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Abstract: An analytical solution is obtained for the problem of two interacting, identical but separated
spin 1/2 particles in a time-dependent external magnetic field, in a general case. The solution involves
isolating the pseudo-qutrit subsystem from a two-qubit system. It is shown that the quantum
dynamics of a pseudo-qutrit system with a magnetic dipole–dipole interaction can be described
clearly and accurately in an adiabatic representation, using a time-dependent basis set. The transition
probabilities between the energy levels for an adiabatically varying magnetic field, which follows the
Landau–Majorana–Stuckelberg–Zener (LMSZ) model within a short time interval, are illustrated in
the appropriate graphs. It is shown that for close energy levels and entangled states, the transition
probabilities are not small and strongly depend on the time. These results provide insight into the
degree of entanglement of two spins (qubits) over time. Furthermore, the results are applicable to
more complex systems with a time-dependent Hamiltonian.

Keywords: spin 1/2; magnetic dipole–dipole interaction; pseudo-qutrit; transition probability;
entangled states

1. Introduction

Spin systems are of increasing interest due to their potential applications in quan-
tum information and related technologies [1,2]. In the field of quantum computing, spin
Hamiltonian models provide a theoretical foundation for manipulating two-electron-based
qubits, such as those in a double quantum dot [3–7] or a double quantum well [8,9].

A two-level spin system (s = 1/2) serves as a classical prototype for a qubit, the basic
unit of quantum information. Spin systems influenced by hyperfine interactions have
been widely studied due to their relevance to phenomena such as NMR and ESR, as well
as related spectroscopic techniques. The potential for using spin systems in quantum
information and computation has opened up a broad range of previously unsolved dy-
namical problems that are not typically considered in standard NMR and ESR applications.
Adiabatic gates, based on the well-known adiabatic approximation, play an important role
in quantum information processing [10–13].

The problem of two interacting identical spins is of interest in quantum information
technology because the problems being studied differ from those traditionally addressed in
NMR research. In traditional NMR, a high external magnetic field limit is used, with a nu-
clear magnetic dipole–dipole interaction treated as a small perturbation. This perturbation
can yield interesting results for research on paramagnetic radicals or other more complex
magnetic systems beyond two interacting identical nuclear spins. However, interesting
results for the preparation of entangled states of two nuclear spins can also be obtained
using weak external magnetic fields comparable to nuclear magnetic fields.

The problem of two interacting neighboring nuclear spins in a crystal lattice is of interest.
The most frequently used nuclei isotopes with nonzero spins I = 1/2 are 13C with a magnetic
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moment µC = +0.70238µn, 1.108%, 15N with µN = −0.283049µn, 0.365%. Naturally, we must
not forget hydrogen with “the main” nuclear isotope 1H with µp = +2.79867µn, where the
nuclear magneton µn = 5.05095 · 10−24 Erg/G. Isotopes 13C and 15N are interesting because
they are the main impurities in diamond crystals, and are popular in many research studies on
quantum technologies. Silicon, another popular crystal for quantum technologies, has the same
diamond lattice structure. The isotope 29Si with a nonzero nuclear spin I = 1/2 has a magnetic
moment of µSi = −0.55µn and a prevalence in nature of 4.67%.

The problem could also be of interest for “frozen” diatomic molecules with identical
nuclei, such as the hydrogen molecule H2, or more complicated molecules with a pair of the
two nearest protons or other identical isotopes. Such molecules must be frozen to exclude
averaging of the direct nuclear magnetic dipole–dipole interaction over states with certain
angular momenta of the molecule. In this case, there is no connection between the spin and
rotational states of the nuclei due to the Pauli principle.

Recently, the problem of two interacting identical nuclear spins situated in a crystal
lattice as nearest neighbors or in some other “frozen” state has been studied [14,15]. In [15],
it was shown that the formation of a pseudo-qutrit state is possible for identical spin
1/2 particles. Furthermore, the problem was solved for both standard quantum and
probability representations of quantum states [16,17], where spin states were described
by standard classical probability distributions [18–20] in the stationary case. However,
for processing quantum technology elements, it is interesting to solve the problem of
nonstationary situations, such as when an external magnetic field varies over time. The
problem of interacting inequivalent spin 1/2 particles in a variable magnetic field was
examined in [21] for two partial cases where an adiabatic representation was introduced.

Here, we address the behavior of two separated but identical spin 1/2 particles with
dipole–dipole interactions in a variable external magnetic field.

The paper is organized as follows. Section 1 analyzes the Hamiltonian and states of the
system in a stationary case, with a separation of pseudo-qutrit states. Section 2 describes
the states in the zero magnetic field in terms of the rotation operator. Section 3 considers an
approach for the approximate diagonalization of the Hamiltonian matrix, and Section 4
shows approximate energy levels. Adiabatic representation is introduced in Section 5, and
transitions between energy levels and states of a pseudo-qutrit are presented in Section 6.
The obtained results and their applications are discussed in Section 7. The conclusions
section presents the following developments.

2. Hamiltonian and Separation into Two Subspaces

We use the Hamiltonian in frequency units, where h̄ = 1. The Hamiltonian for two
separated equivalent nuclear spin 1/2 particles can be expressed as follows:

Ĥ = −ω(ŝ1z + ŝ2z) + Aik ŝ1i ŝ2k, (1)

where the external magnetic field B‖z and ω = gµ0B, g is a nuclear g-factor, µ0 is the
appropriate magneton. The hyperfine interaction tensor can be written as

Aik = −
(gµ0)

2

R3 (3nink − δik). (2)

Here, R denotes the modulus of the radius vector between the two spins and ni represents
the components of the unit vector n = R/R.

The Hamiltonian (1) can be rewritten as follows:

Ĥ = −ω(ŝ1z + ŝ2z)− 3Ω(nŝ1)(nŝ2) + Ω(ŝ1ŝ2), (3)

where Ω = (gµ0)
2/R3. We can see that this expression corresponds to the hyperfine

interaction Hamiltonian with an axial symmetry examined in [21].
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If we choose a non-conventional enumeration of a standard base of state vectors

|χ1〉 = |+〉|+〉, |χ2〉 = |−〉|−〉, |χ3〉 = |−〉|+〉, |χ4〉 = |+〉|−〉, (4)

the Hamiltonian Matrix (3) is written as follows

H =


Ω
4 (1− 3 cos2 θ)−ω − 3Ω

4 sin2 θ − 3Ω
8 sin 2θ − 3

8 Ω sin 2θ

− 3Ω
4 sin2 θ Ω

4 (1− 3 cos2 θ) + ω 3Ω
8 sin 2θ 3Ω

8 sin 2θ

− 3Ω
8 sin 2θ 3Ω

8 sin 2θ −Ω
4 (1− 3 cos2 θ) Ω

4 (2− 3 sin2 θ)

− 3Ω
8 sin 2θ 3Ω

8 sin 2θ Ω
4 (2− 3 sin2 θ) −Ω

4 (1− 3 cos2 θ)

. (5)

First, we need to write the energy levels for the zero magnetic field:

ε1,2 = −Ω
2

, ε3 = Ω and ε4 = 0. (6)

As well known, the problem has exact solutions in two partial cases when θ = 0 and
π/2. Indeed, for the first case when θ = 0, the Hamiltonian matrix on the basis of (4) is
equal to

H(θ = 0) =


−ω−Ω/2 0 0 0

0 ω−Ω/2 0 0
0 0 Ω/2 Ω/2
0 0 Ω/2 Ω/2

. (7)

Eigenvalues can easily be found

ε1,2 = −Ω
2
∓ω, ε3 = Ω, ε4 = 0, (8)

and eigenstates coincide with the total spin S = 1 eigenstates (see Equation (14) below).
For the second case, θ = π/2 we obtain the following Hamiltonian matrix

H(θ = π/2) =


−ω + Ω/4 −3Ω/4 0 0
−3Ω/4 ω + Ω/4 0 0

0 0 −Ω/4 −Ω/4
0 0 −Ω/4 −Ω/4

 (9)

The eigenvalues of Matrix (9) are equal to

ε1,2 =
Ω
4
∓

√(
3Ω
4

)2
+ ω2, ε3 = −Ω

2
, ε4 = 0. (10)

Eigenstates are determined by the following expressions:

|ε1〉 =
1√
2

(√
1 +

x√
9 + x2

|+〉|+〉+
√

1− x√
9 + x2

|−〉|−〉
)

,

|ε2〉 =
1√
2

(√
1 +

x√
9 + x2

|−〉|−〉 −
√

1− x√
9 + x2

|+〉|+〉
)

,

|ε3〉 =
1√
2
(|+〉|−〉+ |−〉|+〉).

We can achieve progress in the problem’s solution if we make an approximate diag-
onalization of Hamiltonian Matrix (5) by a unitary transformation. This procedure was
successfully carried out for a similar problem in [22] and was further developed in [23].
This approach was also applied to nonstationary problems in [21], where a new adiabatic
representation was introduced.
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As was shown in [15], the square of the total spin commutes with the Hamiltonian (5);
thus, first, we need to choose a base set with a determined total spin Ŝ = Ŝ1 + Ŝ2, which is
achieved with the following transformation matrix

T̂ =


1 0 0 0
0 1 0 0
0 0 1/

√
2 1/

√
2

0 0 −1/
√

2 1/
√

2

. (11)

The transformed Hamiltonian matrix takes the following form

̂̃H = T̂ĤT̂† =

Ω
4


1− 3 cos2 θ − x −3 sin2 θ − 3√

2
sin 2θ 0

−3 sin2 θ 1− 3 cos2 θ + x 3√
2

sin 2θ 0

− 3√
2

sin 2θ 3√
2

sin 2θ −2(1− 3 cos2 θ) 0
0 0 0 0

. (12)

Here, a dimensionless variable x is introduced as follows

x =
4ω

Ω
(13)

After this transformation, the problem can be reduced to two separate subsystems.
One of them can be described as a system with a well-determined total spin of S = 0.
The other subsystem is a three-level system for which only the square of the total spin is
well-defined. Hence, it can be regarded as one of the possible representations of qutrit
states. As a result, the system of two interacting spin 1/2 particles can be decomposed into
a scalar subsystem and a subsystem with an effective spin of S = 1, representing a qutrit. It
was previously shown in [14] that this situation exists for two non-identical spins of 1/2
with scalar hyperfine interaction. For two identical spins, this holds true for any magnetic
dipole–dipole interaction. To proceed, it is useful to express the base states in which this
separation can be realized. The qutrit states are

|q1〉 = |+〉|+〉, |q2〉 = |−〉|−〉, |q3〉 =
1√
2
(|−〉|+〉+ |+〉|−〉), (14)

and singlet is determined by

|0, 0〉 = 1√
2
(|+〉|−〉 − |−〉|+〉). (15)

As shown in [15], a density matrix ρ(1,0) of the two identical spins of 1/2 in bases (14)
and (15) can be represented as a direct sum of density matrices in two independent subspaces

ρ(1,0) =
(

ρ(1) ⊕ ρ(0)
)

, (16)

where ρ(1) and ρ(0) are the density matrices of the qutrit and scalar subsystems, respectively.
These matrices satisfy the obvious requirement that Trρ(1) = 1 and Trρ(0) = 1. The explicit
form of the density Matrix (16) can be represented as a 4× 4 matrix by

ρ(1,0) =


r1 r4 r5 0
r4
∗ r2 r6 0

r5
∗ r6

∗ r3 0
0 0 0 α

. (17)

Here, α is a constant that should be determined from the initial conditions.
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In these subspaces, the scalar subsystem does not evolve in time, i.e., ρ(0)(t) = ρ(0)(0),
and the time dependence of the qutrit density matrix is determined from the Liouville equation

∂ρ(1)

∂t
+

i
h̄

[
Ĥ(1), ρ(1)

]
= 0 (18)

where the Hamiltonian Ĥ(1) is determined by the 3× 3 matrix in the base state (14)

Ĥ(1) =
Ω
4

 1− 3 cos2 θ − x −3 sin2 θ − 3√
2

sin 2θ

−3 sin2 θ 1− 3 cos2 θ + x 3√
2

sin 2θ

− 3√
2

sin 2θ 3√
2

sin 2θ −2(1− 3 cos2 θ)

. (19)

3. The Rotation Operator of Identical Spin 1/2 Particles

It is easy to see that the energy levels of the pseudo-qutrit system depend on the
relative orientations of the two dipoles with respect to the external magnetic field in the
general case, but they cannot depend on the orientation when the external field is zero.
Indeed, in the absence of an external magnetic field, we have one doubly degenerate level
and one non-degenerate. If we follow the numbering of state (8), we obtain ε1 = ε2 = −2
and, accordingly, ε3 = 4. If we follow the numbering of state (10), we have further
correspondence, i.e., ε1 = ε3 = −2 and, respectively, ε2 = 4. In other words, after changing
the direction of the quantization axis, the second and third states swap |ε2〉� |ε3〉. At the
same time, the eigenstates are equal

|ε1,2〉 = ±
1√
2
(|+〉|+〉 ± |−〉|−〉). (20)

As one can see, in the first case, only the state with zero projection of the total spin is
entangled, but in the second case, all states are entangled.

On the other hand, the second case follows from the first as a result of the rotation of
the quantization axis z by an angle π/2 relative to the axis y. Thus, the eigenstates with
arbitrary mutual orientation of the magnetic field and the axis n can be obtained as a result
of the initial state by a corresponding rotation transformation relative to the axis z, when
B‖n. However, the problem is not so simple because we need to know the quantization
axis direction in an arbitrary case. To do this, we need to solve the problem. Indeed, in an
arbitrary case, the quantization axis does not coincide with the magnetic field direction.
However, only in the case x � 1 can one believe that the quantization axis practically
coincides with the magnetic field direction.

For these reasons, we consider the rotation operator for two equivalent Fermi particles
with spins (s = 1/2) with respect to the y-axis by angle 2β. The rotation operator is equal to

R̂(1)
y (β) = eiβ(σ1y+σ2y). (21)

We decompose the exponent into a Taylor series, noting that

(σ1y + σ2y)
2 = 2(1 + σ1yσ2y), (σ1y + σ2y)

3 = 4(σ1y + σ2y). (22)

Thus, the rotation operator (21) is transformed as follows

R̂(1)
y (β) =

1
2
(1 + cos β) +

1
2
(1− cos β)(σ1yσ2y) +

i
2

sin β(σ1y + σ2y). (23)

Equation (23) is valid for the rotation operator, with respect to any other axis with the
corresponding replacement of the projections of the spin operators.

By acting with the rotation operator (23) on state (14), we have the following expressions:
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R̂(1)
y (β)|+〉|+〉 =1

2
(1 + cos β)|+〉|+〉+ 1

2
(1− cos β)|−〉|−〉 − 1

2
sin β(|+〉|−〉+ |−〉|+〉),

R̂(1)
y (β)|−〉|−〉 =1

2
(1 + cos β)|−〉|−〉+ 1

2
(1− cos β)|+〉|+〉+ 1

2
sin β(|+〉|−〉+ |−〉|+〉),

R̂(1)
y (β)|ε3〉 = cos β|ε3〉+

1√
2

sin β(|+〉|+〉 − |−〉|−〉). (24)

Note that in a zero magnetic field, the energy level −Ω/2 is doubly degenerated, so any
linear superposition of states |ε1〉 and |ε2〉 will also be an eigenstate. For state (14), a
‘natural’ quantization axis is selected that coincides with the direction of the axis connecting
the two interacting spins. However, due to the symmetry of the interaction, the energy can
only depend on the projection module. The state of |ε3〉 is uniquely determined because
the energy level of ε3 is non-degenerate. Thus, we write linear combinations as follows

|1〉 = a|+〉|+〉+ b|−〉|−〉 = 1√
2
(|+〉|+〉+ |−〉|−〉),

|2〉 = −b|+〉|+〉+ a|−〉|−〉 = 1√
2
(|−〉|−〉 − |+〉|+〉). (25)

By applying the rotation operator (23) on state (25), we have

R̂(1)
y (β)|1〉| = |1〉), R̂(1)

y (β)|2〉 = cos β|2〉+ 1√
2

sin β(|+〉|−〉+ |−〉|+〉). (26)

As one can see, state |1〉 is the proper state of the rotation operator, but state |2〉 becomes a
superposition with state |ε3〉 at the angle of rotation 2β = π/2 and states |2〉 and |ε3〉 pass
each other. It corresponds to Solution (10) in the case of a zero external magnetic field.

The symmetry of the system is broken when the external magnetic field is not zero,
and the energy depends on the orientation of the two magnetic dipoles relative to the
direction of the magnetic field. Therefore, the superposition of state (14) depends on both
the angle and the magnitude of the field. The effective angle of rotation is determined by
the ratio between the characteristic value of the interaction of two magnetic dipoles, Ω, and
the magnitude of the magnetic field, as emphasized above.

4. Approximate Diagonalization

To solve the problem, we need to first find the eigenvalues and eigenstates of Matrix
(19) (the energy levels and states of the pseudo-qutrit). For the solution, we will apply
an approximate diagonalization approach [22,23] and introduce the adiabatic representa-
tion [21]. Note, that base states |q1〉 and |q2〉 are strongly mixed for θ 6= 0. To take this
mixture into account, let us perform the first transformation T1 of Matrix (19) to eliminate
non-diagonal elements H(1)

12 and H(1)
21

T̂1 =

 cos ϑ1 − sin ϑ1 0
sin ϑ1 cos ϑ1 0

0 0 1

, (27)

The transformation parameter ϑ1 is found from the following equation (note that this
transformation shows instability for x → 0 due to the degeneracy of the energy level in a
zero magnetic field):

tan 2ϑ1 =
2H(1)

12

H(1)
22 − H(1)

11

=
3Ω
4ω

sin2 θ =
3
x

sin2 θ. (28)
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For the transformation parameter ϑ1, we have the following relations

cos 2ϑ1 =
x√

x2 + 9y2
, sin 2ϑ1 =

3y√
x2 + 9y2

,

where we define sin2 θ = y. In these definitions, the transformed Hamiltonian matrix is
written as followŝ̃H = T̂†

1 Ĥ(1)T̂1 =

Ω
4


−2 + 3y−

√
x2 + 9y2 0 − 3√

2
sin 2θS−

0 −2 + 3y +
√

x2 + 9y)2 3√
2

sin 2θS+

− 3√
2

sin 2θS− 3√
2

sin 2θS+ 2(2− 3y)

. (29)

where the following designations are introduced

S± ≡ cos ϑ1 ± sin ϑ1 =
1√
2

(√
1 +

x√
x2 + 9y2

±
√

1− x√
x2 + 9y2

)
. (30)

We can see that after the transformation using Matrix (27), the diagonal element H̃(1)
11

of Matrix (29) passes to the corresponding energy level in the zero magnetic field and
coincides with the exact solution for θ = 0 and π/2 in a nonzero magnetic field. Indeed,
for these cases, we have:

H̃11 =

{
−Ω/2− x = ε1, for θ = 0,
Ω/4−

√
ω2 + (3Ω/4)2 = ε1, for θ = π/2.

The energy levels of the Hamiltonian (12) strongly depend on the angle θ between the
magnetic field and the direction n, resulting in a significantly different picture compared
to inequivalent interacting spin 1/2 particles. Nevertheless, this problem presents an
opportunity to improve upon the solution for different spins.

For the definition of all three energy levels, we have the third-order algebraic equation,
which has a simple form, and is obtained after a relatively cumbersome calculation:

ε3 − (x2 + 12)ε + (1 + 3 cos 2θ)x2 − 16 = 0. (31)

We can calculate all eigenvalues in an analytical form; however, these expressions are
cumbersome and not convenient for the following solution. Thus, we will continue the
process of an approximate diagonalization when we can reduce our problem to the two-
level problem. As well-known, a solution for the two-level system can be obtained in a
general case [24] (see also [25,26]) and applied to the following solution of the problem.

5. Energy Levels

Equation (31) gives the solution for the three energy levels, and we will solve it
approximately. As mentioned above, energy level ε1 has correct expressions for two
limits, θ = 0 and π/2. When we use approximate diagonalization, we compare the
difference between two diagonal elements with the appropriate non-diagonal elements of
the Hamiltonian matrix. In the transformed Hamiltonian Matrix (29), we can see that only
H̃22 − H̃33 can be equal to zero; the appropriate states will be mixed. Thus, we suppose
that in the zero approximation

ε
(0)
1 ≈ H̃11 = −2 + 3y−

√
x2 + 9y2. (32)

We will find the last two energy levels from the diagonalization of the 2× 2 submatrix.
Indeed, the obtained results will not satisfy the exact characteristic Equation (31); however,
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they will correspond with the approximation accepted for energy level ε
(0)
1 . Thus, we need

to solve the problem of searching for eigenvalues and eigenvectors of the matrix

H̃2,3 =

(
−2 + 3y +

√
x2 + 9y)2 3√

2
sin 2θS+

3√
2

sin 2θS+ 2(2− 3y)

)
. (33)

Matrix (33) can be diagonalized with the unitary transformation

T̂2 =

(
cos ϑ2 − sin ϑ2
sin ϑ2 cos ϑ2

)
, (34)

where the transformation parameter ϑ2 is equal to

tan 2ϑ2 =
2
√

2 sin 2θS+

3(2− 3y)−
√

x2 + 9y2
. (35)

where S+ is determined by Equation (31).
We obtain, respectively, cumbersome expressions for the eigenvalues:

ε
(0)
2,3 =

1
2

(
2− 3y +

√
x2 + 9y2

)
±

1
2

[
9(2− 3y)2 − 6(2− 3y)

√
x2 + 9y2 + x2 + 9y2 + 72y(1− y)

(
1 +

3y√
x2 + 9y2

)]1/2

. (36)

The obtained relations (36) provide correct expressions for energy levels in two limits, when
θ = 0 and π/2 and for arbitrary angle θ in the zero external field.

A scheme of energy levels for θ is shown in Figure 1. Even in the worst case, when θ is
close to π/4, we have the exact and approximate solutions. This gives us a reason to use
approximate analytical solutions to describe the evolution of states in the future.

Figure 1. Scheme of energy levels: (a) Dependence on the external magnetic field for three different
angles θ = 0.025π, π/4, and π/2; (b) comparison of exact and approximate solutions for the worst
case θ ≈ π/4.

After this approximate diagonalization, the rest of the diagonal elements of a Hamilto-
nian matrix after all transformations should be taken into account as small perturbations in
frames of perturbation approximations. However, the problem is not so simple when the
Hamiltonian depends on time.

6. Adiabatic Representation

Now, we will solve the problem in terms of the vector of states |χ(t)〉. The obtained
results can be easily applied to a density matrix formulation.
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The Schrödinger equation for the state vector in our problem reads

i
∂

∂t
|χ(t)〉 = Ĥ(t)|χ(t)〉, |χ(t)〉 = U(t)|χ(0)〉, (37)

where the time-dependent Hamiltonian is given by Equation (19), U(t) is the evolution
operator, and |χ(0)〉 is the initial state of the system. Thus, the time dependence of the
Hamiltonian is contained only in x(t) in the form of a parameter. The evolution operator
can be easily found when the Hamiltonian matrix has a diagonal form.

We performed an approximate diagonalization of the Hamiltonian matrix in a station-
ary case with two unitary matrices

T̂t = T̂1T̂2 =

 cos ϑ1 − sin ϑ1 cos ϑ2 sin ϑ1 sin ϑ2
sin ϑ1 cos ϑ1 cos ϑ2 − cos ϑ1 sin ϑ2

0 sin ϑ2 cos ϑ2

. (38)

As shown, diagonal elements of the transformed matrix T̂†
t Ĥ(1)T̂t are equal to energy levels,

with good accuracy. However, the non-diagonal elements of the transformed Hamiltonian
matrix remain, which, if necessary, can later be taken into account as small perturbations:

V̂0 = − 3Ω
4
√

2
sin 2θ

 0 S− sin ϑ2 S− cos ϑ2
S− sin ϑ2 0 0
S− cos ϑ2 0 0

. (39)

Taking into account the remaining part of the Hamiltonian (39) will lead to incorrect
results in the future. Transformation parameters ϑ1,2 depend on time for the nonstationary
Hamiltonian, but we apply the “adiabatic representation” [21] modified for a three-level
system, where all non-diagonal elements are equal to zero. Only in this case can the rate of
varying parameters describe adiabatic transitions between states and energy levels. If we
take into account non-diagonal matrix elements (39), we will obtain corrections to states
and energy levels within the framework of standard perturbation theory. For an exact
solution, there can be no transitions other than adiabatic ones. So, for these reasons, we
cannot take into account the last nonzero matrix elements (39) and assume them to be zero,
as with the exact solution.

The procedure can be applied independently of the rate of the field change and, thus,
independently of the applicability of the adiabatic approximation; however, the time-
dependent eigenstates and energy eigenvalues retain clear physical meanings, just as with
the evolution of the initial ones, only when the adiabatic approximation is applicable. That
is, if the system is prepared in an eigenstate of the Hamiltonian at the initial time, the
system remains in the evolved eigenstate of the Hamiltonian at time t only if the variation
of the magnetic field is sufficiently slow to satisfy the adiabatic approximation, i.e.,

ω̇(t)
ω2(t)

� 1, where ω̇(t) =
d
dt

ω(t). (40)

Thus, the unitary transformation (38) is treated as a ‘quasi-interaction representa-
tion’, similar to the standard interaction representation, but uses the unitary operator of
Equation (38) instead of the unperturbed evolution operator:

|χ(t)〉 = T̂t(t)|ϕ(t)〉, |ϕ(0)〉 = T̂†
t (0)|χ(0)〉, (41)

The second Equation (41) is necessary because T̂t(0) 6= 1̂. The insertion of this transforma-
tion into Equation (37) gives the following (note that, hereinafter, we omit argument t in
the transformation matrix T̂t(t)):

i ˙̂Tt|ϕ(t)〉+ iT̂t|
∂

∂t
ϕ(t)〉 = ĤT̂t|ϕ(t)〉
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and, multiplying both sides of this equation by T̂†(t), we obtain

i
∂

∂t
|ϕ(t)〉 = T̂†

t ĤT̂t|ϕ(t)〉 − iT̂†
t

˙̂Tt|ϕ(t)〉. (42)

The derivative ˙̂Tt is represented by the sum of two terms ˙̂Tt =
˙̂T1T̂2 + T̂1

˙̂T2 and we obtain

T̂†
t

˙̂Tt = T̂†
2 T̂†

1
˙̂T1T̂2 + T̂†

2
˙̂T2, (43)

where we take into account T̂†
1 T̂1 = 1.

The obtained matrix has only non-diagonal elements and is equal to the following
expression:

T̂†
t

˙̂Tt =

 0 − cos ϑ2ϑ̇1 sin ϑ2ϑ̇1
cos ϑ2ϑ̇1 0 −ϑ̇2
− sin ϑ2ϑ̇1 ϑ̇2 0

. (44)

The explicit form for derivatives ϑ̇1 and ϑ̇2 are given in Appendix A.
Now, we can rewrite Equation (42) in the following form

i
∂

∂t
|ϕ(t)〉 = ( ˜̂H0(t) +

˜̂V(t))|ϕ(t)〉, (45)

where ˜̂H0(t) is a diagonal matrix that is dependent on the time energy levels, and perturba-
tion is equal to

˜̂V(t) = −iT̂†
t

˙̂Tt =

 0 i cos ϑ2ϑ̇1 −i sin ϑ2ϑ̇1
−i cos ϑ2ϑ̇1 0 iϑ̇2
i sin ϑ2ϑ̇1 −iϑ̇2 0

. (46)

7. Transitions between Pseudo-Qutrit Energy Levels and States

The transitions between energy levels or states of a pseudo-qutrit in varying magnetic
fields could be easily calculated in the first order of the nonstationary perturbation theory.
Note that the transition probabilities between |ε2〉 and |ε3〉 states are proportional to the
rate of the external magnetic field change defined by ϑ̇2 and are very slow in the adiabatic
approach. The transition probabilities between |ε1〉 and |ε2,3〉 are defined as ϑ̇1 and ϑ̇2.

To solve the problem, in the following, we need to transfer the usual interaction
representation in Equation (45). This transfer is simple because of a diagonal form of the

unperturbed Hamiltonian ˜̂H0(t) and a diagonal form of the evolution operator, respectively.
These nonzero matrix elements are equal to

Uii(t) = exp

−i
t∫

0

εi(t′)dt′

, (47)

where εi(t′) are diagonal elements of the Hamiltonian ˜̂H0(t), i.e., “quasi-levels” of
the pseudo-qutrit.

The perturbation matrix ˜̂V(t) only has non-diagonal matrix elements, and in the
interaction representation, they are equal to

{˜̂V I(t)
}

ik
= U∗ii(t)

˜̂VikUkk(t) =
˜̂Vik(t) exp

i
t∫

0

ωik(t′)dt′

, (48)

where ωik(t′) = εi(t′)− εk(t′) is a corresponding transition frequency.
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Now, we can write transition probabilities between energy levels |εi(t)〉 ≡ |ϕi(t)〉 of
the pseudo-qutrit using a standard relation:

Wik(t) =

∣∣∣∣∣∣
t∫

0

˜̂Vik(t′) exp

i
t′∫

0

ωik(t′′)dt′′

dt′

∣∣∣∣∣∣
2

. (49)

To determine the time evolution of states, we need to use the evolution operator of
Schrödinger Equation (37). Since two types of transformations are used, the evolution
operator should be defined as follows

|χ(t)〉 = T̂t(t)|ϕ(t)〉 = T̂t(t)Ût(t)|ϕ(0)〉.

Here, Ût(t) is the “unperturbed” evolution operator of Equation (45) and is represented by
a diagonal Matrix (47). Taking into account that |ϕ(0)〉 = T̂†

t (0)|χ(0)〉, we obtain

|χ(t)〉 = Û0(t)|χ(0)〉, where Û0(t) = T̂t(t)Ût(t)T̂†
t (0). (50)

The evolution of pseudo-qutrit states in two initial states can be prepared experimen-
tally

|χ(0)〉1 = |+〉|+〉 = |q1〉 and |χ(0)〉2 = |+〉|−〉 = 1√
2
(|q3〉+ |0, 0〉).

Corresponding initial states of the transformed Hamiltonian can be written as superposi-
tions (note that the singlet state |0, 0〉 is not mixed with the pseudo-qutrit states):

|ϕ(0)〉1 = cos ϑ1(0)|ε1〉 − sin ϑ1(0) cos ϑ2(0)|ε2〉+ sin ϑ1(0) sin ϑ2(0)|ε3〉,

|ϕ(0)〉2 =
1√
2
(sin ϑ2(0)|ε2〉+ cos ϑ2(0)|ε3〉). (51)

In the following, we need to introduce some notations to make expressions for |χ(t)〉1,2
more compact and readable. Namely, we define four depending on the time coefficients:

cos ϑ1,2(t) cos ϑ1,2(0) = a(1,2)(t), sin ϑ1,2(t) sin ϑ1,2(0) = b(1,2)(t),

cos ϑ1,2(t) sin ϑ1,2(0) = c(1,2)(t), sin ϑ1,2(t) cos ϑ1,2(0) = d(1,2)(t) (52)

and the corresponding four functions:

a(2)(t)e
−i

t∫
0

ε2(t′)dt′

+ b(2)(t)e
−i

t∫
0

ε3(t′)dt′

= f1(t), b(2)(t)e
−i

t∫
0

ε2(t′)dt′

+ a(2)(t)e
−i

t∫
0

ε3(t′)dt′

= f2(t),

c(2)(t)e
−i

t∫
0

ε2(t′)dt′

− d(2)(t)e
−i

t∫
0

ε3(t′)dt′

= f3(t), d(2)(t)e
−i

t∫
0

ε2(t′)dt′

− c(2)(t)e
−i

t∫
0

ε3(t′)dt′

= f4(t). (53)

Using notations (52) and (53), we can write states |χ(t)〉1 and |χ(t)〉2 as follows:

|χ(t)〉1 =

a(1)(t)e
−i

t∫
0

ε1(t′)dt′

+ b(1)(t) f1(t)

|q1〉+

d(1)(t)e
−i

t∫
0

ε1(t′)dt′

− c(1)(t) f1(t)

|q2〉 − sin ϑ1(0) f4(t)|q3〉

|χ(t)〉2 =
1√
2

(
− f3(t)

(
sin ϑ1(t)|q1〉 − cos ϑ1(t)|q2〉

)
+ f2(t)|q3〉

)
. (54)

We can see that the separable initial state |χ(0)〉2 and |χ(0)〉1 represent complete superposi-
tions of the base states of (14) at an arbitrary moment in time and cannot be represented as
states with certain quasi-energy levels.
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8. Discussions

Equations (49) and (54) give us the opportunity to examine both transitions between
energy levels of the pseudo-qutrit and determine the probabilities of separable or entangled
states of two spins in varying external magnetic fields.

For numerical calculations, we used a model of an adiabatically varying external
magnetic field in the form of

x(t) = x0 + δx(t), δx(t) = a tanh(αt̃), (55)

where x0 is the initial static field, the parameter α < 1, and the dimensionless time t̃ = Ωt.
In the following, we choose α = 0.1. The parameter a determines the limit of changing the
external field. Hereinafter, we take a = 1. For an adiabatically varying magnetic field, one
needs to choose α� 1, when the model coincides with the Landau–Majorana–Stuckelberg–
Zener (LMSZ) model [27–30] widely used in various problems with a time-dependent
Hamiltonian [12,31–35].

The most interesting situation for us is when the energy levels of the system are close
to each other and we have a quasi-degenerate case. This picture is observed in the zero
and intermediate (x & 1) magnetic fields. First, we consider transitions in a slowly varying
magnetic field for x0 = 0 between states of a doubly-degenerate energy level in the zero
magnetic field, namely, between states |ε1〉 and |ε2〉, as seen in Figure 1. Note, that all
transition probabilities are zero for the case when the magnetic field B‖n, i.e., θ = 0. This
situation is clear because all states are pure. The calculated transition probabilities W12(t)
for some angles θ are shown in Figure 2a (hereinafter, angle θ is measured in radians). We
see that transition probabilities show rapid growth, and they all tend to an asymptotic
value equal to ≈0.6. This behavior is far from being exponentially slow due to the quasi-
degeneration of energy levels. These results are in good agreement with the results of
Section 2. In cases where the angle θ ≈ π/2, the transition probability W12(t) is small and
tends to zero. The transition probability exhibits non-monotonic behavior for intermediate
angles, but in all cases, it tends to a constant that depends on the angle θ, as shown in
Figure 2b.

The transition probabilities W13(t) and W23(t) show clear oscillations, are exponen-
tially small for all angles θ, and tend to angle-dependent constants, as shown in Figure 3.
Note that both W13(t) and W23(t) are equal to zero for θ = 0 and π/2.

As can be seen in Figure 1, in an intermediate magnetic field, when x ∼ 6, energy
levels ε2 and ε3 are close to each other, and the appropriate unperturbed states should be
mixed. First, we compare the transition probabilities W12 and W23 in an external magnetic
field at x ∼ 1, the time dependence of which is shown in Figure 4. We can see that the
transition probability W12 is now small and increases when the angle θ tends to π/2. This
is the opposite of a situation involving a small magnetic field (see Figure 2b).

Figure 2. Time dependence of transition probabilities W12(t) (a) for small angles θ and (b) for
θ > 0.1π.
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Figure 3. Time dependence of transition probabilities (a) W13(t), and (b) W23(t).

Figure 4. Time dependence of transition probabilities in an external magnetic field for x0 = 1
(a) W12(t) and (b) W23(t).

In a magnetic field, x ≈ 6, the picture for the transition probability W23 is similar
to the picture for the transition probability W12 in a weak magnetic field, as shown in
Figure 5. Indeed, in this case, states |ε2〉 and |ε3〉 correspond to closely spaced energy
levels. For an external magnetic field x > 6, the transition probabilities of both W12 and
W13 are exponentially small, they exhibit oscillations with decreasing amplitudes and tend
to constants, depending on the angle θ.

Figure 5. Time dependence of transition probabilities W23(t) in an external magnetic field for x0 = 6
(a) for small angles θ, and (b) for angles θ > 0.05π.

Now, let us analyze the behaviors of the state (54) by observing one of the separable
states (14). It is easy to see that states |χ(t)〉1 and |χ(t)〉2 are entangled states at an arbitrary
point in time, despite the fact that at the initial moment, the system was in a separable state.
It would be interesting to know the moment when these states could be as separable as
possible. In the following, we will consider the cases corresponding to those discussed
above. At first, we illustrate the time-dependent probabilities wqi to observe one of the
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separable states (14) at the zero initial magnetic field. Firstly, let us analyze state |χ(t)〉1.
Note that for angle θ = 0, all probabilities are zero, except for the probability of the initial
state, which is 1. Figure 6 shows the behaviors of the probabilities over time for small and
intermediate angles θ when the initial state is |q1〉.

Figure 6. Time dependence of probabilities to observe separable states wqi (t) when x0 = 0 (a) for
θ = 0.025π, (b) and for θ = 0.25π.

Small angle θ states |q1〉 and |q2〉 are completely entangled with small oscillations. For
the intermediate angle, we have the maximum entanglement, but the oscillation amplitude
is very large, and we can observe a situation with almost-separable states |q1〉 and |q2〉. At
any given time, all three states are entangled.

The pattern is very different for an angle close to π/2, as shown in Figure 7. For
θ = π/2, we observe oscillations of only two entangled states |q1〉 and |q2〉 and transitions
from maximally entangled to separable states.

Figure 7. Time dependence of probabilities to observe separable states wqi (t) in the case of the initial
state |q1〉 when x0 = 0 (a) for θ = 0.4π, and (b) for θ = π/2.

For state |χ(t)〉2, the pattern is simpler. For θ = 0 and π/2, we have |χ(t)〉2 = f2(t)|q3〉.
If θ 6= 0, π/2 we observe periodical oscillations, and can obtain separable state |q3〉, as
shown in Figure 8.

Now, we will discuss the behavior of states in an intermediate static magnetic field
when x0 & 6.

The behavior of state (54) in an intermediate external field is simpler compared to
the case of a zero magnetic field. Indeed, the diagram of energy levels, which is given in
Figure 1, shows that only two of the three states are effectively entangled. However, the
entanglement depends on the angle θ: states |q3〉 and |q2〉 are entangled at small angles,
and states |q2〉 and |q1〉 are entangled when θ → π/2. These results are illustrated in
Figures 9 and 10.
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Figure 8. Time dependence of probabilities to observe separable states wqi (t) in the case of the initial
state |q3〉 when x0 = 0 (a) for θ = 0.15π, and (b) for θ = π/4.

Figure 9. Time dependence of probabilities, which shows the entanglement of states wq3 (t) and wq2 (t)
in the case of the initial state |q3〉 when x0 = 6 (a) for θ = 1.5 · 10−2π, and (b) for θ = 0.15π.

Figure 10. Time dependence of probabilities to observe the entanglement of states wqi (t) when x0 = 6
(a) in the case of the initial state |q3〉 for θ = 0.3π, and (b) in the case of the initial state |q1〉 for
θ = 0.45π

9. Conclusions

In this article, we examined the quantum dynamics of a pseudo-qutrit, which was
formed in a system of two identical (but distinguishable) spins of 1/2, interconnected
by a dipole–dipole interaction, and located in an external magnetic field that depends
on time. We obtained an approximate analytical solution for the energy levels of the
system, which was in good agreement with accurate numerical calculations. The obtained
analytical results make it possible to develop the adiabatic representation introduced in [21]
to describe the quantum dynamics of a pseudo-qutrit. The representation provides a very
clear understanding of the time dependence for the transition rates between energy levels
of a qutrit and the entanglement of two-qubit states. In particular, using the adiabatic
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representation, it is possible to describe transitions for a degenerate or quasi-degenerate
energy spectrum.

The results can be applied to more complex systems with a time-dependent Hamilto-
nian, particularly for open systems, or for systems with non-Hermitian Hamiltonians. In the
future, it will be useful to formulate the problem in terms of the density matrix formalism.

In this formalism, it is possible to use the probability representation of quantum
states [16,20,36–39] and expressions of quantum states in terms of the Jordan–Schwinger
map [40,41], where the spin states are given in the form of two-mode oscillator wave func-
tions. This so-called Hermite polynomial representation of spin states [42–44] is formulated
as the probability distribution of oscillator quantum states. The dynamics of the qutrit states
discussed in our article can be formulated as dynamics of the probability distributions of
two-mode oscillator states (both separable and entangled) using the integral of motion method
of nonstationary oscillator states [45].
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Appendix A

Only the external magnetic field can vary in time, and derivatives ϑ̇1 and ϑ̇2 can
depend on ẋ only. Equation (28) gives the following relation:

d
dt

tan 2ϑ1 =
2

cos2 2ϑ1
ϑ̇1 = −3y

x2 ẋ.

After simple transformations, we obtain a compact expression

ϑ̇1 = − 3y
x2 + 9y2 ẋ. (A1)

The derivative for ϑ2 is relatively cumbersome, and we will give some main intermediate
relations. Firstly, using definition (35), we can write

d
dt

tan 2ϑ2 =
2
√

2 sin 2θ

3(2− 3y)−
√

x2 + 9y2

(
Ṡ+ +

S+

3(2− 3y)−
√

x2 + 9y2

xẋ√
x2 + 9y2

)
.

The derivative of S+ has a very compact view:

Ṡ+ = −1
2

S−
3y

x2 + 9y2 ẋ.

Now, we can write

d
dt

tan 2ϑ2 = 2

(
1 +

8 sin2 2θS2
+

(3(2− 3y)−
√

x2 + 9y2)2

)
ϑ̇2.
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Note that for S+, we have the following relation

S2
+ = 1 +

3y√
x2 + 9y2

.

Collecting the obtained relations, we have the final expression for the derivative of the
second transformation parameter

ϑ̇2 =

2xS+ + 3S−y
(

1− 3(2−y)√
x2+9y2

)
(3(2− 3y)−

√
x2 + 9y2)2

√
x2 + 9y2 + 8(

√
x2 + 9y2 + 3y) sin2 2θ

· sin 2θ

2
√

2
ẋ. (A2)
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