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Abstract: This work applies concepts from algorithmic probability to Boolean and quantum combi-
natorial logic circuits. The relations among the statistical, algorithmic, computational, and circuit
complexities of states are reviewed. Thereafter, the probability of states in the circuit model of compu-
tation is defined. Classical and quantum gate sets are compared to select some characteristic sets. The
reachability and expressibility in a space-time-bounded setting for these gate sets are enumerated and
visualized. These results are studied in terms of computational resources, universality, and quantum
behavior. The article suggests how applications like geometric quantum machine learning, novel
quantum algorithm synthesis, and quantum artificial general intelligence can benefit by studying
circuit probabilities.
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1. Introduction

Quantum computing has entered a technological readiness level where quantum
processor platforms, albeit limited, are becoming accessible for experimentation. This
rapid progress has encouraged researchers to study various real-world industrial and
scientific applications [1] using quantum algorithms. The logical formulations of these
algorithms are then processed by a quantum computing stack [2] of system abstractions
into low-level quantum circuits for a gate-based quantum computing device. The so-called
NISQ (noisy intermediate-scale quantum) era [3,4] characterizes the limitations of current
quantum processors in coherence time, gate errors, and qubit connectivity. This has led
to explorations from the other end [5], in devising design strategies and finding use cases
for these limited computing power to achieve a computational advantage. To better utilize
these limited devices, it is imperative to understand the relations between quantum logic
and physical resources. This motivates the research presented in this article.

Quantum computation lies at the intersection of quantum physics and computer
science. It has allowed a rich exchange of concepts between these two fields. Specific to the
interests of this research, (i) physical laws provide fundamental bounds to computation,
while (ii) computation provides an information-theoretic explanation of many physical
phenomena. The former was first explored in the context of thermodynamic limits [6],
leading to the development of reversible computation [7,8], and eventually to define the
limits of quantum computation [9,10]. Efforts of the latter come under the purview of
digital physics. Some seminal contributions include cellular automaton [11], constructor
theory [12], tensor networks [13], informational axioms [14–16] of quantum mechanics,

Entropy 2023, 25, 763. https://doi.org/10.3390/e25050763 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25050763
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-6210-7725
https://orcid.org/0000-0002-3540-1061
https://orcid.org/0000-0003-4724-4080
https://orcid.org/0000-0002-3026-6892
https://doi.org/10.3390/e25050763
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25050763?type=check_update&version=2


Entropy 2023, 25, 763 2 of 20

and, a principle of stationary action for computing [17,18], among others. To focus on both
directions of this synergy, we present an empirical demonstration of the consequences
of existing theoretical ideas for quantum computing. Specifically, we transport concepts
from algorithmic information theory [19] (a sub-field of theoretical computer science and
artificial intelligence) to gate-based quantum computation [20].

In this work, we consider an enumeration of the space of quantum circuits (as quan-
tum assembly, QASM). This is a very small sample of the uncountable infinite quantum
processes that can be defined on the Hilbert space of a given dimension. The subset of
processes is based on (i) the native gate set (of a quantum processor), (ii) the maximum
circuit width (total number of qubits), and (iii) the bounds on the circuit depth (based on
the decoherence time). We investigate how these circuits map a space of classical inputs
to classical outputs (via Z-axis measurements). A crucial assumption of our formalism is
that QASM/circuits are encoded using a discrete universal gate set. The space of quantum
programs constructed in such a matter is enumerable and is, thus, formally countably
infinite. However, in most practical implementations (with finite and circuit depth), the
set of meaningful computations is finite. Even for universal gate sets with arbitrary rota-
tion angles (e.g., {Rx(θx), Ry(θy), CX}), a finite number of control signal configurations in
practical quantum computer implementation effectively discretizes the set of native gates.
While any arbitrary unitary can be decomposed to arbitrary precision using a universal gate
set, given resource bounds (e.g., in lines of QASM codes before the system decoheres) the
space of programs cannot map to any quantum process. Formally, while uniform samples
of Haar random unitary matrices yield a uniformly sampled random state vector [21], the
state distribution based on uniform samples of unitary matrices from a discrete gate set is guided by
concepts from algorithmic information theory. This limits physical processes that can be effectively
executed on gate-based quantum computers.

Since the first quantum algorithms were formulated in the 1990s, the discovery of new
algorithms [22] has progressed steadily. However, quantum algorithm design involves
quantum mechanical phenomena (e.g., superposition, entanglement), which is counter-
intuitive to human experience. Thus, reasoning in terms of mathematical formalism has
been a barrier to entry for developing more advanced quantum logic and is, thus, a bottle-
neck for the broader adoption of quantum accelerated computing. There have been some
proposals to remedy these issues via genetic programming [23] and circuit synthesis [24].
In this work, we carry forward this research direction via the principled approach [25]
of algorithmic information theory. A quantum program synthesis framework would re-
quire understanding the space of quantum programs and their associated resources, to
implement the program search/induction. As discussed in this article, the landscape of
resource-bounded quantum circuits and their corresponding classical information process-
ing capability lay the groundwork for this.

The rest of the article is organized as follows. In Section 2, we describe how states
are represented as symbols and transformations over these symbols, and how this affects
their statistical and algorithmic complexities. Section 3 discusses the subtleties of forming
Boolean and quantum circuits from gate sets. In Section 4, we present our implementation
of the enumeration of state complexities using various gate sets. The results are visualized
and analyzed. Section 5 concludes the article with a discussion of various applications of
this research.

2. States and Complexities

The states of a system define its observable behavior. These can be encoded in var-
ious ways. A common way to encode them is by assigning a symbol for each unique
distinguishable state. Subsequent spatio-temporal observations (of the same system, or a
larger system composed of systems of this size) are denoted by a string of this alphabet.
A system with a single state is not very interesting, nothing really happens there. A very
simple case of a slightly more interesting system is a coin, with two states—heads and tails.
Coins can be fair or biased, can be tossed multiple times, or multiple coins can be tossed
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together/consecutively/conditionally. The outcome of a series of (or in parallel) coin tosses
can be represented by a Boolean string. Given an ensemble of all Boolean strings of length
n, represented as {0, 1}⊗n, each string might be equally probable with 1/2n. In a physical
system, if each output is equally likely, the uniform distribution models that system, for
example, a communication line might need to transfer each encoding with equal probability.
According to this, a fair coin tossed 8 times, would have the same probability and element
of surprise for 1111111011 as that of a specific permutation of 51 s and 50 s, for example,
0101100101.

If every state is equally likely and unrelated to each other, it is a very boring gray world.
Thankfully it is not so! We perceive structures around us. Why that is this way is hard to
answer—but a plausible explanation is that our human biological/technological sensing
tools are limited. So instead of parsing the underlying randomness in its full spectrum, we
perceive an emergent statistical structure and symmetry. These structures allow us two
additional ways of enhancing our representation of states. The complexity of states can be
studied from these two perspectives—statistical and algorithmic.

2.1. The Statistical Emergence of Entropy

The first enhancement is based on relaxing the criteria of all states being ‘equally likely’.
We find that we have apparent favoritism towards 0101100101 being a more acceptable
result of a series of fair coin tosses. This is based on our ignorance of the micro-states of the
permutations. We focus on the pattern that the total possible states with 91 s are 10, while
those with 51 s and 50 s are 10× 9× 8× 7, similar to entropy in statistical thermodynamics.
States with higher entropy are more in number and this flow towards an expected higher
entropy state in the universe is what gives us our perception of time. In information
theory, given a discrete random variable X, which takes values in the alphabet X and is
distributed according to p : X → [0, 1], the Shannon entropy [26] of the variable sampled
from this ensemble is given by H(X) = −∑x∈X p(x) log p(x). This likeness denotes the
average level of statistical information, or the surprise/uncertainty inherent to the vari-
able’s possible outcomes, and is the maximum for a uniform distribution. The way to
optimally encode a biased set of percepts as information is the basis of code words like
Huffman coding. The encoding is designed to tune to the bit lengths of concepts by making
the most used concepts more economical. To balance it, less used concepts become more
costly than their native length. For example, the probabilities p(00) = 0.4, p(01) = 0.05,
p(10) = 0.2, p(11) = 0.35 is best encoded as 00 :→ 0, 01 :→ 111, 10 :→ 110, 11 :→ 10.
Note that, this code word is better than the original only as long as the biased probability
distribution is maintained (which in turn might be an artifact of sensing emergent symme-
tries of macro-states). If instead, all strings are equally probable, these coding schemes are
more costly.

We do something similar with semantics in languages, for example, instead of having
new words for every single huge animal with a large truck with a specific set of x, y, z, . . .
features that we fail to distinguish, we call all of them ‘an elephant’, while for those we
can distinguish, for example, your pet cat, we give them special names. Your friend might
not be able to distinguish your cat from another, or to the eyes of a trained mahout, every
elephant is uniquely identifiable—leading to the subjectivity of language. Similarly, using
the scientific names of species or the full genetic code of an individual would be tedious for
everyday use, however, is useful for biological classification or medical treatment. Thus,
much the same way as Huffman coding, words in languages arise due to different ways
of ignoring details and focusing on specific semantics. The compression provided by a
language forms the basis of comprehension, much the same way macro states (microstates
preserving certain symmetries) lead to emergent physical laws.

2.2. The Algorithmic Emergence of Universality

The second enhancement is based on relaxing the criteria of all states being ‘unrelated’.
While a unique encoding for all percepts under consideration is good, we can compress
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and comprehend better if we can find the relation among these symbols. For example, we
can relate bit strings by their inverses, or arrange integers consecutively on a number line.
Assigning symbols to relations is merely an attempt to minimize the number of code words
itself by ignoring symbols for states that can now be described by some specific syntactic
composite of symbols of other states and relations. To map to every percept, the total
length of the encodings using these codes is not necessarily less than the original binary
or Huffman coding. Thus, again, it is subjective when these relations will be beneficial
instead of adding extra complexity to the encoding. The goal is not about being the most
resource-efficient way for the full spectrum of percepts, but rather using a smaller set of
symbols for a biased distribution or subset of percepts. This trade-off between generality
and efficiency is the reason esoteric languages like MetaGolfScript [27] are banned from
code golf contests, or the RISC and CISC architectures exist in tandem.

However, surprisingly, we find that some relations are so ubiquitous that, they can
map to all percepts (often even from an infinite set) with just the encoding of the relation
and that of a starting percept. For example, the successor function (i.e., add 1) is represented
by 1 and the number 0 is represented by 0. With this, any natural number can be represented
by nesting the successor function, for example, 1110 is 3. While the successor function
is universal over the set of natural numbers given 0, the multiplication operation with
the set of all prime numbers can also span the natural numbers. Such a set of inputs and
transformations are universal for the target output set. Some of these symbols (of states
and relations) are so powerful that they can potentially represent an infinite set of states
with a finite set of symbols and some compositional rules, for example, any d-base numeral
system with d-symbols and a positional notation can represent any integer.

From an engineering point of view, having such a universal set of states and transfor-
mations helps in taming an infinitude of possibility with a finite number of these building
blocks, for example, a keyboard is made of alphabets instead of a key for every word in
the dictionary. There are two subtleties to this enhancement. (i) Firstly, since we now have
a finite number of block types to construct an infinite number of states, the length of the
description using these blocks can potentially be infinite. If we put a bound on the number
of blocks we can use, by combinatorial arguments, it bounds the number of states we can
describe. States that require longer descriptions are no longer expressible. (ii) Secondly,
while the original states represented an observable behavior, these new pseudo-states and
transformations that we introduced to reduce our symbol set need not necessarily have
intuitive standalone meaning. For some, it may, for example, the bit-flip operator can
correspond to the action of toggling a switch, however, for others, it may not, for example,
the alphabets do not have semantic meaning by themselves.

We are now equipped with a symbol set consisting of (i) some set of observed states,
(ii) a rich (universal) set of transformations to describe other observed percepts, and
optionally, (iii) ubiquitous intermediate pseudo-states in the transformations. As a digress,
it is crucial to note that transformations can be represented as states in a higher dimension
via channel-state duality [28], representing dynamics as statics. Now, can we choose an
optimal encoding scheme subjective to the probabilities of the various symbols being
used to describe the physical phenomena (from the set of all macroscopic percepts)? The
problem is that it is not known beforehand the ways in which the blocks will be used,
i.e., the distribution of the ensemble. Imagine operating a Lego factory and deciding how
many of each block to manufacture for customers’ needs. Most often, due to lack of any
other information, encoding of the base set is chosen as the standard binary encoding,
(i.e., with the assumption that all blocks and initial percepts will be required with uniform
probability), for example, the ASCII code. This is called the opcode encoding of the
instruction set architecture in computers. In this scenario (of universal computation), it
can be useful to study things from the other end, i.e., the resources required to represent a
specific percept. Resources are typically of two types: (i) the length of the description of the
percept using the language, and (ii) the computational cost in terms of cycles (time) and
memory (space) for decoding the description.
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The computational cost is studied in the field of computational complexity. Problems
(and thereby, their solutions as a sequence of instructions based on symbols), are classified
into different classes [29] based on the scaling behavior of time and space with the size of
the problem. Some common ones are polynomial time (P), non-deterministic polynomial
time (NP), and bounded-error quantum polynomial time (BQP).

The length of description quantifies the Kolmogorov complexity [30] or algorithmic
entropy of the percept. It is defined as KU(X) = minp{`(p) : U(p) = x}, where ` denotes
the length of the (prefix-free) program p on the encoding used by the universal Turing
machine U that outputs x. Though it depends on the choice of the building blocks and
their encodings, the dependence is only on an additive constant term (called the invariance
theorem) which is the length of a cross-compiler to another language/automata. Thus, it
is useful to use Kolmogorov complexity to quantify the individual complexity of a string,
irrespective of an ensemble. However, finding the exact value is uncomputable. There
are many ways to approach it from the upper side (lower semi-computable), for example,
via compression algorithms, minimum description length, and the block decomposition
method.

2.3. Relations to Circuit Complexity

So far we reviewed three different notions of the complexity of states:

1. Statistical complexity: Shannon entropy on an ensemble of states (given its probability
distribution)

2. Computational complexity: Space-time scaling behavior of a program to generate the
state (given a language)

3. Algorithmic complexity: Length of the program to generate the state (given a lan-
guage)

In this research, we are instead interested in the circuit complexity of a state, as
this is the canonical model for quantum computation. Circuit complexity is related to
algorithmic complexity [31], which in turn is related to statistical [32] and computational
complexities [33]. Computational complexities typically deal with asymptotic scaling
behavior and provide lower bounds. Though families of circuits have specific complexity
class hierarchy (e.g., ACi, TCi, NCi) it is not of much interest for this research. We will
focus on circuits with bounded size (in both space and time). Similarly, the expected
Kolmogorov complexity has been shown to correspond to the Shannon entropy [32], though
this relation is not of immediate importance to this work. [31] Kolmogorov complexity
can be shown to be very similar to circuit complexity under certain considerations [31].
Another similar relation is that truth tables of functions with small circuit complexity have
small Kolmogorov complexity. Counting arguments relating to circuit, algorithmic and
statistical complexities has been suggested in [17,18] in terms of Lagrangian action. Our
research is another step in this rather niche field of understanding observed states via
different perspectives.

It is important to note that most research on algorithmic information theory has been in
the context of universal automata, for example, Turing machines, lambda calculus, cellular
automata, etc. The size of the description depends on how expressive the symbols are for the
transformations. What we described so far, i.e., transformations as a relation between two
states, is typically the case in the language of circuits. Programs written in a more abstract
logical framework allow more powerful primitives, like universal and existential quantifiers
in first-order or higher-order logic. Typically, a universal computation model demands a
recursively enumerable language. In the Chomsky hierarchy, Turing machines are more
powerful than linear-bounded automata, which are in turn more powerful than push-down
automata and in turn, finite-state machines (FSM). See [34] for a comparison of these for
both classical and quantum computing models. However, for less powerful automata
and language models, it is possible to derive corresponding notions [35] of algorithmic
complexity. This is important as programs written in Turing-complete languages eventually
are translated via the layers of the computing stack and are executed by logic circuits.
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These logic circuits are however a combination of sequential (allowing memory cells) and
combinatorial logic and can be used to simulate an FSM. Purely combinatorial logic (not
to be confused with combinatory logic, which is universal) is of even lower power than
FSM. The former is loopless and stateless and thereby is a direct representation of the
output state based on the input. It is important to note that, program execution is typically
clocked in both classical and quantum processors to prevent race conditions, even if the
circuits are purely composed of combinatorial logic elements. Thus, resources of time
and space can be defined in this setting even without tracking and accessing intermediate
states. By borrowing notions from algorithmic information theory (as defined on functional
programs), in this work, we study the effect of circuit complexity of Boolean/quantum
combinatorial logic on state complexity.

3. Landscape of Circuits

With this background of the measures of complexity, let us now first explore the land-
scape of Boolean circuits. The quantum circuit model is inspired by and is a generalization
of the Boolean circuit model, so, it would be natural to start with a classical model and
generalize it to the corresponding quantum formulation.

3.1. Circuit Probability of States

Algorithmic information is typically studied for classical functions (e.g., for λ-calculus)
than for combinatorial Boolean logic circuits. We intend to study the latter. Let us consider
the space of n-bit strings. Given a set of gates that form a Boolean circuit, we find that all
outputs are not equally likely. This is because, while each {circuit, input} pair has only one
output, there are many ways of generating the same outputs from multiple circuits. In
fact, we can make our circuits arbitrarily big by dummy operations like identity or two
consecutive NOT-gates.

Since there are many programs, to compare two strings, instead of finding the shortest
circuit to output the string, we are interested in the probability of each circuit being
generated. This is similar to the notion of the algorithmic probability [36] of the string and
is defined as M(X) = ∑p:U(p)=x∗ 2−`(p) when the prefix-free programs p on the universal
automata U are encoded in binary. The largest contribution to this term comes from the
shortest program (i.e., the Kolmogorov complexity). This connection between complexity
and probability can be expressed as a string that has a short program that has many alternate
ways of generating it and is, thus, more probable to become generated by a universal
automaton programmed randomly. Note that, assigning a uniform random distribution
of programs for generating the algorithm probability, or the universal distribution over
the entire set of strings, is not fully justified. In Section 4.5 of [37], one of the authors
proposed a more physically motivated ‘nested algorithmic probabilities’ that converge to
constructors. In this work, we will start with a uniform distribution but will later generalize
the implementation to allow any prior distribution. To distinguish the usual notion of
algorithmic probability of a string on universal automata MU(X) from our case of the
probability of an output string based on the distribution of equivalent circuits with varied
space-time complexities, we denote our formulation of algorithmic probability as Mcirc(X).

In the original setting, MU(X) is uncomputable, as it requires running each pos-
sible program, of which there exist programs that do not halt. However, it is lower
semi-computable and can be approximated given bounds on run-time. One proposal to
approximate is based on [38] running every Turing machine in a particular enumeration,
and directly using the output distribution of halting Turing machines up to the bounded
run-time. In the case of Boolean/quantum circuits, the run-time bounds are predetermined,
and there are no halting problems. Thus, Mcirc(s) for a state s can be approximated by the
ratio of the cardinality of the sets that generate the target state from the initial state s0 with
the total number of circuits, as
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Mcirc(s) ≈
|C ∈ {gateset, maxspace, maxtime}, s← C(s0)|

|C ∈ {gateset, maxspace, maxtime}| . (1)

This can be used to estimate the quantum circuit complexity using the coding the-
orem by extending the relation [39] between probability and complexity to circuits as,
Kcirc(s) = − log Mcirc(s).

3.2. Boolean Gate Sets

In the Boolean circuit form of algorithmic probability, we will consider strings of
n-bits, and the probabilities of each bit string getting generated from all possible Boolean
circuits on all possible inputs. The main restriction (i.e., the output not being also uniformly
random) comes from the fact that we do not have primitives (1-time step gates) for all
possible Boolean functions. We typically use a universal gate set that can compile any other
Boolean functions down to a larger number of gates from that set. Thus, in our operational
implementation, we need to choose a gate set for the empirical enumeration of the circuits.

Given v input variables with a symbol set of size s, there are sv possible combinations
of these inputs. If there is a single output variable from the symbol set of size d, the total
number of possible functions [40] is dsv

.

• For 1-input Boolean algebra, i.e., when v = 1, s = 2, d = 2, the total number of

functions are f = 221
= 4. These functions are the {0, 1, A, A}.

• For 2-input Boolean algebra, i.e., when v = 2, s = 2, d = 2, the total number of
functions are f = 222

= 16. These are denoted by {0, 1, A, B, A, B, A • B, A • B, A +
B, A + B, A + B, A + B, A • B, A • B, A⊕ B, A⊕ B}.
A functionally complete set of logical connectives or Boolean operators can be used to

express all possible truth tables by combining members of the set into a Boolean expression.
These sets can also express any Boolean SAT or SAT-3 formula. Some examples of such
universal [41] sets are {NAND}, {NOR}, {NOT, AND}, {NOT, OR}. These gate sets are related to each
other, using the following equivalences:

• NOT(A) = NAND(A,A) = NOR(A,A),
• OR(A,B) = NAND(NAND(A,A),NAND(B,B)) = NOR(NOR(A,B),NOR(A,B))

= NOT(AND(NOT(A),NOT(B))),
• AND(A,B) = NAND(NAND(A,B),NAND(A,B)) = NOR(NOR(A,A),NOR(B,B))

= NOT(OR(NOT(A),NOT(B))).

3.3. Quantum Gate Sets

The classical formulation that maps the landscape of Boolean functions can now be
generalized to include quantum gates and states. There is a 3-input single gate in quantum
logic that is universal for classical computing, the CCX gate (also called the Toffoli gate). It
can simulate the NAND gate via CCX(A,B,1) = (A,B,NAND(A,B)). Classical computations
are in general irreversible processes, thus, the inputs cannot be recovered from the outputs.
Quantum logic is based on unitary evolution and thus, is reversible. Additionally, quantum
computations allow quantum superposition and entanglement, which are not implied in
reversible computation. The CCX gate can simulate the entire set of reversible computations
by additionally simulating a Fanout gate (or Copy gate) as CCX(A,1,0) = (A,1,A). Thus,
both {NAND, Fanout} and {CCX} form universal gate sets for reversible computation. The
CSWAP gate (also called the Fredkin gate) is another universal gate for reversible logic.

The generalization of reversible to quantum logic needs only one extra gate, the H
gate (Hadamard). In principle, the real gate set composed of {CCX, H} is computationally
universal [42]. However, it needs ancilla qubits to encode the real normalization factors
and complex algebra to decompose [43] to arbitrary quantum unitary gates for a strong
sense of universality. Moreover, it is important that the effect of the NOT gate (or, the X gate
in quantum) cannot be simulated without assuming the availability of both |0〉 and |1〉
states. Since our enumeration of quantum programs will start will the qubits initialized to
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the all-zero state, we need to augment the gate set to {X, H, CCX} to reach all binary strings
as output.

The principle of algorithmic probability should also hold in the quantum setting, i.e., a
uniform distribution of all possible functions and all possible input states does not imply a
uniform distribution of all possible output states on the Hilbert space. Nielsen’s geometric
quantum computing (GQC) approach [44] shows that finding optimal quantum circuits is
essentially equivalent to finding the shortest path between two points in a certain curved
Riemannian geometry. However, it is not possible to empirically visualize this, as we need
to consider all possible input states and all possible unitary maps. Studying the landscape
of program synthesis requires discretizing this space for the native gate set of the target
quantum processor (or the quantum compiler). However, the number of possible functions
or processes in a quantum environment (even for a single qubit) is uncountably infinite.
Thus, choosing a universal gate set gets more pronounced in the setting of quantum control.

In a way this is easy. It has been shown that if one can apply some Hamiltonian
repeatedly to a few variables at a time one can in general affect any desired unitary time
evolution on an arbitrarily large number of variables. As a result, almost any quantum
logic gate with two or more inputs is computationally universal [45] in a way that copies of
the gate can be wired together to effect any desired logic circuit and to perform any desired
unitary transformation on a set of quantum variables. We call this richer counterpart to its
classical cousin [11], the ubiquity of quantum universality (UQU).

How many types of quantum gates in the gate set do we need to represent this richer
set of quantum unitary operators, and how many of them do we need? Well, if we are
provided with a parametric family of quantum operators, only a few types of such operators
are sufficient. The quantum Shannon decomposition (QSD) [46] provides a theoretical
lower bound and asymptotic optimality for an exact decomposition of quantum unitaries
using the parametric family of gates {RY(θ), RZ(θ), CX}. It can be recursively applied to
larger quantum circuits with the CX count scaling of O(4n).

GQC, UQU, and QSD rely on an arbitrary expressive set of gates. This is not very
practical as quantum devices are manufactured and controlled to perform operations from
a predefined dictionary. There is a subtle difference in using a finite set of operators with
respect to the classical case. Instead of the classical setting of dsv

being represented perfectly
by a sequence of gates from the universal gate set G, in the quantum setting, the aim is to
approximate all possible unitary operations with a sequence of gates from G with a bound
of the approximation quality. This can be understood by thinking of representing all real
numbers using digits of a specific numeral base. Of course, there is a trade-off to taming
this countably infinite space with a finite number of building blocks. Quantum Kolmogorov
complexity (QKC) [47–49] is a measure of the information required to describe a quantum
state. For any definition of quantum Kolmogorov complexity measuring the number of
classical bits required to describe a pure quantum state, there exists a pure n-qubit state
which requires exponentially many bits of description.

Nevertheless, the Solovay–Kitaev theorem (SKT) [50] allows an efficient classical
algorithm for compiling an arbitrary single-qubit gate into a sequence of gates from a
fixed and finite set. The algorithm, using a universal gate set [51] (e.g., {H, T, CX}), runs in
O(log(1/ε)) time, and produces as output a sequence of O(log(1/ε)) quantum gates which
approximate the desired quantum gate to an accuracy within ε > 0. It can be generalized
to apply to multi-qubit gates and to gates from SU(d).

In retrospect, there is no foundational reason known why GQC, UQU, QSD, QKC, and
SKT play out in nature in this manner. Yet, eventually, it allows us to sufficiently parse and
explore the vast Hilbert space using an arbitrary choice of a small set of building blocks. In
the next section, we will present a formal formulation of our emuneration procedure, the
results, and their analysis.
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4. Implementation

We first describe the implementation of the classical case. The problem is formulated
as follows: given (i) n bits, bi ∈ {b0, b1, . . . , bn−1} = B, (ii) an initial state for each bit s0(bi)
(typically set to 0), (iii) a set of gates g ∈ G (not necessarily universal), and, (iv) number of
lines of QASM code L; find the distribution of final states given each gate is applied with
probability 1

|G| at each l ∈ L.
In the quantum case, the gate set is now defined as a set of unitary gates, while the

initial state over a set of n qubits Q is defined as s0(Q) := ∑j∈{0,2n−1} αj |j〉, such that αj ∈ C
and |j〉 are eigenstates of the n-dimensional Hilbert space in the Z-basis.

4.1. Gate Sets

We consider the following gate sets:

1. {CCX}—This set is universal for classical and reversible logic, provided both the initial
states of |0〉 and |1〉 are provided. It is not practical to provide all initial states without
knowing how to create one from the other. Since all gate-based quantum algorithms
start from the all-|0〉 state and prepare the required initial state via gates, we will not
consider this set for our enumeration.

2. {X, CCX}—This set is universal for classical and reversible logic by starting from the
all-|0〉 state.

3. {X, H, CCX}—This set is weakly universal under encoding and ancilla assumptions for
quantum logic. The encoding, while universal, might not preserve the computation
resource complexity benefits of quantum (i.e., in the same way, classical computation
can also encode all quantum computation using {NAND, Fanout}). Thus, we do not
consider this set for our enumeration of the quantum case.

4. {H, S, CX}—The Clifford group is useful for quantum error correction. However, it is
non-universal and can be efficiently simulated on classical logic [52]. The space of
transforms on this set encoded error-correction codes and is, thus, useful to map.

5. {H, T}—This set is universal for single qubit quantum logic. However, we will consider
the generalization to multi-qubit using an additional two-qubit gate in the set in the
following case.

6. {H, T, CX}—This is universal for quantum logic.
7. {P(pi/4), RX(pi/2), CX}—The IBM native gate set is used to construct this gate set.

The following relations establish the relation with the previous universal gate set:
T = P(pi/4), X = RX(pi/2), and, H = eiπ/2XRz(pi/2)X = eiπ/2XTTTTX. We will
consider additional constraints like device connectivity to apply this technique to real
quantum processors.

Thus, in our experiments, we map the algorithmic probability of the final states for
the following gate sets: (i) {X, CCX}, (ii) {H, S, CX}, (iii) {H, T, CX}, and (iv) {P(pi/4), RX(pi/2),
CX}.

4.2. Metrics for Evaluation

We are interested in evaluating these metrics for each of the gate sets:

• Expressivity: refers to the extent to which the Hilbert space can be encoded by using
an unbounded number of gates. It is not weighted by the probability as it is a charac-
teristic of the encoding power of the gate set. We assign a 1 to a final state if it can be
expressed as starting from the initial state and applying a sequence of gates from the
gate set.

• Reachability: refers to a bounded form of expressibility. The length of the sequence
of gates must be equal to or shorter than the specified bound. This corresponds to a
physical implementation rather than the power of the gate set and characterizes the
computational complexity and thereby the decoherence time of the processor.

The expressibility is mapped primarily to understand if the reachability bound is
under/over-specified. As the value of the circuit length L is gradually increased, any
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universal gate set will populate the full landscape of states in the expressibility criteria,
and thereby remain without variation. It is at this limit, i.e., at the first instance of full
expressibility, that reachability is best understood. The other instance we are interested in
is the infinite limit of L, and its effect on the reachability distribution.

These experimental procedures and the comparative study of the results are presented
in the following sections.

4.3. Enumeration Procedure

We construct the experiment by constructing all possible QASM programs. For each
gate, gi ∈ G in the gate set, the target number of qubits q(gi) are known. Thereafter, given n
qubits, all possible permutations P of applying the gate are enumerated in a list, i.e., Pn

q(gi)
.

The total possible options for each line of QASM is ∑G Pn
q(gi)

, and thus, the total possible
QASM programs for L lines of code length are[

∑
G
Pn

q(gi)

]L

. (2)

Our implementation is available at: https://github.com/Advanced-Research-Centre/
QCircScape (accessed on: 25 April 2023).

As an example, consider the gate set G = {X, CCX}, for n = 4 and L = 3. q(X) = 1
and q(CCX) = 3. Thus, P4

q(X) = 4, and P4
q(CCX) = 24. Note that even if exchanging the

assignment of the two controls of the Toffoli gate has the same effect, this is a symmetry
property of this gate and not in general true for 3-qubit unitaries. Thus, the description
number (program id) for these cases is treated as different computational paths. It can be
appreciated that these two options of Toffoli gates would behave very differently in the
presence of noise characteristic of individual qubits as well as other control constraints.
The total options for each line if QASM is 28, and thus, for length 3, the total number
of programs is 283 = 21,952. This is already a large number of quantum circuits to be
simulated, for a small case, and gives a preview of how large the spaces of the programs
are.

By applying all possible cases, we obtain an array of size n that represents the available
number of transitions from one specific state to another. The measurement basis (here,
considered to be the default Z-basis), is crucial for this research. If we consider all possible
initial states of bit-strings (Z-basis state preparations) of size n, we obtain a n× n matrix.
This exploration of other initial states helps us to understand the asymmetry of gates over
bit values (e.g., a generalization of Toffoli gates with inverted control qubits is of 4 types:
C̄C̄X, C̄CX, CC̄X, CCX).

In the classical scenario, (e.g., for {X, CCX}), this corresponds to the statistics of the num-
ber of computational paths between these two states using an arrangement of gates from
the set, conforming to a specified length. For the quantum case, the statistics correspond
to the sum of probabilities of the computational paths collapsing on measurement to the
target state. Dividing the matrix by the total number of programs gives us the fixed-length
algorithmic probability of the state on each row, conditioned on the initial state. This
normalized n× n matrix is the reachability landscape. All non-zero values correspond
to the states that are reachable by at least one route (i.e., at least one program exists to
transform to that state). This gives us the Boolean n× n expressibility matrix.

4.4. Results

To start our enumeration, we first plot the growth of the number of programs (i.e.,
Equation (2)) with qubit count and circuit depth for various gate sets. We note that the
trend is independent of the description of the gates in the gate set. The only information
that matters is how many target qubits each gate in the set acts on. This gives us two classes
among our chosen gate sets, (i) with one 1-qubit and one 3-qubit gate, (ii) with two 1-qubit

https://github.com/Advanced-Research-Centre/QCircScape
https://github.com/Advanced-Research-Centre/QCircScape
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and one 2-qubit gate. The result is plotted in Figure 1. We find that the permutations due
to a 3-qubit gate grow much faster than the other class.
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Figure 1. Growth of the number of programs with qubit count and circuit depth for two types of gate
sets: (i) [1, 3] qubits: {X, CCX}, (ii) [1, 1, 2] qubits: {H, S, CX}, {H, T, CX}, {P(ß/4), RX(ß/2), CX}.

The following figures visualize the expressibility (top row) and reachability (bottom
row) for the gate set on 4 qubits with increasing depth (from 0 to 4 operations). The gate
sets we consider are {X, CCX} (Figure 2), {H, S, CX} (Figure 3), {H, T, CX} (Figure 4) and
{P(pi/4), RX(pi/2), CX} (Figure 5).

Depth: 0 Depth: 1 Depth: 2 Depth: 3

Expressibility (top row) and Reachability (bottom row) of z-basis states on 4 qubits using gate set x-ccx

Figure 2. Expressibility and Reachability for gate set {X, CCX} on 4 qubits and of circuit depth from 0
to 3.
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Depth: 0 Depth: 1 Depth: 2 Depth: 3

Expressibility (top row) and Reachability (bottom row) of z-basis states on 4 qubits using gate set h-s-cx

Figure 3. Expressibility and Reachability for gate set {H, S, CX} on 4 qubits and of circuit depth from 0
to 3.

Depth: 0 Depth: 1 Depth: 2 Depth: 3

Expressibility (top row) and Reachability (bottom row) of z-basis states on 4 qubits using gate set h-t-cx

Figure 4. Expressibility and Reachability for gate set {H, T, CX} on 4 qubits and of circuit depth from 0
to 3.

Depth: 0 Depth: 1 Depth: 2 Depth: 3

Expressibility (top row) and Reachability (bottom row) of z-basis states on 4 qubits using gate set p(pi/4)-rx(pi/2)-cx

Figure 5. Expressibility and Reachability for gate set {P(ß/4), RX(ß/2), CX} on 4 qubits and of circuit
depth from 0 to 3.



Entropy 2023, 25, 763 13 of 20

4.5. Analysis and Discussion

Let us consider maxspace = 4 and the classical gate set, {X, CCX}. There are 28 distinct
possibilities for each time step. The reachability statistics for the Z-basis states for time step
0, 1, 2, 3 are:

R{X, CCX}
0 =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

R{X, CCX}
1 =

24 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0
1 24 0 1 0 1 0 0 0 1 0 0 0 0 0 0
1 0 24 1 0 0 1 0 0 0 1 0 0 0 0 0
0 1 1 20 0 0 0 3 0 0 0 3 0 0 0 0
1 0 0 0 24 1 1 0 0 0 0 0 1 0 0 0
0 1 0 0 1 20 0 3 0 0 0 0 0 3 0 0
0 0 1 0 1 0 20 3 0 0 0 0 0 0 3 0
0 0 0 3 0 3 3 12 0 0 0 0 0 0 0 7
1 0 0 0 0 0 0 0 24 1 1 0 1 0 0 0
0 1 0 0 0 0 0 0 1 20 0 3 0 3 0 0
0 0 1 0 0 0 0 0 1 0 20 3 0 0 3 0
0 0 0 3 0 0 0 0 0 3 3 12 0 0 0 7
0 0 0 0 1 0 0 0 1 0 0 0 20 3 3 0
0 0 0 0 0 3 0 0 0 3 0 0 3 12 0 7
0 0 0 0 0 0 3 0 0 0 3 0 3 0 12 7
0 0 0 0 0 0 0 7 0 0 0 7 0 7 7 0

R{X, CCX}
2 =

580 48 48 2 48 2 2 0 48 2 2 0 2 0 0 0
48 580 2 44 2 44 0 6 2 44 0 6 0 6 0 0
48 2 580 44 2 0 44 6 2 0 44 6 0 0 6 0
2 44 44 420 0 10 10 96 0 10 10 96 0 0 0 42

48 2 2 0 580 44 44 6 2 0 0 0 44 6 6 0
2 44 0 10 44 420 10 96 0 10 0 0 10 96 0 42
2 0 44 10 44 10 420 96 0 0 10 0 10 0 96 42
0 6 6 96 6 96 96 220 0 0 0 58 0 58 58 84

48 2 2 0 2 0 0 0 580 44 44 6 44 6 6 0
2 44 0 10 0 10 0 0 44 420 10 96 10 96 0 42
2 0 44 10 0 0 10 0 44 10 420 96 10 0 96 42
0 6 6 96 0 0 0 58 6 96 96 220 0 58 58 84
2 0 0 0 44 10 10 0 44 10 10 0 420 96 96 42
0 6 0 0 6 96 0 58 6 96 0 58 96 220 58 84
0 0 6 0 6 0 96 58 6 0 96 58 96 58 220 84
0 0 0 42 0 42 42 84 0 42 42 84 42 84 84 196

R{X, CCX}
3 =

14112 1738 1738 136 1738 136 136 18 1738 136 136 18 136 18 18 0
1738 14100 140 1498 140 1498 22 336 140 1498 22 336 22 336 0 126
1738 140 14100 1498 140 22 1498 336 140 22 1498 336 22 0 336 126
136 1498 1498 9064 22 532 532 2766 22 532 532 2766 0 354 354 1344

1738 140 140 22 14100 1498 1498 336 140 22 22 0 1498 336 336 126
136 1498 22 532 1498 9064 532 2766 22 532 0 354 532 2766 354 1344
136 22 1498 532 1498 532 9064 2766 22 0 532 354 532 354 2766 1344
18 336 336 2766 336 2766 2766 4092 0 354 354 1572 354 1572 1572 2758

1738 140 140 22 140 22 22 0 14100 1498 1498 336 1498 336 336 126
136 1498 22 532 22 532 0 354 1498 9064 532 2766 532 2766 354 1344
136 22 1498 532 22 0 532 354 1498 532 9064 2766 532 354 2766 1344
18 336 336 2766 0 354 354 1572 336 2766 2766 4092 354 1572 1572 2758

136 22 22 0 1498 532 532 354 1498 532 532 354 9064 2766 2766 1344
18 336 0 354 336 2766 354 1572 336 2766 354 1572 2766 4092 1572 2758
18 0 336 354 336 354 2766 1572 336 354 2766 1572 2766 1572 4092 2758
0 126 126 1344 126 1344 1344 2758 126 1344 1344 2758 1344 2758 2758 2352

The Reachability matrix plotted in the figures is normalized by the total possible
options for each line of code (i.e., the sum for any row), for example, in this gate set, 28 for
R1, 784 for R2 and 21,952 for R3. The Expressibility matrix is a binary matrix representation
of non-zero elements of R. It is obvious that R0 only has the diagonal elements, as there is
only one way to create a circuit with no gates, and they effectively map the state to itself.
However, using R1, all other Rl can be directly derived by matrix exponentiation by

RG
l = (RG

1 )
l , G = {X, CCX}. (3)

This seems obvious from a network theory perspective, where n-hop neighbors can be
found by exponentiation of the adjacency matrix. Techniques from graph theory can be
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used to study quantum circuits [53], but what is fascinating is that it can predict the
distribution of states without executing each circuit. In our enumeration, we considered
equal weights for each gate. Machine learning models can be trained on quantum programs
to find the distribution of quantum gates on realistic quantum algorithms, and thereby can
be used to study the kind of states most quantum algorithms generate.

Let us now develop a notion of Mcirc. In the algorithmic probability formulation of
prefix-free programs, the convergence to a semi-measure is based on the notion that the

infinite sum, limi→inf ∑i 2−i =
1
2
+

1
4
+

1
8
+ · · · = 1. In our case, we need to maintain that

the contributions from subsequent lines of code decrease in a similar manner. This gives us
the following Equation (4) for Mcirc given a specific gate set and system size

MG,n
circ = lim

L→inf

L

∑
i=1

{
2−i ∗ RG

i ∗
[

∑
gi∈G
Pn

q(gi)

]−i
}

. (4)

Next, we analyze the quantum universal gate set {H, T, CX}. We need to be careful
that now

RG
l 6= (RG

1 )
l , G = {H, T, CCX}. (5)

Using Equation (5), we find the following values:

R{H, T, CCX}
1 =

18. 0.5 0.5 0. 0.5 0. 0. 0. 0.5 0. 0. 0. 0. 0. 0. 0.
0.5 15. 0. 1.5 0. 1.5 0. 0. 0. 1.5 0. 0. 0. 0. 0. 0.
0.5 0. 15. 1.5 0. 0. 1.5 0. 0. 0. 1.5 0. 0. 0. 0. 0.
0. 1.5 1.5 12. 0. 0. 0. 2.5 0. 0. 0. 2.5 0. 0. 0. 0.

0.5 0. 0. 0. 15. 1.5 1.5 0. 0. 0. 0. 0. 1.5 0. 0. 0.
0. 1.5 0. 0. 1.5 12. 0. 2.5 0. 0. 0. 0. 0. 2.5 0. 0.
0. 0. 1.5 0. 1.5 0. 12. 2.5 0. 0. 0. 0. 0. 0. 2.5 0.
0. 0. 0. 2.5 0. 2.5 2.5 9. 0. 0. 0. 0. 0. 0. 0. 3.5

0.5 0. 0. 0. 0. 0. 0. 0. 15. 1.5 1.5 0. 1.5 0. 0. 0.
0. 1.5 0. 0. 0. 0. 0. 0. 1.5 12. 0. 2.5 0. 2.5 0. 0.
0. 0. 1.5 0. 0. 0. 0. 0. 1.5 0. 12. 2.5 0. 0. 2.5 0.
0. 0. 0. 2.5 0. 0. 0. 0. 0. 2.5 2.5 9. 0. 0. 0. 3.5
0. 0. 0. 0. 1.5 0. 0. 0. 1.5 0. 0. 0. 12. 2.5 2.5 0.
0. 0. 0. 0. 0. 2.5 0. 0. 0. 2.5 0. 0. 2.5 9. 0. 3.5
0. 0. 0. 0. 0. 0. 2.5 0. 0. 0. 2.5 0. 2.5 0. 9. 3.5
0. 0. 0. 0. 0. 0. 0. 3.5 0. 0. 0. 3.5 0. 3.5 3.5 6.

R{H, T, CCX}
2 =

327. 16. 16. 1.5 16. 1.5 1.5 0. 16. 1.5 1.5 0. 1.5 0. 0. 0.
16. 234. 2.5 40. 2.5 40. 0. 7.5 2.5 40. 0. 7.5 0. 7.5 0. 0.
16. 2.5 234. 40. 2.5 0. 40. 7.5 2.5 0. 40. 7.5 0. 0. 7.5 0.
1.5 40. 40. 163. 0. 8.5 8.5 52. 0. 8.5 8.5 52. 0. 0. 0. 17.5
16. 2.5 2.5 0. 234. 40. 40. 7.5 2.5 0. 0. 0. 40. 7.5 7.5 0.
1.5 40. 0. 8.5 40. 163. 8.5 52. 0. 8.5 0. 0. 8.5 52. 0. 17.5
1.5 0. 40. 8.5 40. 8.5 163. 52. 0. 0. 8.5 0. 8.5 0. 52. 17.5
0. 7.5 7.5 52. 7.5 52. 52. 114. 0. 0. 0. 18.5 0. 18.5 18.5 52.

16. 2.5 2.5 0. 2.5 0. 0. 0. 234. 40. 40. 7.5 40. 7.5 7.5 0.
1.5 40. 0. 8.5 0. 8.5 0. 0. 40. 163. 8.5 52. 8.5 52. 0. 17.5
1.5 0. 40. 8.5 0. 0. 8.5 0. 40. 8.5 163. 52. 8.5 0. 52. 17.5
0. 7.5 7.5 52. 0. 0. 0. 18.5 7.5 52. 52. 114. 0. 18.5 18.5 52.

1.5 0. 0. 0. 40. 8.5 8.5 0. 40. 8.5 8.5 0. 163. 52. 52. 17.5
0. 7.5 0. 0. 7.5 52. 0. 18.5 7.5 52. 0. 18.5 52. 114. 18.5 52.
0. 0. 7.5 0. 7.5 0. 52. 18.5 7.5 0. 52. 18.5 52. 18.5 114. 52.
0. 0. 0. 17.5 0. 17.5 17.5 52. 0. 17.5 17.5 52. 17.5 52. 52. 87.

(R{H, T, CCX}
1 )2 =

325. 16.5 16.5 1.5 16.5 1.5 1.5 0. 16.5 1.5 1.5 0. 1.5 0. 0. 0.
16.5 232. 2.5 40.5 2.5 40.5 0. 7.5 2.5 40.5 0. 7.5 0. 7.5 0. 0.
16.5 2.5 232. 40.5 2.5 0. 40.5 7.5 2.5 0. 40.5 7.5 0. 0. 7.5 0.
1.5 40.5 40.5 161. 0. 8.5 8.5 52.5 0. 8.5 8.5 52.5 0. 0. 0. 17.5

16.5 2.5 2.5 0. 232. 40.5 40.5 7.5 2.5 0. 0. 0. 40.5 7.5 7.5 0.
1.5 40.5 0. 8.5 40.5 161. 8.5 52.5 0. 8.5 0. 0. 8.5 52.5 0. 17.5
1.5 0. 40.5 8.5 40.5 8.5 161. 52.5 0. 0. 8.5 0. 8.5 0. 52.5 17.5
0. 7.5 7.5 52.5 7.5 52.5 52.5 112. 0. 0. 0. 18.5 0. 18.5 18.5 52.5

16.5 2.5 2.5 0. 2.5 0. 0. 0. 232. 40.5 40.5 7.5 40.5 7.5 7.5 0.
1.5 40.5 0. 8.5 0. 8.5 0. 0. 40.5 161. 8.5 52.5 8.5 52.5 0. 17.5
1.5 0. 40.5 8.5 0. 0. 8.5 0. 40.5 8.5 161. 52.5 8.5 0. 52.5 17.5
0. 7.5 7.5 52.5 0. 0. 0. 18.5 7.5 52.5 52.5 112. 0. 18.5 18.5 52.5

1.5 0. 0. 0. 40.5 8.5 8.5 0. 40.5 8.5 8.5 0. 161. 52.5 52.5 17.5
0. 7.5 0. 0. 7.5 52.5 0. 18.5 7.5 52.5 0. 18.5 52.5 112. 18.5 52.5
0. 0. 7.5 0. 7.5 0. 52.5 18.5 7.5 0. 52.5 18.5 52.5 18.5 112. 52.5
0. 0. 0. 17.5 0. 17.5 17.5 52.5 0. 17.5 17.5 52.5 17.5 52.5 52.5 85.
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Let us understand why this is the case. If we start with the state |0〉, and apply the

Hadamard gate, we obtain the state
1√
2
|0〉+ 1√

2
|1〉. However, in terms of probability, this

gets translated in the normalized reachability matrix as 0.5 |0〉+ 0.5 |1〉. Now, when, another
Hadamard is applied to this state, the state evolves back to |0〉, while the reachability
redistributed the state and remains 0.5 |0〉+ 0.5 |1〉. Note that a similar situation would
arise also in the classical gate if we allow measurements on a non-computational basis. In
essence, this is due to the fact that complex amplitudes can destructively interfere while
probabilities cannot—one of the core features [54] that is responsible for quantum speedup.

In the quantum gate set scenario, the same definition of Mcirc still hold, however, it is
no longer computable in linear time but can be approximated like algorithmic probability.
We obtain the Mcirc approximated for L = 3 for the gate sets {X, CCX}) and {H, T, CX} as
shown in Figure 6.Approximation of circuit probability of states on 4 qubits using gate set x-ccx for depth 3

(a)

Approximation of circuit probability of states on 4 qubits using gate set h-t-cx for depth 3

(b)
Figure 6. Approximation of circuit probability of states on 4 qubits for L = 3 using two gate sets
(a) {X, CCX} and (b) {H, T, CX}.

Using these reachability matrices for the IBM T-topology (in Figure 7) and IBM L-
topology (in Figure 8), we can now calculate the Mcirc for the two device qubit connectivity
topology. The circuit probability can thereafter be compared with each other. This gives us
insight into which device is better in terms of reachability analysis. The results, as shown in
Figure 9, informs that for some transformations, the L-topology is better and has a higher
probability and thereby lower circuit complexity (i.e., the red ones in the middle difference
plot), while for others, the T-topology is better (i.e., the green ones for which the Mcirc for T
is higher).

The Expressibility plots follow a fractal structure, which is effectively the trace of the
subsystem, as

En
i =

[
An

i Bn
i

Bn
i An

i

]
=

[
Bn

i+1 An
i−1

An
i−1 Bn

i+1

]
, An

i = En−1
i , Bn

i = En−1
i−1 . (6)
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Depth: 0 Depth: 1 Depth: 2 Depth: 3

Expressibility (top row) and Reachability (bottom row) of z-basis states on 5 qubits using gate set p(pi/4)-rx(pi/2)-cx

Figure 7. Expressibility and Reachability for gate set {P(ß/4), RX(ß/2), CX} on 5 qubits and of circuit
depth from 0 to 3 on the IBM T-topology.

Depth: 0 Depth: 1 Depth: 2 Depth: 3

Expressibility (top row) and Reachability (bottom row) of z-basis states on 5 qubits using gate set p(pi/4)-rx(pi/2)-cx

Figure 8. Expressibility and Reachability for gate set {P(ß/4), RX(ß/2), CX} on 5 qubits and of circuit
depth from 0 to 3 on the IBM L-topology.

M_circ L M_circ diff M_circ T

0.0 0.2 0.4 0.6 0.02 0.01 0.00 0.01 0.02 0.0 0.2 0.4 0.6

Difference of circuit probability on 5 qubits using gate set p-rx-cx for depth 3 on IBM topology L and T

Figure 9. Mcirc and their comparison for gate set {P(ß/4), RX(ß/2), CX} on 5 qubits and of circuit
depth from 0 to 3 on the IBM L-topology and T-topology.

Another important insight is that the reachability/expressibility analysis is indepen-
dent of the gate set being strongly universal (e.g., {H, T, CX}) or not (e.g., {H, S, CX}). This
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is due to our focus on the existence of a path that maps between two states, without
considering how much we can control and steer the system towards a specific path. To
illustrate the point, a gate set of just {H} or {X} can map between any pair of states (weakly
universal) given sufficient depth, yet they clearly cannot approximate even classical ones
like {NAND}, let alone all functions. To define universality in this framework, we define
functions as a set of transformations between states (e.g., as a sum-of-product expression,
probability mass function, or a unitary matrix). A universal gate set that can approximately
represent any such transformation given sufficient depth. We leave further discussion on
the universal gate set for our ongoing research as an extension of this work.

5. Applications

The application of this research is primarily twofold. On one hand, it is an exploration
via the enumeration of the characteristics of Hilbert’s space. A visual map of the structures
presented in the results would aid in an intuitive understanding of the capabilities of
quantum computation. This is an extension of similar projects in classical logic [55] and
algorithmic information [56]. On a more pragmatic footing, this research finds applications
for various use cases. We conclude this article with a brief description of how this research
connects to these use cases.

5.1. Geometric Quantum Machine Learning

The landscape of quantum processes is of interest for both foundational and prac-
tical aspects of quantum information. On the foundational side, quantum complexity
theory [57,58], quantum resource theories [59], categorical quantum mechanics [60] and
quantum formal logic [61] rely on the properties of this landscape. The transition to practi-
cal aspects is orchestrated by the geometric formulation of quantum computation [44,62].
Recently, this forms the basis for quantizing geometric deep learning [63]. These works
have been conducted in the formalism of mathematical functions or quantum fields [64].
Circuit complexity is much less studied, and can bridge algorithmic complexity and com-
putational complexity. By providing a perspective of the statistical/algorithmic complexity
geometry of quantum logic circuits, our intention is to make these results tangible using
quantum computational frameworks in the near future. On the other hand, operational
distance measures between two quantum states/processes for specific use cases can be
informed by these theoretical techniques.

5.2. Novel Quantum Algorithm Synthesis

Quantum algorithm design currently involves careful manipulation of quantum in-
formation, harnessing quantum mechanical phenomena (e.g., superposition, entangle-
ment, interference) to a computational advantage. This is generally counter-intuitive to
human phenomenological experiences, thus, requiring considerable training and often
serendipitous moments [65]. Though the discovery of new algorithms is a buzzing research
field [22], reasoning in terms of mathematical formalism has been a barrier to the wider
adoption of quantum accelerated computing. Some proposals for automation of quantum
programming [23–25] have been proposed to remedy these issues. To further expand
the applicability of quantum algorithms, techniques from novelty search [66] and large
language models [67] can be incorporated into these automation engines. Open-ended
search in the space of quantum processes can greatly benefit from a characterization of this
landscape, as presented in this work.

5.3. Quantum Artificial General Intelligence

Among the more rigorous methods of developing general intelligence is an active
formulation of Solomonoff’s theory of inductive intelligence [36], called universal artificial
intelligence [68]. Universal reinforcement learning models like AIXI and KSA are capable
of rational decision-making or modeling environmental dynamics, based on the shortest
program that corresponds to compressing the past observations and maximizing a set
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reward function. These have been quantized both by using quantum algorithms, (e.g., in
the AIXI-q model [69]) and by applying them to quantum environments (e.g., in the QKSA
model [70]).

Another crucial aspect of intelligence [71] is the understanding of cause-effect relations.
Quantum acceleration of causal inference [72–74] can benefit from the knowledge of the
probability distribution of causal oracles, a subset of quantum processes that embed specific
properties of the problem. Besides causal inference, similar techniques can be applied to
other statistical relational learning applications like probabilistic logic networks [75] and
quantum variational algorithms.

Both universal distribution and causal inference are intimately connected to the land-
scape of quantum programs. This landscape inturn depends on the choice of a specific gate
set, as we saw in this research. Thereby, novelty seeking in the space of universal gate sets
can meta-optimize quantum program synthesis for specific application algorithms. In our
current research, we are exploring this direction of second-order cybernetics of automated
quantum operational theory, by using the groundwork developed in this article.
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