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Abstract: This paper proposed the use of mutual information (MI) decomposition as a novel approach
to identifying indispensable variables and their interactions for contingency table analysis. The MI
analysis identified subsets of associative variables based on multinomial distributions and validated
parsimonious log-linear and logistic models. The proposed approach was assessed using two real-
world datasets dealing with ischemic stroke (with 6 risk factors) and banking credit (with 21 discrete
attributes in a sparse table). This paper also provided an empirical comparison of MI analysis versus
two state-of-the-art methods in terms of variable and model selections. The proposed MI analysis
scheme can be used in the construction of parsimonious log-linear and logistic models with a concise
interpretation of discrete multivariate data.
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1. Introduction

The selection of parsimonious log-linear and logistic models for discrete multivariate
data is crucial for concise data interpretation based on statistical inference methods. Since
the advent of linear regression, researchers developed model selection methods, such as
ridge regression [1], the Cp statistic [2], and the Akaike information criterion (AIC) [3]. As a
tool for enhancing the prediction accuracy of a selected model, the AIC inspired the develop-
ment of the Bayesian information criterion (BIC) [4], which maximizes posterior likelihood
against a finite-mixture prior distribution. Researchers implemented conventional selection
procedures with various loss-function penalty criteria to facilitate the selection of models
and corresponding variables in generalized linear models (GLMs) [5–8]. However, the
inclusion of AIC and BIC in statistics software packages [9] led to the selection of various
sets of predictors when applying GLMs to analyzing the same dataset [10,11].

Researchers in the field of model and variable selection recently struggled with high
dimensionality (numerous variables) and small (sparse) datasets. This led to the devel-
opment of methods for the optimization of loss function criteria, such as Lasso, adaptive
Lasso, elastic Net, Scad, and the Dantzig selector [12–16]. In a large-scale meta-analysis,
Wang et al. [17] observed considerable variation in the cross-validation performance of
model/variable selection methods.

When employing contingency tables as the core of discrete multivariate data analysis,
researchers established that valid log-linear models can be used to generate valid logistic
models; however, the converse is not true. The construction of hierarchical log-linear
models is generally based on stepwise selection procedures, beginning with the inspection
of two-way association effects, followed by the inspection of significant three-way and
higher-order interaction effects. The effects of including additional parameters can be
assessed using the likelihood ratio (LR) deviance or chi-square statistic, as a basic way of
testing goodness-of-fit when discriminating between models with the nested structure of
parameters [18–22]. In contingency table analysis, LR deviance is a log-likelihood measure
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of the geometric projection from data to a hypothetical model. By analogy, an algebraic
definition of a log-linear or logistic model is equivalent to describing the geometry of or-
thogonal decomposition of the log-likelihood that intrinsically characterizes the association
effects between variables.

The analysis of variance (ANOVA) for a linear model illustrates the orthogonal log-
likelihood decomposition of normally distributed variables. A basic extension of this
analysis is the mutual information (MI) identity, which introduces an orthogonal decompo-
sition of the log-likelihood ratios of the joint distribution of variables [23]. For example,
the model of independence between three variables can be decomposed into a sum of
three orthogonal terms, including two two-way MI association terms and one three-way
conditional MI (CMI) term. Each term defines a Kullback–Leibler (KL) divergence value
between a pair of variables [24]. A two-way KL divergence value describes a log-likelihood
projection from data to the model of independence between the variables, which character-
izes the basic Pythagorean law of information identity [25]. The three-way Pythagorean law
describes CMI as the sum of two orthogonal components: the interaction (which vanishes
with normal distributions) and partial association. When dealing with a three-way con-
tingency table, this law yields two-step orthogonal LR tests rather than a non-orthogonal
combination of the Breslow–Day test [26] and the Mantel–Haenszel test [27]. Related
examples can be found in [28]. The MI of a vector variable can generally be decomposed as
a sum of orthogonal lower-dimensional MI and CMI terms, which present significant main
and interaction effects between variables.

In this paper, we propose an MI decomposition approach to constructing log-linear
and logistic models based on the multinomial distribution of a contingency table. In
Section 2, we demonstrate that the basic forms of log-linear models can be expressed
using MI and CMI terms. We also demonstrate the execution of a two-step LR test for
conditional independence based on the Pythagorean law. In Section 3, we examine the
main and interaction effects among factors by testing a series of MI identities in a clinical
dataset, which includes six binary risk factors and the dichotomous stroke status of patients.
We then use the observed significant effects to construct a concise log-linear model and
present its graphical model. In Section 4, we present a parsimonious logistic model for
predicting the stroke status through the MI deletion of redundant factors and effects. In
Section 5, we outline the stepwise forward and backward MI selection procedure for
indispensable predictors and construct parsimonious logistic model through inspecting an
MI identity comprising significant main and interaction effects. In Section 6, we implement
the proposed MI procedure for a German banking credit dataset (in the UCI Machine
Learning Repository) which comprises 21 attributes of 1000 customers [7]. Section 7
presents an empirical comparison between the proposed MI analysis and two state-of-the-
art methods.

To summarize, the proposed MI analysis can be used to construct parsimonious log-
linear and logistic models for discrete multivariate data. It is also shown that discretization
of continuous variables presents a legitimate and potential MI application to analyzing
datasets that include both continuous and discrete variables. For the extended applications
to GLMs, proper inference theory remains to be fully developed.

2. Log-Linear Model and Mutual Information

Among the GLMs, log-linear models are commonly applied to modeling contingency
tables through the log link function, multinomial, and Poisson distributions. The condi-
tional distribution of a multivariate Poisson distribution given the margins of the discrete
variables characterizes the multinomial distribution of a contingency table [18,21,29]. We
illustrate the essential connections between hierarchical log-linear models and mutual
information decompositions in this section. Let (X, Y, Z) denote a three-way I × J × K
contingency table with cell counts nijk = nX,Y,Z(i, j, k), i = 1, . . . , I, j = 1, . . . , J, k = 1,
. . . , K, and total count ∑i,j,k nijk = N. Denote the joint probability density function (pdf)



Entropy 2023, 25, 750 3 of 20

and cell mean by fX,Y,Z(i, j, k) and
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is the MI between the three variables [33]. The MI is defined with a geometric notion; that 
is, it is the KL divergence value from the joint pdf onto the product of marginal pdfs, or 
the KL projection root in the hypothesized space of independence [24-25,34]. By factoring 
the joint log-likelihood, an orthogonal partition of the MI terms between the variables is 
expressed as the following MI identity 

I(X, Y, Z) = I(X, Z) + I(Y, Z) + I(X, Y|Z). (5) 

A two-way MI term such as I(X, Z) is analogously defined with the marginal (X, Z) 
table. The CMI term I(X, Y|Z) defines the expected log-likelihood ratio for testing the con-
ditional independence between X and Y across levels of Z. The right-hand side of (5) ad-
mits three information equivalent forms through exchanging the common variable Z with 
either X or Y. It is crucial that the MI of a three-way table (X, Y, Z) is decomposed as the 
sum of two two-way MI terms and a three-way CMI term. With multinomial log-likeli-
hood, the sample version of (5) satisfies the same MI identity through the expression 

=(µijk), respectively. The (multivariate) multinomial
distribution of the table is

Prob(n|f) = N! ∏ijk

f
nijk
ijk

nijk!
, (1)

where n =
(

nijk

)
and ∑ijk fijk = 1. Equation (1) can be derived from a random total count

N, where n follows a multivariate Poisson sampling distribution

Prob(n|
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A two-way MI term such as I(X, Z) is analogously defined with the marginal (X, Z) 
table. The CMI term I(X, Y|Z) defines the expected log-likelihood ratio for testing the con-
ditional independence between X and Y across levels of Z. The right-hand side of (5) ad-
mits three information equivalent forms through exchanging the common variable Z with 
either X or Y. It is crucial that the MI of a three-way table (X, Y, Z) is decomposed as the 
sum of two two-way MI terms and a three-way CMI term. With multinomial log-likeli-
hood, the sample version of (5) satisfies the same MI identity through the expression 

) ∼= ∑ijk nijklogµijk −∑ijk µijk. (2)

In a hierarchical log-linear model, for example, the saturated model of three variables
specifies the logarithmic factor in (2) as

log µijk = λ+ λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λYZ

jk + λXYZ
ijk . (3)

Model (3) explains the observed table through inspecting significant main effects, two- and
three-way effects by checking LR deviance statistics between the nested models [18,19,21,30–32].

We now formulate a theoretically equivalent approach to inspecting hierarchical log-
linear models such as (3) through the analysis of MI and illustrate the connection between
the two procedures. In a three-dimensional table, the Shannon entropy defines a basic
equation of joint and marginal probabilities as

H(X) + H(Y) + H(Z) = I(X, Y, Z) + H(X, Y, Z), (4)

where
H(X, Y, Z) = −∑ijk fX,Y,Z(i, j, k)· log[ fX,Y,Z(i, j, k)]

is the joint entropy. A marginal entropy such as H(X) is defined by analogy. Here,

I(X, Y, Z) = ∑ijk fX,Y,Z(i, j, k)· log
{

fX,Y,Z(i, j, k)
fX(i) fY(j) fZ(k)

}
is the MI between the three variables [33]. The MI is defined with a geometric notion; that
is, it is the KL divergence value from the joint pdf onto the product of marginal pdfs, or
the KL projection root in the hypothesized space of independence [24-25,34]. By factoring
the joint log-likelihood, an orthogonal partition of the MI terms between the variables is
expressed as the following MI identity

I(X, Y, Z) = I(X, Z) + I(Y, Z) + I(X, Y|Z). (5)

A two-way MI term such as I(X, Z) is analogously defined with the marginal (X, Z)
table. The CMI term I(X, Y|Z) defines the expected log-likelihood ratio for testing the
conditional independence between X and Y across levels of Z. The right-hand side of (5)
admits three information equivalent forms through exchanging the common variable Z
with either X or Y. It is crucial that the MI of a three-way table (X, Y, Z) is decomposed as the
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sum of two two-way MI terms and a three-way CMI term. With multinomial log-likelihood,
the sample version of (5) satisfies the same MI identity through the expression

2NÎ(X, Y, Z)

= 2N ∑ijk f̂X,Y,Z(i, j, k)· log
{

f̂X,Y,Z(i,j,k)
f̂X(i) f̂Y(j) f̂Z(k)

}
= 2N ∑ik f̂X,Z(i, k)· log

{
f̂X,Z(i,k)

f̂X(i) f̂Z(k)

} (
= 2NÎ(X, Z)

)
+2N ∑jk f̂Y,Z(j, k)· log

{
f̂Y,Z(j,k)

f̂Y(j) f̂Z(k)

}(
= 2NÎ(Y, Z)

)
+2N ∑

k

[
∑
ij

f̂XY|Z(i, j|k) log
(

f̂XY|Z(i,j|k)
f̂X|Z(i|k) f̂Y|Z(j|k)

)](
= 2NÎ(X, Y|Z)

)
= 2N

{
Î(X, Z) + Î(Y, Z) + Î(X, Y

∣∣Z)},

(6)

where N is the total sample size. The notation f̂XZ(i, k) denotes the sample estimate of the
joint pdf in the (i, k) cell, and f̂X(i) f̂Z(k) is the product pdf estimate under the assumption
of independence. Other notations in (6) are defined by analogy. The constant factor 2N
is added to yield quadratic approximation in distribution such that the scaled Î(X, Z),
Î(Y, Z) and Î(X, Y

∣∣Z) are asymptotically chi-square distributed with (I-1)(K-1), (J-1)(K-1)
and (I-1)(J-1)K degrees of freedom (dfs), respectively. For ease of notation, the factor 2N
will be implicitly used as in (6) but omitted in the rest of the text.

In application, the sample MI Î(X, Y
∣∣Z) in (6), comparable to the deviance statistic

G2({XZ, YZ}) [18], is used to test the hypothesis of conditional independence between X
and Y given Z; that is, I(X, Y|Z)= 0, which defines the log-linear model {XZ, YZ}. With
this hypothesis, a remarkable Pythagorean law characterizes that I(X, Y|Z) depicts the
hypotenuse of the right triangle with two orthogonal sides: one side is the three-way
interaction Int(X, Y, Z), which defines the heterogeneous association between X and Y
across the levels of Z; the other side is the partial association Par(X, Y|Z), which defines
the homogeneous (uniform) association between X and Y across levels of Z. Specifically,
the three-way CMI term of (5) can be expressed as the sum of two orthogonal components

I(X, Y|Z) = Int(X, Y, Z) + Par(X, Y|Z) (7)

We now illustrate the connection between (3) and (4), where (4) represents the ex-
pectation of the sample version of (3) except for a (normalizing) constant. The sum
H(X) + H(Y) + H(Z)−H(X, Y, Z) represents log µijk−

(
λX

i + λY
j + λZ

k

)
, and I(X, Y, Z) repre-

sents the total association λXZ
ik + λYZ

jk + λXY
ij + λXYZ

ijk in (3) using
I(X, Z) + I(Y, Z) + I(X, Y|Z) of (5). The last statement and (7) explain that the sum
λXY

ij + λXYZ
ijk is exactly presented by I(X, Y|Z) = Int(X, Y, Z) + Par(X, Y|Z), where the

two-way term λXY
ij in (3) actually represents the three-way term Par(X, Y|Z) [34]. This does

not yield incorrect estimates because it is the unique three-way partial association term
which must match the last two-way XY term. In other words, λXY

ij should be interpreted as

the three-way partial association between X and Y given Z when λXZ
ik and λYZ

jk are already
in the model.

The sample analogs of the terms in (7), being the last summand in (6), satisfy the
same Equation (7). In practice, the sample CMI Î(X, Y|Z) is the maximum likelihood
estimate (MLE) of conditional independence. The MLE ˆInt(X, Y, Z) is computed using the
iterative proportional fitting or the Newton–Raphson procedure [18]. The MLE of the partial
association ˆPar(X, Y|Z) can be obtained by subtraction. Here, the Pythagorean law asserts
that testing for conditional independence using the MLE Î(X, Y|Z) can be decomposed as a
two-step LR test, where the usual test size α = 0.05 is replaced by two separate sizes α1 and
α2, such that α = α1 + α2 − α1α2 by the geometry of orthogonal decomposition. Because
all three tests logically include testing for conditional independence, the law stipulates that
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the hypothesis of no interaction should be tested using ˆInt(X, Y, Z) with (I-1)(J-1)(K-1) dfs
against the size α1 (more stringent than using α), and the hypothesis of uniform (partial)
association should be tested using ˆPar(X, Y|Z) with (I-1)(J-1) dfs against the size α2 [28].

Formulas (5) to (7) can be straightforwardly extended to multi-way tables. Suppose
that a four-way table (T, X, Y, Z) is available, the updated MI identity is

I(T, X, Y, Z)
= I(X, Y, Z) + I({X, Y, Z}, T)
= I(X, Z) + I(Y, Z) + I(X, Y|Z) + [I(T, Z) + I(T, Y|Z) + I(T, X|{Y, Z})].

(8)

Similar to the connection between (3) and (5), the difference of information decomposi-
tion between the usual log-linear model of all (six) two-way effects {XZ, YZ, TZ, XY, TY, TX},
and the MI association model in (8) is now explained. When the first three two-way terms
{XZ, YZ, TZ} or the three two-way MI components in (8), are already in the model, the
terms XY and TY actually represent partial association components Par(X, Y|Z) and Par(T,
Y|Z) within the CMI terms I(X, Y|Z) and I(T, Y|Z) in (7), respectively. The last two-way
term TX actually yields the component Par(T, X|{Y, Z}) within the term I(T, X|{Y, Z}) in
(8). These illustrations show that the sum of the three interaction effects Int(X, Y, Z), Int(T,
Y, Z) and Int(T, X, {Y, Z}) is the LR deviance statistic for testing the goodness of fit of the
model with six two-way effects. If the interaction effects are significant, the corresponding
graphical model may not be expressed as a union of non-overlapping cliques, which were
termed indecomposable models by [35] and [36].

Meanwhile, the last three summands in the bracket of (8) accounts for the association
between T and {X, Y, Z}. They can be used to explain the (logistic) regression of T on {X,
Y, Z} when T is the response variable of interest. For instance, if the null hypothesis of
vanishing CMI “ I(T, X|{Y, Z}) = 0” is tested and accepted, X can be removed from a
regression model. While information equivalent MI identities to (8) can be derived from
interchanging the explanatory variables [23], the MI approach to building a log-linear or
logistic model must be approved by testing for a valid MI identity.

3. MI Log-Linear Modelling

It is convenient to illustrate MI log-linear analysis using a contingency table of finite
variables. The basic idea is to delete insignificant higher-order CMI and interaction effects
as many as possible, such that the least number of significant lower-order effects are kept in
the model. We emphasize that non-unique concise log-linear models can often be obtained
from different sets of selected variables.

In this section, a clinical dataset is used to illustrate the MI approach for constructing a
log-linear model. In the dataset, the brain computed tomography (CT) scans were available
from 354 patients, who received a diagnosis of ischemic stroke in the middle cerebral
arterial (MCA) territory, and 1518 control patients who did not have any ischemic stroke
symptom at the time of CT scans [37]. The data were collected during 2006 through
2008 for a research project on the association between ischemic stroke and its risk factors,
among which the calcification burden in the MCA territory was of main concern when
specifying a logistic or log-linear model. The target variable was the status of MCA stroke
patients (S: 1 = case; 0 = control), and the risk factors consisted of the calcification burden
(C: 1 = yes; 0 = no) in the MCA territory, age (A: 1 ≥ 60; 0 < 60), gender (G: 1 = male;
0 = female), hypertension (H: 1= SBP > 140mm Hg or DBP > 90 mm Hg; 0 = otherwise),
diabetes mellitus (D: 1 = fasting serum glucose level > 7.8 mmol/L; 0 = otherwise), and
smoking (M: 1 = smoking over 1 cigarette/day; 0 = none). The risk factors were coded as
1 for case, 0 for control, except for age and gender.

Our goal is to assess parsimonious models for interpretation of the stroke dataset.
We proceed by deleting the most insignificant high-way MI and CMI terms between the
variables. Among the seven factors, factor C (calcification burden) yields the least significant
MI measures with the other 6 factors. Putting aside the factor C, the next factor M has the
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least significant MI, followed by the factor G. Then, the remaining four factors {S, A, D, H}
are significantly associated with each other. As an analog of (8), an information identity
between the seven factors can be expressed as

Î(C, M, G, S, D, H, A)
= Î({A, D, G, H, M, S}, C) + Î({A, D, G, H, S}, M)
+ Î({S, A, D, H}, G) + Î({D, A, H}, S) + Î(D, A, H).

(9)

Note that all summands on the right-hand side of (9) are orthogonal to each other. The
first summand is the MI between C and the other six factors, which can be decomposed
into the sum of six orthogonal terms below. Each asterisk “*” indicates an insignificant
chi-square test statistic at level α = 0.05, and values in the parentheses following each
MI term are the LR (goodness-of-fit) statistic, degrees of freedom, and chi-square p-value,
respectively.

Î({A, D, G, H, M, S}, C)
= Î(C, M|{A, D, G, H, S}) ∗ (15.232, d f = 32, p = 0.995)
+ Î(C, G|{S, H, D, A}) ∗ (9.768, d f = 16, p = 0.878)
+ Î(C, D|{S, H, A}) ∗ (5.623, d f = 8, p = 0.689)
+ Î(C, H|{S, A}) ∗ (5.057, d f = 4, p = 0.281)
+ Î(C, A|S) (31.449, d f = 2, p < 0.001)
+ Î(C, S) (96.972, d f = 1, p < 0.001),

(10)

Equation (10) can be summarized as

Î({A, D, G, H, M, S}, C)
= Î(C, {M, G, D, H}|{S, A}) ∗ (35.68, d f = 60, p = 0.995)
+ Î(C, {S, A}) (128.421, d f = 3, p < 0.001).

(11)

In (10) and (11), it was found that ˆInt(C, A, S) (8.234, df = 1, p = 0.004) was a significant
component of Î(C, A|S) such that the association between the calcification burden in the
MCA territory and age differed between the case and control groups. Moreover, Î(C, A|S)
(23.215, df = 1) was smaller than Î(C, A) (46.316, df = 1), so that Î(C, {S, A}) was less than
the sum of Î(C, A) and Î(C, S).

By analogy, the factor M in (9) yields a similar decomposition as follows:

Î({A, D, G, H, S}, M)
= Î (M, A|{D, G, H, S}) ∗ (25.325, d f = 16, p = 0.064)
+ Î (M, D|{G, H, S}) ∗ (12.589, d f = 8, p = 0.127)
+ Î (M, H|{G, S}) ∗ (5.196, d f = 4, p = 0.268)
+ Î (M, {G, S}) (331.145, d f = 3, p < 0.001)

(12)

Here, the CMI estimate Î(M, {A, D, H}|{G, S}) is decomposed into the first three
insignificant terms on the right-hand side of (12). The last summand Î(M, {G, S}) is
equal to the sum of two significant terms Î(M, G) (314.21, df = 1) and Î(M, S|G) (16.935,
df = 2). The latter is equal to the sum ˆInt(M, S, G) (7.224, df = 1) + ˆPar(M, S|G) (9.211,
df = 1), which are smaller than Î(M, S) (12.903, df = 1). It indicates that, in a final valid log-
linear model, the three-way CMI term Î(M, S|G) can possibly be replaced by the two-way
MI term Î(M, S) through compensation of information from other terms.
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Next, the factor G in (9) provides the following decomposition:

Î({S, A, D, H}, G)
= Î(G, S|{A, D, H}) ∗ (11.388, d f = 8, p = 0.181)
+ Î(G, H|{A, D}) ∗ (8.695, d f = 4, p = 0.069)
+ Î(G, {A, D}) (32.605, d f = 3, p < 0.001)
= Î (G, {S, H}|{A, D}) ∗ (20.083, d f = 12, p = 0.072)
+ Î(G, D|A) (18.891, d f = 2, p < 0.001)
+ Î(G, A) (13.714, d f = 1, p < 0.001).

(13)

The summand Î(G, D|A) in (13) includes the significant interaction ˆInt(G, D, A)
(13.529, df = 1), which is close to Î(G, A) and greater than Î(G, D) (8.742, df = 1).

Finally, the last two terms in (9) consist of the following significant components

Î({D, A, H}, S)
= Î (S, D|{A, H}) (22.368, d f = 4, p < 0.001)
+ Î(S, H|A) (71.886, d f = 2, p < 0.001)
+ Î(S, A) (88.586, d f = 1, p < 0.001),

(14)

and
Î(D, A, H)
= Î(A, H) (228.002, d f = 1, p < 0.001)
+ Î(D, H) (144.473, d f = 1, p < 0.001)
+ Î(D, A|H) (36.956, d f = 2, p < 0.001).

(15)

Equations (14) and (15) include significant interaction terms ˆInt(S, D, {A, H}) (19.690,
df = 3), ˆInt(S, A, H) (13.543, df = 1, p < 0.001) and ˆInt(A, D, H) (16.797, df = 1). Here,
Î(S, D|{A, H}) is slightly less than Î(S, D) (24.08), Î(S, H|A) is less than Î(S, H) (105.425),
and Î(D, A|H) is less than Î(D, A) (66.98). However, significant interaction terms ˆInt(S, A,
H) and ˆInt(A, D, H) may be indispensable, as illustrated below.

By collecting significant MI and interaction terms in (11) and (13)–(15), significant
terms in (9) are included in the following decomposition

Î(C, M, G, S, D, H, A)
∼= Î (C, A|S) + Î(C, S) + Î(M, S|G) + Î(M, G)
+ Î(G, D|A) + Î(G, A) + Î(S, A) + Î(S, H|A)
+ Î(S, D

∣∣{A, H}) + Î(A, D, H)

(16)

Among hierarchical log-linear models, a class of graphical models composed of nodes
and edges were attractive with simple network expressions [38]. Note that the graphs were
constructed from models comprising mainly significant two-way effects (edges) between
the variables (nodes), with possibly significant cliques (triangles). From the information
identity (8), it is known that there are no more than six orthogonal two-way effects that
can be derived from seven variables {C, A, S, M, G, D, H}. However, from among those
two- and high-way effects in Equations (14)–(16), it is found that the set of six two-way
effects {CS, MG, AH, DH, SH, DA} with the greatest MI estimates could only yield an
under-fit model. Suppose that a valid log-linear model is given by inserting additional
non-orthogonal two-way effects to the last model of six orthogonal effects. Then, the largest
model of twelve significant two-way effects is the following null graphical model

LLM0 = {CA, CS, MS, MG, AH, DH, SH, SA, DA, SD, GA, GD}, (17)

which is still an under-fit model with LR deviance 171.577 (df = 108, p < 0.001). Con-
sequently, the above analysis based on (16) indicates that a valid graphical model must
include some three- or high-way interaction effects.
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By (16), it was shown that adding the orthogonal three-way effects {ADG, SAH, ADH}
to the subset {CA, CS, MS, MG, SD} of model (17) would yield a valid log-linear model

LLM1 = {CA, CS, MG, MS, ADG, ADH, SAH, SD}, (18)

with the deviance 127.96 (df = 105, p = 0.063). The three-way effect AD was repeated in
(18), and the duplication can be avoided by regrouping the terms in (16) to yield another
valid model

LLM2 = {ACS, GMS, ADG, DH, SAH, SD}, (19)

with deviance 126.53 (df = 103, p = 0.058). Now that LLM1 uses two fewer parameters
than does LLM2, it can be regarded as the best parsimonious model for the MCA stroke
data by the proposed MI analysis. Consequently, the so-called graphical model LLM1 must
include three significant interaction terms {ADG, ADH, SAH} in (16). A modification of the
standard diagram is recommended to plot the graphical model of LLM1, which shows three
significant triangles (cliques) for three sets of three nodes (see Figure 1 below). This extends
the construction and interpretation of graphical models beyond the existing literature, for
example, [30,38].
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Figure 1. Graphical model LLM1: Edges {CA, CS, DS, MG, MS} and triangles {ADG, ADH, ASH}
with the same corresponding colors black, red, green and cyan in the graph.

To summarize, the above scheme of identifying the best parsimonious log-linear
model LLM1 for the seven-way stroke data also leads to exhibiting significant edges and
cliques (triangles) in a graphical model. Because the sample size was large relative to the
number of variables, it is unnecessary to use a penalty criterion as commonly practiced
in the literature.

4. MI Logistic Regression

As a member of GLMs, the logistic model extends classical linear models to the
condition of using a binary (or discrete) response variable [39]. The covariates can be purely
qualitative in nominal levels or mixed categorical and numerical variables. Recall Equation
(8), given the target variable T and the regressors X, Y, and Z, a logistic model consisting of
three significant main effects and YZ interaction effect can be expressed as

logit
[

fT|X,Y,Z
(
T = 1

∣∣X = i, Y = j, Z = k
)]
≡ log

[
fT|X,Y,Z(T=1|i,j,k)
fT|X,Y,Z(T=0|i,j,k)

]
= β0+βY

j +βZ
k +βYZ

jk +βX
i .

(20)

Model (20), being equivalent to the log-linear model {XYZ, TYZ, TX}, explains T using
the composite of main and interaction effects for (Y, Z), in addition to the main effect X. The
goodness-of-fit test for model (20) is examined using the deviance ˆInt(T, X, {Y, Z}) according
to (8), where ˆPar(T, X|{Y, Z}) is significant for the main effect X. This ascertains correct
main-effect parameter estimates bypassing the model of purely main effects (corresponding
to the model with all possible two-way effects plus one three-way effect) according to the
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discussions of proper log-likelihood decomposition in (8). The MI approach to modeling
logistic regression will be illustrated using the MCA stroke dataset.

Consider the stroke dataset where the target variable is the stroke status S (1 for cases
and 0 for controls). The parsimonious log-linear model LLM1 of (18) presented the essential
association between S and six risk factors. In particular, it was shown that the factor G
(gender) is not needed for the illustration of S, because it is unrelated to S in model LLM1.
Indeed, the first-step MI analysis confirmed this observation:

Î({G, M, H, D, C, A}, S)
= Î (S, G|{M, H, D, C, A}) ∗ (28.837, d f = 32, p = 0.627)
+ Î(S, M|{H, D, C, A}) (26.110, d f = 16, p = 0.052)
+ Î(S, C|{H, A, D})(78.153, d f = 8, p < 0.001)
+ Î(S, {H, A, D})(182.841, d f = 4, p < 0.001).

(21)

The first summand in (21) confirmed that factor G was dispensable as expected.
Next, the second summand of (21) indicated that the factor M (smoking) was marginally
significant conditional on the other four factors. A clinical concern about the calcification
burden in the brain MCI territory could address whether M is related to the ischemic stroke.
By this scenario, the relevant CMI terms can be expressed as

Î(S, M|{H, D, C, A})
= ˆInt (S, M, {H, D, C, A}) (15.495, d f = 15, p = 0.416)
+ ˆPar(S, M|{H, D, C, A}) (10.615, d f = 1, p = 0.001),

(22)

which approves the significant partial association between S and M conditional on the
factors {H, D, C, A}. Given the effect of M on S in Equation (22), the MI between S and the
five risk factors {C, M, H, A, D} can be rearranged to yield the decomposed MI identity in
Table 1 below.

Î(S, {C, M, H, A, D})
= Î(S, D) + ˆPar(S, A| D) + ˆInt(S, D, A)
+ ˆPar(S, H|{D, A}) + ˆInt(S, H, {D, A})
+ ˆPar(S, C|{H, D, A}) + ˆInt(S, C, {H, D, A})∗
+ ˆPar(S, M|{C, H, D, A}) + ˆInt(S, M, {C, H, D, A}) ∗ .

(23)

Table 1. Partitioned CMI terms in the MI identity (23).

Orthogonal
Components

Conditional
Mutual Information Interaction Partial Association

LR df p LR df p LR df p

Î(S, M|{C, H, D, A}) 26.110 16 0.052 15.495 15 0.416 10.615 1 0.001

Î(S, C|{H, D, A)) 78.153 8 <0.001 11.963 7 0.102 66.190 1 <0.001

Î(S, H|{D, A}) 55.444 4 <0.001 12.257 3 0.007 43.187 1 <0.001

Î(S, A|D) 103.314 2 <0.001 27.840 1 <0.001 75.474 1 <0.001

Î(S, D) 24.083 1 <0.001

By deleting two insignificant higher-order interactions, five main-effect (partial as-
sociation) terms {M, C, H, A, D} and the interaction effect ˆInt(S, H, {D, A}) remain in
the MI identity (23) as shown in Table 1. Although this four-way interaction term is
significant, it was not selected into a valid model, because it is smaller than the sum of
two three-way estimates ˆInt(S, A, H) and ˆInt(S, D, H) and can be replaced by these two
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three-way effects. In fact, Table 1 leads to the MI logistic model with significant main and
interaction effects as

logit[ f (S|C, M, H, A, D)]
= −3.584 + 1.653 D + 1.659A − 1.003 DA + 1.689H − 0.864AH
− 0.763DH + 0.495M + 2.119C.

(24)

Model (24) was the most concise logistic model with the least significant effects, given
the LR deviance 26.651 (df = 23, p = 0.271) in Table 1. Remarkably, the minimum AIC model
using the five factors {C, M, H, A, D} can be found by including more interaction effects
among {MA, MD, MH} in the standard procedure (cf. SAS CATMOD or SPSS logistic
procedure). The minimum AIC model using significant parameter estimates gives

Logit [ f (S|C, M, H, A, D)]
= −3.824 + 1.895D + 1.895A − 1.130DA + 1.664H − 0.749DH
− 0.841AH + 1.180M − 0.652MA − 0.663MD + 2.083C,

(25)

with the LR deviance 18.97 (df = 21, p = 0.587). It is worth noting that the estimate 0.495 of
the parameter M in (24) is closer to the raw-data logarithmic odds ratio 0.487 (between S
and M) than the estimate 1.180 of M in the less concise AIC model in (25). This evidences
that the effect of M on S was confounded by the extra interaction effects {MA, MD} in (25).

5. MI Variable and Model Selection

Variable and model selection in GLMs was a theme topic in statistical science. For data
with moderate to high-dimensional variables, the MI stepwise forward variable selection
scheme that also incorporates a backward deletion scheme is formulated as the main
procedure in application.

Let {X, T} denote a set of categorical variables in a contingency table, where T is the
response variable (target) of interest and X = {X1, · · · , Xm} is the set of m explanatory
variables of T. A basic form of Equation (8) is the MI identity

I(X, T)
= I(X1, T) + I(X2, T|X1) + . . . + I(Xm, T|X1, . . . , Xm−1)
= I(X1, T) + Int(X2, T, X1) + Par(X2, T|X1) + . . .
+Int(Xt, T, {X1, . . . , Xt−1}) + Par(Xt, T|{X1, . . . , Xt−1}) + . . .
+Int(Xm, T, {X1, . . . , Xm−1}) + Par(Xm, T|X1, . . . , Xm−1),

(26)

which measures the association between the target T and X.

5.1. Forward Selection

A stepwise forward variable selection procedure is defined using the MI ratio (MIR),
which is the ratio of an MI or CMI estimate to its degrees of freedom, dfs. When the
sample size is relatively small compared to number of variables, the Bayesian method and
other penalty criteria could be considered for selecting variables; for example, Lasso [15].
In this paper, we discuss the selection procedure and leave further work on sparsity to
future studies.

Step 1: Select significant predictors. For ease of exposition, denote the final selected
predictor set of k members as {X1, · · · , Xk}. To begin, denote the first selected predictor
by X1, which yields the maximum MIR estimate (with the target T) among all candidate
predictors in X, that is,

MIR1 = maxXi∈X

{
Î(Xi, T)

d f
[
Î(Xi, T)

]}. (27)

The sample MI estimate Î(Xi, T) in (27) approximates the chi-square distribution with
degrees of freedom df

[
Î(Xi, T)

]
under the multinomial distribution, which is required to

be significant. For t ≥ 1, let X(t) = {X1, · · · , Xt} denote the set of selected predictors at
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the tth stage. The procedure selects a new predictor Xt+1 that offers the greatest (or most
significant) MIR estimate

MIRt+1 = maxXi∈{X\X(t)}

 Î
(

X(t) ∪ Xi, T
)

d f
[(

X(t) ∪ Xi, T
)]
 ≡ Î

(
X(t+1), T

)
d f
[

Î
(

X(t+1), T
)] , (28)

among the unselected predictors such that X(t+1) = X(t) ∪ Xt+1 = {X1, · · · , Xt+1}.
Formula (28) is in principle equivalent to selecting a new predictor Xt+1 that offers the
most significant CMI estimate Î

(
Xt+1, T

∣∣∣X(t)
)

with the least p value. The forward selection

scheme proceeds until no member in X\X(t) can be included when t = k, and the set of
selected predictors is denoted by X(k) = {X1, · · · , Xk}.

It is possible that two candidates of a new predictor Xt+1 (for some t ≥ 1) exist with
two close (significant) MIR estimates, or two CMI estimates with closely significant p values.
Such a case indicates that there may exist two different sets of competitive predictors. In
the empirical study of Sections 6 and 7, we will present few competitive sets of predictors
which lead to equally useful models.

5.2. Backward Deletion

The backward deletion procedure is used to remove dispensable predictors from a set
of selected variables in Step 1. The MI analysis presented in Sections 3 and 4 employs the
backward deletion scheme, when the set X of available (or selected) predictors are specified
in the analysis.

Step 2: Delete CMI terms. Let X(t) = {X1, · · · , Xt} denote the selected set of predic-
tors at stage t of Step 1. For t ≥ 1, suppose that a new predictor is selected to yield X(t+1).
Find the particular X′ in X(t) such that Î( X ’, T

∣∣∣X(t+1)\X′) yields the greatest insignificant

p-value if it exists. Then, delete this dispensable predictor X′. That is, delete X′ in X(t) by
the formula

minXj∈X(t)

 Î
(

Xj, T
∣∣∣{X(t+1)\Xj

})
d f [ Î

(
Xj, T

)∣∣∣{X(t+1)\Xj

}
]

 =

 Î
(

X′, T
∣∣∣{X(t+1)\X′

})
d f [ Î(X′, T)

∣∣∣{X(t+1)\X′
}
]

 . (29)

Continue the deletion procedure (29) with the selected set X(k) = {X1, · · · , Xk} of
predictors in Step 1 until it stops and yields the final set of predictors. Note that the stepwise
forward selection (5.3) of Step 1 can be processed with the stepwise backward deletion (29)
simultaneously to accomplish the selection scheme.

5.3. Model Construction

Finally, the MI model construction scheme is defined as follows.
Step 3: Delete interaction terms. Assume that the final set of predictors {X1, . . . , Xm}

are selected by Step 1 or 2. Rearrange the predictors in the MI identity (26), where k is re-
placed by m, such that the highest-order interaction estimate ˆInt(Xm, T, {X1, . . . , Xm−1})
is least significant (or most insignificant) based on the divided levels of significance defined
by the two-step LR tests of (7). For 2 ≤ t < k, the procedure continues with rearranging
the variables {X1, . . . , Xt−1, Xt} such that ˆInt(Xt, T, {X1, . . . , Xt−1}) is least significant
(or most insignificant), until evaluating the last estimate ˆInt(X2, T, X1) and stopping at the
significant Î(X1, T).

Step 4: Model construction. Use the selected predictor set X(m) from Step 2, to
determine, by the results of Step 3, the retained significant interaction and partial association
(main) effects in the logistic (or the desired regression) model. This concludes the final
model selected by the rearranged MI identity examined in Step 3, which is comparable to
the analysis given in Table 1 (k = 6, m = 5).
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To summarize, the proposed MI variable selection scheme consists of Steps 1 and
2. Once the predictors are selected, Step 3 is used to identify the significant main and
indispensable interaction effects such that Step 4 yields the desired (logistic) regression
model. It should be emphasized again that the analysis of Table 1 has followed the rule: the
interaction and partial association effects of each CMI estimate were evaluated by dividing
the usual level α = 0.05 into two separate levels α1 and α2, such that the two-step LR tests
based on the Pythagorean law of (7) are executed.

6. An Empirical Study

The Statlog (German Banking Credit Data) dataset in the UCI Machine Learning Repos-
itory (https://archieve.ics.uci.edu/ml/datasets/statlog+(german+credit+data) accessed
on 27 April 2023) lists the banking data of 21 discrete attributes (categorical and discretized
numerical variables) of 1000 customers (cf. [7]). This dataset was extracted from the original
data of 1101 customers, in which three numerical attributes {A2, A5, A13} were discretized
into discrete levels {10, 9, 5}, respectively [40]. The binary credibility variable of interest is
denoted by A21 ≡ T, (T = 1 for good creditworthy, T = 2 for not creditworthy). The other
20 attributes, denoted by the set X, were available to explain T (see Appendix A for the list
of 21 attributes). Fahrmeir et al. [40] selected for the discretized data a main-effect logistic
regression model with five predictors {A1, A2, A3, A4, A9} (defined as model FT1 in Table 2
below), which excluded “A5, credit amount” and “A13, age” from a previous selected
subset of 7 attributes {A1, A2, A3, A4, A5, A9, A13}. Fahrmeir and Tutz [7] further discussed
several variable selection criteria, namely the Wald test, AIC, BIC, and generalized score
test, and concluded the updated analysis with the same model FT1 of five main effects.

Table 2. MI analysis of models selected by F-T, SIS, and MI for the raw-level data (an insignificant
and dispensable predictor is marked with an asterisk “*”).

Method Model Log-Likelihood LR (df ) p-Value AIC

FT1
{A1, A2*, A3,

A4*, A9*} −379.42 630.63 (5570)
1.00 816.85

FT2 {A1, A3, A9*} −93.56 65.90 (112) 1.00 209.13

SIS1 {A1, A2*, A3} −147.31 130.66 (183) 0.99 328.61

MI1 {A1, A3, A12} −109.59 82.29 (69) 0.131 241.18

MI2 {A1, A3 × A14} −79.31 55.27 (42) 0.082 194.63

Consider the MI analysis discussed in Section 5. Steps 1 to 4 were used to analyze
the 1994 raw-level data with the binary target T and 20 discrete attributes. It yielded two
MI logistic models denoted by MI1: {A1, A3, A12} and MI2: {A1, A3× A14} with the LR
deviance p-values 0.13 and 0.08, respectively, as listed in Table 2. For this Statlog raw-level
data, Table 3 records the MI decomposition of the best parsimonious model MI1 without
significant interaction effects.

Table 3. MI decomposition of model MI1 for the Statlog raw-level data.

Orthogonal
Components

Conditional
Mutual Information Interaction Partial Association

LR df p LR df p LR df p

Î(A12, T|A1, A3) 83.84 60 0.023 66.97 57 0.17 16.87 3 <0.001

Î(A3, T|A1) 51.28 16 <0.001 14.04 12 0.30 37.24 4 <0.001

Î(A1, T) 131.34 3 <0.001

https://archieve.ics.uci.edu/ml/datasets/statlog+(german+credit+data
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In Table 2, Fahrmeir and Tutz [7] obtained the model FT1: {A1, A2*, A3, A4*, A9*} for
the raw-level data, which included the main-effect (subset) model FT2: {A1, A3, A9*}. The MI
analysis showed that both models were over-fit, because each one of the three attributes {A2,
A4, A9} was dispensable (marked with an asterisk “*”) given the set of predictors {A1, A3};
that is, the estimates Î(A9, T|A1, A3), Î(A2, T|A1, A3) and Î(A4, T|A1, A3) were insignificant.
Meanwhile, the MI analysis yielded models MI1 and MI2, as shown in Table 2, using the raw-
level data. The partial and interaction effects were decomposed for MI1 in Table 3. In Table 2,
the model SIS1: {A1, A2*, A3} was the only model selected by the SIS method which will be
explained in Section 7. In the rest of this study, the AIC estimates given in Tables 2, 4 and 5 were
only recorded without discussion.

Table 4. Models selected by SIS, I-Scores and MI in using 2-level {A2, A5, 13} (Dispensable effects
and under-fit models are marked with asterisks *).

Method Model Log-Likelihood LR (df ) p-Value AIC

SIS2 {A1, A2, A3, A6*, A12*} −250.39 339.55 (784) 1.00 532.79

I-Score (HT1,
main effects only)

{A1}*
I-Score ≥ 11.0 −10.93 131.34 (3) 0.000 29.85

I-Score (HT2)
(main effects and 2-way
interaction)

{A1, A2, A14*, A2 × A14*}
I-Score ≥ 11.0 −43.15 16.33 (15) 0.361 104.30

I-Score (ST1)
(main effects)

{A1, A2, A3, A6*}
I-Score ≥ 7.0 −145.31 156.76 (187) 0.95 316.61

I-Score (ST2)
(main effects and
2-way interaction)

{A1, A2 × A3, A2 × A14*,
A6 × A20*}

I-Score ≥ 7.0
−140.48 147.11 (183) 0.97 314.96

MI3 {A1, A2, A12} −62.99 30.94 (24) 0.155 141.98

MI4 {A1, A2 × A3} −64.96 36.52 (27) 0.104 155.91

Table 5. Models selected by SIS, I-Scores and MI methods with 3-level {A2, A5, A13} (Dispensable
effects and under-fit models are marked with asterisks *).

Method Model Log-Likelihood LR (df ) p-Value AIC

SIS3 {A1, A2, A3} −92.98 67.65 (50) 0.049 205.96

MI5 {A1, A2, A12} −92.65 54.95 (39) 0.047 203.29

MI6 {A1, A3, A5} −86.08 67.16 (50) 0.053 192.17

I-Score
(HT3: main effects)

{A1, A2}*
I-Score ≥ 11.0 −27.59 4.39 (6) 0.625 67.17

I-Score
(HT4: main effects
and interactions)

{A1, A2,
A5 × A14 × A15*}
I-Score ≥ 11.0

−149.62 126.64 (292) 1.00 359.24

I-Score
(ST3: main effects)

{A1, A2, A3, A6*}
I-Score ≥ 7.0 −175.11 191.22 (286) 1.00 378.22

I-Score
(ST4: main effects and
interactions)

{A1, A2, A3 × A14*,
A3 × A10*} I-Score ≥ 7.0 −170.46 189.92 (303) 1.00 396.92

7. Comparison with Existing Methods

Researchers recently focused on methods for the selection of models and variables
to deal with data featuring high-dimensional attributes. The least absolute shrinkage and
selection operator, in short, the Lasso method [15], attracted a particular attention in recent
years. Examples include the smoothly clipped absolute deviation (SCAD) penalty [13],



Entropy 2023, 25, 750 14 of 20

the sure independence screening (SIS) for high dimensional feature space [41], SIS for
GLM [42,43], the elastic net [44], adaptive Lasso [16], the Dantzig selector [12], and feature
screening with categorical data [45]. In the following, we outline a comparison of the
SIS method and the proposed MI scheme in the analysis of banking credit data. The SIS
computing program (http:”CRAN.R-project.org/packageSIS accessed on 27 April 2023)
yielded the unique model SIS1: {A1, A2*, A3} in Table 2. Note that the results exhibited
over-fitting, due to the fact that the discretization of attribute A2 into 10 levels was large
enough to render the CMI estimate Î(A2, T|A1, A3) insignificant. The same model la-
belled SIS3 in Table 5 was marginally valid (p-value 0.049) when A2 was discretized as a
three-level attribute.

Chernoff et al. [46] proposed an innovative nonparametric approach to variable and
model selection using GLMs, referred to as the “I-scores” method. Their method begins
with the partitioning of explanatory attributes versus a target (response) variable in the
data. In other words, a family of weighted mean squared differences of the target values
(i.e., I-scores) is computed across various attribute partitions. Attributes of influence among
the partitions are identified as the factors, which, if excluded (or included), would decrease
(or increase) a large proportion of the I-scores. This means that influential attributes can
be selected by evaluating sample histograms of the various I-scores across partitions. The
authors recommended two working rules: (1) a hard thresholding (HT) rule for the selection
of a predictor (effect) that induces a sufficiently large amount of changes in the I-score,
and (2) a soft thresholding (ST) rule that induces a moderate change in the I-score. In
practice, the attributes are partitioned into finite discrete sample spaces, such that the I-
scores can be computed for an effective comparison. Discretizing each continuous attribute
to a two- or three-level factor is a convenient feature of the I-score computing program at
(https://github.com/adelinelo/iscreen accessed on 27 April 2023) [47].

We performed a comparison between the SIS, I-scores, and proposed MI methods
using two modified forms of the numerical attributes A2, A5, and A13 in the original
banking credit data. The first form scaled these numerical attributes as two-level attributes
(e.g., {0, 1}), whereas the second form scaled them as three-level attributes (e.g., {0, 1, 2}),
as shown in Appendix A. Tables 4 and 5, respectively, present the predictors and models
selected from the dataset using these two modified forms.

As shown in Table 4, the SIS method selected the main-effect model SIS2: {A1, A2,
A3, A6*, A12*} for the first-form modified data. Model SIS2 was over-fit, based on the fact
that the variables {A6, A12} were dispensable given {A1, A2, A3}. In other words, the CMI
estimates Î(A6, T|A1, A2, A3) and Î(A12, T|A1, A2, A3) were insignificant.

Results of the I-Score method are listed in two parts. The first set of results includes
models obtained using the hard-thresholding (HT) rule by which the I-Scores of each
influential variable were set at ≥ 11.0 as a high threshold in the I-Score histogram. This
yielded models HT1 and HT2. Note that as a singleton {A1}, model HT1 was clearly under-
fit, based on the observation that all other models in Table 4 included {A1} as well as
other factors to enhance data interpretation. Model HT2 {A1, A2, A14*, A2 × A14*} was
over-fit based on the estimate Î(A14, T|A1, A2) = 25.39 (df = 16, p = 0.063). The second
set of results provided soft-thresholding (ST) models, which allowed the selection of more
attributes and parameter effects by imposing an inequality constraint (I-Scores ≥ 7.0) that
was weaker than the HT rule. This yielded models ST1 and ST2 as presented in Table 4.
Both models were over-fit, due to their use of at least four attributes and interactions (as
with model SIS2).

MI analysis yielded two valid models for the first-form modified data, including MI3:
{A1, A2, A12} and MI4: {A1, A2 × A3}. It should be noted that the modified two-level
attribute A2 (duration of individual banking credit account) was identified as useful and was,
therefore, more likely to be selected than its original 10-level version, which did not appear
in Table 2.

Table 5 lists the models selected for the second-form modified data using three-level
attributes of A2, A5, and A13. The unique SIS model SIS3: {A1, A2, A3}, which matched

https://github.com/adelinelo/iscreen
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the over-fit model SIS1 (Table 2), was deemed marginally valid after modifying attribute
A2 (with ten levels in Table 3, and two levels in Table 4) as a three-level attribute. This
demonstrates that the poor fit of model SIS1 can be rectified using three-level attribute
A2. The barely valid model MI5: {A1, A2, A12} matched the valid model MI3 (see Table 4);
therefore, the corresponding interpretation did not vary when A2 was discretized as a two-
or three-level attribute. It should be noted that model MI6: {A1, A3, A5} was valid when
attribute A5 (individual credit amount) was replaced by a three-level attribute, considering
that A5 never occurred in a valid model.

The I-Score model HT3: {A1, A2} proved valid (using two predictors); however, it
was clearly under-fit when compared to models SIS3 and MI5. Models HT4, ST3, and ST4
were clearly over-fit (using four or more predictors with interaction parameters), when
compared to the previous analysis of models in Table 2.

It should be noted that numerical attribute A5 (individual credit amount) was found
to be useful (with the other two attributes A1 and A3) in explaining the target credibility
only when applied via the discretized three-level attribute A5 in model MI6. This begs
the question of whether model MI6 maintains its validity when A5 is returned to its
original numerical status. The answer is yes—the same main-effect logistic model {A1, A3,
A5 (numerical)} remains valid, with deviance of 1021.3 (df = 977, p = 0.158). The same
question can be posed to the two other models: MI3 (MI5) {A1, A2, A12} and MI4 (SIS3)
{A1, A2, A3} (or {A1, A2 × A3}). We found that when using the original numerical A2,
model {A1, A2, A3} was indeed valid, with a deviance of 259.37 (df = 220, p = 0.354). By
contrast, model {A1, A2, A12} was revised as {A1, A2, A12, A1 × A2, A1 × A12, A2 × A12},
which required the inclusion of three two-way interaction effects to yield a valid model
with deviance of 234.82 (df = 201, p = 0.051).

Table 2, Table 4, and Table 5 present a summary of the selected models. Logistic
regression analysis and the SIS method (Lasso type) were both shown to select a unique
(i.e., best) model; however, the I-score method (using either hard or soft thresholding) and
the proposed MI method often selected more than one valid model. It should be noted
that attributes {A1, A2, A3} were consistently selected for the SIS models as well as models
MI4, ST1, and ST3. Note, however, that among these models, only MI4 and SIS3 were
deemed valid.

In the five-variable main-effect model in the original analysis by [7] and by [40], MI
analysis consistently selected variables {A1, A3}, while variables {A2, A4, A9} were deemed
dispensable. As shown in Table 2, the 10-level variable A2 was deemed dispensable for
model SIS1: {A1, A2*, A3}. MI analysis confirmed that valid models could be obtained by
replacing A2 with A12 (MI1) or A14 (MI2). Indeed, attributes A1 (status of bank account) and
(two- or three-level) A2 (length of credit account) were selected as useful predictors by all
three methods in Tables 4 and 5.

When applied to banking credit data with a moderate sample size (1000) and mod-
erate number of discrete explanatory attributes (20), MI analysis selected several concise
logistic models by which to obtain valid interpretations of the data. Models MI1 and MI2
proved equally useful (Table 2), as did MI3 and MI4 (Table 4). MI3 and MI5 described the
same model; however, they differed in their use of attribute A2 (two-level or three-level,
respectively). MI analysis verified that attribute A5 in model MI6 was a useful predictor
as a discrete three-level or numerical variable. Note that the discretization of numerical
attributes in MI analysis makes it possible to obtain valid models using the same predictors
in a discrete or numerical form. To summarize, MI analysis yielded parsimonious logistic
models with predictors capable of explaining the creditability of the banking credit data.

8. Discussion and Conclusions

The selection of a model and corresponding variables in GLMs was an important topic
in the field of statistical inference since the 1970s. Conventional approaches to inference
when using contingency tables have relied on the selection of log-linear and logistic models
based on AIC, BIC, and various penalty criteria. In the literature, there is no known method
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for the orthogonal decomposition of MI between variables that completely eliminates the
collinearity issue (redundant correlation) in linear regression. MI decomposition is a valid
approach to dealing with any set of continuous and discrete variables. However, it could
be convenient to develop a systematic procedure by which to validate selected main-effect
variables and their interaction effects (among discrete/discretized variables) by testing
each selection step via standard (p-value) inference. In the current study, we addressed
multivariate discrete data organized in the form of contingency tables. We developed a
scheme that involves the construction of valid log-linear models by selecting significant MI
and CMI effects of attributes, while discarding the insignificant ones.

Selecting a valid logistic model for a discrete response variable involves the stepwise
forward selection of variables in conjunction with the backward deletion of redundant
variables for use in validating the final set of predictors. Main and interaction effects are
then identified by testing proper MI identities of the selected predictors to facilitate the
construction of parsimonious models. In simulations using data related to ischemic stroke
(Sections 3 and 4), the proposed method was shown to produce log-linear and logistic
models that were inherently parsimonious without the need for penalty criteria. As shown
in Tables 3–5, MI analysis made it possible to construct parsimonious logistic models
directly from a small set of predictors. Our analysis also revealed that state-of-the-art
model/variable selection schemes failed to select a few numbers of valid competitors.

It should be emphasized that the MI model/variable selection scheme in Section 5
is recommended for the general analysis of data with an arbitrary number of attributes
and a dataset of sufficient size. Note that when dealing with a sparse contingency table (a
moderately large number of attributes with a relatively small sample size), this approach
could generate multiple competing models. MI analysis is an efficient approach to obtaining
the main and interaction effects of parsimonious logistic models by discretizing numerical
attributes as lower-level discrete variables. Remarkably, the MI selected set of discrete
(and discretized) predictors will remain in the model when the discretized attributes are
replaced by their original numerical values via MI analysis of logistic models.

To summarize, this paper outlines the construction of parsimonious log-linear and
logistic models as a proof of concept for the practical MI analysis of contingency tables. We
posit that the proposed MI analysis scheme could be extended to deriving valid inferences
for GLMs.
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Appendix A

List of attributes in the banking credit dataset (as available online)

Attribute 1: (X1, qualitative) Status of existing checking account

A1-1: . . . < 0 DM
A1-2: 0 ≤ . . . < 200 DM “New X1 = 3, reference category (A11 and A12: . . . < 200 DM)”
A1-3: . . . ≥ 200 DM/salary assignments, at least 1 year “New X1 = 2, A13, good acct.”
A1-4: no checking account “New X1 = 1, was A14”

https://archieve.ics.uci.edu/ml/datasets/statlog+(german+credit+data
https://archieve.ics.uci.edu/ml/datasets/statlog+(german+credit+data
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Attribute 2: (X2, numerical or 10-level) Duration in month (discretized as 2- or 3-level)

A2-1: greater than 24 months
A2-2: from 12 to 24 months
A2-3: less than 12 months

Attribute 3: (X3, qualitative) Credit history

A3-1: no credits taken, all credits paid back duly
A3-2: all credits at this bank paid back duly
A3-3: existing credits paid back duly till now
X3-1 is the union of {A3-1, A3-2, A3-3}: Good credit
A3-4: delay in paying off in the past
A3-5: critical account/other credits existing (not at this bank)
X3-2 is the union of {A3-4, A3-5}: bad credit

Attribute 4: (X4, qualitative) Purpose

A4-0: car (new)
A4-1: car (used)
A4-2: furniture/equipment
A4-3: radio/television
A4-4: domestic appliances
A4-5: repairs
A4-6: education
A4-7: vacation (does not exist)
X4-1 is the union of {A4-0 to A4-7} (for private use)
A4-8: education
A4-9: retraining
A4-10: business
X4-2 is the union of {A4-8 to A4-10} (for professional use)

Attribute 5: (X5, numerical or 10-level) Credit amount (discretized as 2- or 3-level)

A5-1: greater than 7500 DM
A5-2: from 2500 DM to 7500 DM
A5-3: less than 2500 DM

Attribute 6: (X6, qualitative) Savings account/bonds

A6-1: unknown or no saving account
A6-2: less than 100 DM
A6-3: from 100 DM to 500 DM
A6-4: from 500 DM to 1000 DM
A6-5: greater than 1000 DM

Attribute 7: (X7, qualitative) Present employment since

A7-1: unemployed
A7-2: less than 1 year
A7-3: between 1 and 4 years
A7-4: between 4 and 7 years
A7-5: greater than 7 years

Attribute 8: (X8, numerical) Installment rate in percentage of disposable income

A8-1: greater than 35%
A8-2: between 25 and 35%
A8-3: between 20 and 25%
A8-4: less than 20%

Attribute 9: (X9, qualitative) Personal status and sex

A9-1: male: divorced/separated
A9-2: female: divorced/separated/married
A9-3: male: single
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A9-4: male: married/widowed
A9-5: female: single
In F and T (1994), Attribute 9 is divided (and expressed) into two variables:
X7-1: female
X7-2: male
X8-1: married
X8-2: living alone: divorced/separated/widowed

Attribute 10: (X10, qualitative) Other debtors/guarantors

A10-1: none
A10-2: co-applicant
A10-3: guarantor

Attribute 11: (X11, numerical) Present residence since

A11-1: less than 1 year
A11-2: between 1 and 4 years
A11-3: between 4 and 7 years
A11-4: greater than 7 years

Attribute 12: (X12, qualitative) Property

A12-1: real estate
A12-2: if not A121: building society savings agreement/life insurance
A12-3: if not A121/A122: car or other, not in attribute 6
A12-4: unknown/no property

Attribute 13: (X13, numerical or 5-level) Age in years (discretized as 2- or 3-level)

A13-1: greater than 40
A13-2: between 26 and 39
A13-3: less than 26

Attribute 14: (X14, qualitative) Other installment plans

A14-1: bank
A14-2: stores
A14-3: none

Attribute 15: (X15, qualitative) Housing

A15-1: rent
A15-2: own
A15-3: for free

Attribute 16: (X16, numerical/discretized) Number of existing credits at this bank

A16-1: one
A16-2: from 2 to 3
A16-3: from 4 to 5
A16-4: 6 or more

Attribute 17: (X17, qualitative) Job

A17-1: unemployed/unskilled non-resident
A17-2: unskilled resident
A17-3: skilled employee/official
A17-4: management/self-employed/highly qualified employee/officer

Attribute 18: (X18, discretized) Number of people being liable to provide maintenance for

A18-1: from 0 to 2
A18-2: 3 or more

Attribute 19: (X19, qualitative) Telephone

A19-1: none
A19-2: yes, registered under the customer’s name
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Attribute 20: (X20, qualitative) foreign worker

A20-1: yes
A20-2: no

Attribute 21: (X21, qualitative) credibility status

A21-1: good creditworthy
A21-2: not creditworthy
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