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Abstract: Image encryption techniques protect private images from unauthorized access while
they are being transmitted. Previously used confusion and diffusion processes are risky and time-
consuming. Therefore, finding a solution to this problem has become necessary. In this paper, we
propose a new image encryption scheme that combines the Intertwining Logistic Map (ILM) and
Orbital Shift Pixels Shuffling Method (OSPSM). The proposed encryption scheme applies a technique
for confusion inspired by the rotation of planets around their orbits. We linked the technique of
changing the positions of planets around their orbits with the shuffling technique of pixels and
combined it with chaotic sequences to disrupt the pixel positions of the plain image. First, randomly
selected pixels from the outermost orbit are rotated to shift the pixels in that orbit, causing all pixels in
that orbit to change their original position. This process is repeated for each orbit until all pixels have
been shifted. This way, all pixels are randomly scrambled on their orbits. Later on, the scrambled
pixels are converted into a 1D long vector. The cyclic shuffling is applied using the key generated by
the ILM to a 1D long vector and reshaped into a 2D matrix. Then, the scrambled pixels are converted
into a 1D long vector to apply cyclic shuffle using the key generated by the ILM. After that, the 1D long
vector is converted into a 2D matrix. For the diffusion process, using ILM generates a mask image,
which is then XORed with the transformed 2D matrix. Finally, a highly secure and unrecognizable
ciphertext image is obtained. Experimental results, simulation analysis, security evaluation, and
comparison with existing image encryption schemes show that it has a strong advantage in defending
against common attacks, and the operating speed of this encryption scheme also performs excellently
in practical image encryption applications.

Keywords: cryptosystem; chaos; ILM chaotic system; image encryption; orbital shift

1. Introduction

With the development of network and communication technology, multimedia has
emerged as an essential tool for both personal and professional communication. Digital
cameras are now widespread, and by providing access to everyone, the generation of
digital images becomes easy. These images are present in almost every aspect of human
life, such as family images, party images, social interaction images, biological images,
medical images, satellite images, military images, and commercial images. Among these
images, some are very sensitive and confidential. Apart from that, the transmission of these
images over open-access networks, such as the Internet, is risky [1] since hackers seek such
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kinds of activities. Any information exchanged online needs strong security to prevent
unauthorized access [2]. An image can contain a wealth of information beyond just the
visual content of the image itself. For example, a personal image may include the identity
of the person, their physical appearance, age, and location at the time the image was taken.

For decades, researchers in cryptography have been developing various techniques
to secure communication. They face a lot of challenges in developing techniques that
can stand attacks and can be applicable in real-life situations. To present a highly secure
algorithm, they used new algorithms with advanced mathematical models. One of the most
well-known technologies for ensuring the security, veracity, and secrecy of images that are
floating around the internet is the technique of image encryption and decryption [3,4].

Cryptographers have designed several historical ciphers such as Data Encryption
Standard (DES), Advanced Encryption Standard (AES), and Rivest-Shamir-Adleman (RSA).
DES and AES are the symmetric key algorithms used for data encryption. RSA is an asym-
metric key method used for digital signature verification and encryption. However, these
ciphers cannot be used to encrypt digital images due to their limitation in processing only
text data [5–7]. Depending on the digital image’s size, it contains a lot of information having
correlation pixels bounding as compared to the text data. The basic image’s significant
association between adjacent pixels makes it difficult to eliminate [7,8].

At the beginning of 1989, Matthews developed a chaotic encryption technique to solve
such kinds of problems [9]. The chaotic system demonstrates several distinctive charac-
teristics, including ergodicity sensitivity to beginning conditions and complex nonlinear
dynamics [10,11]. Habutsu et al. proposed the first chaotic stream cipher approach for
image encryption in 1991 [12]. Later on, various chaotic image encryption algorithms were
proposed [2,3,5,7,13–37]. To achieve a significant security improvement, some researchers
have integrated these two processes into one stage [19,31,38–40].

According to a recent study, more than 32% of currently in-use image encryption
algorithms are based on the chaotic theory [25,28–31]. For instance, in [19], chaos is used
in a brand-new lifting transform-based image encryption technique. Using a 3D chaotic
map and image pixel shuffle, authors of [20] suggested a novel image encryption method.
They first used pixel shuffling to encrypt a plain image, after which the output was XORed
with a key before being subjected to the 3D chaotic map. The image is permuted using a
3D logistic chaotic map proposed in [21]. Following permutation, the DNA rules are used
to encode the pixel values, and another random sequence is used for DNA operations to
form the encoded image [36,41]. In [34,42], block-based diffusion is proposed by using
the crossover method to the pixel values and the XOR, XNOR, and random functions to
carry out the block-based diffusion. A differential resistance attack is possible with this
strategy. In [22], the modified ZigZag Transform (ZT) technique is used that exchanges the
upper left and next horizontal neighboring pixels with the base right pixel for enhanced
security. The modification is applied to every matrix in the image, starting from the upper
left corner to the base right corner. The remaining elements of the matrix are swapped in a
zigzag pattern to execute encryption. Researchers placed a high focus on speedy product
delivery in addition to security considerations. Therefore, they turned to various strategies,
including the swapping method, circular shift operations, interchanging method, block
methods, and so on. Other image encryption methods are proposed as a result of the
possibility that blocks may be formed [22,23,25,34,42–44].

Permutation-substitution architecture is the foundation for most of the methods that
are provided. While substitution means the changing of pixel values of the shuffled
images using the random sequence, permutation entails shifting the pixel position of
an original image across a chaotic map. The chaos-based image encryption technique
with a permutation and diffusion structure is proposed by Zhang et al. [17]. To solve the
shortcomings of several image encryption methods based on the complete shuffle strategy,
they developed two directional diffusion techniques. First, they diffuse in the forward
direction, and later, they diffuse in the reverse way. They provided a rapid method to
produce a permutation by merging some little permutations, where some permutations
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are formed directly by the chaos system. To create the large permutation required at
the permutation stage, it takes some time to effectively implement this technique for
encrypting high-quality images in real-life scenarios. A color image encryption technique
is proposed by Zhang et al. [45]. They use a 2D chaotic cat map with another logistic
map technique. In this proposed method, they changed the position of an image pixel by
switching places with other pixels in a matched plane. Their method was speedier than
the conventional method of shifting pixels inside a single plane in terms of cryptography.
In [25], authors introduced the block cipher-based image encryption method. They used
some other modes of operation, such as the counter mode and cipher block chaining, as
well as chaotic sequences. An image encryption system has been proposed using the ideas
of pixel swapping, masking, and permutation [25,27,34]. Some of them used methods
that used eight and sixteen sequences for swapping, masking, and pixel permutation,
respectively. The authors of this research broke the link between image pixels by randomly
swapping them, taking advantage of permutation, and switching sequences. Finally, they
performed the XOR operation using the masking sequence. In [35], the random scan pair
and 2D standard map were used for pixel shuffle. In [25], the permutation and diffusion
were performed at the block level as opposed to the pixel level to preserve time complexity.
As a result of the full blocks switching rather than the pixels switching, the cipher’s security
was breached. To improve the diffusion with reduced time complexity, we proposed a
bit-level scrambling technique to achieve diffusion, which involves permuting the pixels of
the image in a non-linear manner. This process effectively destroys any intra-correlations
among the pixels of the image, which helps to enhance the security of the encryption.
Furthermore, the key generation method presented in this work using ILM is not solely
dependent on the image itself but also on certain secret parameters. This highlights the
importance of maintaining the confidentiality of these secret parameters to ensure the
robustness and effectiveness of our proposed scheme.

The main contribution of this paper includes the following stages to secure the image
encryption process.

1. Inspired by the orbits and planets, we have designed a new encryption scheme. In
the scheme, scrambling of the pixels has been linked to the movement of the planets
in their orbits. This design makes the new cipher more secure and very uncorrected.

2. Multi level-round scrambling approaches are used to increase the cipher’s unpre-
dictability and decrease the correlation between the pixels. The intertwining logistic
map is used for key generation and masking of the scrambled temporary cipher-
text image.

3. The purposed encryption technique is a secured encryption scheme that takes a very
short execution time as compared to existing schemes and passes all the security tests.

4. Machine experimentation provided very promising results which preponderate those
of many of the published works.

The remaining content of this paper is organized as follows: Section 2 introduces the
Preliminaries part. The core idea of the proposed technique is described in Section 3. In
Section 4, we present some simulation results and security analysis. Finally, in Section 5,
the proposed scheme is summarized and concluded.

2. Preliminaries

In this section, we discuss the preliminaries which are added to our proposed method
in an intertwining logistic map.
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The ILM Chaotic System

The chaos theory studies systems that are highly dynamic and sensitive to two main
components: the system parameters and the initial values of the system or map. In our
proposed methodology, we use the intertwining logistic map (ILM) [27].

xi+1 = [µ× k1 × yi × (1− xi) + zi] mod 1

yi+1 =

[
µ× k2 × yi + zi × 1

1+x2
i+1

]
mod 1

zi+1 = [u× ( xi+1 + yi+1 × k3)× Sinzi] mod 1

(1)

According to the given equation, when 0 < µ ≤ 3.999, |k1| > 33.500, |k2| > 37.970,
and |k3| > 35.700, system (1) is chaotic. With these parameters and certain initial values,
the above-mentioned equations show that ILM generates three chaotic streams of (x, y, z).
Figure 1 shows the bifurcation diagrams of the intertwining logistic map for k1 = 31.8809,
k2 = 31.891, and k3 = 35.318. From Figure 1, it can be seen that the ILM is more chaotic
and lacks any open spaces compared to a logistic map. Therefore, the intertwining logistic
map is more suitable for image encryption than a logistic map.
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3. Proposed Methodology

The proposed encryption method applies the OSPSM technique to confuse image
pixels. This method draws inspiration from the rotational motion of planets along their
orbits. We linked the technique of changing the positions of planets around their orbits
with the shuffling technique of pixels and combined it with chaotic sequences to disrupt the
pixel positions of the image. The encryption scheme consists of three main steps. The first
step is the orbital shift shuffling. In this step, the pixels of a standard image are extracted
into a 2D matrix. The orbital shift shuffling technique is then applied to the matrix to
shuffle the pixel positions randomly. For instance, to apply OSPSM, the pixel values of
plain images are stored in a 2D array that represents the image height and image width.
According to the key, pixels from the orbits are randomly selected, and a rotational shift of
these pixels is initiated, causing all pixels on the orbits to change their original positions due
to the shifting of the selected pixels. This process continues until the pixels of the innermost
orbit have completed shifting. Pixel shifting is the process of changing a pixel’s original
position based on a secret key generated by ILM. Through this method, the positions of all
pixels in the orbit are randomly shuffled. The second step is the cyclic scrambling of a 1D
vector. After the orbital shift, the pixel matrix is converted into a 1D long vector. The key
generated by ILM is then used to cyclically shuffle the elements of the vector. Finally, the
scrambled 1D long vector is converted back into a 2D matrix. The third step is the pixel
value transformation based on chaotic mask images. In this step, the diffusion operation
is carried out on the scrambled 2D matrix, which involves two steps. The first step is to
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generate a mask image using ILM. Next, perform the XOR operation between the generated
mask image and the scrambled 2D image matrix. Finally, the ciphertext image is obtained.

3.1. Key Generation Method

The proposed method uses an intertwining logistic map. The input for encryption
is a 256 × 256 grayscale image. The starting keys for the intertwining logistic map are
determined as follows:

x0 = x′0 +
∑64

i=1 ∑256
j=1 Ii×j

16384× 128
(2)

y0 = y′0 +
∑128

i=65 ∑256
j=1 Ii×j

16384× 128
(3)

z0 = z′0 +
∑192

i=129 ∑256
j=1 Ii×j

16384× 128
(4)

µ = µ′ +
∑256

i=193 ∑256
j=1 Ii×j

16384× 128
(5)

k1 = k′1 +
∑128

i=1 ∑256
j=1 Ii×j

16384× 256
(6)

k2 = k′2 +
∑256

i=129 ∑256
j=1 Ii×j

32768× 256
(7)

k3 = k′3 +
∑256

i=1 ∑256
j=1 Ii×j

65536× 256
(8)

where “I” represents the plain image and (i,j) are the indices of the input plain image,
the variables x′0, y′0, z′0, µ′, k′1, k′2, and k′3 in Equations (2)–(8) are the variables of the ILM
before embedding the plain text sensitivity. The variables x0, y0, z0, µ, k1, k2, and k3 are the
variables of the ILM plain text sensitivity after embedding.

3.2. Scrambling Methods

OSPSM (Orbital Shift Pixels Shuffling Method) is a newly proposed scrambling method
for digital images. It operates by scanning the pixel values in an orbital form. First, it
shuffles all the pixel values of the outermost orbit, starting from the position of the randomly
selected pixel (r, c), and then goes to the second outer orbit pixels to shuffle the elements of
the second outer orbit starting from the randomly selected pixel position (r’, c’), and so on,
until it completes all the orbits of the original image according to the size of the image. We
elaborated OSPSM with an example shown in Figure 2, considering a matrix size of 4 × 4
as shown in Figure 2a. In Figure 2b, the pixels of orbits are shuffled by applying OSPSM,
starting from the second to last element of the outermost orbit and shuffling all the pixels
of the outermost orbit according to the key values. Then, the inner orbit pixels are shuffled,
and after the completion of the orbit pixels shuffling, all the pixel values are stored in a long
vector form shown in Figure 2c. Later on, the vector is randomly permutated by applying
cyclic shuffling techniques using the key value k ∈

(
−2256, 2256) shown in Figure 2d, then

reshaped into a 2D matrix shown in Figure 2e. The image that has been scrambled can then
be obtained.
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Figure 2. The schematic diagram of OSPSM transformation. (a) plain matrix image, (b) orbital shuffle
image, (c) 1-D long vector image, (d) cyclic shuffle image, (e) 2-D image matrix.

Figure 3 shows the general schematic diagram of OSPSM transformation. Similarly,
we generalize the OSPSM transformation of an example of a 4 × 4 matrix to the size
of the m × m matrix. When we read the image of size m × m, the turning point of the
transformation appears in a round shape which is just like an orbit’s shape transformation
in the middle of the image. If m is even, m/2 orbits, and for odd, (m − 1)/2 orbits will be
constructed. Step by step procedure of this diagram is shown below to understand the
general permutation method of the proposed scheme.

After performing the OSPSM on the plain image, we converted the scrambled image
into one long vector in the dimension 1×m×m, which is shown in Figure 4. The circular
permutation is applied to the long vector, which is shown in Figure 5.
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3.3. Encryption Scheme

Many scrambling and encryption methods use basic operations called permutation
transformations. The chaos-based image cryptosystem has two iterative stages. Typically,
the permutation stage provides the confusion effect, while the pixel value diffusion stage
produces the diffusion effect. The relationship between the key and the ciphertext is
maintained as complicated as possible by confusion. The image’s pixels are permuted
during the confusion stage without having their values altered. At the diffusion step, the
pixel values are altered consecutively, making a minor change to one image pixel results in
a significant change to the entire image. In the confusion stage, the permutation of pixels is
introduced to decorrelate the relationship between neighboring pixels.

We proposed an image encryption technique based on OSPSM and ILM. Firstly, the
initial keys of the chaotic map are generated using pixels of the plain image to make the
scheme plain text sensitive. Secondly, the intertwining logistic map is generated using keys
obtained in the first step, and the first sequences of the map are utilized as a key value
for permutations. The positions of the pixels are shuffled over the entire image without
any changing of the value of pixels, which means that the pixels of the plain image go
to pixel-level scrambled using OSPSM. After applying OSPSM, the scrambled image is
converted into a long vector. Thirdly, we have applied a cyclic shift operation on the vector
obtained in the second step to obtain more distortion among the pixels. In the last step, a
masked image is generated by intertwining logistic map. The generated mask image is
then XORed with the scrambled two-dimensional image matrix. The XORing operation is
used to modify the values of the image pixels to make our strategy resistant to histogram
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attacks. This cipher image is more secure as compared to the other proposed methods. The
block diagram of our proposed encryption scheme is shown in Figure 6, which will help to
understand the proposed method easily.
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The following is a description of the necessary actions in our suggested plan.
Step 1: Take the original image as Im∗m and generate keys of the chaotic map by using

the pixels of the original image, the method is discussed in Section 3.
Step 2: Through the intertwining logistic map, the sequences {x}, {y}, and {z}

are generated m×m times. These sequences of real numbers are converted into integer
numbers as follows:

S1
i = round

(
mod

(
|xi| × 1016, 256

))
+ 1, (9)

S2
i = round

(
mod

(
|yi| × 1016, 65, 535

))
+ 1, (10)

S3
i = round

(
mod

(
|zi| × 1016, 256

))
+ 1, (11)

where i = 1, 2, . . . , mm, and S1
i , S2

i , S3
i are the sequences of integer numbers. Original

image pixels are scrambled with OSPSM and the key obtained by permutation is from the
sequence S1

i . Then we obtained the scrambled image as Is.
Step 3: After performing with the OSPSM on the plain image, the scrambled image is

converted into one long vector Isv in one dimension 1×m×m. The circular permutation is
applied to this vector. The vector is permutated using the key value k from S2

i and then
reshaped into a two-dimensional (2D) matrix Isvm.
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Step 4: In this step, the diffusion operation is performed. For diffusion, a mask image
is constructed by converting S3

i into matrix M, having the dimension of the image. After
obtaining the mask image M, the XORing operation takes place between the image pixels
and corresponding matrix values as:

Cipherimage = Isvm(i, j)⊕M(i, j) (12)

Finally, we obtained the cipher image.
In the field of cryptography, there are two methods for encryption, one is a private

key and the second one is a public key. Our approach in this work is the private key
method. Therefore, the decryption procedure has been carried out in the opposite order of
the encryption algorithm.

4. Simulation Results and Security Analysis

In cryptography, different types of attacks can occur, such as differential attacks, noise
and entropy attacks, selected plaintext/ciphertext attacks, and brute force attacks. An
image encryption method should have enough strength to prevent such kinds of attacks.
In this method, four grayscale images (Lena, a moon, an airplane, and a clock) with a size
of 256 × 256 are used to show the effectiveness of the proposed method.

In this work, the hardware and software settings that are used during the implementa-
tion of our proposed scheme are Intel® core™ i3-55500U CPU@ 2.10 GHz, 16 GB RAM, 512
GB SSD. Window 10Pro, MATLAB R2021b.

4.1. Validation of Encryption

We examined our proposed method with some images to verify its better performance.
The encryption and decryption effects are shown in Figure 7. Figure 7a,e,i,m are the plain
images with a size of 256 × 256. Figure 7b,f,j,n are pixels shuffling images. Figure 7c,g,k,o
are the encrypted images. Figure 7d,h,l,p show the decrypted images.
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Figure 7. Results of the proposed image encryption scheme. (a) plain image of Lena, (b) shuffled
image of Lena, (c) encrypted image of Lena, (d) decrypted image of Lena, (e) plain image of moon,
(f) shuffled image of moon, (g) encrypted image of moon, (h) decrypted image of moon, (i) plain
image of Airplane, (j) shuffled image of Airplane, (k) encrypted image of Airplane, (l) decrypted
image of Airplane, (m) plain image of clock, (n) shuffled image of clock, (o) encrypted image of clock,
(p) decrypted image of clock.

4.2. Key Space Analysis

Key space is an essential consideration for developing certain cipher images. If the
key space is small, a possible adversary’s brute force attack can successfully break it. It
should therefore be sufficiently large to prevent any such attack from succeeding on time.
Sometimes, an adversary generates every key conceivable and tries to recover the original
image. In this method, the encryption key consists of the listed initial values (x, y, z) and
parameters (µ, k1, k2, k3). The key value for a circular shift is taken from S2 which is 2256.
Moreover, if the computation precision is 10−15, this then contributes

(
1015)7

= 10105 to
the key space. Therefore, the overall key space comes out as 2256 × 10105 = 1.16× 10182.
Thus, it can be said that the proposed work is superior to some of the earlier ones in terms
of the key space. Table 1 shows the key space of our proposed scheme and compares it to
other existing methods.

Table 1. Display of a comparison of the key space of our proposed scheme with other existing schemes.

Algorithms Key Space

Ours 1.16× 10182

Ref. [28] 10128

Ref. [34] 2197≈ 2× 1059

Ref. [35] 1090

Ref. [46] 10105

4.3. Key Sensitivity Analysis

The key should be sensitive and have a big key size for a strong barrier to all tech-
niques of brute force assaults to provide secure encryption. The original secret key was
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changed slightly for the testing of the sensitivity of the key. Our proposed method key
contains external parameters, as shown in Table 2, which also shows the keys used in the
proposed method by using the original keys. Consequently, we obtain the plain image after
encryption and decryption using the original key parameters without any modifications,
as shown in Figure 8.

Table 2. Original key parameter values.

Parameters Values

(µ, k1, k2) µ = 1.108021259307861, k1 = 2.143530845642090, k2 = 0.561828732490540
(k3, x0, y0) k3 = 0.548855721950531, x0 = 1.093351840972900, y0 = 1.050179004669190,
(z0, p) z0 = 1.139293670654297, p = 11
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Figure 8. Encryption/Decryption with the original key. (a) plain image Aerial, (b) encrypted image
of Aerial, (c) decrypted image of Aerial.

To test the key sensitivity, we made slight changes to the initial key and evaluated the
effects. Specifically, it is not possible to obtain the plain image with a slight change in the
key, as shown in Figure 9. Table 3 presents the change rates between two encrypted images
assembled using the initial key, Key1 (as shown in Table 2) and Keyn (where n = 1, 2, . . . ,
7), with slight variations in the initial keys (xo, yo, zo, µ, k1, k2, k3). The resulting NPCR
(number of pixel changing rate, NPCR) for each pair of encrypted images is greater than
99.59%, indicating a high sensitivity to key changes.
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Table 3. Display of the rates of change between encrypted images resulting from the use of slightly
modified keys.

Keys
NPCR

Lena Baboon Moon

Key1
(

x′ =
(

xo + 10−15)) 99.61 99.62 99.63
Key2

(
y′ =

(
yo + 10−15)) 99.63 99.61 99.60

Key3
(
z′ =

(
zo + 10−15)) 99.62 99.60 99.59

Key4
(
µ′ =

(
µo + 10−15)) 99.60 99.59 99.59

Key5
(
k1 =

(
k1 + 10−15)) 99.63 99.59 99.60

Key6
(
k2 =

(
k2 + 10−15)) 99.61 99.62 99.64

Key7
(
k3 =

(
k3 + 10−15)) 99.62 99.63 99.64

Therefore, we can conclude that the suggested encryption technique is highly sensitive
to irregular keys since we have demonstrated in Figures 8 and 9 that it is only possible to
obtain the plain image after encryption and decryption using the original key parameters
without any modifications. Thus, the key sensitivity of this algorithm achieves the expected
effect.

4.4. Histogram Analysis

A graphic representation of data regarding the distribution of pixel values is an image’s
histogram. The histogram of an ideal encrypted image should be equally distributed and
completely different from a plain image to prevent competitors from deriving any pertinent
information from the streaming histogram of an encrypted image. We conducted a statistical
analysis, and the findings are presented below to demonstrate that our suggested approach
is difficult to hack. Figure 10a,c,e,g demonstrates the histograms of the original images
(Lena, moon, plane, and clock) with their cipher image histogram in Figure 10b,d,f,h. The
size of the original images is 256 × 256.
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Figure 10. Histogram of the plain images and corresponding cipher images. (a) histogram of plaintex
Lena, (b) histogram of ciphertext Lena, (c) histogram of plaintex moon, (d) histogram of ciphertext
moon, (e) histogram of plaintex airplane, (f) histogram of ciphertext airplane, (g) histogram of plaintex
clock, (h) histogram of ciphertext clock.

4.5. Correlation Analysis

The most crucial quality of data that belongs to the category of digital images is good
correlation. Each pixel is highly correlated with the pixels around it. Therefore, it could
be situated horizontally, vertically, or diagonally. Figures 11–13 display scatter plots that
indicate the connection between 4000 randomly chosen pixels in different directions, such
as horizontal, vertical, and diagonal of both the original plain image and the created cipher
image. For the correlation testing, a grayscale moon image with a size of 256 × 256 is used.
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4.6. Information Entropy

Entropy, commonly referred to as Shannon’s entropy, is one of the common measures
used to assess the strength of a symmetric cryptosystem. Equation (12) is used to determine
the entropy value.

H(m) = −
N−1

∑
i=0

P(mi)log2[P(mi)] (13)

where N denotes the gray level of the image, mi denotes the symbol’s source, and last P(mi)
denotes the symbol’s probability. The entropy values of some standard test images, such as
Lena, a moon, a plane, a clock, etc., are demonstrated in Table 4. The ideal entropy value is
8.0. Table 5 proves that the entropy values of the encrypted images of the proposed method
are nearest to the ideal value as compared to the existing methods.

Table 4. Information entropy of plaintext images and ciphertext images.

Tested Images Image Size Plain Image Proposed

Lena 256 × 256 7.4749 7.9970
Baboon 256 × 256 6.9729 7.9972

Airplane 256 × 256 6.4522 7.9970
Clock 256 × 256 6.7056 7.9970
Moon 256 × 256 6.7093 7.9974

Chemical plant 256 × 256 7.3424 7.9975
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Table 5. Comparison of the proposed method with existing methods.

Tested
Images

Image
Size

Plain
Image Ref. [25] Ref. [27] Ref. [41] Proposed

Lena 256 × 256 7.4749 7.9953 7.9957 7.9970 7.9970
Baboon 256 × 256 6.9729 \ 7.9952 7.9971 7.9972

Airplane 256 × 256 6.4522 \ 7.9952 7.9971 7.9970
Clock 256 × 256 6.7056 \ 7.9955 7.9970 7.9970
Moon 256 × 256 6.7093 \ 7.9956 7.9968 7.9974

Chemical
Plant 256 × 256 7.3424 \ \ 7.9969 7.9975

4.7. NPCR and UACI

NPCR rate and UACI are two important measures of image encryption that we use.
These values are used to assess how to resist the image encryption method by differential
attacks. The algorithm’s sensitivity to changes in the plain image is evaluated using NPCR.

The values of NPCR and UACI are determined using the equations below.

NPCR = ∑
i,j

D(i, j)
MN

× 100% (14)

as we know that

D(i, j) =
{

0, i f C1(i, j) = C(i, j)
1, i f C1(i, j) 6= C(i, j)

(15)

The averaged changing intensity of two separate decrypted images of an object is
tested using UACI, which can be calculated by Equation (15).

UACI = ∑
|C1(i, j)− C2(i, j)|

M× N × 255
× 100% (16)

In the above equation, C1 and C2 are two unique cipher images made using two
unique keys. Table 6, demenostarte the NPCR and UACI values represent the superior
performance of our proposed method. Table 7 demenostarte the comparsion values of
NPCR and UACI with existing methods

Table 6. NPCR and UACI values of our proposed method.

Test Images NPCR UACI

Lena 99.6338 33.2992
Airplane 99.5819 33.4625

Clock 99.6032 33.3568
Moon 99.6002 33.3076

Chemical plant 99.5965 33.4511

Table 7. The comparison of NPCR and UACI with other techniques.

Algorithms Average NPCR Average UACI

Ref. [25] 99.6091 33.4437
Ref. [27] 99.6282 33.2459
Ref. [28] 99.6000 33.4000
Ref. [40] 99.6110 33.2320

4.8. Analysis of Noise

In a real-life situation, the transmission of images may suffer from contamination due
to some kind of noise, and occasionally, some part of the image during transmission is
also lost. The anti-noise ability is very important for an image encryption algorithm. A
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good encryption scheme is assumed to defeat noise attacks as well. In the experiment, we
introduced the salt and pepper noise with noise densities of 0.1 and 0.3 to the encryption
image of Lena and a baboon. Figure 14 shows the encrypted and decrypted images of Lena
and 5.1.13, polluted by salt and pepper noise, with a noise density of 0.1 to Lena’s image
and 0.3 density to resolution chart image. The proposed image encryption scheme has
shown to be resistant to noise effects, as the recovered images remain recognizable even in
the presence of noise interference.

Entropy 2023, 25, x FOR PEER REVIEW 16 of 20 
 

 

Lena and 5.1.13, polluted by salt and pepper noise, with a noise density of 0.1 to Lena’s 

image and 0.3 density to resolution chart image. The proposed image encryption scheme 

has shown to be resistant to noise effects, as the recovered images remain recognizable 

even in the presence of noise interference. 

  
(a) (b) 

  
(c) (d) 

Figure 14. Attack test with different noise densities of Lena and Resolution Chart image. (a) 
noise density of 0.1 Lena encrypted image, (b) noise density of 0.3 resolution chart encrypted im-

age, (c) noise density of 0.1 Lena decrypted image, (d) noise density of 0.3 resolution chart de-

crypted image. 

4.9. Analysis of Data Loss  

This paper analyzes a specific ratio of the cipher image’s pixel value set to zero to test 

how the encryption method proposed in this research would affect data loss. After that, 

we tried to decrypt the modified cipher image. The results of the data loss attack are 

shown in Figure 15. As can be seen that our system is still able to generate an identifiable 

decrypted image even with a loss of more than 40% of pixels. As a result, this proposed 

algorithm is robust to data loss. 

   
(a) (b) (c) 

Figure 14. Attack test with different noise densities of Lena and Resolution Chart image. (a) noise den-
sity of 0.1 Lena encrypted image, (b) noise density of 0.3 resolution chart encrypted image, (c) noise
density of 0.1 Lena decrypted image, (d) noise density of 0.3 resolution chart decrypted image.

4.9. Analysis of Data Loss

This paper analyzes a specific ratio of the cipher image’s pixel value set to zero to test
how the encryption method proposed in this research would affect data loss. After that, we
tried to decrypt the modified cipher image. The results of the data loss attack are shown in
Figure 15. As can be seen that our system is still able to generate an identifiable decrypted
image even with a loss of more than 40% of pixels. As a result, this proposed algorithm is
robust to data loss.
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The cipher images Figure 15a–c of the baboon (256 × 256) with 1/64, 100/156, and
1/256 data loss, and the decrypted images Figure 15d–f of the baboon are shown under the
cipher image.

4.10. Time Complexity Analysis

The technique of measuring and analyzing the time necessary to carry out encryption
operations on an image using a particular encryption method is known as computational
time analysis in image encryption. Computational time analysis is used to evaluate the
effectiveness and speed of the encryption algorithm as well as to identify any possible
issues or potential areas for development. We calculated the encryption time for some
images to calculate the performance of the proposed approach. On average, the encryption
process takes 0.01568 s to finish. Some of them are listed below in the Tables 8 and 9.

Table 8. Encryption time test.

Test Images Size of Image Ref. [27] Ours

Lena 256 × 256 0.1842 0.1415
Baboon 256 × 256 0.1817 0.1586
Moon 256 × 256 0.1796 0.0156

Airplane 256 × 256 0.1834 0.1570
Clock 256 × 256 0.1856 0.1647

Table 9. Average values of encryption time comparison with existing methods.

Algorithms Ref. [25] Ref. [27] Ref. [39] Ours

Execution time 0.1830 4.0200 1.4800 0.1568

5. Conclusions

In this study, a new image encryption method has been introduced that is both
secure and efficient without compromising on either aspect. We propose a new image
encryption method that combines Intertwining Logistic Mapping (ILM) and Orbital Shift
Pixel Scrambling Method (OSPSM). The proposed encryption method applies the OSPSM
strategy to confuse image pixels. This method draws inspiration from the rotational motion
of planets along their orbits, combined with chaotic sequences to disrupt the pixel positions
of the image. The diffusion operation is carried out on the scrambled 2D matrix, generating
a mask image using ILM. Then, the XOR operation is performed on the generated mask
image and the scrambled 2D image matrix so the final ciphertext image is obtained. This
process effectively destroys any intra-correlations among the pixels of the image, which
helps to enhance the security of the encryption. Furthermore, the key generation method
presented in this work using ILM is not solely dependent on the image itself but also on
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certain secret parameters. This highlights the importance of maintaining the confidentiality
of these secret parameters to ensure the robustness and effectiveness of our proposed
scheme.
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