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Abstract: The union-closed sets conjecture states that, in any nonempty union-closed family F of
subsets of a finite set, there exists an element contained in at least a proportion 1/2 of the sets of
F . Using an information-theoretic method, Gilmer recently showed that there exists an element
contained in at least a proportion 0.01 of the sets of such F . He conjectured that their technique
can be pushed to the constant 3−

√
5

2 which was subsequently confirmed by several researchers
including Sawin. Furthermore, Sawin also showed that Gilmer’s technique can be improved to obtain
a bound better than 3−

√
5

2 but this new bound was not explicitly given by Sawin. This paper further
improves Gilmer’s technique to derive new bounds in the optimization form for the union-closed sets
conjecture. These bounds include Sawin’s improvement as a special case. By providing cardinality
bounds on auxiliary random variables, we make Sawin’s improvement computable and then evaluate
it numerically, which yields a bound approximately 0.38234, slightly better than 3−

√
5

2 ≈ 0.38197.

Keywords: union-closed sets conjecture; information-theoretic method; coupling

1. Introduction

This paper concerns the union-closed sets conjecture which is described in the
information-theoretic language as follows. For that purpose, every set B ⊆ [n] :=
{1, 2, . . . , n} is uniquely described by an n-length sequence xn := (x1, x2, . . . , xn) ∈ Ωn

with Ω := {0, 1} such that xi = 1 if i ∈ B and xi = 0 otherwise. So, a family F of
subsets of [n] uniquely corresponds to a subset A ⊆ Ωn. Denote the (element-wise) OR
operation for two finite Ω-valued sequences as xn ∨ yn := (xi ∨ yi)i∈[n] with xn, yn ∈ Ωn,
where ∨ is the OR operation. The family F is closed under the union operation (i.e.,
F ∪ G ∈ F , ∀F, G ∈ F ) if and only if the corresponding set A ⊆ Ωn is closed under the OR
operation (i.e., xn ∨ yn ∈ A, ∀xn, yn ∈ A).

Let A ⊆ Ωn be closed under the OR operation. Let Xn := (X1, X2, . . . , Xn) be a
random vector uniformly distributed on A and denote PXn = Unif(A) as its distribution
(or probability mass function, PMF). We are interested in estimating

pA := max
i∈[n]

PXi (1)

where PXi is the distribution of Xi and, hence, PXi (1) is the proportion of the sets containing
the element i among all sets in F . Frankl made the following conjecture.

Conjecture 1 (Frankl Union-Closed Sets Conjecture). pA ≥ 1/2 for any OR-closed set A.

This conjecture equivalently states that, for any union-closed family F , there exists
an element contained in at least a proportion 1/2 of the sets of F . Since the union-closed
conjecture was posed by Peter Frankl in 1979, it has attracted a great deal of research interest;
see, e.g., [1–5]. We refer readers to the survey paper [6] for more details. Gilmer [7] made a
breakthrough recently, showing that this conjecture holds with constant 0.01. His method
used a clever idea from information theory in which two independent random vectors
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were constructed. It was conjectured by Gilmer that his method can improve the constant
to 3−

√
5

2 , which is now confirmed by several groups of researchers [8–11]. This constant
is shown to be the best for an approximate version of the union-closed sets problem [9].
Moreover, Sawin [8] further developed Gilmer’s idea by allowing the two random vectors
to depend on each other. In fact, the same idea was previously used by the present author
in several works [12–14]. By this technique, Sawin [8] showed that the constant can be
improved to a value that is strictly larger than 3−

√
5

2 . However, without cardinality bounds
on auxiliary random variables, Sawin’s constant is difficult to compute, hence the accurate
value of this improved constant is not explicitly given in [8].

The present paper further develops Gilmer’s (or Sawin’s) technique to derive new
constants (or bounds) in the optimization form for the union-closed sets conjecture. These
bounds include Sawin’s improvement as a special case. By providing cardinality bounds
on auxiliary random variables, we make Sawin’s improvement computable and then
evaluate it numerically which yields a bound approximately 0.38234, slightly better than
3−
√

5
2 ≈ 0.38197.

2. Main Results

To state our result, we need to introduce some notations. Since we only consider
distributions on finite alphabets, we do not distinguish between the terms “distributions”
and “probability mass functions”. For a pair of distributions (PX , PY), a coupling of (PX , PY)
is a joint distribution PXY whose marginals are, respectively, PX, PY. For a distribution
PX defined on a finite alphabet X , a coupling PXX′ of (PX, PX) is called symmetric if
PXX′(x, y) = PXX′(y, x) for all x, y ∈ X . Denote Cs(PX) as the set of symmetric couplings
of (PX, PX). Denote δx as the Dirac measure with a single atom at x. That is, the PMF of
this measure takes the value 1 at x and takes the value 0 at other points.

For a joint distribution PXY, the (Pearson) correlation coefficient between (X, Y) ∼ PXY
is defined by

ρp(X; Y) :=

{ Cov(X,Y)√
Var(X)Var(Y)

, Var(X)Var(Y) > 0

0, Var(X)Var(Y) = 0
.

The maximal correlation between (X, Y) ∼ PXY is defined by

ρm(X; Y) := sup
f ,g

ρp( f (X); g(Y))

= sup
f ,g

{ Cov( f (X),g(Y))√
Var( f (X))Var(g(Y))

, Var( f (X))Var(g(Y)) > 0

0, Var( f (X))Var(g(Y)) = 0
,

where the supremum is taken over all pairs of real-valued functions ( f , g) such that
Var( f (X)), Var(g(Y)) < ∞. Note that ρm(X; Y) ∈ [0, 1] and, moreover, ρm(X; Y) = 0
if and only if X, Y are independent. Moreover, ρm(X; Y) is equal to the second largest singu-

lar value of the matrix
[

PXY(x,y)√
PX(x)PY(y)

]
(x,y)

; see, e.g., [15]. Clearly, the largest singular value

of the matrix
[

PXY(x,y)√
PX(x)PY(y)

]
(x,y)

is equal to 1 with corresponding eigenvectors (
√

PX(x))x

and (
√

PY(y))y.
Denote for p, q, ρ ∈ [0, 1],

z1 := pq− ρ
√

p(1− p)q(1− q)

z2 := pq + ρ
√

p(1− p)q(1− q)
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and

ϕ(ρ, p, q) := median{max{p, q, p + q− z2}, 1/2, min{p + q, p + q− z1}}, (1)

where median(A) denotes the median value of elements in a multiset A. We regard the
set in (1) as a multiset which means median{a, a, b} = a. Denote h(a) = −a log2 a− (1−
a) log2(1− a) for a ∈ [0, 1] as the binary entropy function. Define for t > 0,

Γ(t) := sup
Pρ

inf
Pp :Eh(p)>0,Ep≤t

Eρ

[
inf

Ppq∈Cs(Pp):ρm(p;q)≤ρ

Ep,qh(ϕ(ρ, p, q))
Eh(p)

]
, (2)

where the supremum over Pρ and the infimum over Pp are both taken over all finitely
supported probability distributions on [0, 1].

Our main results are as follows.

Theorem 1. If Γ(t) > 1 for some t ∈ (0, 1/2), then pA ≥ t for any OR-closed A ⊆ Ωn (i.e., for
any union-closed family F , there exists an element contained in at least a proportion t of the sets
of F ).

The proof of Theorem 1 is given in Section 2 by using a technique based on coupling
and entropy. It is essentially the same as the technique used by Sawin [8]. Prior to Sawin’s
work, such a technique was used by the present author in several works; see [12–14].

Equivalently, Theorem 1 states that pA ≥ tsup for any OR-closed A ⊆ Ωn, where
tsup := sup{t ∈ (0, 1/2) : Γ(t) > 1}. To compute Γ(t) numerically, it is required to upper
bound the cardinality of the support of Pp in the outer infimum in (2) since, otherwise,
infinitely many parameters are needed to optimize. This is left to be done in a future work.
We next provides a computable bound, which is a lower bound of Γ(t), instead Γ(t) itself.

If we choose Pρ = δ0, then Theorem 1 implies Gilmer’s bound in [7] since, for this case,
the couplings constructed in the proof of Theorem 1 (given in the next section) turn out to
be independent, coinciding with Gilmer’s construction. On the other hand, if we choose
Pρ = δ1, then the couplings constructed in our proof are arbitrary. In fact, we can make a
choice of Pρ better than these two special cases. As suggested by Sawin [8], we can choose
Pρ = (1− α)δ0 + αδ1 which in fact leads to an optimization over mixtures of independent
couplings and arbitrary couplings. This final choice yields the following bound.

Substituting ρ = 0 and 1, respectively, into ϕ(ρ, p, q) yields

ϕ(0, p, q) = p + q− pq, (3)

ϕ(1, p, q) = median{max{p, q}, 1/2, p + q}, (4)

where, in the evaluation of ϕ(1, p, q), the following facts were used: (1)

p + q− pq−
√

p(1− p)q(1− q) ≤ max{p, q}

for all p, q ∈ [0, 1]; (2) if p + q ≤ 1, then

p + q− pq +
√

p(1− p)q(1− q) ≥ p + q,

and otherwise,

1/2 < max{p, q} ≤ p + q− pq +
√

p(1− p)q(1− q).

By defining

g(Ppq, α) := (1− α)E(p,q)∼P⊗2
p
[h(p + q− pq)] + αE(p,q)∼Ppq [h(ϕ(1, p, q))]
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and substituting Pρ = (1 − α)δ0 + αδ1 into Theorem 1, one obtains the following sim-
pler bound.

Proposition 1. For t ∈ (0, 1/2),

Γ(t) ≥ Γ̂(t) := sup
α∈[0,1]

inf
symmetric Ppq :Eh(p)>0

g(Ppq, α)

Eh(p)
, (5)

where the infimum is taken over all distributions Ppq of the form (1− β)Qa1,a2 + βQb1,b2 with

0 ≤ a :=
a1 + a2

2
≤ t < b :=

b1 + b2

2
≤ 1 (6)

and β = 0 or β = t−a
b−a > 0 such that Eh(p) > 0. (Note that Eh(p) = 0 if and only if Ppq is a

convex combination of δ(0,0), δ(0,1), δ(1,0), and δ(1,1).) Here,

Qx,y :=
1
2

δ(x,y) +
1
2

δ(y,x) (7)

with δ(x,y) denoting the Dirac measure at (x, y) (whose PMF takes the value 1 at (x, y) and takes
the value 0 at other points).

As a consequence of the two results above, we have the following corollary.

Corollary 1. If Γ̂(t) > 1 for some t ∈ (0, 1/2), then pA ≥ t for any OR-closed A ⊆ Ωn.

The proof of Corollary 1 is given in Section 3.
The lower bound in (5) without the cardinality bound on the support of Ppq was given

by Sawin [8], which was used to show pA > 3−
√

5
2 . However, thanks to the cardinality

bound, we can numerically compute the best bound on pA that can be derived using
Γ̂(t). That is, pA ≥ t̂sup for any OR-closed A ⊆ Ωn, where t̂sup := sup{t ∈ (0, 1/2) :
Γ̂(t) > 1}. Numerical results show that if we set α = 0.035, t = 0.38234, then the optimal
Ppq = (1 − β)Qa,a + βQa,1 with a ≈ 0.3300622 and β ≈ 0.1560676 which leads to the
lower bound Γ̂(t) ≥ 1.00000889. Hence, pA ≥ 0.38234 for any OR-closed A ⊆ Ωn.
This is slightly better than the previous bound 3−

√
5

2 ≈ 0.38197. The choice of (α, t)
in our evaluation is nearly optimal. Our code can be found on the author’s homepage
https://leiyudotscholar.wordpress.com/ (accessed on 1 May 2023.) More decimal places
of Sawin’s bound (or equivalently, t̂sup) were computed by Cambie in a concurrent work
[16], i.e., 0.382345533366702 ≤ t̂sup ≤ 0.382345533366703 which is attained by the choice
α ≈ 0.03560698136437784. This more precise evaluation can be also verified using our code
above.

3. Proof of Theorem 1

Denote H(X) = −∑x PX(x) log PX(x) as the Shannon entropy of a random variable
X ∼ PX . Let A ⊆ Ωn be closed under the OR operation. We assume |A| ≥ 2. This is because
Theorem 1 holds obviously for singletons A, since for this case, pA = 1. Let PXn = Unif(A).
So, H(Xn) > 0 and, by the chain rule, H(Xn) = ∑n

i=1 H(Xi|Xi−1).
If PXnYn ∈ Cs(PXn), then Zn := Xn ∨Yn ∈ A a.s. where (Xn, Yn) ∼ PXnYn . So, we have

H(Zn) ≤ log |A| = H(Xn).

We hence have

sup
PXnYn∈Cs(PXn )

H(Zn)

H(Xn)
≤ 1.

https://leiyudotscholar.wordpress.com/
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If pA ≤ t, then PXi (1) ≤ t, ∀i ∈ [n]. Relaxing PXn = Unif(A) to arbitrary distributions
such that PXi (1) ≤ t, we obtain Γn(t) ≤ 1 where

Γn(t) := inf
PXn :PXi

(1)≤t,∀i
sup

PXnYn∈Cs(PXn )

H(Zn)

H(Xn)
. (8)

In other words, if given t, Γn(t) > 1, then, by contradiction, pA > t.
We next show that Γn(t) ≥ Γ(t) which implies Theorem 1. To this end, we need the

following lemmas.
For two conditional distributions PX|U , PY|V , denote C(PX|U , PY|V) as the set of condi-

tional distributions QXY|UV such that their marginals satisfy QX|UV = PX|U , QY|UV = PY|V .
The conditional (Pearson) correlation coefficient of X and Y given U is defined by

ρp(X; Y|U) =

{ E[cov(X,Y|U)]√
E[var(X|U)]

√
E[var(Y|U)]

, E[var(X|U)]E[var(Y|U)] > 0,

0, E[var(X|U)]E[var(Y|U)] = 0.

The conditional maximal correlation coefficient of X and Y given U is defined by

ρm(X; Y|U) = sup
f ,g

ρp( f (X, U); g(Y, U)|U),

where the supremum is taken over all real-valued functions f (x, u), g(y, u) such that
E[var( f (X, U)|U)], E[var(g(Y, U)|U)] < ∞. It has been shown in [17] that

ρm(X; Y|U) = sup
u:PU(u)>0

ρm(X; Y|U = u),

where ρm(X; Y|U = u) = ρm(X′; Y′) with (X′, Y′) ∼ PXY|U=u.

Lemma 1 (Product Construction of Couplings). Lemma 9 in [12], Corollary 3 in [17], and
Lemma 6 in [18] For any conditional distributions PXi |Xi−1 , PYi |Yi−1 , i ∈ [n] and any

QXiYi |Xi−1Yi−1 ∈ C(PXi |Xi−1 , PYi |Yi−1), ∀i ∈ [n],

it holds that

n

∏
i=1

QXiYi |Xi−1Yi−1 ∈ C
( n

∏
i=1

PXi |Xi−1 ,
n

∏
i=1

PYi |Yi−1

)
. (9)

Moreover, for (Xn, Yn) ∼ ∏n
i=1 QXiYi |Xi−1Yi−1 , it holds that

ρm(Xn; Yn) = max
i∈[n]

ρm(Xi; Yi|Xi−1, Yi−1). (10)

For a conditional distribution PX|U defined on finite alphabets, a conditional coupling
PXX′ |UU′ of (PX|U , PX|U) is called symmetric if PXX′ |UU′(x, y|u, v) = PXX′ |UU′(y, x|v, u) for
all x, y ∈ X , u, v ∈ U . Denote Cs(PX|U) as the set of symmetric conditional couplings of
(PX|U , PX|U). Applying the lemma above to symmetric couplings, we have that if couplings
QXiYi |Xi−1Yi−1 ∈ Cs(PXi |Xi−1) satisfy ρm(Xi; Yi|Xi−1, Yi−1) ≤ ρ for some ρ > 0, then

n

∏
i=1

QXiYi |Xi−1Yi−1 ∈ Cs

( n

∏
i=1

PXi |Xi−1

)
,

ρm(Xn; Yn) ≤ ρ,

with (Xn, Yn) ∼ ∏n
i=1 QXiYi |Xi−1Yi−1 . We hence have that, for any ρ ∈ [0, 1],
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sup
PXnYn∈Cs(PXn ):

ρm(Xn ;Yn)≤ρ

H(Zn)

≥ sup
PXn−1Yn−1∈Cs(PXn−1 ):

ρm(Xn−1;Yn−1)≤ρ

(
H(Zn−1) + sup

PXnYn |Xn−1Yn−1∈Cs(PXn |Xn−1 ):

ρm(Xn ;Yn |Xn−1,Yn−1)≤ρ

H(Zn|Zn−1)
)

≥ sup
PXn−1Yn−1∈Cs(PXn−1 ):

ρm(Xn−1;Yn−1)≤ρ

H(Zn−1)

+ inf
PXn−1Yn−1∈Cs(PXn−1 ):

ρm(Xn−1;Yn−1)≤ρ

sup
PXnYn |Xn−1Yn−1∈Cs(PXn |Xn−1 ):

ρm(Xn ;Yn |Xn−1,Yn−1)≤ρ

H(Zn|Zn−1)

≥ · · · · · ·

≥
n

∑
i=1

inf
PXi−1Yi−1∈Cs(PXi−1 ):

ρm(Xi−1;Yi−1)≤ρ

sup
PXiYi |Xi−1Yi−1∈Cs(PXi |Xi−1 ):

ρm(Xi ;Yi |Xi−1,Yi−1)≤ρ

H(Zi|Zi−1), (11)

where the first inequality above follows by Lemma 1 and the chain rule for entropies. In fact,
in the derivation above, the i-th distribution PXiYi |Xi−1Yi−1 is chosen as a greedy coupling in
the sense that it only maximizes the i-th objective function H(Zi|Zi−1), regardless of other
H(Zj|Zj−1) with j > i (although it indeed affects their values).

By the fact that conditioning reduces entropy, it holds that

H(Zi|Zi−1) ≥ H(Zi|Xi−1, Yi−1).

Denote

gi(PXi−1 , ρ) := inf
PXi−1Yi−1∈Cs(PXi−1 ):

ρm(Xi−1;Yi−1)≤ρ

sup
PXiYi |Xi−1Yi−1∈Cs(PXi |Xi−1 ):

ρm(Xi ;Yi |Xi−1,Yi−1)≤ρ

H(Zi|Xi−1, Yi−1). (12)

Then, the expression at the right-hand side of (11) is further lower bounded by ∑n
i=1 gi(PXi−1 , ρ).

Combing this with (8) and (11), and by noting that ρ ∈ [0, 1] is arbitrary, we obtain that

Γn(t) ≥ inf
PXn :PXi

(1)≤t,∀i

supρ∈[0,1] ∑n
i=1 gi(PXi−1 , ρ)

∑n
i=1 H(Xi|Xi−1)

= inf
PXn :PXi

(1)≤t,∀i

supPρ
EPρ ∑n

i=1 gi(PXi−1 , ρ)

∑n
i=1 H(Xi|Xi−1)

≥ sup
Pρ

inf
PXn :PXi

(1)≤t,∀i

∑n
i=1 EPρ gi(PXi−1 , ρ)

∑n
i=1 H(Xi|Xi−1)

≥ sup
Pρ

inf
PXn :PXi

(1)≤t,∀i
min

i∈[n]:H(Xi |Xi−1)>0

EPρ gi(PXi−1 , ρ)

H(Xi|Xi−1)
(13)

≥ sup
Pρ

inf
P

Xj :H(Xj |X j−1)>0,PXj
(1)≤t

EPρ gj(PX j−1 , ρ)

H(Xj|X j−1)
,

where

• (13) follows since a+b
c+d ≥ min{ a

c , b
d} for a, b ≥ 0, c, d > 0, and H(Xi|Xi−1) = 0 implies

Xi is a deterministic function of Xi−1 and, hence, gi(PXi−1 , ρ) = 0;
• The index j in the last line is the optimal i attaining the minimum in (13).
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Denote X = Xj, Y = Yj, U = X j−1, V = Y j−1, and Z = X ∨Y. Then,

Γn(t) ≥ sup
Pρ

inf
PUX :H(X|U)>0,PX(1)≤t

EPρ

 inf
PUV∈Cs(PU):
ρm(U;V)≤ρ

sup
PXY|UV∈Cs(PX|U):
ρm(X;Y|U,V)≤ρ

H(Z|U, V)

H(X|U)

. (14)

We next further simplify the lower bound in (14). Denote

p = PX|U(1|U), q = PY|V(1|V), r = PXY|UV(1, 1|U, V). (15)

So,

PXY|UV(·|U, V) =

[
1 + r− p− q q− r

p− r r

]
with

max{0, p + q− 1} ≤ r ≤ min{p, q}.

Note that

ρm(X; Y|U, V) = sup
u,v:PUV(u,v)>0

ρm(Xu; Yv)

= sup
u,v:PUV(u,v)>0

∣∣ρp(Xu; Yv)
∣∣ (16)

= sup
u,v:PUV(u,v)>0

|r− pq|√
p(1− p)q(1− q)

,

where (Xu, Yv) ∼ PXY|U=u,V=v, ρp denotes the Pearson correlation coefficient and (16)
follows since the maximal correlation coefficient between two binary random variables
is equal to the absolute value of the Pearson correlation coefficient between them; see,
e.g., [19]. So, ρm(X; Y|U, V) ≤ ρ is equivalent to |r−pq|√

p(1−p)q(1−q)
≤ ρ a.s. and also equivalent

to z1 ≤ r ≤ z2 a.s.
The inner supremum in (14) can be rewritten as

sup
PXY|UV∈Cs(PX|U):ρm(X;Y|U,V)≤ρ

H(Z|U, V)

= Ep,q sup
max{0,p+q−1,z1}≤r≤min{p,q,z2}

h(p + q− r).

By the fact that h is increasing on [0, 1/2] and decreasing on [1/2, 1], it holds that the
optimal r attaining the supremum in the last line above, denoted by r∗, is the median of
max{0, p + q− 1, z1}, p + q− 1/2, and min{p, q, z2}, which implies

p + q− r∗ = ϕ(ρ, p, q).

Recall the definition of ϕ in (1). So, the inner supremum in (14) is equal to Ep,qh(ϕ(ρ,p,q))
Eh(p) .

We make the following observations. Firstly,

H(X|U) = Eh(p),

PX(1) = Ep.

Secondly, by the definition of maximal correlation, ρm(p; q) ≤ ρm(U; V) holds (which is
known as the data processing inequality) since p, q are, respectively, functions of U, V;
see (15). Lastly, observe that PUV is symmetric and p, q are obtained from U, V via the same
function PX|U(1|·) (since PX|U = PY|V holds by the symmetry of PXY|UV). Hence, Ppq is
symmetric as well. Substituting all of these into (14) yields Γn(t) ≥ Γ(t). �
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4. Proof of Proposition 1

By choosing Pρ = (1− α)δ0 + αδ1 in (2), we obtain

Γ(t) ≥ sup
α∈[0,1]

inf
symmetric Ppq :Eh(p)>0,Ep≤t

g(Ppq, α)

Eh(p)
.

Note that Ppq 7→ g(Ppq, α) is concave, since, by Lemma 5 in [10] Pp 7→ E(p,q)∼P⊗2
p

h(p + q−
pq) is concave, and Ppq 7→ Pp is linear.

Let B be a finite subset of [0, 1]. Let PB be the set of symmetric distributions
Ppq concentrated on B2 such that Ep ≤ t. By the Krein–Milman theorem, PB is equal
to the closed convex hull of its extreme points. These extreme points are of the form
(1− β)Qa1,a2 + βQb1,b2 with 0 ≤ a ≤ t < b ≤ 1 and β = 0 or t−a

b−a ; recall the definitions

a := a1+a2
2 , b := b1+b2

2 , and Qx,y := 1
2 δ(x,y) +

1
2 δ(y,x) in (6) and (7). By Carathéodory’s

theorem, it is easy to see that the convex hull of these extreme points is closed (in the weak
topology or, equivalently, in the relative topology on the probability simplex). So, every
Ppq supported on a finite set B2 ⊆ [0, 1]2 such that Ep ≤ t is a convex combination of the
extreme points above, i.e., Ppq = ∑k

i=1 γiQi where Qi, i ∈ [k] are extreme points, and γi > 0
and ∑k

i=1 γi = 1. For this distribution,

g(Ppq, α)

Eh(p)
=

g(∑k
i=1 γiQi, α)

∑k
i=1 γiEQi h(p)

≥ ∑k
i=1 γig(Qi, α)

∑k
i=1 γiEQi h(p)

≥ min
i:EQi

h(p)>0

g(Qi, α)

EQi h(p)

where, in the last line, the constraint EQi h(p) > 0 is posed since EQi h(p) = 0 implies
Qi = δ(0,0) (note that t < 1/2) and, hence, g(Qi, α) = 0.

Therefore,

Γ(t) ≥ sup
α∈[0,1]

inf
Ppq :Eh(p)>0

g(Ppq, α)

Eh(p)
, (17)

where the infimum is taken over distributions Ppq of the form (1− β)Qa1,a2 + βQb1,b2 with
0 ≤ a ≤ t < b ≤ 1 and β = 0 or β = t−a

b−a > 0 such that Eh(p) > 0. (Recall the definition of
a, b in (6)). �

5. Discussion

The breakthrough made by Gilmer [7] shows the power of information-theoretic
techniques in tackling problems in related fields. In fact, the union-closed sets conjecture has
a natural interpretation in the information-theoretic (or coding-theoretic) sense. Consider
the memoryless OR multi-access channel (xn, yn) ∈ Ω2n 7→ xn ∨ yn ∈ Ωn. We would
like to find a nonempty code A ⊆ Ωn to generate two independent inputs Xn, Yn with
each following Unif(A) such that the input constraint E[Xi] ≤ t, ∀i ∈ [n] is satisfied and
the output Xn ∨ Yn is still in A a.s. The union-closed sets conjecture states that such a
code exists if and only if t ≥ 1/2. Based on this information-theoretic interpretation, it is
reasonable to see that the information-theoretic techniques work for this conjecture. It is
well-known that information-theoretic techniques usually work very well for problems
with “approximate” constraints, e.g., the channel coding problem with the asymptotically
vanishing error probability constraint (or the approximate version of the union-closed sets
problem introduced in [9]). It is still unclear whether information-theoretic techniques are
sufficient to prove sharp bounds for problems with “exact” constraints, e.g., the zero-error
coding problem (or the original version of the union-closed sets conjecture).
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Furthermore, as an intermediate result, it has been shown that Γn(t) > 1 implies
pA > t for any OR-closed A ⊆ Ωn. Here Γn(t) is given in (8), expressed in the multi-letter
form (i.e., the dimension-dependent form). By the super-block coding argument, it is
verified that, given t > 0, limn→∞ Γn(t) exists. It is interesting to investigate this limit and
prove a single-letter (dimension-independent) expression for it.

For simplicity, in this paper, we only consider the maximal correlation coefficient as the
constraint function. In fact, the maximal correlation coefficient used here can be replaced by
other functionals. The key property of the maximal correlation coefficient we used in this
paper is the “tensorization” property, i.e., (10) (in fact, only “≤” part of (10) was used in our
proof). In the literature, there is a class of measures of correlation satisfying this property,
e.g., the hypercontractivity constant, strong data processing inequality constant, or, more
generally, Φ-ribbons, see [20–22]. (Although the tensorization property in the literature is
only defined and proven for independent random variables, this property can be extended
to the coupling constructed in (9)). Following the same proof steps given in this paper, one
can obtain various variants of Theorem 1 with the maximal correlation coefficient replaced
by other quantities, as long as these quantities satisfy the tensorization property. Another
potential direction is to replace the Shannon entropy with a class of more general quantities,
Rényi entropies. However, unfortunately Rényi entropies do not satisfy the chain rule
(unlike the Shannon entropy), which leads to a serious difficulty in single-letterizing the
corresponding multi-letter bound such as Γn(t) in (8) (i.e., in making the multi-letter bound
dimension-independent).
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