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Abstract: Rectangular billiards have two mirror symmetries with respect to perpendicular axes
and a twofold (fourfold) rotational symmetry for differing (equal) side lengths. The eigenstates of
rectangular neutrino billiards (NBs), which consist of a spin-1/2 particle confined through boundary
conditions to a planar domain, can be classified according to their transformation properties under
rotation by π (π/2) but not under reflection at mirror-symmetry axes. We analyze the properties
of these symmetry-projected eigenstates and of the corresponding symmetry-reduced NBs which
are obtained by cutting them along their diagonal, yielding right-triangle NBs. Independently of
the ratio of their side lengths, the spectral properties of the symmetry-projected eigenstates of the
rectangular NBs follow semi-Poisson statistics, whereas those of the complete eigenvalue sequence
exhibit Poissonian statistics. Thus, in distinction to their nonrelativistic counterpart, they behave
like typical quantum systems with an integrable classical limit whose eigenstates are non-degenerate
and have alternating symmetry properties with increasing state number. In addition, we found out
that for right triangles which exhibit semi-Poisson statistics in the nonrelativistic limit, the spectral
properties of the corresponding ultrarelativistic NB follow quarter-Poisson statistics. Furthermore,
we analyzed wave-function properties and discovered for the right-triangle NBs the same scarred
wave functions as for the nonrelativistic ones.

Keywords: quantum chaos; relativistic quantum chaos; quantum billiards; relativistic quantum
billiard

1. Introduction

This paper is a contribution to the special issue Quantum Chaos, which is dedicated
to the 80th birthday of Giulio Casati who is a leading expert in the fields of classical and
quantum chaos. He, actually, already expressed in [1] the conjecture that the spectral prop-
erties of quantum systems with a chaotic classical dynamics coincide with those of random
matrices from the Gaussian ensembles (GEs) of corresponding universality class [2], that is,
before Bohigas, Gianoni and Schmit formulated the famous BGS conjecture [3]. According
to the BGS conjecture, they are well described by random marix theory (RMT) [2,4–7],
where the appropriate GE for quantum systems with preserved and violated time-reversal
invariance are the Gaussian orthogonal ensemble (GOE) and the Gaussian unitary ensem-
ble (GUE), respectively. Criteria for its validity were identified in Ref. [8] based on the
semiclassical periodic orbit (PO) theory, which was pioneered by Gutzwiller [9,10]. Casati
considered a billiard with the shape of a stadium. Billiards provide a particularly suited
model for studies in the context of quantum chaos. The dynamics of classical billiards
(CBs), consisting of a point particle which moves freely inside a bounded two-dimensional
domain and is reflected specularly at the boundary, can be engineered through the choice of
their shape [11–13]. The eigenstates of the corresponding nonrelativistic quantum billiard
(QB) are determined by solving the Schrödinger equation for a free particle and imposing
the Dirichlet boundary condition (BC) on the resulting wave functions. Berry and Tabor
showed in [14] based on action-angle variables that the spectral properties of typical in-
tegrable systems [15] agree well with those of Poissonian random numbers. However,
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there are numerous examples for ’untypical’ integrable systems, a paradigm one being the
harmonic oscillator [16]. Another example is polygonal billiards [17–19], such as triangular
billiards, which have been investigated by Casati and his collaborators for nearly three
decades [20–23] and the rectangular billiard [24]. Billiards with the shapes of rational
polygonals of which the boundary comprises diffractive corners with angles αi =

ni
mi

π
where mi, ni are integers and ni 6= 1 [17,25–32] are neither integrable nor chaotic. Therefore,
they are referred to as pseudointegrable systems. Their phase space trajectories propagate
on invariant surfaces that are topologically equivalent to multihandled, two-dimensional
tori with genus 2 ≤ g < ∞, implying that they are not ergodic in phase space. Yet, the
motion in such billiards has a chaotic component arising from the diffractive corners, which
are of measure zero in classical phase space. The spectral properties of the corresponding
QB differ considerably from those of typical integrable systems [26,28–31]. To be more
explicit, they exhibit features that are intermediate between those of Poissonian random
numbers and those of random matrices from the GOE in the sense that the levels repel
each other linearly like in chaotic systems, and their nearest-neighbor spacing distribution
decreases exponentially for large spacings, which is typical for integrable systems [33].
Depending on the choice of angles of a right-triangle QB, the properties are well described
by those of semi-Poissonian numbers, which are obtained by deleting every second one in
a sequence of Poissonian ones [23,34]. Such cases are considered in the present work.

We present results obtained for the spectral properties, momentum distributions [35]
and Husimi functions [36,37] of the rectangular and square-shaped relativistic neutrino
billiards (NBs) and their symmetry-projected eigenstates. These are obtained by separating
their eigenstates according to their transformation properties under rotation by π and
π/2, respectively. Neutrino billiards were introduced by Berry and Mondragon [38]. They
are governed by the Weyl equation [39] for a non-interacting, massless spin-1/2 particle—
commonly referred to as the Dirac equation in this context [38]—with the BC that the
outward current vanishes. In distinction to QBs, NBs and the relativistic quantum systems
considered in Ref. [40] do not have a well-defined classical counterpart. Insight into their
behavior in the semiclassical limit can be obtained based on a semiclassical approximation
for the fluctuating part of their spectral density in terms of a trace formula [41,42], which
is applicable from the ultrarelativistic limit for massless neutrinos to the nonrelativistic
limit of large mass m0 where the energy is close to the rest energy E0 = m0c2 [43]. The
trace formula is a sum over periodic orbits of the CB of corresponding shape, where in the
ultrarelativistic limit, those with an odd number of reflections at the boundary are missing.

An alternative type of billiards exhibiting relativistic features in part of their eigen-
value spectrum are graphene billiards, which are constructed by cutting a honeycomb
lattice out of their shape. They are used to model properties of artificial graphene flakes
based on a tight-binding model [44,45]. Finite-size sheets of graphene [46–49], referred to as
graphene quantum dots, have the advantage that they can be studied experimentally. The
first experiments were presented in [50–52]. In the vicinity of the corners of the hexagonal
Brillouin zone, where the conduction and valence band touch each other conically, the
energy excitations are governed by the Dirac equation for massless spin-1/2 particles [53].
The occurrence of the conical structure solely originates from the honeycomb structure
of graphene, which is formed by two interpenetrating triangular lattices. This led to the
realization of numerous experimental ’artificial-graphene’ realizations [54]. Boundary
conditions on the spinor components in a graphene billiard were formulated in [55–57].
We modeled rectangular, Africa-shaped and threefold-symmetric graphene billiards ex-
perimentally with flat superconducting microwave photonic crystals [58–62] and found
agreement with the spectral properties of massive neutrino billiards only beyond a certain
mass. In addition, theoretical studies of rectangular graphene quantum dots yielded devia-
tions from those of massless neutrino billiards [63]. Their origin is explained in Ref. [64] and
may be attributed to the presence of the boundary and differing BCs. The extraordinary
features presented in this work are only observed in the ultrarelativistic limit for massless
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neutrino billiards. Similar studies will be performed for graphene billiards for varying BCs
in a separate work.

The work was motivated by results obtained in [65] for the equilateral triangle and
in [66] for sectors of the circle and ellipse NB. The boundary of the equilateral triangle has
a C3v symmetry [67], that is, threefold rotational symmetry and mirror symmetries with re-
spect to its main axes: that of the circle belongs to the U(1) symmetry class, which comprises
all M-fold rotational symmetries with M ≥ 2, and that of the ellipse has mirror symmetries
with respect to its minor and major axes and a twofold rotational symmetry. Generally, the
eigenfunctions of a QB with a mirror symmetry are separated into eigenfunctions which
are either symmetric or antisymmetric with respect to the symmetry axes, and they fulfill
either Neumann or Dirichlet BCs along them. This is not possible for NBs. However, as will
be outlined in Section 2, the eigenstates of NBs whose boundary has a M-fold rotational
symmetry can be separated according to their transformation properties under rotation by
2π
M into symmetry-projected eigenstates. Sectors of NBs are constructed by cutting these
along the borders of a fundamental domain associated with a discrete rotational symmetry
and imposing the same boundary conditions along the cutlines as along the outer boundary,
that is, as for the full NB. These NBs are referred to as symmetry-reduced NBs in the
following. The circle and ellipse sector CBs have an integrable classical dynamic [68,69],
and the corresponding QBs exhibit Poissonian statistics. The symmetry-projected eigen-
states of the circle and ellipse NBs have been determined analytically in Refs. [38,41,65,70].
Their spectral properties also exhibit Poissonian statistics, that is, they agree with those of
the corresponding QB. The spinor components of the eigenfunctions of an NB are linked
through the BCs at the boundary [38]. Furthermore, for NBs with a discrete rotational sym-
metry, they transform differently under the associated rotation [65,71], implying that the
symmetry classes are intermingled when cutting an NB into symmetry-reduced NBs. We
demonstrated in [66] that consequently, the symmetry-reduced and full NBs cannot have
any common eigenstates and that the spectral properties of symmetry-reduced circle NBs
with an arbitrary inner angle smaller than 2π and the quarter-ellipse NBs with sufficiently
small eccentricity agree with GOE after extracting the contributions from librational modes.
This was also attributed to the discontinuity of the BC at the corners, where straight and
curved parts are connected.

In [65], we computed the eigenstates of massive equilateral triangle NBs and their
symmetry-projected eigenstates analytically and found that they coincide with those of the
corresponding QB. Their short-range correlations exhibit the nontypical behavior expected
for rectangular billiards whose side lengths are commensurable; however, otherwise, the
spectral properties agree with semi-Poisson statistics. In contrast, those of the massless
right-triangle NB, which is obtained by cutting the equilateral triangle NB along a mirror-
symmetry axis, agree with Poisson [66]. These results are in contrast to those for the ellipse
and circle NBs and corresponding sector NBs. They are attributed to the fact that the
equilateral triangle NB has no curved boundary parts. In the present work, we investigate
properties of the symmetry-projected and symmetry-reduced eigenstates of rectangular
billiards with commensurable and incommensurable side length. The central question was
whether the symmetry-projected eigenstates of rectangular NBs show a similar behavior as
those of the equilateral triangle.

2. Review of Characteristic Features of Neutrino Billiards

In the two-dimensional plane r = (x, y), the Dirac equation for a free spin-1/2 particle
with mass m0 and momentum p̂ = −ih̄∇ reads

ĤDψ =
(

cσ̂ · p̂ + m0c2σ̂z

)
ψ = Eψ, ψ =

(
ψ1
ψ2

)
. (1)

Here, ĤD denotes the Dirac Hamiltionian, σ̂ = (σ̂x, σ̂y), σ̂x,y,z are the Pauli matrices,
and E = h̄ckE = h̄ck

√
1 + β2 is the energy of the particle, where k is the free-space wave
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vector and β = m0c
h̄k is the ratio of the rest-energy momentum and free-space momentum.

The NB was introduced in Ref. [38] for the ultrarelativistic, i.e., massless case m0 = 0.
It is characterized by the way the particle is confined to the billiard domain Ω without
destroying the self-adjointness of the Hamiltonian. This is ensured by imposing along its
boundary ∂Ω on the solutions of Equation (1) the BC that the normal component of the local
current, which is given by the expectation value of the current operator û = ∇p ĤD = cσ̂,
u(r) = cψ†σ̂ψ, vanishes, yielding independently of the mass [38,42],

ψ2(t) = iµeiα(t)ψ1(t). (2)

Here, the boundary r(t) = [x(t), y(t)] or in the complex plane w(t) = x(t) + iy(t)
is parameterized in terms of t, and µ = ±1 determines the rotational direction of the
flow at the boundary, where it is unidirectional [38]. We chose µ = 1. The parameter
is defined for rectangular billiards with side lengths 2a and 2b in a coordinate system,
whose origin is at its center and with the x-axis parallel to the sides with lengths 2a
where w(t) = t ± ib, t ∈ [−a, a], while the y-axis is parallel to those with lengths 2b
where w(t) = ±a + it, t ∈ [−b, b]. Furthermore, α(t) is the angle of the outward-pointing
normal vector n(t) at r(t) with respect to the x-axis. Another choice of parameter which is
commonly used is the arc-length s ∈ [0,L] with L denoting the perimeter, which essentially
corresponds to t plus the sum of the lengths of the sides that have been passed when
moving along the boundary where we set s = 0 at r = (0,−b). In a local coordinate
system (n, s) which moves counterclockwise along the boundary (n = 0, s) and whose
coordinate axes are in the directions of the tangential vector t(s) to ∂Ω at r(s) and the
normal vector n(s), respectively, the combination of the Dirac Equation (1) at the boundary
and Equation (2) yields with (∂x ± i∂y) = e±iα(∂n ± i∂s) BCs in terms of separate equations
for the wave-function components [42],

(∂n + i∂s)ψ1(n, s)|n→0− = −kK−1ψ1(s), (3)

(∂n − i∂s)ψ2(n, s)|n→0− = kKψ2(s).

Here, K =

√
1−sin θβ

1+sin θβ
with sin θβ = β√

1+β2
. Note that when introducing

ψ =

√ 1+sin θβ

2 ψ̃1√
1−sin θβ

2 ψ̃2

, (4)

the Dirac equation Equation (1) takes the form of that for massless neutrinos with modified
BCs,

kψ̃(r) + iσ̂ ·∇ψ̃(r) = 0 (5)

Kψ̃2(s) = ieiα(s)ψ̃1(s). (6)

The nonrelativistic limit is reached when the energy is close to the rest energy, E ' m0c2 [43],
that is, for sufficiently large β → ∞, corresponding to K ' 1

2β → 0 and θβ → π/2.
Conversely, in the ultrarelativistic case m0 = 0, they equal K = 1 and θβ = 0. The BC
imposes a phase relation on the wave-function components ψ1,2(s) at ∂Ω and provides
a quantization condition whose solutions are the eigenstates of the Hamiltonian ĤNB
associated with the NB. Alternative BCs for the confinement of relativistic particles to a
bounded domain are proposed in [70,72] and based on the ‘MIT’ bag model [73].

Exact analytical solutions were derived for the equilateral triangle NB [65,70], the
circle NB [38] and the ellipse NB [41] based on plane wave expansions. In [74–78], the
eigenenergies of Dirac particles confined to a one- and a three-dimensional box were
computed based on a plane-wave ansatz employing the MIT bag model. However, even
though the BCs depend either on x or on y, a complete quantization of the rectangular NB
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with such an ansatz is not possible, because the x and y parts of the kinetic energy term do
not commute [38]. A plane wave expansion

ψ1(r) = ∑
j

aj(k)e
ikj ·r (7)

ψ2(r) = ∑
j

eiθj aj(k)e
ikj ·r (8)

with kj = k(cos θj, sin θj) and BC Equation (2) or, equivalently, Equation (3) yields only
one-dimensional solutions corresponding to eigenmodes propagating parallel to the x or
y axis, for which either θj = 0, π or θj =

π
2 , 3π

2 . Therefore, we employed an extension of
the boundary-integral equations (BIEs) derived in Ref. [38] for massless NBs to massive
ones [42,79].

The derivation is based on Green’s theorem, which provides exact integral equations
for the eigenvalues and the spinor components in the interior of the billiard in terms of those
on the boundary. An advantage of the boundary integral approach is that the eigenvalue
problem is reduced from a two-dimensional differential equation to a one-dimensional
boundary integral. The BIE is given by

(
1− sin θβ

)
ψ̃∗1 (φ

′) =
ik
4

 2π

0
|w′(φ)|dφQ1(φ

′, φ)ψ̃∗1 (φ) (9)

where the integration variable φ is related to s by ds = |w′(φ)|dφ and

Q1(φ
′, φ) = cos θβ

[
ei(α(φ′)−α(φ)) − 1

]
H(1)

0 (kρ) (10)

+
{[

1− sin θβ

]
ei(ξ(φ,φ′)−α(φ)) +

[
1 + sin θβ

]
e−i(ξ(φ,φ′)−α(φ′))

}
H(1)

1 (kρ),

with

eiξ(φ,φ′) =
w(φ)− w(φ′)

|w(φ)− w(φ′)| , ρ(φ, φ′) = |w(φ)− w(φ′)|. (11)

Here, H(1)
m (kρ) = Jm(kρ) + iYm(kρ) is the Hankel function of the first kind of order

m. At φ = φ′, i.e., ρ = 0, H(1)
0 (kρ) and H(1)

1 (kρ) have a logarithmic and a 1/ρ singularity.
The integral over these singularities leads to the sin θβ term on the left-hand side [79].
Accordingly, an interval [φ′ − δφ, φ′ + δφ], where δφ is arbitrarily small, is excluded from
the integration range on the right-hand side. The corresponding BIE for ψ̃∗2 (φ

′) is obtained
by employing in Equation (10) the BC in Equation (6) and those for the spinor components
ψ1,2(φ) are obtained with Equation (4). In the nonrelativistic limit sin θβ → 1, the left-
hand side approaches zero, implying that the evaluation of the BIE becomes a numerical
challenge. We would like to note that for sin θβ ' 1, the BIE in Equation (10) does not
provide a suitable quantization procedure since the spinor components decouple, ψ2(r)
becomes vanishingly small and the BC for ψ1(r) turns into Robin BCs, which become
Dirichlet BCs for sin θβ = 1. For that reason, the BIEs are replaced in the nonrelativistic
limit by one for its normal derivative [80].

We are interested in the spectral properties and properties of the wave functions
of the associated symmetry-projected eigenstates of rectangular NBs which have mirror
symmtries with respect to the x and y axes and a twofold rotational symmetry—for the
square NB, (a = b) even a fourfold symmetry. Yet, in this respect, there is a crucial difference
between QBs and NBs, which has its origin in the fact that the BCs for NBs connect the
spinor components ψ1(s) and ψ2(s) at ∂Ω and may lead to distinct spectral properties, as
outlined in [66,71,81]. The characteristics of NBs under a reflection or a rotation operator
can be summarized as follows.

Applying on the coordinate vector an orthogonal transformation, r′ = R̂r corresponds
to applying a unitary transformation Û to the Dirac Hamiltonian ĤD(r). If ψ̃(r) is a
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solution of the Dirac equation in Equation (1), then the eigenfunction of the transformed
Dirac Hamiltonian ĤD(r′) = Û† ĤDÛ is given by ψ̄(r′) = Û†

ψ̃(r). The unitary operators
for a mirror reflection R̂x = σ̂z at the x-axis or R̂y = −σ̂z at the y-axis are Ûx = σ̂x or
Ûy = iσ̂y, respectively. However, application of the reflection operator R̂X with X = x
or X = y on a spinor eigenfunction ψ̃(r) of ĤNB(r) does not yield an eigenfunction of
ĤNB(r′) [82], because ψ̄(r′ = R̂Xr) does not fulfill the BC in Equation (2).

The unitary operator Û M corresponding to a counterclockwise rotation by 2π
M ,

r′ = R̂Mr with

R̂M =

(
cos
( 2π

M
)
− sin

( 2π
M
)

sin
( 2π

M
)

cos
( 2π

M
) ), (12)

reads

Û M =

(
ei π

M 0
0 e−i π

M

)
. (13)

The eigenfunctions of the transformed Dirac Hamiltonian are ψ̄T
M(r′) = [e−i π

M ψ̃1(r),
ei π

M ψ̃2(r)]. For NBs whose boundary has an M-fold rotational symmetry w(s′) = ei 2π
M w(s)

and eiα(s′) = ei 2π
M eiα(s), the BC in Equation (2) is fulfilled for ψ̄(r′) if ψ̃(r) is an eigenfunction

of ĤNB. Thus, the Hamiltonian ĤNB(r) can be brought to a block diagonal form according
to the M one-dimensional irreducible representations labeled by l = 0, . . . , M− 1; that is,
its eigenstates can be grouped into M subspaces defined by their transformation properties
under a rotation by 2π

M [83–86], yielding the symmetry-projected eigenstates

ψ
(l)
1,2(R̂−λ

M r) = eiλ 2lπ
M ψ̃

(l)
1,2(r), λ = 0, . . . M− 1. (14)

The wave-function components corresponding to l = 0 are invariant under rotation
by 2π

M , whereas for l 6= 0, a rotation by 2π is needed to recover the original ones. The Dirac
equation in Equation (1) and the BC in Equation (6) relate components of the spinor eigen-
function with different transformation properties under rotation by 2π

M [65,71]. Namely, if
the first component belongs to the subspace labeled by l,

ψ̃
(l)
1 (r′) = e−il 2π

M ψ̃
(l)
1 (r) (15)

where r′ = R̂Mr, then inserting this property into the Dirac equation yields for the second
one

ψ̃2(r′) = e−i(l−1) 2π
M ψ̃2(r) ≡ ψ̃

(l−1)
2 (r′), (16)

where l = −1 corresponds to l = M − 1. Similarly, using the M-fold symmetry of the
boundary of the NB, i.e., eiα(s′) = ei(α(s)+ 2π

M ) and inserting Equation (15) into the BC in
Equation (6) implies that [65,71]

ψ̃2(s′) = ieiα(s′)K−1ψ̃
(l)
1 (s′) = e−i(l−1) 2π

M ψ̃2(s) ≡ ψ̃
(l−1)
2 (s′).

Thus, the spinor components cannot be simultaneously rotationally invariant, imply-
ing that the spinor eigenfunctions cannot be rotationally invariant. This intermingling of
symmetry properties has its origin in the additional spin degree of freedom [65,71].

For a billiard whose boundary has an M-fold rotational symmetry, the corresponding
symmetry-reduced one is constructed by cutting it along the sides of a fundamental domain
into sectors with inner angle φ0 = 2π

M . The corresponding symmetry-reduced QB and NB
are obtained by imposing the same BCs along the cutlines as along the outer bondary, i.e.,
as for the full QB, respectively, NB. These are Dirichlet BCs for the QB. Accordingly, their
eigenstates coincide with rotationally invariant ones of the full QB. For the corresponding
symmetry-reduced NB, the BCs in Equation (2) are imposed along the cutlines on the
outgoing current, which is in the opposite direction to the current in the full NB at one
of the cutlines [66]. Thus, the intermingling of symmetries in Equations (15) and (16) of
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the wave-function components implies that the eigenstates of an NB with a rotationally
symmetric boundary cannot be eigenstates of the corresponding symmetry-reduced NB.
Accordingly, their spectral properties do not necessarily coincide as demonstrated for circle
and ellipse sectors in [66]. In the following, we will refer to the symmetry class of the spinor
component ψ̃

(l)
1 (r) when specifying the value for l.

We would like to remark that the symmetry-projected eigenfunctions of a QB with M-
fold rotational symmetry are complex for l 6= 0, M/2, implying that they are not invariant
under application of the time-reversal operator T̂ [83]. Indeed, the eigenfunctions with
symmetry class l are transformed by T̂ into eigenstates with l̃ = M − l. Time-reversal
invariance of the QB implies that the corresponding eigenvalues are doubly degenerate. It
was demonstrated in [83] that the spectral properties of the states with l 6= 0, M/2 typically
show GUE statistics, whereas those of the states with l = 0, M/2 are well described by the
GOE if the shape of the QB generates chaotic classical dynamics. On the other hand, the
Dirac Hamiltonian in Equation (1) itself does not commute with the time-reversal operator
T̂. Consequently, if the shape has no mirror symmetry, for all l, the eigenvalues of the
corresponding NB are not degenerate, and the spectral properties of massless NBs typically
coincide with those of the GUE.

In the present work, we investigate the spectral properties of symmetry-projected and
symmetry-reduced rectangular NBs. To compute the eigenstates, we applied the BIE. It can
be separated into individual BIEs for each symmetry class. To take into account the M-fold
symmetry of the boundary w(φ) of an NB, we use the periodicity properties

w
(

φ + λ
2π

M

)
= eiλ 2π

M w(φ), (17)

w′
(

φ + λ
2π

M

)
= eiλ 2π

M w′(φ), (18)

eiα(φ+λ 2π
M ) = eiλ 2π

M eiα(φ), (19)

with λ = 0, 1, 2, . . . , M − 1. Restricting the range of φ′ to one fundamental domain,
φ ∈ [0, 2π

M ), the BIEs are given as

ψ̃
(l)∗
1 (φ′) =

ˆ 2π
M

0
dφM̃(l)(k; φ, φ′)ψ̃

(l)∗
1 (φ) (20)

with l = 0, 1, , 2, . . . , M− 1 and

M̃(l)
1 (k; φ, φ′) =

M−1

∑
λ=0

ei 2lπ
M λ M1,λ(k; φ, φ′), (21)

where

M1,λ(k; φ, φ′) = Q1

(
k; φ + λ

2π

M
, φ′
)

. (22)

3. Tools Employed for the Analysis of Properties of the Eigenstates

We analyzed the spectral properties in terms of the nearest-neighbor spacing distribu-
tion P(s), the integrated nearest-neighbor spacing distribution I(s), the number variance
Σ2(L) and the Dyson–Mehta statistic ∆3(L), which provides a measure for the rigidity
of a spectrum [2]. For this, the ordered eigenvalues km =

√
Em with k1 ≤ k2 ≤ . . .

were unfolded to mean spacing unity by replacing them with the smooth part of the inte-
grated spectral density, εm = Nsmooth(km), which is given for QBs by Weyl’s formula [87]
NWeyl(km) = A

4π k2
m − L

4π km + C0, with A denoting the area of the billiard, whereas for
massless NBs, the perimeter contribution cancels out [38]. Furthermore, we analyzed distri-
butions of the ratios [88,89] of consecutive spacings between nearest neighbors, rj =

εj+1−εj
εj−εj−1

,
which are dimensionless so that unfolding is not needed [88–90].
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We also computed Husimi functions which are defined in classical phase space [5,36].
The classical dynamics of a CB is determined by the shape of its boundary ∂Ω. Similarly, the
eigenstates of the corresponding QB or NB are obtained by employing the BIEs originating
from Green’s theorem and thus are fully determined by their values along ∂Ω. Therefore,
an appropriate choice of the Poincaré surface of section (PSOS) is obtained by restricting the
phase space to ∂Ω, which commonly is defined in terms of Poincaré–Birkhoff coordinates
(s, p), where p = sin χ(s) with χ(s) denoting the angle of the particle trajectory with
respect to the normal vector n(s). In Ref. [37], Poincaré–Husimi functions are defined
for nonrelativistic QBs as the projection of the normal derivative of the associated wave
function ψ(s) at the boundary onto a coherent state [37], which is localized at ∂Ω and
periodic with period L,

Hj(s, p) =
1

2πk j

1´ L
0 ds′|∂n′ψ(s′)|2

∣∣∣∣∣
ˆ L

0
ds′∂n′ψ(s

′)Cδ
(s′ ,p)(s

′; k j)

∣∣∣∣∣
2

.

Here, n′ = n(s′) and

Cδ
(s,p)(s

′; k j) =

( k j

πδ2

)1/4 ∞

∑
m=−∞

exp
(

ipk j
(
s′ − s + mL

)
−

k j

2δ2

(
s′ − s + mL

)2
)

. (23)

The parameter δ controls the resolution of the Husimi plots. The Poincaré–Husimi
function provides a probability density of the eigenstates on the Poincaré surface of sec-
tion [37] and accordingly is commonly referred to as a quantum Poincaré surface of section.
We computed Husimi functions for the NB by replacing ψ(s) by the symmetry-projected
spinor eigenfunctions ψ

(l)
1,2(s), where we employed Equation (3) to determine their normal

derivatives.
We, furthermore, computed momentum distributions [35], i.e., the Fourier transform of

the spinor eigenfunctions ψn(r) from coordinate space (x, y) to momentum space (qx, qy),

ψn(q) =
¨

Ω
dreiqrψn(r). (24)

They are localized on the energy shell, that is, at values q =
√

q2
x + q2

y = kn, and
provide information on the directions of the plane waves that form the eigenmode, which
is especially useful when it is scarred along periodic orbits or localized.

4. Numerical Results for the Symmetry-Projected Eigenstates of Rectangular NBs

In this section, we present numerical results for the spectral properties and properties
of the wave functions, Husimi functions and momentum distributions of the symmetry-
projected eigenstates of rectangular NBs with different side-length ratios,

R1(T1) :
a
b
= 1

R2(T2) :
a
b
= 2

R3(T3) :
a
b
=

√
5 + 1
2

(25)

R4(T4) :
a
b
=

√
2 +
√

π

2

R5(T5) :
a
b
=
√

3

and their symmetry-reduced counterparts, namely triangles Ti, that are obtained by cut-
ting the corresponding rectangle Ri along its diagonal. The triangles T2, T3, T4 have in
common that their angles have the structure

{
α1π, α2π, π

2
}

with α1, α2 irrational numbers.
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Furthermore, in [66], we considered a triangle, named T5, which is obtained by cutting the
equilataral triangle with side lengths 2 along a mirror axis into two halves. Its inner angles
are

{
π
2 , π

3 , π
6
}

, implying that it is integrable like the R1 and T1 billiards. We computed
5000 eigenvalues for each symmetry class and NB. These studies were motivated by recent
results which we obtained in Ref. [66] for the semi-circle NB, the quarter-ellipse NB for
various values of its eccentricity, and the T5 triangle NB [65]. For an ellipse with semimajor
and semiminor axes lengths a = cosh µ0 and b = sinh µ0, respectively, the eccentricity is
ε = 1

cosh µ0
. The classical dynamics of a particle in an ellipse CB and the semi- and quarter-

ellipse CBs, which are obtained by cutting the ellipse along the semiminor and semimajor
axes, respectively, is integrable because the product of the angular momenta with respect
to the two focal points is a constant of motion. The eigenfunctions of the corresponding
QBs are given by products of the radial and the periodic Mathieu functions [69,91–94],
and the eigenvalues are the zeroes of the radial Mathieu function at the boundary. Their
spectral properties coincide with those of Poissonian random numbers. The orbits of the
ellipse CB and the eigenmodes of the ellipse QB can be separated into librational modes
and rotational modes. With decreasing ε, the ellipse turns into a circle, and the librational
modes turn into the diameter orbit, whereas with increasing eccentricity, the modes resem-
ble those in the rectangular billiard. The eigenfunctions of the ellipse NB are given in terms
of superpositions of products of the radial and periodic Mathieu functions [41]. It has a
twofold symmetry so that the spinor components ψ1 are either symmetric with respect to a
rotation by π and the associated second component ψ2 is antisymmetric, or vice versa.

We showed in [66] that the spectral properties of circle-sector NBs and quarter ellipse-
sector NBs with small eccentricity, i.e., nearly circular shape, are well described by the
GOE after the extraction of contributions from the diameter orbit in the former one and
librational modes in the latter one that bounce back and forth parallel to the semiminor axis
and have a vanishing support at the corners connecting straight and curved parts. This
behavior was attributed to the intermingling of the symmetry properties associated with the
rotational symmetry of the corresponding full NBs and the effects of these corners. Indeed,
for the T5 NB, the spectral properties are close to Poisson statistics [66], whereas we found
good agreement with semi-Poissonian statistics for the symmetry-projected eigenstates of
the equilateral triangle NB and QB [65].

In Figure 1, we present some results for the semi-ellipse NB for different eccentricities.
Shown are the spectral properties of the ellipse NB and its symmetry-projected eigenstates
for ε = 0.265 and for the semi-ellipse NBs with ε = 0.1, 0.5, 0.65. Those of the symmetry-
projected eigenstates are close to those of the semi-ellipse NB with ε = 0.65, which is close
to Poisson, whereas with decreasing ε, they approach semi-Poisson statistics, as is clearly
visible in the ratio distributions which are shown in the right part of Figure 1.

In Figure 2, we show results for the square NB (R1 in Equation (25)), its symmetry-
projected eigenstates labeled by l = 0, 1, 2, 3 and the 45◦ triangle (T1 in Equation (25)).

The spectral properties of the symmetry-projected eigenstates agree well with semi-
Poisson for the short-range correlations up to a certain number of mean spacings L for the
long-range correlations. The size of the deviations is similar to that of a QB with integrable
classical dynamics [20,24] for a similar number of eigenvalues, such as, e.g., the ellipse and
circle QBs and NBs [41,66]. The overshooting of those for the square NB with respect to
Poisson statistics originates from non-systematic, occasionally occurring degeneracies of
eigenvalues associated with different symmetry classes, which have also been observed for
the equilateral triangle NB in Ref. [65]. The ratio distribution of the R1 QB is shown together
with that of the R1 NB in the right part of Figure 2 in (c). It exhibits the nongeneric behavior
commonly observed for rectangular QBs with rational ratios of side lengths, whereas that
of the NB agrees well with Poisson statistics.
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Figure 1. (Left) Spectral properties of the symmetry-projected eigenstates of the ellipse NB with
ε = 0.65 (red histogram and circles: l = 0; green histogram and triangles: l = 1), and the semi-
ellipse NB with ε = 0.65 (violet histogram and diamonds), ε = 0.5 (orange histogram and plus) and
ε = 0.1 (turquoise histogram and stars). (Right) Ratio distributions for (a) the symmetry-projected
eigenstates of the ellipse NB with l = 0, (b) l = 1, (c) all eigenvalues of the ellipse NB (red) and the
corresponding ellipse QB (turquoise) and (d) the semi-ellipse NB for ε = 0.5 (green) and ε = 0.1 (red).
They are compared to the GOE (black solid line), Poisson (black dashed line) and semi-Poisson (black
dashed–dotted lines) statistics.

Figure 2. (Left) Spectral properties of the R1, i.e., square NB (violet histogram and diamonds)
and its symmetry-projected eigenstates (red histogram and circles: l = 0; green histogram and
triangles: l = 1; orange histogram and plus: l = 2; turquoise histogram and stars: l = 3). (Right)
Ratio distributions for (a) the symmetry-projected eigenstates of the R1 NB with l = 0 (red) and
l = 2 (green), (b) l = 1 (red) and l = 3 (green), (c) all eigenvalues of the square NB (red) and the
corresponding square QB (turquoise) and (d) the 45◦-triangle, i.e., T1 NB (red). They are compared to
the GOE (black solid line), Poisson (black dashed line) and semi-Poisson (black dashed–dotted lines)
statistics.

In the left part of Figure 3, we compare length spectra, that is, the modulus of the
Fourier transform |ρ̃ f luc(l)| of the fluctuating part of the spectral density, ρ f luc(k), from
wave number k to length l for the full square NB, the symmetry-projected ones and the
45◦ triangle NB. The length spectra of the QB and NB exhibit peaks at the lengths of its
periodic orbits. Generally, in the length spectra of NBs, peaks at lengths, which correspond
to periodic orbits with an odd number of reflections, are missing [42]. Such orbits are
absent in rectangular CBs. Those of the symmetry-projected eigenstates show additional
peaks at lengths which correspond to pseudo-orbits, that is, orbits that are periodic in the
fundamental domains but not in the full system [85,86].
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Figure 3. (Left) Comparison of the length spectra of, from bottom to top, the full square NB (black
line), for l = 0 (blue line), l = 1 (violet line), l = 2 (green), l = 3 (red), and the square QB (maroon).
(Right) Comparison of the length spectra of, from bottom to top, the rectangular R3 NB (black line),
for l = 0 (red line), l = 1 (green line), and the corresponding QB (blue).

In Figure 4, we show examples for the momentum distributions, real parts of the spinor
components ψ1(r) and ψ2(r), the local current |u(r)| ∝

∣∣(<[ψ∗1 (r)ψ2(r)],=[ψ∗1 (r)ψ2(r)]
)∣∣

and Husimi functions for the symmetry-projected eigenstates of the R1 NB with l = 0 (a)
and l = 1 (b). The wave-function patterns are invariant under rotation by π

2 for ψ1(r) and
l = 0, and for ψ2(r) and l = 1. For the other components, they need to be rotated by 2π
to recover the original patterns. The momentum distributions are peaked around values
(qx, qy) = (±kx,±ky) and (qx, qy) = (±ky,±kx) along a circle, whose radius is defined by

the eigenwavenumber q =
√

q2
x + q2

y = kn corresponding to the eigenstate number n. For

n = 68 and l = 0 or for n = 75 and l = 1, it is peaked at (±kn, 0) and (0,±kn) and exhibit
chessboard structures which resemble those of the square QB, except that their intensities
decrease with the distance from the center of the square. Otherwise, the wave-function
patterns are distinct and more complex. In addition, from the pattern structure of the local
currents, we may conclude that the eigenfunctions are not given by simple superpositions
of plane waves. Some of the Husimi functions are localized either in the upper or the
lower part of the PSOS, indicating that the corresponding eigenmodes propagate in a
preferred direction. This may be attributed to the fact that the BCs in Equation (2) lead to a
unidirectionality of the local current along the boundary. The wave-function patterns are
more complex than for the corresponding QB; however, they exhibit a regular structure, so
that the GOE-like behavior of the spectral properties is not expected.

Figure 4. (a) From left to right, the momentum distribution in the (qx, qy) plane, the real parts of
the spinor components ψ1(r) and ψ2(r) function in the (x, y) plane, the local current in the (x, y)
plane and the Husimi functions in the Birkhoff coordinate plane (s, p), where s = 0 at the center of
the lower horizontal side and increases in counterclockwise direction, for the symmetry-projected
eigenstates states of the square NB with l = 0 and, from top to bottom, numbers n = 49, 51, 68, 75.
(b) Same as left for l = 1.
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Similar results are obtained for the spectral properties of the rectangular R2 and R3
NBs and their symmetry-projected eigenstates, shown in the left and right part of Figure 5,
respectively, and in the right part of Figure 6. The gaps observed in the nearest-neighbor
spacing distribution of the R2 QB are typical for rectangular QBs whose ratios of side
lengths are no irrational numbers [95]. The long-range correlations, on the other hand,
approach Poisson statistics with an increasing number of eigenvalues [24,96]. The spectral
properties of the R2 NB exhibit Poisson statistics, whereas those of its symmetry-projected
eigenstates are well described by semi-Poisson statistics. In the right part of Figure 3, we
show length spectra for the R3 QB and NB and the symmetry-projected eigenstates of the
R3 NB. The length spectra of the QB and NB exhibit peaks at the same lengths, as there
are only periodic orbits with an even number of reflections. The length spectra of the
symmetry-projected eigenstates also exhibit peaks at the lengths of the classical periodic
orbits and a few additional ones at the lengths of peudo-orbits.

Figure 5. (Left) Spectral properties of the symmetry-projected eigenstates of the rectangular R2 NB
(red histogram and circles: l = 0; green histogram and triangles: l = 1), the R2 QB (violet histogram,
lines and dots), and the R2 NB (turquoise histogram and diamonds). (Right) Spectral properties of the
symmetry-projected eigenstates of the R3 NB (red histogram and circles: l = 0; green histogram and
triangles: l = 1), the R3 QB (violet histogram, lines and dots), the R3 NB (turquoise histogram and
diamonds) and the triangular T3 (magenta histogram and squares) and T4 NB (brown histogram and
dots). They are compared to the GOE (black solid line), Poisson (black dashed line) and semi-Poisson
(black dashed–dotted lines) statistics.

In the right part of Figure 5 and in Figure 6, we include the results for the trian-
gular T3 and T4 NBs which are constructed by cutting the rectangular R3 and R4 NBs
along the diagonals. Their spectral properties are close to GOE. We found out that they,
actually, agree well with those of a quarter-Poissonian sequence which is obtained by
taking from an ordered sequence of Possonian random numbers each fourth number or,
equivalently, every second one from a sequence of semi-Poisson numbers, such as those
of the corresponding symmetry-projected eigenvalue sequences. The spectral properties
of the T3 and T4 QBs agree well with semi-Poisson statistics [34]. This is illustrated in the
left part of Figure 6. Those of the T5 NB coincide with Poissonian statistics [66]. Right
triangles, that have only one angle which is rational with respect to π, have been stud-
ied in detail in Refs. [21,23,34,97,98]. It was shown that triangles, whose angles are all
irrational with respect to π, exhibit GOE-like spectral properties, whereas those of right
triangles are non-Poissonian but differ from GOE. Deviations from GOE were shown to
originate from the presence of wave functions that are scarred along bouncing-ball orbits
that exhibit a regular pattern, such as the periodic-orbit family consisting of orbits that are
reflected perpendicular to the tilted side of the triangle and form a periodic-orbit channel
(POC) whose maximum width extends from one diffractive corner to the other one (see
below) [19,99,100]. Their contributions, in fact, can be extracted for irrational triangles
by proceeding as, e.g., in [101], whereas for the T3 and T4 QBs and NBs, their number
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is too large. This explains the agreement with semi-Poisson statistics for the T3 and T4
QBs [34], which corresponds to a linear level repulsion and is a special case of intermediate
statistics for which analytical expressions exist. These are shown as dashed–dotted lines,
e.g., in Figure 6. For the corresponding NBs, the level repulsion is cubic [33]. After the
extraction of contributions from bouncing-ball orbits, the spectral properties of the T2 QB
are close to GOE behavior, whereas those of the T2 NB agree well with GUE statistics, as
illustrated in Figure 7, implying that the effect of scarred wave functions is stronger for
the QB than it is for the NB. Indeed, scarred wave functions occur more rarely for the T2
NB than for the T2 QB. The ratio distributions, shown in the right part of Figure 7, agree
well with GOE and GUE for the T2 QB and NB, respectively, even though contributions
from periodic orbits that lead to scarred wave functions were not extracted, implying that
it is insensitive to scarred states. Note that no unfolding is needed for the analysis of ratio
distributions. The left part of Figure 8 shows the fluctuating part of the spectral density
(black dots). The contributions from bouncing-ball orbits lead to slow oscillations. To
determine them, we used the procedure introduced in [101], that is, we computed the
Fourier transform of the fluctuating part of the spectral density, ρ̃ f luc(l), and then the
inverse Fourier transform over those parts that correspond to lengths of these orbits. The
associated peaks are plotted as orange and turquoise dashed lines for the NB and QB,
respectively, in the length spectrum shown in the right part of Figure 8. The resulting
oscillating part of N(k), Nosc(k), is shown as red dots connected by a red dashed line in
the left part of Figure 8. To extract the contributions of this part to the spectral properties,
the eigenvalues km were unfolded by replacing them with the sum of the smooth and
oscillating part of N(k), εm = Nsmooth(km) + Nosc(km) [102].

Figure 6. (Left) Spectral properties of the triangular T3 NB (red histogram and circles) and T3 QB
(green histogram and triangles) and the triangular T4 NB (orange histogram and dots) and T4 QB
(violet histogram and diamonds). They are compared to the GOE (black solid line), Poisson (black
dashed–dotted–dotted line), semi-Poisson (black dashed–dotted lines) and quarter-Poisson (blue
dashed lines) statistics. (Right) Ratio distributions for (a) the l = 0 states of the R2 (green histogram)
and R3 (red histogram) NBs, (b) same as (a) for the states with l = 1, (c) the rectangular R2 (green
histogram) and R3 (red histogram) NBs and for the rectangular R3 QB (turquoise histogram), (d) the
T5 (green histogram), T3 (red histogram) and T4 (brown histogram) NBs. They are compared to the
GOE (black solid line), Poisson (black dashed line), semi-Poisson (black dashed–dotted lines) and
quarter-Poisson (blue dashed lines) statistics.
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Figure 7. (Left) Spectral properties of the triangular T2 QB and NB before ((violet histogram and stars)
and (red histogram and dots)) and after extraction of contributions from orbits that lead to scarred
wave functions ((orange dashed-line histogram and crosses) and (green histogram and squares)). They
are compared to the GOE (black solid line), Poisson (black dashed–dotted–dotted line), semi-Poisson
(black dashed–dotted lines) and GUE (black dashed lines) statistics. (Right) Ratio distributions
P(r) (upper panels) and integrated ratio distributions I(r) (lower panels) for the T2 QB (a,c) and
NB (b,d). They are compared to the GOE (black solid line), Poisson (black dashed–dotted–dotted
line), semi-Poisson (black dashed–dotted lines) and GUE (black dashed lines) statistics.

Figure 8. (Left) Fluctuating part of the integrated spectral density (black) and the contributions of
bouncing-ball orbits that are extracted to obtain the results shown in Figure 7 (red) for the T2 NB.
(Right) Comparison of the length spectra of the T2 NB (upper part) and the T2 QB (lower part).

In Figure 9, we show momentum distributions, real parts of the spinor components
and Husimi functions for a few symmetry-projected eigenstates of the R3 NB ((a): l = 0;
(b): l = 1) and in Figure 10 for the corresponding right triangle T3 NB (a) and T3 QB (b).
The momentum distributions are peaked at values (qx, qy) = (±kx,±ky) along the circle

defined by the eigenwavenumbers kn =
√

q2
x + q2

y. In the example shown for l = 1 and

n = 57, q takes the values (qx, qy) = (±kn, 0). This case, in fact, can be derived based on a
plane-wave ansatz, since the propagation of the eigenmodes is one-dimensional [77]. The
wave-function patterns shown for l = 0 in the second row are similar to corresponding
ones in the R3 QB. In these examples, the Husimi functions are localized along the p = 0
axis. For the other cases, they again exhibit a preferred direction of propagation, but they
are distributed over the (s, p) plane. Scarred wave functions of the type presented in [23]
are observed in the corresponding symmetry-reduced billiard, i.e., the T3 QB and NB. The
examples shown in Figure 10 correspond to relatively low-lying states. Here, we chose
for the QB eigenstates for which the wave functions and Husimi functions exhibit similar
patterns to those of the NB. We show them because for higher excitations, the wave function
and local current patterns become complex and are no longer discernible. Still, some of
them exhibit scarred eigenstates, such as those shown in the third row. In Figure 11, we
show examples of scarred wave functions for higher-lying eigenstates of the T3 NB (upper
row) and similar ones for the T3 QB (lower row). They are scarred along bouncing ball
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orbits from the family of periodic orbits that hit the tilted side perpendicularly and are
reflected with constant angles from the sides to the left and right of the π

2 corner.

Figure 9. (a) Same as in Figure 4 for the symmetry-projected eigenstates of the rectangular R3 NB
with l = 0 and, from top to bottom, numbers n = 57–59. (b) Same as (a) for l = 1.

Figure 10. (a) Same as Figure 4 for the triangular T3 NB with, from top to bottom, numbers
n = 255, 288, 264. Here, the Borkhoff coordinates are chosen such that s = 0 at the left corner
of the triangle, and it increases in the counterclockwise direction. (b) From left to right, momentum
distributions, intensity distributions and Husimi functions for the corresponding QB with, from top
to bottom, numbers n = 266, 259, 267.

(a)

(d) (e)

(b) (c)

(f)

Figure 11. First row: Local current for the eigenstates of the T3 NB for, from left to right, numbers
n =1460 (a), 1453 (b), 1471 (c). Second row: intensity distribution for the eigenstates of the T3 QB for,
from left to right, numbers n =1459 (d), 1463 (e), 1469 (f).
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5. Conclusions

We analyzed the properties of symmetry-projected eigenstates of rectangular NBs
whose side lengths are either commensurable or incommensurable. Independently of
the choice of the ratio of the side lengths, we find very good agreement of the spectral
properties of the symmetry-projected eigenstates with semi-Poisson statistics. In distinction
to the eigenvalues of rectangular QBs, those of the corresponding NBs are non-degenerate
and exhibit Poisson statistics. The fact that the complete spectra of rectangular NBs ex-
hibit Poisson statistics—whereas after their separation into two (or four) sequences of
eigenvalues corresponding to the symmetry-projected eigenstates, the spectral properties
follow semi-Poisson statistics—indicates that rectangular NBs behave like typical quantum
systems with an integrable counterpart, whose eigenstates are non-degenerate and have
alternating symmetry properties with increasing state number. Note that this is not strictly
true, because when two eigenvalues come close to each other, then the ordering of the
symmetry classes may change. Generally, Poisson statistics is expected for the symmetry-
projected states if they are uncorrelated, as is the case for the corresponding nonrelativistic
QB; however, in the ultrarelativistic case, they are linked through the different symmetry
properties of the spinor components. Namely, if the first component belongs to class l, then
the second one belongs to class (l − 1). Furthermore, we found out that the eigenvalues of
triangular NBs, which are constructed by cutting the rectangular NB with incommensurable
side lengths along the diagonal and follow semi-Poisson statistics in the nonrelativistic
limit, exhibit a cubic-level repulsion and spectral properties that agree well with those of
random numbers. These random numbers are composed of every fourth number from
a Poisson sequence or every second one from a semi-Poisson one. That is, we observe a
hierarchy, induced by the variation of the BCs along the diagonal of the R3 and R4 NBs, in
the spectral properties in the sense that they follow Poisson statistics for the full rectangle
NB, semi-Poisson statistics for the symmetry-projected eigenstates and corresponding
triangle QB and quarter-Poisson statistics for the symmetry-reduced NB, which would
correspond to taking every second level from successive eigenvalue sequences. For the T2
QB and NB, we find good agreement with GOE and GUE statistics, respectively, after the
extraction of contributions from bouncing-ball orbits, that is, from eigenstates whose wave
functions are scarred along these orbits. An important difference between a QB and the
corresponding NB is that the associated Hamiltonian preserves and violates time-reversal
invariance, respectively. Thus, the results for the T2 NB are not surprising, and accord-
ingly, we may deduce from our results for the T3 and T4 QBs and NBs that when inducing
time-reversal invariance violation in a QB which exhibits semi-Poisson statistics, it will
yield quarter-Poisson statistics. We chose these triangles because their spectral properties
are particular and only considered the ultrarelativistic and the nonrelativistic limits. The
transition region was investigated in detail in Refs. [65,71] for the symmetry-projected
eigenstates of NBs whose boundaries have a threefold rotational symmetry. The results
confirm that, as was shown in [42], with increasing mass, the spectral properties approach
those of the nonrelativistic QB.
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31. Shudo, A.; Shimizu, Y.; Šeba, P.; Stein, J.; Stöckmann, H.J.; Życzkowski, K. Statistical properties of spectra of pseudointegrable

systems. Phys. Rev. E 1994, 49, 3748–3756. [CrossRef]
32. Hasselblatt, B.; Katok, A. (Eds.) Handbook of Dynamical Systems; Elsevier: Amsterdam, The Netherlands, 2002; Volume 1A.
33. Bogomolny, E.B.; Gerland, U.; Schmit, C. Models of intermediate spectral statistics. Phys. Rev. E 1999, 59, R1315–R1318. [CrossRef]
34. Gorin, T. Generic spectral properties of right triangle billiards. J. Phys. A Math. Gen. 2001, 34, 8281. [CrossRef]
35. Bäcker, A.; Schubert, R. Chaotic eigenfunctions in momentum space. J. Phys. A Math. Gen. 1999, 32, 4795. [CrossRef]
36. Husimi, K. Some formal properties of the density matrix. Proc. Phys. Math. Soc. Jpn. 1940, 22, 264.
37. Bäcker, A.; Fürstberger, S.; Schubert, R. Poincaré Husimi representation of eigenstates in quantum billiards. Phys. Rev. E 2004,

70, 036204. [CrossRef] [PubMed]
38. Berry, M.V.; Mondragon, R.J. Neutrino Billiards: Time-Reversal Symmetry-Breaking Without Magnetic Fields. Proc. R. Soc.

London A 1987, 412, 53.
39. Weyl, H. Elektron und Gravitation. I. Z. Physik 1929, 56, 330. [CrossRef]
40. Bolte, J.; Keppeler, S. A Semiclassical Approach to the Dirac Equation. Ann. Phys. 1999, 274, 125–162. [CrossRef]
41. Dietz, B. Circular and Elliptical Neutrino Billiards: A Semiclassical Approach. Act. Phys. Pol. A 2019, 136, 770. [CrossRef]
42. Dietz, B.; Li, Z.Y. Semiclassical quantization of neutrino billiards. Phys. Rev. E 2020, 102, 042214. [CrossRef]
43. Baym, G. Lectures on Quantum Mechanics; CRC Press: Boca Raton, FL, USA, 2018.
44. Dresselhaus, M.; Dresselhaus, G.; Eklund, P. Science of Fullerenes and Carbon Nanotubes; Academic Press: San Diego, CA, USA,

1996. [CrossRef]
45. Reich, S.; Maultzsch, J.; Thomsen, C.; Ordejón, P. Tight-binding description of graphene. Phys. Rev. B 2002, 66, 035412. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.52.1
http://dx.doi.org/10.1016/S0370-1573(97)00088-4
http://dx.doi.org/10.1103/PhysRevLett.98.044103
http://dx.doi.org/10.1063/1.1665596
http://dx.doi.org/10.1070/RM1970v025n02ABEH003794
http://dx.doi.org/10.1007/BF01197884
http://dx.doi.org/10.1088/0143-0807/2/2/006
http://dx.doi.org/10.1088/0305-4470/10/3/009
http://dx.doi.org/10.1088/0305-4470/31/20/008
http://dx.doi.org/10.1103/PhysRevLett.67.529
http://dx.doi.org/10.1016/0167-2789(86)90062-X
http://dx.doi.org/10.1007/BF02183637
http://dx.doi.org/10.1088/2399-6528/abfb0c
http://dx.doi.org/10.1103/PhysRevLett.54.1350
http://dx.doi.org/10.1103/PhysRevE.55.6384
http://dx.doi.org/10.1103/PhysRevLett.83.4729
http://dx.doi.org/10.1103/PhysRevResearch.4.013138
http://dx.doi.org/10.1007/s002200050498
http://dx.doi.org/10.1007/BF01818045
http://dx.doi.org/10.1016/0167-2789(81)90024-5
http://dx.doi.org/10.1088/0951-7715/2/2/008
http://dx.doi.org/10.1103/PhysRevA.42.3170
http://www.ncbi.nlm.nih.gov/pubmed/9904395
http://dx.doi.org/10.1103/PhysRevE.47.54
http://dx.doi.org/10.1103/PhysRevE.49.3748
http://dx.doi.org/10.1103/PhysRevE.59.R1315
http://dx.doi.org/10.1088/0305-4470/34/40/306
http://dx.doi.org/10.1088/0305-4470/32/26/301
http://dx.doi.org/10.1103/PhysRevE.70.036204
http://www.ncbi.nlm.nih.gov/pubmed/15524609
http://dx.doi.org/10.1007/BF01339504
http://dx.doi.org/10.1006/aphy.1999.5912
http://dx.doi.org/10.12693/APhysPolA.136.770
http://dx.doi.org/10.1103/PhysRevE.102.042214
http://dx.doi.org/10.1016/B978-012221820-0/50000-9
http://dx.doi.org/10.1103/PhysRevB.66.035412


Entropy 2023, 25, 762 18 of 19

46. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect
in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [CrossRef]

47. Geim, A.; Novoselov, K. The rise of graphene. Nat. Mater. 2007, 6, 183. [CrossRef]
48. Beenakker, C.W.J. Colloquium: Andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys. 2008, 80, 1337. [CrossRef]
49. Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys.

2009, 81, 109. [CrossRef]
50. Ponomarenko, L.A.; Schedin, F.; Katsnelson, M.I.; Yang, R.; Hill, E.W.; Novoselov, K.S.; Geim, A.K. Chaotic Dirac Billiard in

Graphene Quantum Dots. Science 2008, 320, 5874. [CrossRef] [PubMed]
51. Güttinger, J.; Stampfer, C.; Hellmüller, S.; Molitor, F.; Ihn, T.; Ensslin, K. Charge detection in graphene quantum dots. Appl. Phys.

Lett. 2008, 93, 212102. [CrossRef]
52. Güttinger, J.; Frey, T.; Stampfer, C.; Ihn, T.; Ensslin, K. Spin States in Graphene Quantum Dots. Phys. Rev. Lett. 2010, 105, 116801.

[CrossRef]
53. Wallace, P.R. The Band Theory of Graphite. Phys. Rev. 1947, 71, 622–634. [CrossRef]
54. Polini, M.; Guinea, F.; Lewenstein, M.; Manoharan, H.C.; Pellegrini, V. Artificial graphene as a tunable Dirac material. Nat.

Nanotechnol. 2013, 8, 625. [CrossRef] [PubMed]
55. Akhmerov, A.R.; Beenakker, C.W.J. Detection of Valley Polarization in Graphene by a Superconducting Contact. Phys. Rev. Lett.

2007, 98, 157003. [CrossRef]
56. Akhmerov, A.R.; Beenakker, C.W.J. Boundary conditions for Dirac fermions on a terminated honeycomb lattice. Phys. Rev. B

2008, 77, 085423. [CrossRef]
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