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Abstract: We consider the thermodynamics of the Einstein-power-Yang–Mills AdS black holes in the
context of the gauge-gravity duality. Under this framework, Newton’s gravitational constant and the
cosmological constant are varied in the system. We rewrite the thermodynamic first law in a more
extended form containing both the pressure and the central charge of the dual conformal field theory,
i.e., the restricted phase transition formula. A novel phenomena arises: the dual quantity of pressure
is the effective volume, not the geometric one. That leads to a new behavior of the Van de Waals-like
phase transition for this system with the fixed central charge: the supercritical phase transition. From
the Ehrenfest’s scheme perspective, we check out the second-order phase transition of the EPYM AdS
black hole. Furthermore the effect of the non-linear Yang–Mills parameter on these thermodynamic
properties is also investigated.

Keywords: restricted phase space; phase transition; supercritical behaviour

1. Introduction

Since black holes and their thermodynamics can provide clues about the nature of
quantum gravity, they have been of crucial importance. Especially, the asymptotically anti-
de Sitter (AdS) black holes with a finite temperature can provide a description of the dual
conformal field theory (CFT) via the AdS/CFT correspondence [1]. Such black holes can be
in thermal equilibrium with their radiation field and exhibit the Hawking–Page (HP) phase
transition [2,3]. Subsequently, a very crucial point had been proposed: a negative cosmolog-
ical constant can reduce a positive thermodynamic pressure, whose dual thermodynamic
quantity is volume [4]. That makes AdS black holes identical to ordinary thermodynamic
systems, and their thermodynamics become more complete. In this extended phase space,
the mass parameter is interpreted as the entropy rather than the internal energy, and AdS
black hole thermodynamics become richer and richer, such as the Van de Waals-like phase
transition for the charged AdS black holes [5–7], the reentrant phase transitions for the
rotating system [8,9], superfluid [10], the polymer-like phase transition [11], and the triple
points [12,13], along with the novel dual relation of HP phase transition [14]. Meanwhile,
the inclusion of the pressure–volume term in the thermodynamic first law makes other
model parameters novel thermodynamic quantities [6] and makes it possible to regard
AdS black holes as heat engines [15,16]. All of those developments are in the subdiscipline,
black hole chemistry [17].

On this issue, people always attempt to give the concrete physical explanation of
black holes chemistry in the extended phase space via AdS/CFT [18,19]. However, it is
somewhat elusive from the viewpoint of the holographic [20,21]. For an AdS black hole
system, the variations of the cosmological constant Λ correspond to both the changing
of the central charge and the CFT volume, which indicates that the thermodynamic first
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law in the extended phase space cannot be straightforwardly related to the corresponding
thermodynamics of the dual field theory [22,23]. Furthermore, the variation of pressure (or
Λ) implies changing the gravity model. The corresponding ensemble does not describe the
collection of black holes from the same gravity model where the macro states are the same,
while it describes the collection of gravity models of the same or similar black hole solutions.
Additionally, in the extended phase space, the absolute values of the coefficients appearing
in the thermodynamic first law are not all one. These comments motivate the modification
of the thermodynamic first law. Recently, the authors in Refs. [24,25] put forward the central
charge and the chemical potential as a new pair of dual thermodynamic quantities that
should be included in the thermodynamic first law. Here, Newton’s gravitational constant
can change as well as Λ, which will induce profound consequences of the chemical potential
and its holographic interpretation, and compared with ordinary thermodynamic systems,
the introduction of these two thermodynamic quantities gives rise to a new thermodynamic
phenomenon, the supercritical phase transition [26–28]. In this work, for the Einstein-
power-Yang–Mills (EPYM) AdS black hole [29–32], we will exhibit the concrete process of
establishing the more extended thermodynamic first law in which the pressure, volume,
central charge, and chemical potential are included.

As we all know, at the linear level, the charged black holes in an AdS spacetime nearby
the critical point is of the scaling symmetries, S ∼ q2, P ∼ q−2, T ∼ q−1 [33,34], where q is
the electric charge. Does the same scaling symmetry still hold for the non-linear charged
AdS black holes? There are lots of generalizations of the linear-charged AdS black hole
solution: Einstein–Maxwell–Yang–Mills AdS black hole [35], Einstein-power-Yang–Mills
AdS black hole [32], Einstein–Maxwell-power-Yang–Mills AdS black hole [29], Einstein–
Yang–Mills–Gauss–Bonnet black hole [36], Einstein-power-Maxwell-power-Yang–Mills
dilaton [37], and so on. An interesting non-linear generalization of charged black holes
involves a Yang–Mill field exponentially coupled to Einstein gravity (i.e., Einstein-power-
Yang–Mills gravity theory) because it possesses the conformal invariance and is easy to
construct the analogues of the four-dimensional Reissner–Nordström black hole solutions in
higher dimensions. Additionally, several thermodynamic features of the EPYM AdS black
hole in the extended phase space have been exhibited [29,38,39]. Do new thermodynamic
phenomena appear for the EPYM AdS black hole when the central charge and the chemical
potential are introduced? The answer will be given in this work.

This work is organized as follows. In Section 2, we briefly review the EPYM AdS black
hole solution and its hawking temperature. In Section 3, we derive the more extended
thermodynamic first law that includes the central charge and the chemical potential by
considering the variation of Newton’s gravity constant and the cosmological constant.
Then, critical thermodynamic quantities are exhibited, and the effect of the non-linear YM
parameter on the critical point is also investigated in Section 4. In Section 5, we explore
the first-order phase transition in this more extended phase space and compare the results
with those in the extended phase space. Finally, we check out the Ehrenfest’s scheme of the
EPYM AdS black hole in Section 6. A brief summary is given in Section 7.

2. EPYM AdS Black Hole and Hawking Temperature

The action for four-dimensional Einstein-power-Yang–Mills (EPYM) gravity with a
cosmological constant Λ was given by [20,30–32]

I =
1
2

∫
d4x
√

g(R− 2Λ−Fγ) (1)

with the Yang–Mills (YM) invariant F and the YM field F(a)
µν

F = Tr(F(a)
µν F(a)µν), (2)

F(a)
µν = ∂µ A(a)

ν − ∂ν A(a)
µ +

1
2ξ

C(a)
(b)(c)A(b)

µ A(c)
ν . (3)
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Here, Tr(F(a)
µν F(a)µν) = ∑3

a=1 F(a)
µν F(a)µν, R and γ are the scalar curvature and a positive real

parameter, respectively; C(a)
(b)(c) represents the structure constants of three-parameter Lie

group G; ξ is the coupling constant; and A(a)
µ represents the SO(3) gauge group Yang–Mills

(YM) potentials defined by the Wu–Yang (WY) ansatz [40]. Variation of the action with
respect to the spacetime metric gµν yields the field equations

Gµ
ν + Λδµ

ν = Tµ
ν, (4)

Tµ
ν = −1

2

(
δµ

νFγ − 4γ Tr
(

F(a)
νλ F(a)µλ

)
Fγ−1

)
. (5)

Variation with respect to the 1-form YM gauge potentials A(a)
µ and implementing the

traceless yields the 2-forms YM equations

d
(
?F(a)Fγ−1

)
+

1
ξ

C(a)
(b)(c)F

γ−1A(b) ∧? F(c) = 0, (6)

where F(a) = 1
2 F(a)

µν dxµ ∧ dxν, A(b) = A(b)
µ ∧ dxµ, and ? stands for the duality. It is obvious

that for the case of γ = 1 the EPYM theory reduces to the standard Einstein–Yang–Mills
(EYM) theory [36]. In this work, our issue is paid on the role of the non-linear YM charge
parameter γ.

Here, we should point out that the non-Abelian property of the YM gauge field is
expressed with its YM potentials

A(b) =
q
r2 C(a)

(i)(j)x
idxj, r2 =

3

∑
j=1

x2
j , (7)

and q is the YM charge, and the indices (a, i, j) run the following ranges: 1 ≤ a, i, j ≤ 3. The
coordinates xi take the following forms: x1 = r cos φ sin θ, x2 = r sin φ sin θ, x3 = r cos θ.
Since we have utilized the WY ansatz for the YM field, the invariant for this field takes the
form [41,42]

Tr(F(a)
µν F(a)µν) =

q2

r4 . (8)

This form leads to the disappearance of the structure constants which can be described
by the non-Abelian property of the YM gauge field. Therefore, under the condition of the
WY ansatz, we may focus on the role of the non-linear YM charge parameter instead of the
non-Abelian character parameter.

The metric for the four-dimensional EPYM AdS black hole is given as follows [43],

ds2 = − f (r)dt2 + f−1dr2 + r2dΩ2
2, (9)

where

f (r) = 1− 2GM
r

+
r2

l2 +
G
(
2q2)γ

2(4γ− 3)r4γ−2 . (10)

Here, dΩ2
2 is the metric on the two-sphere unit with volume f ourπ, and q is the YM charge,

l is related to the cosmological constant: l2 = − 3
Λ , and γ is the non-linear YM charge

parameter and satisfies γ > 0 [30]. The event horizon of the black hole is obtained from the
relation f (r+) = 0. There exist two roots of the relation f (r) = 0. One is the inner horizon
r−. Another is the outer horizon r+. Generally, the AdS black hole event horizon means
the outer horizon. The mass parameter of the black hole can be expressed in terms of the
horizon radius as
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M =
r+
2G

(
1 +

r2
+

l2 +
2γ−1Gq2γ

(4γ− 3)r4γ−2
+

)
. (11)

We can also obtain the Hawking temperature of the black hole from Equation (10) as follows

T =
1

4πr+

(
1 + 8πGPr2

+ −
G
(
2q2)γ

2r(4γ−2)
+

)
. (12)

From Equations (11) and (12), we will calculate the critical value of thermodynamic quan-
tities which are presented in Section 6. Next, we will give the modified first law of the
four-dimensional EPYM AdS black hole thermodynamics in natural units (h̄ = c = 1), i.e.,
the restricted phase space formulism.

3. Restricted Phase Space Formulism of EPYM AdS Black Hole

Recently, people in Refs. [4,5] proposed that the negative cosmological constant could
induce a positive thermodynamic pressure, which is in terms of the cosmological constant
and Newton’s gravitational constant as

P = − Λ
8πG

or P =
3

8πGl2 . (13)

In the above equation, the pressure will change with the variation of the cosmological
constant and Newton’s gravitational constant. In natural units, the Bekenstein–Hawking
entropy reads

S =
A

4G
=

πr2
+

G
, (14)

where A is the area of the black hole. The Hawking temperature can be expressed in terms
of the surface gravity κ as

T =
κ

2π
. (15)

In the extended phase space, Newton’s gravitational constant is fixed, and the mass of the
black hole is interpreted as the enthalpy instead of the internal energy. Thus, the general
form of the thermodynamic first law for the EPYM AdS black hole of the surface gravity,
charge, the cosmological constant, and the area are

δM = TδS + VδP + Ψδq2γ

=
κ

8πG
δA− V

8πG
δΛ + Ψδq2γ, (16)

where the volume and potential are

V =
4πr3

+

3
, Ψ =

2γ−2

(4γ− 3)r4γ−3
+

. (17)

We can check out the final expression in Equation (16) by using Equations (13)–(15). In the
expanded phase space, the thermodynamic phase transition properties of the EPYM AdS
black hole were exhibited in Refs. [38] and the corresponding optical properties including
the photon sphere and shadow were also presented in Refs. [44,45]. Next, we will exhibit
the concrete details of the restricted phase space formulism for the EPYM AdS black hole
in the case of γ 6= 3/4.

It has been shown that the holographic interpretation of the above thermodynamic
first law in Equation (16) could cause some issues [15,46,47]. The VδP (the variation of the
cosmological constant) in the thermodynamic first law of the bulk is shown to have two
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terms in the thermodynamic first law at the boundary conformal field theory (CFT): one is
the central charge of the boundary CFT and the thermodynamic pressure of the boundary
CFT which is caused by the change of the AdS radius. The way of addressing this problem
is to invoke the form of the central charge from the AdS/CFT dictionary, which is related
to the AdS radius l as in Ref. [22]

C =
kl2

16πG
. (18)

Here, the parameter k is determined on the details of the system on the boundary. Note that
the first law of thermodynamics in the extended phase space (see Equation (16)) cannot be
straightforwardly related to the corresponding thermodynamics of the holographic dual
field theory because variations of the bulk cosmological constant correspond to changing
both the central charge and the CFT volume. Indeed, it also corresponds to changing
the notion of electric charge and the corresponding potential that both rescale with the
AdS radius. It is possible to hold the central charge fixed so that the field theory remains
the same by simultaneously varying Newton’s constant. Here, we demonstrate that the
variation of Newton’s constant has profound consequences for black hole chemistry and
its holographic interpretation. We build on the previous holographic generalizations of
the first law, Equation (16), which include variations of Newton’s constant by rewriting it
in a new mixed form, in terms of variations of the cosmological constant and the central
charge. The explicit appearance of δC allows for a study of bulk thermodynamics in the
same CFT theory on the AdS boundary and yields a new definition for the thermodynamic
black hole volume. When considering the mass parameter M to be a function of the area
A, the cosmological constant Λ, the charge q2γ, and Newton’s gravitational constant G, i.e.,
M ≡ M(A, Λ, q2γ, G), the variation of M can be rewritten as

δM =
∂M
∂A

δA +
∂M
∂Λ

δΛ +
∂M
∂q2γ

δq2γ +
∂M
∂G

δG. (19)

Compared with Equation (16), we can see that the conjugate variables of A, Λ, and q2γ are
κ

8πG , − V
8πG , and Ψ. With the definition G ∂M

∂G = −ξ, we can recast the above equation as

δM =
κ

8πG
δA− V

8πG
δΛ + Ψδq2γ − ξ

δG
G

. (20)

In the following, we try to give the coefficient ξ in the above equation. For that, we make
use of a modified mass term as suggested in [24]

GM =M(A, Λ, Gq2γ). (21)

Performing the differential of the above equation and combining Equation (19), we have

GδM =
∂M
∂A

δA +
∂M
∂Λ

δΛ +
G∂M

∂(Gq2γ)
δq2γ +

(
q2γ∂M
∂(Gq2γ)

−M
)

δG, (22)

⇒ δM =
∂M
G∂A

δA +
∂M
G∂Λ

δΛ +
∂M

∂(Gq2γ)
δq2γ +

(
q2γ∂M
∂(Gq2γ)

−M
)

δG
G

. (23)

Comparing the above equation with Equation (20), we can obtain the following expressions

∂M
∂A

=
κ

8π
,

∂M
∂Λ

= − V
8π

,
∂M

∂(Gq2γ)
= Ψ,

q2γ∂M
∂(Gq2γ)

−M = −ξ. (24)

Therefore, the coefficient ξ has the form as

ξ = M− q2γΨ. (25)
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Performing the differential of the cosmological constant, the pressure in Equation (13), the
area in Equation (14), and the central charge in Equation (18), we have

δΛ
Λ

= − δC
2C

+
δP
2P

,
δG
G

= −
(

δC
2C

+
δP
2P

)
,

δA
A

=
δS
S
− δP

2P
− δC

2C
, (26)

Combining these results, the differential of the black hole mass in Equation (23) can be
rewritten as a function of the thermodynamic quantities (S, P, q2γ, C)

δM = TδS + Ve f f δP + Ψδq2γ + µδC, (27)

where Ve f f and µ are the effective thermodynamic volume and the chemical potential, and
they have the following forms

Ve f f =
1

2P

(
M− TS + PV − q2γΨ

)
, (28)

µ =
1

2C

(
M− TS− PV − q2γΨ

)
. (29)

That is the restricted phase space formulism of the four-dimensional EPYM AdS black
hole in the case of γ 6= 3/4. For convenience, we introduce the induced thermodynamic
quantities as

M̄ = GM, S̄ = GS, P̄ = GP, q̄ = Gq2γ, C̄ = GC, (30)

the thermodynamic first law in the restricted phase space becomes

δM̄ = TδS̄ + Ve f f δP̄ + Ψδq̄ + µδC̄, (31)

and the effective volume and the chemical potential are

Ve f f =
1

2P̄

(
M̄− TS̄ + P̄V − q̄Ψ

2

)
, (32)

µ =
1

2C̄

(
M̄− TS̄− P̄V − q̄Ψ

2

)
. (33)

From the above equations and Equation (17), we can see that the Euler relation of EPYM AdS
black holes in the restricted phase space is indeed restored as in an ordinary thermodynamic
system, which reads

M̄ = TS̄ + P̄Ve f f + q̄Ψ + µC̄. (34)

In the following, we will use these induced quantities (S̄, P̄, q̄, C̄) and T, Ve f f , Ψ, µ to
investigate the thermodynamic properties of this system.

4. Critical Curves of EPYM AdS Black Hole

Based on the classification of phase transition for a thermodynamic system by Ehren-
fest, the critical point can be obtained by the following equations

∂T
∂S̄

=
∂2T
∂S̄2 = 0. (35)

With Equations (12) and (14) and the above equations, we have

r4γ−2
c = γ(4γ− 1)2γ q̄, l2

c =
6γ

2γ− 1
r2

c . (36)
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The other critical quantities in the restricted phase space are

P̄c =
2γ− 1
16πγr2

c
, Vc

e f f =
1
3

πr3
c

(
6γ

2γ− 1
+

3γ2γ+1q̄r2−4γ
c

4γ− 3
+ 1

)
, (37)

Tc =
2γ− 1

(4γ− 1)πrc
, S̄c = πr2

c , (38)

C̄c =
3γr2

c
8π(2γ− 1)

, µc =
π(2γ− 1)

6γ2rc

(
2γ+1γ(2γ− 1)q̄r2−4γ

c
4γ− 3

+ 1

)
(39)

The results indicate that the critical point is determined by the non-linear YM parameter γ
and the YM charge q̄. Since the effect of q̄ on the phase transition has been investigated in
previous works [38,44], here we only exhibit the effects of γ on the critical temperature, the
critical pressure, and the critical central charge in Figure 1. In the range 0.5 < γ ≤ 0.5982,
the critical temperature and pressure are both decreasing with the increase of γ, while the
critical central charge is increasing. When 0.6456 ≤ γ, the critical temperature and pressure
are the monotonically increasing functions with γ, while the critical central charge is not. In
the middle range 0.5982 ≤ γ ≤ 0.6456, the critical central charge and pressure is increasing,
while the critical temperature is decreasing.

Γ

0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060
Tc0.001

0.002

0.003

0.004

0.005

0.006

Pc

Pc

min
Γ=0.6456

Tc
min

Γ=0.5982

(a) Tc − P̄c

Γ

0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060
Tc0.0

0.5

1.0

1.5

Cc

Cc

max
Γ=0.6456

Tc
min

Γ=0.5982

(b) Tc − C̄c

Figure 1. The critical curves in Tc − P̄c and Tc − C̄c diagrams with the non-linear charge parameter γ.
The YM charge is set to q̄ = 1.

5. First-Order Phase Transition in Restricted Phase Space

In previous works [38,44], the phase transition condition of the EPYM AdS black hole
in the extended phase space was proposed. Furthermore, the first-order phase diagrams
of T − S, P − V, and q2γ − Ψ in the extended phase space were also exhibited. In this
manuscript, we introduce the central charge and the chemical potential to present the phase
structure of the EPYM AdS black hole in the restricted phase space, where the volume is
modified. Thus, we mainly focus on the phase diagrams in the T − S̄, P̄−Ve f f , and C̄− µ
planes and exhibit the corresponding properties of phase transition. First, we will review
the phase transition condition from the viewpoint of the independent dual thermodynamic
quantities T − S̄.

For the EPYM black hole to the given YM charge q̄ and pressure P̄0 < P̄c in the phase
diagram of T − S̄, the entropies at the boundary of the two-phase coexistence area are
marked by S̄1 and S̄2, respectively. The corresponding phase transition temperature is T0,
which is related with the horizon radius r+. Therefore, from the Maxwell’s equal-area law

T0(S̄2 − S̄1) =
∫ S̄2

S̄1
TdS̄ and Equation (12), we have
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2πT0 =
1

r2(1 + x)
+

8πP̄0r2

3(1 + x)

(
1 + x + x2

)
−

2γ q̄r1−4γ
2

2(3− 4γ)

(
1− x3−4γ

)
(1− x2)

(40)

with x = r1
r2

. In addition, from the state equation we have

T0 =
1

4πr1,2

1 + 8πP̄0r2
1,2 −

2γ q̄

2r(4γ−2)
1,2

, (41)

From the two above equations, we have

0 = −1− x
r2x

+ 8πP̄0r2(1− x) +
2γ q̄

2r4γ−1
2 x4γ−1

(
1− x4γ−1

)
, (42)

8πT0 =
1 + x
r2x

+ 8πP̄0r2(1 + x)− 2γ q̄

2r4γ−1
2 x4γ−1

(
1 + x4γ−1

)
. (43)

Considering Equations (40), (42), and (43), the horizon r2 has the following form

r4γ−2
2 =

2γ q̄
[
(3− 4γ)(1 + x)

(
1− x4γ

)
+ 8γx2(1− x4γ−3)]

2x4γ−2(3− 4γ)(1− x)3 = 2γ q̄ f (x, γ). (44)

Since the horizon radius must be positive, the non-linear YM charge parameter satisfies
the condition 1

2 < γ and γ 6= 3
4 . In addition, from the state Equation (41), the temperature

T0 can be written as a function of r+ and x

T0 =
1

4πx(1− x)r2

(
1− x2 − 2γ−1q̄(1− x4γ)

(xr2)4γ−2

)
. (45)

Considering Equations (44) and (45), we find that for the given values of γ, q̄, and tempera-
ture T0, we can calculate the value of x. Then, substituting the result of x into Equation (44),
the large horizon radius will be obtained. Thus for the given temperature T0 (T0 < Tc), the
first-order phase transition condition reads(

2q2)γ

r4γ−2
2

=
1

f (x, γ)
. (46)

In other words, the phase transition of this system is determined by the ratio between the
YM charge q̄ and r4γ−2

2 , not just the black hole horizon. Note that we call this ratio the
YM potential at the horizon surface r2. Thus, we call this phase transition the high/low-
potential black hole (HPBH/LPBL) one.

The phase diagrams of P̄−Ve f f , C̄− µ, and T − S̄ are shown in Figures 2 and 3a. It is
very interesting that for the system with the higher central charge (C̄ > C̄c), the first-order
phase transition appears, while it will vanish as C̄ < C̄c. This phenomena is consistent
with that in Ref. [24] which is called the supercritical phase transition and governed by
the freedom degree in conformal field theory. However it is completely different from
the system undergoing the isobaric processes in the extended phase space [38] as well as
another kind of supercritical phase transition [26] where the central charge and chemistry
potential exist but not the pressure and volume. Therefore, it can be guessed that the
effects of pressure and central charge on the first-order phase transition are completely
opposite. In addition, although the volume in the restricted phase space is modified
compared with that in the expanded phase space, the phase transition point is still the
same in the volume–pressure plane. For the lower temperature (less than the critical one),
there exists the first-order phase transition both in the P̄−Ve f f and C̄− µ planes. For the
higher temperature, the first-order phase transition of the system disappears. However,
there exists a very interesting phenomena: when the central charge of this system is lower
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than the critical one, the phase transition does not exist, while for the higher central charge
it appears. That is completely different from other thermodynamic quantities. In addition,
the effect of the non-linear YM parameter on the phase diagram of P̄−Ve f f is shown in
Figure 3b.
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Figure 2. The phase diagrams of Ve f f − P̄ and µ− C̄ with different values of temperature.

0 10 20 30 40 50
S0.041

0.042

0.043

0.044

0.045

T

0.95CC

CC

1.05CC

1.1CC

(a) γ = 1, q̄ = 1

200 400 600 800 1000

Veff

0.0010

0.0015

0.0020

P

(b) γ = 0.85, q̄ = 1

Figure 3. The first-order phase diagrams of Ve f f − P̄ with different values of temperature. The
parameters are set to q̄ = 1, T = 0.033 < Tc, and the non-linear YM charge parameter varies from 0.8
to 1 from the black line to the red one.

6. Phase Transition From Ehrenfest’s Equations

We now exploit Ehrenfest’s scheme in order to understand the nature of the phase
transition. Ehrenfest’s scheme basically consists of a pair of equations known as Ehrenfest’s
equations of the first and second kind. For a standard thermodynamic system, these
equations may be written as [48–50](

∂P̄
∂T

)
S̄

=
CP̄2
− CP̄1

TVe f f (β2 − β1)
=

∆CP̄
TVe f f ∆β

, (47)(
∂P̄
∂T

)
Ve f f

=
β2 − β1

κT2 − κT1

=
∆β

∆κT
. (48)

where β = 1
Ve f f

(
∂Ve f f

∂T

)
P̄

is the volume expansion coefficient, and κT = − 1
Ve f f

(
∂Ve f f

∂P̄

)
T

is
the isothermal compressibility coefficient. For a genuine second order phase transition,
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both of these equations have to be satisfied simultaneously. From Equation (31), we can
obtain the following relation(

∂P̄
∂T

)
S̄
=

(
∂S̄

∂Ve f f

)
P̄

,
(

∂P̄
∂T

)
Ve f f

=

(
∂S̄

∂Ve f f

)
T

. (49)

With the above equations, the Prigogine–Defay (PD) ratio Π becomes

Π =

(
∂P̄
∂T

)
S̄
/
(

∂P̄
∂T

)
Ve f f

=

(
∂S̄

∂Ve f f

)
P̄

/

(
∂S̄

∂Ve f f

)
T

. (50)

The definition of the PD ratio was presented by Prigogine and Defay [51] and reviewed in
Ref. [52]. At the critical point (Tc, P̄c, Vc

e f f ), we have(
∂P̄

∂Ve f f

)
T

=

(
∂2P̄

∂V2
e f f

)
T

= 0. (51)

Substituting Equation (49) into Equations (47) and (48), at the critical point we can obtain

∆CP̄
TcVc

e f f ∆β
=

[(
∂S̄

∂Ve f f

)
P̄

]c

,
∆β

∆κT
=

[(
∂S̄

∂Ve f f

)
T

]c

. (52)

On the other hand, since S̄ = S̄(P̄, Ve f f ), therefore,(
∂S̄

∂Ve f f

)
T

=

(
∂S̄
∂P̄

)
Ve f f

(
∂P̄

∂Ve f f

)
T

+

(
∂S̄

∂Ve f f

)
P̄

. (53)

From Equation (51), we can find that,
(

∂P̄
∂Ve f f

)
T
= 0 and

(
∂S̄
∂P̄

)
Ve f f

have a finite value at the

critical point. Therefore, the first term of the right side for the above equation vanishes.
That is a very special thermodynamic feature of AdS black holes, which may not still hold
for other systems. Thus, we have[(

∂S̄
∂Ve f f

)
T

]c

=

[(
∂S̄

∂Ve f f

)
P̄

]c

, (54)

Then, substituting Equation (54) into Equation (50), the universal PD ratio (∏) at the critical
point becomes

∏ = 1. (55)

Hence, from the PD ratio perspective, the phase transition occurring at T = Tc is a second-
order equilibrium transition as well as other AdS black holes [48–50]. This is also consistent
with the results in the last section. In other words, the phase transition of AdS black holes
is independent of the phase spaces, such as the extended phase space and the restricted
phase space.

7. Discussions and Conclusions

In this manuscript, we studied the thermodynamics of the EPYM AdS black hole in
the restricted phase space, which revealed several remarkable characteristics that are the
same as the RN-AdS black hole, and compared them with those in the expanded phase
space. The results are summarized in the following
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• The first law of thermodynamics for the EPYM AdS black hole in the restricted phase
space conforms to the standard description of ordinary thermodynamic systems: the
mass parameter is to be understood as the internal energy, and the Euler relation
of this system in the restricted phase space is restored as in an ordinary thermody-
namic system.

• In these two different phase spaces, the property of phase transition including the
first-order and second-order phase transitions for the EPYM AdS black hole does
not change. That means that the thermodynamic property of AdS black holes is
independent of the adoption of corresponding phase spaces.

• From the PD ratio perspective, this charged non-linear black hole is indeed in an
equilibrium state at T = Tc as well as ordinary thermodynamic systems. This also
indicates that black holes can be indeed regarded as thermodynamic systems.
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