practice [17–19] to demarcate the space of purifi-
cations into disjoint sets, or macrostates, for which thermal entropies are defined. For the
ECG, the SOI provide this demarcation and their volumes are treated as the multiplicity
of a strictly information-based “thermal” entropy. It is not our goal to define a quantum
Boltzmann entropy, and we are not interested in studying energy or dynamics. Instead,
we only analyze volumes and use a purely kinematic approach afforded to us by the ECG.
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This makes our approach similar to Boltzmann’s original analysis and that in [20], which
studied the foundations of statistical mechanics in terms of entanglement.

To demonstrate feature (1) for the examples considered, we must show that the volume
behaves like SVN(ρS) in that it is zero for pure state, maximal for maximally mixed states,
and is a concave function with respect to the purity of ρS. This implies that each SOI has a
unique entanglement entropy associated with it. It is also consistent with thermalization
as described by Boltzmann’s CG where the total system monotonically evolves between
macrostates of lesser volume to macrostates of greater volume until it reaches the most
typical macrostate that occupies the vast majority of the coarse-grained space.

In studies that use typicality arguments to understand thermalization, the equilibrium
macrostate is defined as the largest macrostate that occupies the vast majority of the coarse-
grained space [17–19]. This also defines the equilibrium macrostate for the ECG, but it
has the additional trait that its microstates have maximal entanglement between S and E;
this is synonymous with ρS being maximally mixed. Therefore, to demonstrate feature
(2), we study the average von Neumann entropy of each macrostate belonging to the ECG
generated by SO(3) and show that the majority of the coarse-grained space is occupied
by the macrostates with maximum or near-maximum entanglement entropy. We further
show, using SO(N), that the average normalized von Neumann entropy of at least 99.99%
of the coarse-grained space tends toward one (maximally mixed) as N becomes large. The
use of 99.99% as a representative value for the vast majority of the coarse-grained space is
commonly used in the literature [14,19,21,22] .

The final context in which we relate our volume to the multiplicity of a Boltzmann-
like entropy is discussed in section IIC of [23] and provided by [24]. In that analysis,
Brillouin used the Maxwell demon gedanken to connect negentropy [25,26] (information)
to the Boltzmann entropy. More specifically, he showed that the greater the multiplicity of
microstates that are consistent with macrodata, the less information one has about the total
system. In our case, the negentropy is defined as

I = Smax
VN − SVN(ρS) (1)

where Smax
VN is the von Neumann entropy of the maximally mixed density operator, and

ρS contains the remaining information of |ψES〉 after the partial trace has been taken.
This means if one only has the macrodata contained in ρS, they no longer know which
purification, i.e., microstate, completes the missing information of ρS. Therefore, the greater
the volume of the SOI, the more purifications there are, which implies one is less likely to
successfully guess at random the actual pure state that produced ρS. Furthermore, this guess
must be random because to use anything other than a maximally mixed distribution on the
purifications of ρS would, as stated by Jaynes [27], “amount to an arbitrary assumption of
information which by hypothesis we do not have”.

The paper is structured as follows. In Section 2, we construct the metric components
and volume of the SOI. In Section 3, we study the volume in the context of the ECG using
unitaries representing Lie groups SO(3), SU(2), and SO(N). In Section 4, we generalize
the ECG and the metric components of the SOI to include unitary transformations inHS.
Finally, we conclude in Section 5 with a summary of our results.

2. Methods: Entanglement Coarse-Graining and the Surfaces of Ignorance

In this section, we define the macro- and microstates of the ECG and derive the metric
components and volume of the SOI.

2.1. Macro and Microstates

In the ECG, macrostates are density operators ρS (as well as the SOI associated with each
ρS), and microstates are elements of the set of purifications FρS ≡ {|Γ̄ρS

ES(
~ξ)〉} such that

ρS = TrE

[
|Γ̄ρS

ES(
~ξ)〉〈Γ̄ρS

ES(
~ξ)|
]
. (2)



Entropy 2023, 25, 788 4 of 18

The space of the environment,HE, is taken as a copy ofHS since it is sufficient to generate
all purifications of ρS, and ~ξ parameterizes the transformations UE(~ξ) that represent the
Lie group symmetry ofHE.

Writing ρS in its spectral form

ρS =
N

∑
i=1

λi|λi
S〉〈λi

S|, (3)

where N is the dimension ofHS, the macrodata are the eigenvalues~λ. For an orthonormal
basis {|λi

S〉} ofHS, the set of all eigenvalues that satisfy the constraint

N

∑
i=1

λi = 1, (4)

gives a probability simplex S where each element of S is a valid density operator. The
probability simplex is a subspace of the projective space P(HS), the latter being defined
by all normalized rank-one projectors of HS that are well defined up to U(1) symme-
tries. Since each ρS on S has a unique FρS , there exists a unique ECG of HES associated
with S ; this is depicted in Figure 2, which shows an information/entanglement-based
“thermalization” process.

Figure 2. A conceptual example of an entangling process between ρS and ρE. From the perspective
of ρS, |ψES〉 evolves from macrostates FρS with a smaller volume to FρS with a larger volume. If
an observer only has access to the information in ρS, they cannot resolve the actual state of |ψES〉
beyond the SOI depicted by the blue, orange, and red macrostates. For a global observer with access
to |ψES〉, the entangling process is a continuous curve of pure states from |ψES(t0)〉 to |ψES(t f )〉. This
is the black curve inHES. Each ρS ∈ S ⊂ P(HS) has one unique FρS ⊂ HES. This implies a unique
coarse-graining of S inHES.
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To generate FρS we follow the prescription given in 9.2.3 of Wilde’s “Quantum Infor-
mation Theory” [1]. We begin with the canonical purification

|φρS
ES〉 = (1̂E ⊗

√
ρS)|ΓES〉 (5)

inHES, where 1̂E is the identity operator inHE,

|ΓES〉 =
N

∑
i=1
|λi

E〉|λi
S〉 (6)

is the unnormalized Bell state, and {|λi
E〉} is a copy of {|λi

S〉} in HE. From here, one can
access all purifications by applying unitary transformations associated with the symmetries
ofHE to Equation (5). This gives

|Γ̄ρS
ES(

~ξ)〉 = (UE(~ξ)⊗ 1̂S)|φ
ρS
ES〉 = (UE(~ξ)⊗

√
ρS)|ΓES〉. (7)

In general,HE need not be a copy ofHS since ρS can be derived from any bipartition
of an arbitrary many-body system |ψES〉. Therefore, to generalize the macrostates of the
ECG given by Equation (7) to an arbitrary purification spaceHĒS whereHĒ 6= HS, we use
the fact that all purifications of ρS are unitarily related.

Given the restriction that dim(Ē) ≥ N, the ECG ofHES can be extended toHĒS by

|Γ̄ρS
ĒS(

~ξ)〉 = (UE→Ē ⊗ 1̂S)|Γ̄
ρS
ES(

~ξ)〉 (8)

where

UE→Ē =
N

∑
i=1
|λi

Ē〉〈λ
i
E| (9)

and {|λi
Ē〉} is a complete orthonormal basis of HĒ. Since all macrostates of HES can be

extended to macrostates of some largerHĒS, we only need to consider the former to define
a general ECG.

2.2. Surfaces of Ignorance: Metric Components and Volume

To compute the metric components and volume associated with FρS , we construct
its first fundamental form using a Taylor expansion of Equation (7). Expanding around
parameters ~ξ0 using ~ξ, the displacement vector is given by d~ξ = ~ξ − ~ξ0. Taking the first-
order Taylor expansion of |Γ̄ρS

ES(
~ξ)〉, and bringing the zeroth order term to the l.h.s, the

differential is given by

|dΓ̄〉 ≡ |Γ̄(~ξ0 + d~ξ)〉 − |Γ̄(~ξ0)〉 =
n

∑
i=1
|Γ̄,ξi 〉dξi (10)

where n is the number of parameters of the unitary representation of the Lie groups, and
|Γ̄,ξi 〉 is the partial derivative of |Γ̄〉 with respect to ξi. For the remainder of the paper,
superscript ρS and subscript ES are dropped from |Γ̄ρS

ES(
~ξ)〉 for simplicity of notation. Since

we are working in HES, and all of our states are pure, the scalar product is well defined.
The components gij of the metric tensor g induced by the scalar product are given by the
first fundamental form

ds2 = 〈dΓ̄|dΓ̄〉 =
n

∑
i,j=1
〈Γ̄,i|Γ̄,j〉dξidξ j (11)

where gij = 〈Γ̄,i|Γ̄,j〉. From Equation (11), the volume element is dV =
√

Det[g] dξ1dξ2 . . . dξn
and the volume is

V =
∫

ξ1

∫
ξ2

· · ·
∫

ξn
dV. (12)
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3. Results: Volume Examples

In this section, we give explicit expressions of volumes for the examples considered
and compare them to the von Neumann entropy, SVN = −∑N

i=1 λi log λi, and the linear
entropy, SL = 1− Tr[ρ2

S]. We demonstrate feature (1) of Boltzmann’s original CG for SU(2),
features (1) and (2) for SO(3), and extend the demonstration of feature (2) for SO(3) in
the limit of large N using SO(N). However, first, we give the expressions for arbitrary
unitary transformations that are used to compute the metric components and volumes for
our examples.

3.1. Arbitrary N-Dimensional Unitary Transformations

Following the prescription in [28], any arbitrary N-dimensional unitary transforma-
tion can be written as successive transformations of two-dimensional subspaces. Let
E(i,j)(φij, ψij, χij) be an arbitrary transformation about the (i, j)-plane. Its components are

E(i,j)
kk = 1 k = 1, . . . , N k 6= i, j

E(i,j)
ii = eiψij cos φij

E(i,j)
ij = eiχij sin φij (13)

E(i,j)
ji = −e−iχij sin φij

E(i,j)
jj = e−iψij cos φij

and zero everywhere else. The superscript indices (i, j) index the 2-D plane about which
the transformation is applied, and the subscripts are the nonzero matrix indices. From here,
one can construct successive transformations

E1 = E(1,2)(φ12, ψ12, χ12)

E2 = E(2,3)(φ23, ψ23, 0)E(1,3)(φ13, ψ13, χ13)

. (14)

.

.

EN−1 = E(N−1,N)(φN−1,N , ψN−1,N , 0)

E(N−2,N)(φN−2,N , ψN−2,N , 0)

. . . E(1,N)(φ1N , ψ1N , χ1N) (15)

and finally an arbitrary U(N) transformation

U = eiαE1E2 . . . EN−1 (16)

where φij ∈ [0, π/2] and α, ψij, χij ∈ [0, 2π]. With the arbitrary unitaries defined, we now
present our examples.

3.2. Example: SU(2)

Here, we demonstrate feature (1) for SU(2) by computing the volume and comparing
it to the von Neumann and linear entropies. We do not attempt to demonstrate feature (2)
since it is a feature that manifests for large systems and here, the composite system is only
four-dimensional.

From Equation (16), the unitaries of SU(2) are given by

U(φ, ψ, χ) =

[
eiψ cos φ eiχ sin φ

−e−iχ sin φ e−iψ cos φ

]
(17)
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where N = 2, α = 0, ψ, χ ∈ [0, 2π], φ ∈ [0, π/2], and the subscript 12 in the angles is
dropped since the example is only two-dimensional. Computing the metric components
directly, the nonzero values of the metric are

gφφ = λ1 + λ2 (18)

gψψ =
(

λ1 + λ2
)

cos2 φ (19)

gχχ =
(

λ1 + λ2
)

sin2 φ (20)

gφψ = gφχ = i(λ1 − λ2) cos φ sin φ. (21)

Taking the
√

Det(g) and substituting λ2 = 1− λ1 gives

dVSU(2) =
√

λ1(1− λ1) sin 2φ dφdψdχ (22)

and integrating over {φ, ψ, χ} gives

VSU(2) = 4π2
√

λ1(1− λ1) = 4π2
√

SL/2 (23)

where λ2 = 1− λ1 = 1
2

[
1 +

√
2 Tr[ρ2]− 1

]
.

We compare the normalized volume, Vnorm
SU(2), with the normalized von Neumann

entropy, Snorm
VN , and normalized linear entropy, Snorm

L , in Figure 3. Each volume/entropy is
normalized with respect to their maximum values so that they take values on the interval
[0, 1]. It is shown that all three functions are zero on pure states, maximal on maximally
mixed states, and are concave function with respect to the purity of ρS. This shows that
feature (1) is satisfied for this example. In fact, the volume is an upper bound of both
entropies. It should also be noted that the behavior of Vnorm

SU(2) deviates from Snorm
VN and Snorm

L
in that it is flatter near maximally mixed states and steeper near pure states. As we see in
Section 3.3, this flatter behavior has implications about feature (2) also being satisfied in
that more of the coarse-grained space consists of macrostates with a greater von Neumann
entropy. However, one would not expect this feature to be pronounced since the dimension
of this example is so low.

Out[!]=

0.2 0.4 0.6 0.8 1.0
λ10.0

0.2

0.4

0.6

0.8

1.0
Volume/Entropy

VnormSU (2)

SnormVN
SnormL

Figure 3. Plot of the normalized volume, von Neumann, and linear entropies for 2-level systems
whose purifications are generated using SU(2).

3.3. Example: SO(3)

This section is broken into two subsections. In Section 3.3.1, we demonstrate feature (1)
by computing the volume and comparing it to the linear and von Neumann entropies. In
Section 3.3.2, we demonstrate feature (2) by discretizing S to construct an explicit CG. We
then compute the average von Neumann entropy of each discrete macrostate and show that
a significant majority of the coarse-grained space consists of macrostates with maximum
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or near-maximum von Neumann entropy, which is consistent with the composite system
being maximally entangled.

3.3.1. Computing Volume

From Equation (16), the unitaries associated with SO(3) are given by choosing N = 3
and α = ψij = χij = 0 for all i and j. This leaves parameters ~ξ = (φ12, φ13, φ23) where
φ12, φ13, φ23 ∈ [0, π/2]. The resulting unitaries are given by

U(φ12, φ13, φ23) = cos φ12 cos φ13 − sin φ12 sin φ13 sin φ23 cos φ23 sin φ12 cos φ12 sin φ13 + cos φ13 sin φ12 sin φ23

− cos φ13 sin φ12 − cos φ12 sin φ13 sin φ23 cos φ12 cos φ23 − sin φ12 sin φ13 + cos φ12 cos φ13 sin φ23

− cos φ23 sin φ13 − sin φ23 cos φ13 cos φ23

.
(24)

Since U(φ12, φ13, φ23) are the unitaries of bothHE andHS, we use the sublabels E and S to
keep track of which space U is acting upon.

Working in the basis of S , {|λi
S〉} is given by

{|λi
S〉} =


1

0
0

,

0
1
0

,

0
0
1

. (25)

This gives an explicit form of the unnormalized Bell state given by Equation (6). From here,
all purifications are generated by

|Γ̄(~ξ)〉 =
3

∑
i=1

√
λiUE(~ξ)|λi

E〉 ⊗ |λi
S〉. (26)

Using Equation (26), the nonzero metric components of FρS ≡ {|Γ̄(~ξ)〉} are

gφ12φ12 = sin2 φ23 +
1
4

(
λ1 + λ2 + 3(λ1 + λ2) cos 2φ23 + 2(λ1 − λ2) cos 2φ13 sin2 φ23

)
(27)

gφ13φ13 = λ1 + λ2 (28)

gφ23φ23 =
1
2
(2− λ1 − λ2 − (λ1 − λ2) cos 2φ13) (29)

gφ12φ13 = gφ13φ12 = (λ1 + λ2) cos φ23 (30)

gφ12φ23 = gφ23φ12 = −(λ1 − λ2) cos φ13 sin φ23 sin φ13 (31)

where gφ13φ23 = gφ23φ13 = 0. Taking
√

Det(g) gives

dVSO(3) =
√
(λ1 + λ2)(λ1 + λ3)(λ2 + λ3) cos φ23 dφ12dφ13dφ23 (32)

and integrating over ~ξ gives

VSO(3) = (π2/4)
√
(λ1 + λ2)(λ1 + λ3)(λ2 + λ3) (33)

= (π2/4)
√
(1− λ1)(1− λ2)(λ1 + λ2) (34)

where the second equality is due to the constraint that the sum of the eigenvalues must
equal one.

As for the SU(2) example, we compare the normalized volume, Vnorm
SO(3), with Snorm

VN
and Snorm

L by plotting them in Figure 4a–d. Here, we see, as was seen for SU(2), that Vnorm
SO(3)

is zero for pure states, maximal on maximally mixed states, and concave with respect to
purity, thus satisfying feature (1). Again, as for the SU(2) example, the volume upper
bounds Snorm

VN , as seen in Figure 4d. It also upper bounds Snorm
L , but we do not show it for

the sake of clarity. Notice as well that Vnorm
SO(3) is flatter near the maximally mixed state and
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steeper near pure states. This, again, is an indication that it also satisfies feature (2), which
we analyze explicitly in Section 3.3.2.

Figure 4. Comparison between the normalizations of VSO(3), von Neumann entropy, and linear
entropy. This demonstrates that VSO(3) satisfies feature (1) of Boltzmann’s original CG for the example
considered.

3.3.2. Analyzing the Entanglement Entropy of Macrostates

To demonstrate feature (2) for SO(3), we compute the fraction of S that belongs to
each macrostate in the coarse-grained space,HES, and compute the average von Neumann
entropy of each fraction. The purpose is to show that the greatest fraction belongs to
macrostates with maximum or near-maximum von Neumann entropy which, again, is con-
sistent with a maximal entanglement between the system and the environment. However,
since ρS, FρS , and Vnorm

SO(3) are continuous functions of eigenvalues~λ, distinct macrostates are
not well defined. To resolve this problem, we discretize S into discrete density operators,
ρl , of equal area, and we discretize the range of Vnorm

SO(3), L = [0, 1], into discrete segments of
equal length La. With these discretizations, La represent the discrete macrostates inHES to
which fractions of S belong.

The proposed discretizations have two benefits. First, they allow us to identify ρl with
segments La based on their volumes inHES and compute

Sa =
|La|
|ρl |

(35)
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where |La| is the number of ρl belonging to La, and |ρl | is the total number of discrete density
operators; this gives the fraction of S that belongs to each macrostate inHES. Second, they
allow us to compute the average normalized von Neumann entropy of each Sa

Snorm
VN (Sa) =

∑
|La |
i=1 Snorm

VN (ρi)

|La|
(36)

where ρi belong to La. We then look at each Sa and its Snorm
VN (Sa) to see if feature (2) is

demonstrated. Additionally, since Snorm
VN (~λ), Snorm

L (~λ) ∈ L, we can compute Equations (35)
and (36) for them as well, except we replace the volume with entropies when sorting ρl
into macrostates La. This allows us to compare them directly to Vnorm

SO(3), which provides
additional evidence that feature (2) is uniquely demonstrated by the ECG.

The probability simplex S is discretized into a finite ρl of equal area by uniformly
sampling it using the transformation

λ1 = 1−
√

η1 (37)

λ2 =
√

η1(1− η2) (38)

λ3 =
√

η1η2, (39)

where η1, η2 ∈ [0, 1] are uniformly distributed in the unit interval, as seen in [29]. Dividing
η1 and η2 into ` equal segments and transforming back to the ~λ basis divides S into `2

discrete ρl , where l ∈ [1, `2]; this is shown in Figure 5b.

Figure 5. Discretization of the probability simplex S into a discrete ρl of equal area, and the interval
L = [0, 1] into segments of equal length for ` = 5 and k = 10. In (a), we have the division of S in the
~η basis while (b) is that in the~λ basis; the transformation is given by Equations (37)–(39). In (c), we
have the sorting of ρl into volume-equivalent classes La.

The interval L = [0, 1] is discretized by dividing it into k equal segments, La, where a
is an integer between [1, k]; this is shown in Figure 5c. Given the discretization of S and L,
one can compute Equations (35) and (36).

Choosing ` = 300 and k = 10, we compute Vnorm
SO(3), Snorm

L , and Snorm
VN at the center of

squares in the ~η basis and assign that value to the corresponding ρl in the~λ basis. From
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Figure 5a, we see that the distance from the center of a given square is given by dl = 1/(2 `).
As ` goes to infinity, dl goes to zero, and the volume/entropies associated with the ρl in the
~λ basis becomes more representative of the actual value at the center.

Coloring each ρl using a color map derived from the volume and entropies assigned to
them gives the first row of Figure 6. Notice how this simply produces the contour plots of
Figure 4. To show the fraction of S associated with La, we assign an arbitrary color to each
La and color the ρl in accordance with the La in which they belong; this gives the second
row of Figure 6. There is nothing special about the choice of colors; they are only meant to
distinguish La. Computing Equation (35) and plotting the results gives the third row in
Figure 6. Due to the triangular distortions of S by the transformation from ~η to~λ, these
plots are produced with the restriction that η1 ∈ (1/4, 1] and η2 ∈ (1/2, 1]. This guarantees
the data in the analysis are within Weyl chambers [30] that do not include the triangular
distortions (The method for associating volume (or entropy) with a discrete density operator ρl is
only valid when ρl is close to a regular polygon. Since the mapping from the ~η basis to the~λ basis
creates elongated triangles, the value of volume (or entropy) at the center is no longer representative
of ρl . This can be seen in the second row of Figure 6 where the corner associated with the triangles is
mono-colored while the corners consisting of more regular polygons have a clear gradient in color.
The errors in counting which ρl belong to which La are ameliorated when triangular ρl are not
considered. And since S is symmetric, their removal does not affect the results) of the grid in the~λ
basis. Finally, the fourth row of Figure 6 is given by Equation (36).

Figure 6. Results of coarse-grainingHES = R3 ⊗R3. Row one is the discretization of S where each
ρl is colored using the volume or entropy of each column. Row two is the result of discretizing the
interval L = [0, 1] and sorting equivalent ρl into segments La. Row three is the fraction of ρl belonging
to each La. Finally, row four is the average von Neumann entropy of each La. It should be noted that
the data from the graphs do not include the triangular distortions caused by the discretization of S .
We only used data from Weyl chambers that do not include triangles.
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Looking at rows 3 and 4 of the first column of Figure 6, we see that over sixty percent
of S consists of ρl belonging to L10. These are states for which Vnorm

SO(3) ≥ 0.9. Furthermore,
the average normalized von Neumann entropy of this class is 0.88 bits. This shows that
the average entanglement entropy associated with L10 is near maximal. These results are
in stark contrast to the von Neumann and linear entropies whose L10 segments make up
less than thirty three percent of the total volume. This is significant because it shows that
the von Neumann and linear entropies perform worse than the volume when reproducing
feature (2) which is that most of the space of states consist of states near equilibrium. This
suggests that the volume of the ECG uniquely captures features of a CG that is related to
thermalization.

For Boltzmann’s original CG, over 99.99% of the γ-space consists of states at equilib-
rium. This is because it is assumed that one is working with a high-dimensional system
with a number of particles on the order of Avogadro’s number. In this example, we are only
working with three-level systems so the dimension of the space is vastly less. Nonetheless,
we still show that the majority ofHES consists of states near equilibrium. In Section 3.4, we
compute Snorm

VN for states that occupy at least 99.99% of the volume ofHES and show that it
tends toward one (maximum entanglement) as the dimension of the system increases.

3.4. Example: SO(N)

To extend the results from Section 3.3.2, we first provide an expression for Vnorm
SO(N)

. We
then use marginal density operators

ρS(λ
1) = λ1|λ1〉〈λ1|+ 1− λ1

N − 1

N

∑
i=2
|λi〉〈λi|, (40)

which are mixtures of a pure state and the maximally mixed state (of dimension N − 1), to
simplify the previous analysis for higher dimensions. This allows us to write Vnorm

SO(N)
as a

function of λ1. We then identify the value λ1∗ below which at least 99.99% of the volume
exists. From here, the average normalized von Neumann entropy for ρS(λ

1) between
λ1 ∈ [1/N, λ1∗] is computed. The purpose is to show that the average normalized von
Neumann entropy for at least 99.99% of the coarse-grained space parameterized by λ1

tends to one (maximal entanglement) as the dimension, N, of the system increases.
We compute the volume for SO(2)–SO(5) to construct VSO(N) by induction. The

volume associated with SO(2) is computed by setting ψ = ξ = 0 in Equation (17); this
gives one metric component dVSO(2) =

√
λ1 + λ2 dφ. Inserting dVSO(2) into Equation (12)

and integrating φ from zero to π/2 gives

VSO(2) = (π/2)
√

λ1 + λ2 = π/2. (41)

This result is trivial and uninteresting since λ1 + λ2 = 1, but it does provide necessary
information for inferring the general form of VSO(N).

Although we have an analytical form of dVSO(4) produced by Mathematica, it cannot
be simplified to a clean form as in Equations (22) and (32) when the number of parameters,
~ξ, is greater than three (A D× D matrix gij has D! terms in the expansion of its determinant
Det(g). SU(N) (SO(N)) has dimension D = N2 − 1 (N(N − 1)/2). Thus, SU(3) with
D = 8 has 8! = 40, 320 terms in Det(g) which we were unsuccessful in analytically simplifying
in Mathematica. SO(3) with D = 3 has 3! = 6 terms in Det(g), while SO(4) with D = 6 has
6! = 720 terms, both of which can be simplified analytically). To overcome this obstacle, we
simplify dVSO(4) by setting ~ξ = 0. This is done because we notice that the volume elements
dVSO(3), dVSU(2), and dVSO(2) are products between functions of λ’s and functions of ~ξ,
which may imply that volumes of the surfaces are product measures as seen in [30]. As
such, the~λ portion of the volume is removed from the integral, and the exact volume is
merely scaled by factors of π. Assuming dVSO(4) is merely a product between a function of
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~λ and cosines as in Equation (32), we set ~ξ = 0 to simplify it. Making this simplification
gives

dVSO(N)|~ξ=0
=

N

∏
i<j

√
λi + λj dξ1dξ2 . . . dξN(N−1)/2 (42)

where N = 4 and N(N − 1)/2 is the number of parameters of SO(N). Next, we justify the
choice of setting ~ξ = 0 as valid by numerically computing VSO(4) directly, without setting
~ξ = 0, and compare it to Equation (42) for N = 4.

Comparing the volumes given by Equation (42) with the direct numerical integration
of VSO(4) where ~ξ 6= 0 and the full integration over ~ξ is performed gives Figure 7.
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Figure 7. Plot comparing volumes given by Equation (42) with a direct numerical integration of
dVSO(4). Both are normalized on their maximum values. To generate the plots, one thousand ~λ’s
were selected uniformly by generalizing Equations (37)–(39) to four dimensions and computing the
corresponding volumes. The list of volumes and eigenvalues are sorted, k ∈ [1, 1000], from largest to
smallest. The red plot was computed from Equation (42), and the blue plot is a direct integration of
dVSO(4) using a Monte Carlo integration. The inset is given to show that the plots are not exact but
very close.

This result numerically shows that Equation (42) (normalized to maximum) is a very
good approximation of the actual normalized volume and that they may in fact be the same.
This is not a proof, but it is a strong indication that the assumption leading to Equation (42)
is valid. We also computed dVSO(5) and set ~ξ = 0 and obtained the same result for SO(4)
which is that the volume, barring factors of π, is merely the square root of the product of all
pairwise sums of eigenvalues. Using these results, along with VSO(2) and VSO(3), we infer
by induction that

VSO(N) =
N

∏
i<j

√
λi + λj. (43)

Now that we have a general form of VSO(N), we proceed with our procedure to extend the
results from Section 3.3.2.

Inserting the choice of eigenvalues consistent with ρS(λ
1) into Equation (43) and

normalizing with respect to the maximum volume gives

Vnorm
SO(N)(λ

1) =

(
λ1 + 1−λ1

N−1

) N−1
2
(

2 1−λ1

N−1

) (N−1)(N−2)
4

( 2
N
) N(N−1)

4

. (44)

To show that the majority of HES increasingly tends toward maximally entangled states
(maximum von Neumann entropy of ρS), we plot Equation (44) for N = 3, 5, 7, 11, and 30
in Figure 8.
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We see that the centroid of each plot tends toward states with maximum von Neumann
entropy as N increases. To quantify these results, we identify the value λ1∗ for various
values of N where Vnorm

SO(N)
(λ1∗) = 10−4. For the values of N used, this choice of λ1∗

guarantees that ∫ λ1∗

1/N Vnorm
SO(N)

(λ1) dλ1∫ 1
1/N Vnorm

SO(N)
(λ1) dλ1

> 0.9999, (45)

where λ1 = 1/N indicates the maximally mixed ρS(λ
1). Plotting the average normalized

von Neumann entropy with λ1 ∈ [1/N, λ1∗] as a function of N gives Figure 9. This clearly
shows that the average normalized von Neumann entropy for at least 99.99% of HES
parameterized by λ1 tends toward 1 as N becomes large. This implies that the vast majority
of the coarse-grained space consists of equilibrium macrostates which are characterized by
the maximum entanglement entropy.
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Figure 8. Plot of Vnorm
SO(N)

for N = 3, 5, 7, 11, 30. The dashed vertical lines are located at the minimal

value of λ1 for each plot, which is 1/N, the maximally mixed state. Notice how the centroids tend
toward maximally mixed states as pure states subsume less volume as N increases.

✶ ✶

✶

✶
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✶
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Figure 9. Plot of the average von Neumann entropy (normalized to the maximally mixed state) with
λ1 ∈ [1/N, λ1∗] as a function of N. This quantifies the results of Figure 8 by showing that the average
von Neumann entropy of states whose volumes take over 99.99% of HES tends toward 1 where 1
corresponds to the maximum entanglement entropy.
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From this analysis, we demonstrated feature (1) of Boltzmann’s CG for SU(2) and
SO(3) by comparing them to the von Neumann and linear entropies in Figures 3 and 4,
respectively. We also demonstrated feature (2) for SO(3) by constructing an explicit CG
and computing the average entanglement entropy of each macrostate and extended it to
SO(N) using marginal density operators given by Equation (8). We did not include an
analysis of SU(N) since computing the determinant of the metric becomes prohibitively
difficult as the number of parameters, ~ξ, increases.

4. Generalizing the Entanglement Coarse-Graining

In this section, we generalize our formalism to include unitary transformation of S in
P(HS). This allows us to define the metric components for SOI that belong to probability
simplices with eigenbases rotated with respect to a fixed basis. Comparing density opera-
tors belonging to probability simplices with different eigenbases is a fundamental difference
between classical and quantum fidelity measures. With this completed formalism, one
could study quantum fidelity using a geometric approach provided by the SOI.

Given an orthonormal basis {|(λρ
S)

i〉} ofHS, all unitarily related orthonormal bases
can be generated by

{|(λσ
S)

i〉} = {US|(λ
ρ
S)

i〉}. (46)

This gives the set of all unitarily related probability simplices Sρ and Sσ in P(HS) depicted
in Figure 10. From here, the set of purifications associated with a density operator

σ =
N

∑
i=1

(λσ)i|(λσ
S)

i〉〈(λσ
S)

i|, (47)

where~λσ are free to be chosen independent of~λρ, are given by (compare to Equation (7))

|Γ̄σ(~ξ)〉 = (UE(~ξ)⊗
√

σ)|Γσ
ES〉 (48)

where (compare to Equation (6))

|Γσ
ES〉 =

N

∑
i=1
|(λσ

E)
i〉|(λσ

S)
i〉. (49)

Like Equation (6), {|(λσ
E)

i〉} is a copy of {|(λσ
S)

i〉} in HE. Now, one simply inserts
Equation (48) into Equation (11) to get the metric components of the surfaces of ignorance
associated with Sσ.

This generalization may give new insights into quantum fidelity. The standard fidelity
measure between arbitrary quantum states is the Uhlmann–Josza fidelity [31]. It has many
equivalent definitions, two of which are given by

FUJ := max
{US}
|Tr[
√

ρ
√

σUT
S ]|2 (50)

= max
{~ξρ ,~ξσ}

|〈Γ̄ρ(~ξρ)|Γ̄σ(~ξσ)〉|2 (51)

which are equations 9.110 and 9.97 in [1], respectively. If ρ and σ share the same eigenbasis,
Equation (50) reduces to the classical fidelity between the eigenvalue spectrums of ρ and σ.
This means that the difference between classical and quantum fidelity is the relationship
between unitarily related eigenbases. Additionally, Equation (51) shows that the Uhlmann–
Josza fidelity can also be understood as an optimization over the surfaces of ignorance.
Therefore, the generalized ECG may provide new geometric insights into quantum fidelity
as it relates to the ECG.
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Figure 10. Depiction of generalized entanglement coarse-graining procedure to allow unitary trans-
formations of S in P(HS). The green simplex on the left associated with ρ is Sρ, and the orange
simplex on the right associated with σ is Sσ. The orthonormal basis of Sσ is generated from unitary
transformations US applied to the orthonormal basis of Sρ. Each simplex has a coarse-graining of
HES associated with it which is identical.

5. Discussion

In this paper, we introduced a new volume to quantify the amount of missing infor-
mation or ignorance in a density operator ρS. This volume was computed by generating
all purifications of ρS and constructing the metric tensor associated with the manifold of
purifications. We denoted these manifolds as surfaces of ignorance (SOI). The determinant
of the metric provided a volume element which was integrated to compute the volume.
Examples of the volume were provided for systems whose purifications were generated
by Lie groups SU(2), SO(3), and SO(N). In these examples, the volumes were studied in
the context of an entanglement-based quantum coarse-graining (CG) that we called the
entanglement coarse-graining (ECG). This is a natural setting for studying the SOI since
ρS can be understood as the reduced density operator of a pure state thus making its von
Neumann entropy the entanglement entropy between system S and environment E.

In the context of the ECG where the SOI are macrostates and purifications are mi-
crostates, we showed that our volumes captured two features of Boltzmann’s original CG.
These features are essential to typicality arguments used to understand thermalization
and the second law of thermodynamics. These features are: (1) a system beginning in an
atypical macrostate of a smaller volume evolves to macrostates of a greater volume until it
reaches the equilibrium macrostate, and (2) the equilibrium macrostate takes up the vast
majority of the coarse-grained space especially as the dimension of the total system becomes
large. Feature (1) was demonstrated by showing that the volume behaves like the von
Neumann entropy in that it is zero on pure states, maximal on maximal mixed states, and
is a concave function with respect to the purity of ρS. This was shown in Figures 3 and 4
for the SU(2) and SO(3) examples, respectively. Feature (2) was demonstrated by Figure 6
for SO(3) and extended using SO(N) in Figures 8 and 9.

The purpose of this work was not to study thermalization. Instead, we used information-
based “thermalization” as a context to study our volumes in terms of the ECG. By demon-
strating features (1) and (2) of the Boltzmann CG, we provided evidence that the intuitive
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understanding of the volume as a quantification of the missing information in ρS was
reasonable. Furthermore, it suggests that viewing these volumes as a multiplicity for an
information/entanglement-based “thermalization” entropy constitutes a valid perspective.
The ECG is also interesting in that it provides clear macro- and microstates for the entangle-
ment entropy. Because of this, the equilibrium macrostate is consistent with a maximum
entanglement between the S and E.

For future research, it would be interesting to study the well-known fact that most pure
states of composite systems of high dimensions are close to maximally entangled [32] using
the ECG. In the context of the ECG, this is simply an observation that the vast majority
of the coarse-grained space of pure states consists of the equilibrium macrostate. This
is feature (2) that was demonstrated in the examples of this paper and it is an essential
feature of the results in [17–20,33]. It would also be interesting to study the relationship
between the ECG and the analysis in [34], since the microstates of the ECG are envariant
(entanglement-assisted invariant) states. Lastly, this research could be extended by defining
a proper quantum Boltzmann entropy for the ECG. This is challenging since the volume
goes to zero for pure states, which means simply taking the logarithm of the volume would
result in a divergent entropy.
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