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Abstract: Orthogonal time–frequency space (OTFS) modulation has been advocated as a promising
waveform for achieving integrated sensing and communication (ISAC) due to its superiority in
high-mobility adaptability and spectral efficiency. In OTFS modulation-based ISAC systems, accurate
channel acquisition is critical for both communication reception and sensing parameter estimation.
However, the existence of the fractional Doppler frequency shift spreads the effective channels of the
OTFS signal significantly, making efficient channel acquisition very challenging. In this paper, we
first derive the sparse structure of the channel in the delay Doppler (DD) domain according to the
input and output relationship of OTFS signals. On this basis, a new structured Bayesian learning
approach is proposed for accurate channel estimation, which includes a novel structured prior
model for the delay-Doppler channel and a successive majorization–minimization (SMM) algorithm
for efficient posterior channel estimate computation. Simulation results show that the proposed
approach significantly outperforms the reference schemes, especially in the low signal-to-noise ratio
(SNR) region.

Keywords: orthogonal time–frequency space modulation; integrated sensing and communication;
channel estimation; structured sparse Bayesian learning

1. Introduction

Future mobile communication systems must be better suited to serve a variety of
developing applications in environments with high levels of mobility, including low-
orbit satellites, manned and unmanned aircraft, manned and unmanned vehicles, and
high-speed trains [1–3]. In these high-mobility scenarios, mobile channels exhibit the
characteristics of doubly dispersive channels due to the influence of the Doppler effect and
the multipath propagation effect. Orthogonal frequency division multiplexing (OFDM)
technology, which is currently widely used in fourth-generation mobile communication
systems, fifth-generation mobile communication systems [4,5], wireless local area networks
(WLANs), digital video broadcasting (DVB), and other broadband transmission systems,
can overcome intersymbol interference (ISI) caused by time dispersion [6]. Of course,
the studies on OFDM systems over doubly dispersive channel are also plentiful. Some
researchers [7,8] have studied the channel estimation and data detection problems of
OFDM systems over doubly dispersive channels, and the simulation results showed that
the performance of the proposed method is close to the ideal case with perfect channel state
information. However, due to the strict orthogonality among the subcarriers of OFDM
systems, the orthogonality will be greatly destroyed by the channel frequency dispersion
effect caused by frequency bias and fast time-varying channels. This results in serious
intercarrier interference (ICI), which greatly degrades system performance and makes it
impossible to provide efficient and reliable services. Therefore, OFDM is highly sensitive to
frequency offset and channel frequency dispersion [9].
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Orthogonal time–frequency space (OTFS) is a new modulation technology that can
adapt to the time–frequency double dispersion propagation characteristics of channels in a
high-speed mobile environment; it has attracted extensive attention in industry [10–12]. A
time-varying channel in the time–frequency (TF) domain is changed into a time-invariant
channel in the DD domain using OTFS modulation. After such a two-dimensional trans-
formation, the transmitted data symbols are subjected to minor subcarrier interference,
and all symbols in the same OTFS data frame experience slow fading independent of time
selectivity. OTFS modulation is carried out in the DD domain.

At present, OTFS modulation has made certain research progress in many aspects,
such as system performance analysis and modulation and demodulation algorithms. It is
assumed in [10] that the ideal pulse-forming waveform satisfies orthogonal criteria in both
time and frequency, but in reality, this is not possible because of Heisenberg’s uncertainty
principle. As a result, the biorthogonality assumption was loosened, and an OFDM-based
OTFS modulation system was presented in [13,14]. This system takes into account the cyclic
prefix (CP) of each OFDM symbol in the OTFS frame as well as the non-ideal rectangular
pulse-shaping waveform. This benefit stems from the simplicity of implementation, but it
also introduces the issue of high out-of-band radiation causing interference with adjacent
channels. At the moment, frequency local pulse shaping [15] and time-domain windowing
technology [16] are the two major techniques for maximizing out-of-band attenuation by
lowering out-of-band radiation. Compared with the TF domain, the advantage of the
DD domain is that only a small area, which is based on the channel response that will be
introduced in the second part of the system model, is needed to describe the channel, and
it has stronger sparsity for better channel estimation.

Currently, the main technical research on OTFS modulation involves the estimation
of channel state information and data detection after estimation. Ref. [17] proposed an
embedded pilot-assisted channel estimation scheme. The delay-Doppler plane’s arrange-
ment rules for data symbols, pilot symbols, and guard symbols were created to successfully
prevent pilot symbols and data symbols from interfering with one another during each
OTFS frame. The pilots were created for multipath channels with integer and fractional
Doppler shifts using the OTFS modulation technology. However, if only one pilot symbol
was inserted, it caused high peak-to-average-power ratio (PAPR) problems. For example,
in this article, pilot power is greater than data power. In [18], a channel estimation and data
detection framework based on a superposition pilot was proposed. This framework super-
imposes a low-power pilot on data symbols in the DD domain, thus increasing the space of
data transmission and effectively improving the spectral efficiency of OTFS modulation
transmission. Such a design induces high computation complexity, and the interference
between data and pilot symbol also reduces the estimated accuracy.

As emphasized in [19], integer approximation cannot adequately simulate the chan-
nel’s noninteger delay and Doppler shift. Therefore, using an orthogonal matching pursuit
approach based on binary refinement estimation, which has a tolerable computing com-
plexity and much lower estimated normalized mean square error, has been suggested. Ac-
cording to the sparseness of the channel in the delay-Doppler domain, ref. [20] suggested a
new pilot mode and a channel estimate method based on sparse Bayesian learning (SBL). In
this new pilot pattern, the guard interval was not set, and the data and pilot had the same
energy. To update the parameters in the previous model using the expectation maximum
(EM) algorithm, a sparse Bayesian learning framework was provided. Channel estimation
was treated as a sparse recovery problem. To a certain extent, the pilot symbol power
cost was reduced, as was the pilot symbol power consumption, and the noise interference
was weakened.

In this paper, to reduce the pilot cost and improve the accuracy of channel estimation,
we treat the channel problem of estimating the DD domain as a sparse recovery problem and
derive the sparse model expression from the input–output relationship of the DD domain.
We provide a new sparse Bayesian framework based on the channel’s sparse features, and
the block successive majorization–minimization (SMM) technique is employed to handle
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the problem of the new prior structure. The simulation results show that, in comparison to
existing reference approaches, our suggested method greatly reduces the noise interference
in the situation of a low signal-to-noise ratio.

The rest of the paper is organized as follows. The OTFS modulation system model is
described in Section 2. The structured sparse Bayesian approach for channel estimation
is presented in Section 3. The simulation results are reported in Section 4, and Section 5
concludes the paper.

2. System Model

We consider an OTFS modulation system with M symbols and N subcarriers. The
transmitter and receiver are equipped with a single antenna. The OTFS modulation frame
is shown in Figure 1.

ISFFT Heisenberg
transform Channel Wigner

transform SFFT
[ , ]x k l

Time-frequency domain

[ , ]y k l

OTFS modulation frame

[ , ]X n m [ , ]Y n m

Figure 1. OTFS modulation frame.

2.1. OTFS Modulation and Demodulation

The transmitter transforms the information symbol x[k, l] ∈ CM×N from the DD
domain to the time–frequency domain using the inverse symplectic finite Fourier transform
(ISFFT).

X[n, m] =
1√
MN

N

∑
k=0

M

∑
l=0

x[k, l]ej2π( nk
N −

ml
M ) (1)

At this time, X[n, m] generates a time waveform s(t) using a transmission pulse gtx(t).
This transform is called the Heisenberg transform.

s(t) =
N

∑
n=0

M

∑
m=0

X[n, m]gtx(t)ej2πm∆ f (t−nT) (2)

where ∆ f and T are the subcarrier spacing and symbol period, respectively.
After that, the signal s(t) is transmitted through a fast time-varying channel with a

complex baseband channel impulse response h(τ, ν), which specifies the channel response
to an impulse with delay τ and Doppler ν.

r(t) =
∫ ∫

h(τ, ν)s(t− τ)ej2πν(t−τ) (3)

The channel only has a few parameters in the delay-Doppler domain. The sparse
representation of channel h(τ, ν) is given as

h(τ, ν) =
P

∑
i=1

hiδ(τ − τi)δ(ν− νi) (4)
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where P denotes the number of paths for propagation. δ() denotes the Dirac delta function,
whereas hi, τi and νi stand for the path gain, delay, and Doppler shift associated with the
i-th path, respectively. We choose the delay and Doppler taps for the i-th path as follows:

τi =
lτi

M∆ f
, νi =

kνi + κνi

NT
(5)

where the integers lτi , kνi represent the delay tap and Doppler tap indices corresponding
to the delay τi and Doppler frequency νi, respectively, and κνi ∈ [−0.5, 0.5]. We do not
need to examine the impact of the fractional delay because the resolution of the time axis is
sufficient to approximate the path delay to the nearest integer grid point.

The received signal r(t) is given by the Wigner transform and is realized by the
receiving matching filter of impulse response grx, obtaining the time–frequency domain
symbol Y[n, m].

Y[n, m] =
∫

r(t)grx(t− nT)ej2πm∆ f (t−nT)dt (6)

Finally, the symplectic finite Fourier transform (SFFT) is used to convert the informa-
tion symbols Y[n, m] in the TF domain into the symbols y[k, l] in the DD domain .

When the transmitter pulse gtx and the receiver pulse grx are ideal pulse functions, the
relationship between the transmitted signal and the received signal in the delay-Doppler
domain can be written as

y[k, l] =
P

∑
i=1

[k−kνi+Q]N

∑
k′=[k−kνi−Q]N e−j2π
(

k−kνi−k
′−κνi

)
− 1

Ne−j 2π
N (k−kνi−k′−κνi ) − N

+ v[k, l]

=
P

∑
i=1

Q

∑
q=−Q

(
e−j2π(−q−κνi ) − 1

Ne−j 2π
N (−q−κνi ) − N

)
hie−j2πνiτi

× x
[
[k− kνi + q]N , [l − lτi ]M

]
+ v[k, l]

(7)

where v[k, l] denotes the system noise in the DD domain. We set the proper Q to counteract
the impact of fractional Doppler. The delay-Doppler plane is discretized to an M× N grid.
According to Equation (7), due to the influence of the doubly dispersive channel, the signal
received at the k-th Doppler point is subjected to the superposition of signals from the
2Q + 1 (k−Q to k + Q) Doppler points. In other words, the received signal y[k, l] is a linear
combination of the sent signal Ω = ∑P

i=1 2Q + 1.

2.2. Sparse Delay-Doppler Domain Channel Model

To implement channel estimation, we place L = (2kmax + 2Q + 1)(lmax + 1) pilot
symbols xp[k, l] in the DD domain. The greatest delay τmax and Doppler νmax related to the
delay and Doppler taps are defined as kmax and lmax. In addition, we formulate Equation (7)
in a different form, as follows:

y[k, l] =
kmax+Q

∑
k′=−kmax−Q

lmax

∑
l′=0

h
[
k′, l′

]
x
[
k− k′, l − l′

]
(8)

After a series of formula calculations, we finally obtain the matrix form of the formula as

y = Φh + V (9)
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where

h =

 h[0]
...

h[lmax]

 (10)

h
[
l′
]
=

 h[−kmax −Q, l′]
...

h[kmax + Q, l′]

 (10a)

where l
′ ∈ [0, lmax]

Φ =
lmax

∑
l′=0

xT
k,l−l′

=
lmax

∑
l′=0

x[k− (−kmax −Q), l − l
′
]

...
x[k− (kmax + Q), l − l

′
]



=


XT

k
′
,l−0
...

XT
k
′
,l−lmax

 =


XT

k
′
,l
′

...
XT

k
′
,l
′



(11)

where Φ ∈ CS×L, h ∈ CL×1, and V ∈ CS×1 are the received signal, transmitted signal. and
Gaussian noise in the DD domain, respectively. S is the size of the channel estimation area.
A simple proof is provided in Appendix A.

3. Structured Sparse Bayesian Approach for Channel Estimation

In this section, according to the sparse characteristics of the channel in the DD domain,
we use Equation (8) to introduce the improved sparse Bayesian algorithm in detail. First, we
briefly introduce the design of the pilot pattern at the receiver and transmitter. Second, we
consider the sparse characteristics of the channel and design an improved sparse Bayesian
algorithm. Finally, the complexity of the proposed algorithm is discussed.

3.1. Pilot Placement and Pattern Design

The power of the pilot symbol in the embedded pilot channel estimate approach
is frequently substantially larger than that of the data symbol, which is unrealizable in
actual applications. Only inserting one pilot symbol will result in a high PARP issue [17].
Meanwhile, unlike [20], we have set up a protection interval symbol to avoid interference
between data and pilot symbols. Here, we set the pilot symbol power to be the same as the
data symbol power, transforming the channel estimation problem into a sparse channel
recovery problem. This not only effectively solves the problem of high pilots power but
also avoids interference between data that affects estimation results.

We arrange the pilot and data symbols in the delay-Doppler grid for OTFS frame
transmission, as shown in Figure 2.
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pk

maxpk k

maxpk k

pl pl l

: Data symbols : Guard symbols : Pilot symbols

max3pk k

max3pk k

maxpl l maxpl l l  Delay

Doppler

Figure 2. Tx symbols pattern.

We select k ∈ [kp − kmax, kp − kmax] and l ∈ [lp, lp + lτ ] as the pilot symbols. The other
fields are guard symbols and data symbols.

x[k, l] =



xp[k, l]
kp − kmax ≤ k ≤ kp − kmax
lp ≤ l ≤ lp + lτ

0 kp − 3kmax ≤ k ≤ kp − 3kmax
lp − lmax ≤ l ≤ lp + lτ + lmax

xd[k, l] otherwise

(12)

Usually, (kp, lp) are placed onto (N
2 , M

2 ). lτ is used to control the proportion of
pilots in the whole transmission symbol. The final channel estimation region is set to
k ∈ [kp − kmax − Q, kp − kmax + Q] and l ∈ [lp, lp + 2lτ ]. In other words, the size of the
channel estimation section S = (4kmax + 2Q + 1)(lmax + lτ + 1), as shown in Figure 3.

pk

pl

: Data symbols : Channel estimation

Delay

Doppler

max2pk k Q 

max2pk k Q 

maxpl l l 

Figure 3. Rx symbols pattern.
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3.2. Structured Sparse Bayesian Channel Estimation Problem Formulation

We present the channel coefficient characteristics in the DD domain in Figure 4. Ac-
cording to the characteristics of channel sparsity, we propose a new estimation algorithm.

Figure 4. Characteristics of sparsity.

We provide an example of the DD domain channel corresponding to (7). As shown
in Figure 4, the DD domain channel only has 4 non-zero responses over the whole DD
channel, whose coordinates align with the associated delay and Doppler shifts. Therefor,
estimating channel h can be viewed as a sparse recovery problem. Although the traditional
sparse Bayesian algorithm can be used here, there are only values on each path according
to the channel sparsity in the DD domain, and when a value is detected, it means that
there are values before and after the value, so the traditional algorithm does not reflect
this feature.

According to the sparse characteristics of the channel, we propose an improved sparse
Bayesian algorithm, as follows:

p(h|αl,k, γ) = N c(h|0, diag(γ)× diag(Dl)) (13)

where γ = {γ1, γ2, . . . , γlmax+1}, Dl is a diagonal matrix whose n-th diagonal element is
given by

[Dl ]k,k =


αl,1+αl,2

αl,k−1+αl,k+αl,k+1
αl,k−1+αl,k+1

k = 1
2 ≤ k ≤ 2kmax + 2Q
k = 2kmax + 2Q + 1

(14)

where αl =
{

αl,1, αl,2, . . . , αl,2kmax+2Q+1
}

, Dl = {D1, D2, . . . , Dlmax+1}].
As above, in the design of the diagonal matrix Dl , the design of the parameter αl,k not

only affects the kth element of channel h to be estimated; it also affects its neighbouring
elements. As αl,k tends to infinity, the k-th, (k + 1)th, and (k− 1)th elements are simultane-
ously driven to zero. The distribution of zero elements exhibits a blocky distribution. On
the other hand, by dividing the whole h into lmax column vectors, the function of γ is used
to distinguish the difference between the different column vectors.

According to Equation (9), the posterior distribution of h can be expressed as

p(h|y, αl,k, γ) ∝ p(y|h)p(h|αl,k, γ) (15)
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where the likelihood function of y is p(y|h) , which is

p(y|h) = N c
(

y|Φh, σ2I
)

(16)

By substituting Equations (13) and (16) into Formula (15), it is not difficult to prove
that this is a posterior distribution that follows a complex Gaussian distribution through
mathematical calculation, and the mean and covariance are as follows:

µ =
1
σ2 ∑ ΦHy

∑ = (diag{γ} × diag{Dl}+
1
σ2 ΦHΦ)−1

(17)

Here, as in the traditional sparse Bayesian algorithm, we express the Gamma hyper-
prior with respect to α as follows:

p(α) =
2kmax+2Q+1

∏
k=1

Gam(αl,k|a, b)

=
2kmax+2Q+1

∏
k=1

ba

Γ(a)
αl,k

a exp(−bαl,k)

(18)

where a and b are fixed parameters. In this section, we introduce the small positive numbers
a and b

(
a = b = 10−4). Such a configuration encourages a flat prior for α.

We also select a Dirichlet hyperprior for γ,

p(γ) = C(u)
lmax+1

∏
l=1

γul (19)

where u = [u1, u2, . . . , ulmax ] is a fixed parameter. C(u) = Γ(∑lmax
l=1 ul)

Γ(u1)···Γ(ul)
is the normalization

constant. The role of γ is to model the relative difference between different sub-vectors u.
By exploiting the common sparsity structure, the suboptimal solutions in the conventional
methods that predict a value of zero for one element of h[l] and predict a nonzero value
for the element of h[l′ 6=l] in the same position can be eliminated. Since the expectation of γ

with respect to the distribution (19) is given by E[γ] = ul/∑lmax
l′=1

ul′ , we can interpret the
parameter u, which provides a initial guess as to the relative difference between the sub-
modules of h. The parameter that provides an initial estimation of the relative difference
between the submodules of h can be interpreted as u. Note that a default setup for u can be
ul = 1 for l = 1, . . . , lmax, which indicates an initial assumption of different delay modules.

The maximum posterior (MAP) estimation of h can be derived by its posterior mean
in Equation (17) as long as αl,k. As a result, in the sections that follow, we concentrate on
obtaining the ideal αl,k and γ by solving the MAP issue.{

α
opt
l,k , γopt

}
= arg max

αl,k ,γ
p(αl,k, γ|y)

= arg min
αl,k ,γ
− log p(αl,k, γ, y)

(20)

Since we proposed a new structured prior model for h, it is clear that the above
problems cannot be solved if we continue to use the traditional sparse Bayesian algorithm.
Therefore, we provide a solution using the block SMM algorithm.

SMM Algorithm for Posterior Channel Estimate Evaluation

The proposed block SMM algorithm is similar to the expected EM algorithm. It has
two main steps. The first step is to replace the optimization step with the expected step,
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and its purpose is to find the alternative function of the objective function, that is, the local
approximate solution. The second step is the minimization step, in which the alternative
function found in the first step is minimized. While the block SMM technique divides the
parameters to be estimated into many blocks for alternate optimization, the EM algorithm
updates all parameters concurrently. This is helpful when solving structured SBL is the
only obstacle to successfully minimizing all of the proxy function’s parameters.

At this point, we assume that G(αl,k, γ, y|α̂l,k, γ̂) is the alternative function in Step 1,
where (α̂l,k, γ̂) is the estimation of (αl,k, γ). If G(αl,k, γ, y|α̂l,k, γ̂) satisfies the following
condition:

G(αl,k, γ, y|α̂k, γ̂) ≥ − log p(αl,k, γ, y), ∀αl,k, γ

G(α̂l,k, γ̂, y|α̂l,k, γ̂) = − log p(α̂l,k, γ̂, y)

∂G(αl,k ,γ̂,y|α̂l,k ,γ̂)
∂αl,k

∣∣∣
αl,k=α̂l,k

=
∂{− log p(αl,k ,γ̂,y)}

∂αl,k

∣∣∣
αl,k=α̂l,k

∂G(α̂l,k ,γ,y|α̂l,k ,γ̂)
∂γ

∣∣∣
γ=γ̂

=
∂{− log p(α̂l,k ,γ,y)}

∂γ

∣∣∣
γ=γ̂

(21)

In addition,
{

αl,k, γ
}

follows the following rules in each iteration:

α̂
(i+1)
l,k = arg max

αl,k
G(αl,k, γ̂(i), y|α̂(i)l,k , γ̂(i))

γ̂(i+1) = arg max
αl,k
G(α̂(i+1)

l,k , γ, y|α̂(i)l,k , γ̂(i))
(22)

where
{

ˆαl,k
(i), γ̂(i)

}
represents αl,k, theγ estimated value in the i-th iteration.

After a series of mathematical calculations, the specific algorithm is as follows.
(1) Step 1: A substitute for the objective function − log p(αl,k.γ,y) is required at the

corresponding step of the (i + 1)th iteration. In this study, we make use of the surrogate
function proposed by [21], which meets the requirements stated in (21), that is, a simple
proof is provided in Appendix B.

G(αl,k, γ, y|α̂(i)l,k , γ̂(i)) =

−
∫

p(h|y, α̂
(i)
l,k , γ̂(i)) log

p(αl,k, γ, h, y)

p(h|y, α̂
(i)
l,k , γ̂(i))

dh

≥ − log p(αl,k, γ, y)

(23)

where the final inequation obeys Jensen’s inequality, and when the inequation satisfies
(αl,k, γ) = (α

(i)
l,k , γ̂(i)), the equal sign is true. By substituting (15) into (23), we can obtain

G(αl,k, γ, y|α̂(i)l,k , γ̂(i)) = − log p(αl,k)− log p(γ)

−E[log p(h|αl,k ,γ)] + const
(24)

where the expectation is in relation to p(h|y, α̂
(i)
l,k , γ̂(i)). const denotes that it is not related to

αl,k or γ.
(2) Step 2: To minimize the surrogate function, the parameters αl,k are changed sequen-

tially in the corresponding step of the (i + 1)th iteration.
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To update αl,k; γ is regarded as a constant when αl,k is estimated. By substituting (13)
and (18) into (24), we obtain

G(αl,k, γ̂(i), y|α̂(i)l,k , γ̂(i))

= −
2kmax+2Q+1

∑
k=1

(a log αl,k − bαl,k)

− log|diag(γ)× diag(Dl)|

+ tr((diag(γ)× diag(Dl))× ( ˆ∑ + µ̂µ̂H))

+ const

(25)

where Equation (17) is used to compute ∑̂∑∑ and µ̂, and (αl,k, γ) is the result obtained from
the i-th iteration. Next, we consider the derivative of (25) with regard to αl,k to analyse the
optimality condition.

∂G(αl,k, γ̂(i), y|α̂(i)l,k , γ̂(i))

∂αl,k
=

a
αl,k
− b− γ̂(i)g

+ (ξk−1 + ξk + ξk+1)

(26)

where

g =
L

∑
j=1

[
Σ̃
]
[j,j] +

∣∣∣[µ̃]j∣∣∣2
+
[
Σ̃
]
[[j+MAX]L ,[j+MAX]L ]

+
∣∣∣[µ̃][j+MAX]L

∣∣∣2
+
[
Σ̃
]
[[lmax·MAX+j]L ,[lmax·MAX+j]L ]

+
∣∣∣[µ̃][lmax·MAX+j]L

∣∣∣2


(27)

ξk =
1

αl,k−1 + αl,k + αl,k+1
(28)

Specifically, when k = 1

ξk =
1

α1 + α2
(28a)

when k = MAX
ξk =

1
αMAX−1 + αMAX

(28b)

where MAX = 2kmax + 2Q + 1.
Because αl,k is coupled with the adjacent terms αl,k−1 and αl,k+1 in the term ξk, we

are unable to acquire αl,k by setting (26) to zero. Here, we have αl,k, αl,k+1, αl,k−1. The
expression for Equation (26) is

∂G(αl,k, γ̂(i), y|α̂(i)l,k , γ̂(i))

∂αl,k
=

a
αl,k
− b +

1
αl,k
− γ̂(i)g (29)

By setting (29) to zero, we can obtain

α̂
(i+1)
l,k =

a + 1
γ̂(i)g + b

(30)

Here, we do not address special cases (when k = 1 and k = MAX).
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To update γ, by leaving out the terms that are unrelated to γ and inserting (13) and (19)
into (24), we obtain

G(α̂(i+1)
l,k , γ, y|α̂(i)l,k , γ̂(i)) =

−
lmax

∑
l=0

u log γ− log|diag(γ)× diag(Dl)|

+ tr((diag(γ)× diag(Dl))× ( ˆ∑∑∑ + µ̂µ̂H))

+ const

(31)

where αl,k is fixed at its latest estimation αl,k = α
(i+1)
l,k . In relation to γ, the derivative of (31)

can be written as

∂G(α̂(i+1)
l,k , γ, y|α̂(i)l,k , γ̂(i))

∂αl,k

=
lmax + u

γ

−
(

α̂
(i+1)
l,k + α̂

(i+1)
l,k−1 + α̂

(i+1)
l,k+1

)
×
(

L

∑
j=1

[
Σ̂
]
[j,j] +

∣∣∣[µ̂]j∣∣∣2
) (32)

The best value of γ can be attained by setting (32) to zero as

γ̂(i+1) =
lmax + u

α̂
(i+1)
l,k + α̂

(i+1)
l,k−1 + α̂

(i+1)
l,k+1

×
(

L

∑
j=1

[
Σ̂
]
[j,j] +

∣∣∣[µ̂]j∣∣∣2
)−1 (33)

Step 1 and Step 2 are performed iteratively until convergence. Algorithm 1 is a
summary of the SMM algorithm presented in this paper.

Algorithm 1 SMM algorithm for structured SBL

Input: threshold ε, maximum iterations itermax
Setting the initial value αk and γ as the first loop value.

Output: Channel estimation h.
1: Step 1: the i-th iteration α

(i)
l,k , γ̂(i) as fixed parameters αl,k, γ. Update the posterior mean

and covariance matrix of h using (16).
2: Step 2: Update αl,k by (29).

Update γ by (32).
3: Convergence of judgment:Let hi+1 denote the estimation of h after the (i+1)th iteration.

4: if ‖hi+1 − hi‖2 ≤ ε or i + 1 = itermax then
5: Output ĥ
6: else
7: Set i = i + 1 and runtun Step 1
8: end if

Afterwards, the algorithm will be further studied and introduced into the MIMO
system. The dimensions of the channel change from the SISO system to the MIMO system,
and the channel dimension increases linearly with the increase of the number of anten-
nas. The sparse structure of the channel will therefore expand from one-dimensional to
multi-dimensional.
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The calculation of the posterior µ and covariance matrix Σ of h in the MA-step in
Algorithm 1 accounts for the majority of the computing effort for each iteration itermax.
Therefore, the maximum computational complexity order of the structured SBL-based
channel estimation algorithm is O

(
itermaxL3S3).

4. Simulation Results

In this section, we verify the performance of our proposed algorithm by the nor-

malized mean square error (NMSE). The NMSE was defined as
∥∥∥h− ĥ

∥∥∥2

2
/‖h‖2

2. We set
the parameters as follows (see Table 1): the number of symbols N = 64, the number of
subcarriers M = 128, the carrier frequency was 15 kHz, and the subcarrier frequency was
4× 109 Hz. The maximum Doppler shift varied according to the speed, and the maximum
delay value was lτ = 10. kmax was a parameter related to speed.

Table 1. Simulation parameters.

Parameters Value

Symbols N 64
Subcarries M 128

Carrier frequency ∆ f 15 kHz
Subcarrier frequency 4× 109 Hz

The maximum delay lmax 10

First, we compared the performance of different algorithms under different signal-
to-noise ratios (SNR). Here, we used the reference algorithm for the least square (LS)
algorithm, the orthogonal matching pursuit (OMP) algorithm, and the conventional SBL
algorithm [22]. The user speed was 250 km/h, and lτ = 10. As shown in Figure 5, in the case
of a low signal-to-noise ratio, our proposed structured SBL algorithms have a significant
advantage over other algorithms. Specifically, our algorithm better reduces interference.

0 5 10 15 20 25 30

SNR(dB)

10
-3

10
-2

10
-1

10
0

10
1

N
M

S
E

Structured SBL

Conventional SBL

LS

OMP

Figure 5. Normalized MSE versus SNR.

Then, we compared the cases where lτ is constantly changing in different delay regions,
as shown in Figure 6. In this OTFS modulation system, we set the SNR to 20 dB, the user
speed to 250 km/h, and Q = 4. The figure shows that the structured SBL algorithm we
proposed maintains certain advantages. As the delay range lτ continues to expand, the
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estimation results become increasingly accurate. We can see that under the same estimation
error, compared to other algorithms, the structured SBL has the smallest value in delay
dimension, which means that the pilot proportion is the smallest. For example, under
the condition of a mean square error of 10−2, the values of the delay dimension lτ of the
structured SBL and conventional SBL algorithm are 7 and 8, respectively. The pilot overhead
(except guard symbols) is η = (2kmax+1)(lτ+1)

M×N . The pilot overheads of the structured SBL
and the conventional SBL are about 1.07% and 1.21%, respectively.

5 6 7 8 9 10

l

10
-3

10
-2

10
-1

N
M

S
E

Structured SBL

Conventional SBL

LS

OMP

Figure 6. Delay range lτ versus normalized MSE.

Next, we set the different speeds for performance comparison in Figure 7. Here, we
set the speed variation range to [150, 350]; the SNR was 20 dB, Q = 4, and lτ = 5. The
figure shows that the channel estimation results are affected to some extent with increasing
speed. The higher the speed is, the slightly worse the accuracy of the estimation becomes.
However, in terms of the trend of the curve, the curve is smooth overall with little change,
and the LS algorithm is highly sensitive to changes in speed. On the other hand, the
structured SBL algorithm maintains high robustness.

150 200 250 300 350

Velocity(km/h)

10
-2

10
-1

10
0

N
M

S
E

Structured SBL

Conventional SBL

LS

OMP

Figure 7. Velocity versus normalized MSE.
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5. Conclusions

In this paper, we derived a sparse structure model formula from the input–output
relationship of the DD domain. Based on the characteristics of the channel’s sparse structure,
we treated channel estimation as a sparse recovery problem. In addition, we used block and
continuous alternating optimization to solve the parameter problem of block distribution,
which further improved the accuracy of channel estimation. Finally, through simulation
analysis, we verified that the proposed algorithm has certain advantages over the traditional
SBL algorithm. Under the condition of a low signal-to-noise ratio, the estimation accuracy
was higher, and the influence of interference was diminished.
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Appendix A

In an OTFS system, the input–output relation of DD domain is denoted as

y[k, l] =
P

∑
i=1

Q

∑
q=−Q

(
e−j2π(−q−κνi ) − 1

Ne−j 2π
N (−q−κνi ) − N

)
hie−j2πνiτi

︸ ︷︷ ︸
Real channel

×x
[
[k− kνi + q]N , [l − lτi ]M

]
+ v[k, l]

(A1)

Another equation form is

y[k, l] =
kmax+Q

∑
k′=−kmax−Q

lmax

∑
l′=0

h[k
′
, l
′
]x[[k− k

′
]N , [l − l

′
]M] (A2)

When k
′

is fixed as constant, we have

y[k, l] =
lmax

∑
l′=0

xT
k,l−l′h

[
l′
]

(A3)

where

xk,l−l′ =

 x[k− (−kmax −Q), l − l′]
...

x[k− (kmax + Q), l − l′]

 (A4)

h
[
l′
]
=

 h[−kmax −Q, l′]
...

h[kmax + Q, l′]

 (A5)

Finally,

y =

 y[k−, l−]
...

y[k+, l+]

 =


xT

k− ,l−
...

xT
k+ ,l+

h = Φh + w (A6)

where [k−, l−] is the part of the estimation region.
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Appendix B

G(αk, γl , y|α̂(i)k , γ̂
(i)
l ) = −

∫
p(h|y, α̂

(i)
k , γ̂

(i)
l ) log p(αk ,γl ,h,y)

p(h|y,α̂(i)k ,γ̂(i)
l )

dh

=
h|y,α̂(i)k ,γ̂(i)

l
[− log p(αk ,γl ,h,y)

p(h|y,α̂(i)k ,γ̂(i)
l )

]

≥ − log p(αk, γl , y)

= − log
(∫

p(h|y, α̂
(i)
k , γ̂

(i)
l ) log p(αk ,γl ,h,y)

p(h|y,α̂(i)k ,γ̂(i)
l )

)
= − log p(αk, γl , y)

(A7)
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