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Abstract: According to the World Health Organization, cancer is a worldwide health problem. Its
high mortality rate motivates scientists to study new treatments. One of these new treatments is
hyperthermia using magnetic nanoparticles. This treatment consists in submitting the target region
with a low-frequency magnetic field to increase its temperature over 43 ◦C, as the threshold for
tissue damage and leading the cells to necrosis. This paper uses an in silico three-dimensional
Pennes’ model described by a set of partial differential equations (PDEs) to estimate the percentage
of tissue damage due to hyperthermia. Differential evolution, an optimization method, suggests
the best locations to inject the nanoparticles to maximize tumor cell death and minimize damage to
healthy tissue. Three different scenarios were performed to evaluate the suggestions obtained by the
optimization method. The results indicate the positive impact of the proposed technique: a reduction
in the percentage of healthy tissue damage and the complete damage of the tumors were observed. In
the best scenario, the optimization method was responsible for decreasing the healthy tissue damage
by 59% when the nanoparticles injection sites were located in the non-intuitive points indicated by
the optimization method. The numerical solution of the PDEs is computationally expensive. This
work also describes the implemented parallel strategy based on CUDA to reduce the computational
costs involved in the PDEs resolution. Compared to the sequential version executed on the CPU, the
proposed parallel implementation was able to speed the execution time up to 84.4 times.

Keywords: hyperthermia; cancer; bioheat; CUDA; optimization; differential evolution

1. Introduction

Cancer is one of the leading causes of death worldwide: this disease was responsible
for 10 million deaths in 2020 [1]. Most of those deaths occur among people older than
50 years. The most common types of cancer are breast cancer, lung cancer, and colon and
rectum cancer [1,2].

Due to the high mortality rates associated with cancer, new strategies are being devel-
oped to fight this disease. One such strategy is hyperthermia, an adjuvant technique used
with existing treatments such as radiotherapy and chemotherapy [3]. Magnetic nanopar-
ticles can be delivered to the tumor site via intravenous or direct injection into the tissue.
When exposed to a low-frequency magnetic field, these nanoparticles produce heat via
Brownian and Neelian relaxation [4]. Hyperthermia, therefore, uses magnetic nanoparticles
to heat the tumor tissue to over 43 ◦C. The efficacy of this approach depends on its ability
to increase the temperature above 43 ◦C throughout the tumor while minimizing thermal
harm to the surrounding healthy tissue.

This study proposed a strategy for quickly identifying the optimal locations for
nanoparticle injection. Specifically, we sought to determine the injection points that will
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increase the temperature in the tumor tissue to 43 ◦C or higher while minimizing the temper-
ature in surrounding healthy tissue. Throughout this study, we used a target temperature
of T ≥ 43 ◦C as the threshold for tissue damage and induction of cell necrosis [5–7].

The scientific literature presents several models that have been developed and applied
to describe the dynamics of heat in living tissues [8–12]. In this study, we evaluated the
heat distribution of the hyperthermia process using Pennes’ model. The low computational
cost and reasonable precision of this model justified its choice [5,13–18]. The original
Pennes equation can be modified to model hyperthermia processes, including the role
of magnetic nanoparticles in the bioheat transfer equation [19–23]. We assume isotropic
and homogeneous blood perfusion rates to keep the model simple and computationally
efficient. The finite difference method (FDM) was employed to solve Pennes’ model.
Furthermore, differential evolution (DE) [24–27], a stochastic-heuristic algorithm, was used
as an optimization method to minimize damage to healthy tissue and maximize damage to
the tumor.

Since solving a partial differential equation (PDE) in a three-dimensional domain
requires significant computational time, even with simplified models, combining DE with
Pennes’ three-dimensional model significantly impacts performance. To reduce computa-
tional time and obtain solutions within a reasonable timeframe, we used general-purpose
computing on graphics processing units (GPGPU) via the Compute Unified Device Ar-
chitecture (CUDA) parallel computing platform to parallelize the implementation of the
bioheat model [11,28–30], i.e., minimize the time spent evaluating the objective function.

We organize this paper as follows. Section 2 describes the bioheat model, its numerical
approximation, the new optimization strategy, and its parallel implementation. The results
are presented in Section 3 and are discussed in Section 4. Finally, Section 5 concludes the
work and presents plans for future work.

2. Material and Methods
2.1. Mathematical Model

Pennes’ equation is a well-known mathematical model that represents heat propaga-
tion in living tissues. The main characteristics of Pennes’ equation are the simplicity of its
computational implementation and the low computational cost required for its numeri-
cal resolution.

Equation (1) presents the modified Pennes’ equation used in this work to include the
hyperthermia treatment as the heat source:

ρc
∂T
∂t

= ∇ · k∇T + ωbρbcb(Ta − T) + Qm + Qr in Ω× I,

k∇T ·~n = 0 on ∂Ω× I,
T(·, 0) = 37 in Ω,

(1)

where Ω ⊂ R3 is the spatial domain, I ⊂ R+ is the time domain, T : Ω× I → R+ is the
tissue temperature field; ρ, c, and k are density, specific heat and thermal conductivity of
the tissue, respectively; ρb, cb, and ωb are density, the specific heat of the blood and blood
perfusion, respectively; Ta is the blood temperature; and Qm and Qr are the metabolic heat
source and the heat generated by the hyperthermia treatment, respectively.

The following simplifications are considered when using Pennes’ model [9]:

• Equilibrium site: The heat transfer between blood and tissue occurs in capillaries;
• Blood perfusion: The blood flow in capillaries is considered isotropic;
• Vascular architecture: The local vascular geometry is not considered;
• Blood temperature: The body core temperature is the same as that reached by the

capillaries.
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The specific absorption rate (SAR) [31], denoted by Qr, is responsible for the heat
generated by the hyperthermia injections, as modeled by Equation (2):

Qr =
Np

∑
i=1

Ae−r(~x)2
i /r2

0,i , (2)

where Np is the number of injections points in the tissue; A is the energy maximum strength
of the volumetric heat generation rate, r(~x)2

i is the distance to the injection point, i.e.,
r = ||~x− ~x0||2; x0 is the injection position; and r0 is the radius of coverage of hyperthermia.
The values of parameters A and r0 are an estimation derived from experimental data, which
describes the properties of ferromagnetic fluid when it is subjected to a magnetic field.
The amount of fluid injected at the point of injection, such as 0.1 or 0.2 cc, mainly affects
these parameters. Therefore, the efficacy of thermal ablation treatment for tumor cells is
heavily reliant on the number of injection points and the values of parameters A and r0 as
described above.

2.2. Numerical Scheme

The numerical method employed to solve Equation (1) is the Finite Difference Method
(FDM) [32]. We consider the closed domain Ω discretized into a set of regular points defined
by Ss = {(xi, yj, zk); i = 0, 1, · · · , Nx; j = 0, 1, · · · , Ny; k = 0, 1, · · · , Nz}, where Nx, Ny,
and Nz are the number of intervals of length hx = hy = hz = h. Moreover, the time domain
I is partitioned into Nt equal time intervals of length ht, i.e., St = {(tn); n = 0, 1, · · · , Nt}.
To obtain the discrete form of the model, we employ a Forward-Time Central-Space (FTCS),
resulting in an explicit numerical method. This scheme has convergence order O(h2, ht) .

Equation (3) presents the discretization, considering a heterogeneous medium, of the
Pennes’ model described in Equation (1):

Tn+1
i,j,k =

ht

ρc

[
ki+1/2,j,k(Tn

i+1,j,k − Tn
i,j,k)− ki−1/2,j,k(Tn

i,j,k − Tn
i−1,j,k)

h2 +

ki,j+1/2,k(Tn
i,j+1,k − Tn

i,j,k)− ki,j−1/2,k(Tn
i,j,k − Tn

i,j−1,k)

h2 +

ki,j,k+1/2(Tn
i,j,k+1 − Tn

i,j,k)− ki,j,k−1/2(Tn
i,j,k − Tn

i,j,k−1)

h2 +

ρbcbωb

(
Ta − Tn

i,j,k

)
+ Qm + Qr

]
+ Tn

i,j,k,

(3)

where ki+1/2,j,k is the thermal conductivity evaluated at the midpoint. In this paper, we
considered a piecewise homogeneous media where the thermal conductivity is a discontin-
uous function, so the thermal conductivity can be estimated using the harmonic mean, i.e.,

ki+1/2,j,k ≈
2ki,j,kki+1,j,k

ki,j,k + ki+1,j,k
. (4)

Equation (4) assures the continuity of the flux. Furthermore, the thermal conductivity
for the other midpoints is evaluated using the same idea.

2.3. Differential Evolution

Differential evolution is a stochastic-heuristic algorithm used in optimization problems,
i.e., used to find a value that minimizes or maximizes an objective function [33]. DE uses
concepts from biological evolution to improve iteratively the results obtained by the use
of candidate solutions. These candidate solutions represent a population whose best
individuals are selected to pass their characteristics to their offspring. Mutations can occur
during this process, changing the characteristics inherited.
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The algorithm creates a random population, called the parent population, with a fixed
number of individuals. A new generation is then created based on the parent population
using three evolutionary operators, mutation, crossover, and selection, replacing the parent
generation. A stopping criterion defines when the loop stops. An error below a given
threshold or a maximum number of iterations are examples of stopping criteria. Equation (5)
illustrates the stopping criterion adopted in this work:

σ(O(p)) ≤ atol + tol ∗ |O(p)|, (5)

where σ(O(p)) is the standard deviation of the objective function for the population, atol
and tol are absolute and relative tolerance for convergence, respectively, and |O(p)| is the
absolute mean value of the objective function for the population.

The objective function to be minimized considers the volumes of tumor and healthy
tissue affected by the hyperthermia treatment. More specifically, partial and total damage
of tumor tissue cause a positive impact on the function, while healthy tissue damage
represents a penalty, as shown in Equation (6):

min O(p) = 300− Nt − (100− Nh)− 100β, (6)

where p is the set of points to be estimated, Nt ∈ [0, 100] is the percentage of tumor tissue
damage, and Nh ∈ [0, 100] is the percentage of healthy tissue damage. β ∈ {0, 1} is a
variable that equals 1 when the entire tumor reaches 43 ◦C or more and 0 otherwise.

Since T ≥ 43 ◦C is considered a target temperature for tissue damage, the proposed
objective function aims to locate the best position for injecting the nanoparticles to increase
the temperature in the tumor tissue up to 43 ◦C or higher while keeping the healthy tissue
temperature below 43 ◦C as much as possible. Therefore, Nt represents the percentage
of tumor tissue with T ≥ 43 ◦C, and Nh represents the percentage of healthy tissue with
T < 43 ◦C.

A new value is generated using a particular mutation strategy during the mutation
operation stage. This work adopts best/1/bin as the mutation strategy. This strategy uses the
best solution found in the parent population to produce the mutation vector Vp as shown
in Equation (7):

Vi
p = Xi

best + F ∗ (Xi
a − Xi

b). (7)

The next step uses the crossover operation to introduce more mutations into the
population, mixing the mutation vector obtained in the previous step with a target vector
Xr. The idea is to increase the diversity of the trial vector, composed of individuals that
will be evaluated in the final step. The crossover operation works as follows. A random
number is drawn for each position of the trial vector Ui. If this number is greater than the
crossing constant C, that position of the trial vector receives the equivalent position of the
target vector. Otherwise, the value is taken from the mutation vector, i.e.,

Ui =

{
Vi

p, if ri ≤ C
Xi

r, otherwise.
(8)

Finally, each value of the trial vector is used to evaluate the objective function. Then,
the result is compared to the target vector. The best individual, i.e., the one that generated
the error closer to zero, is selected to be part of the next generation.

Xi+1 =

{
Ui

p, if O(Ui
p) ≤ O(Xi

r)

Xi
r, otherwise.

(9)

2.4. CUDA Parallel Programming

In this paper, differential evolution used Pennes’ model to evaluate its objective
function. Unfortunately, the sequential computation time required to solve one generation
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of the differential evolution is prohibitive: it takes circa 864 minutes to complete. About
98% of this time is spent solving Pennes’ bioheat model, i.e., about 851 minutes. A parallel
strategy based on CUDA’s SIMT (Single Instruction, Multiple Threads) programming
model was implemented to reduce this execution time. More specifically, the FDM was
implemented as a CUDA kernel, i.e., a piece of code that the CPU, called the host, can
invoke to be executed on the GPU, also called the device.

Due to their separate memory spaces, some steps must be followed by programmers
that wish to have their codes executed on the device. First, memory must be allocated on
the device to store the data it will process. After that, data that the kernel will use must be
copied from the host to the device. The host can then call the kernel on the device. Finally,
after the kernel finishes its execution, the host must copy the results back from the device
to have access to them.

When a kernel is launched, it is also necessary to define how threads organize them-
selves to execute the kernel code. The programmer defines a grid and block sizes for
this purpose. The grid size tells the GPU the number of kernel instances it must launch.
On the other hand, the block size specifies how many threads must be created to ex-
ecute each kernel instance. Threads in blocks and blocks in grids are organized in a
one-dimensional, two-dimensional, or three-dimensional way. Our implementation creates
a three-dimensional grid, and each element of this grid has one three-dimensional block, as
depicted in Figure 1. Each thread computes data related to its position in the domain.

block block

block

Nx

Ny

Nz

Tz

Ty

Tx

block block block

block

block

block

thread thread thread

thread thread thread

thread thread thread

Nx = 4
Ny = 32
Nz = 32 

Tx = 32
Ty = 4
Tz = 4

Figure 1. Scheme illustrating the blocks and threads organization used in the simulations of this
study. The dimensions were computed by the occupancy calculator (see Figure 2).

The execution of a code on the GPU requires adaptations and optimizations to improve
performance since the internal GPU architecture is very distinct from the CPU architecture.
The usual CUDA optimizations implemented by those that execute code on the GPU are
also present in our code, such as the replacement of statements by ternary operators, the
substitution of traditional functions by macros and inline functions, and the use of thread’s
register space to store data accessed multiple times to reduce memory bandwidth usage.
Additionally, the optimal values for the thread block size were computed using the CUDA
Occupancy calculator, as shown in Figure 2. These values were calculated to maximize the
occupancy of the stream multiprocessors. Maximizing the occupancy can help to mask the
latency during some memory operations.
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Figure 2. Results obtained by the use of the CUDA Occupancy Calculator. The Figure shows the
consequence of varying the number of threads per block in the GPU occupancy. The idea is to choose
the block size that maximizes GPU occupancy. The same occupancy can be achieved by distinct
configurations. The red triangle represents the block size used in this work.

3. Numerical Results
3.1. Computational Environment

The numerical model and optimization method presented in Section 2 were imple-
mented by the authors using the C programming language. The sequential version of
the code was compiled using gcc version 11.3.1 with the optimization flag −O3 enabled.
The CUDA version of the code was compiled using nvcc version 11.7.64, with the opti-
mization flag −O3 enabled as well. Both the sequential and parallel versions of the code
were executed on a 2.90 GHz Intel® CoreTM i7-10700 CPU processor running Linux version
5.17.4-200. f c35.x86_64 and equipped with a GeForce GTX 1650 Super Turing architecture.
The CPU has 16 hyper-threading cores, but only eight physical cores. The GPU has 1280 CUDA
cores and 4 GB of GDDR6 memory. Both the sequential and parallel versions of the code
ran on a single CPU core. Finally, the simulations were post-processed using ParaView
version 5.10.1.

3.2. Simulation Scenarios

This work evaluated the optimization method developed in this work using three
distinct simulation scenarios. The optimization method aims to find the sites that maximize
tumor damage while minimizing the healthy tissue affected during the hyperthermia
treatment. The results obtained by the proposed optimization strategy were compared
to those of a naive approach that always injects the nanoparticles in the middle of the
tumor. In all simulation scenarios, a three-dimensional cubic domain with lengths equal
to 0.1 m represents the tissue, and spherical with radii of 0.01 m represents the tumors.
As the next section shows, a grid independence study determined the mesh size used in
this work: Nx = Ny = Nz = 128. The time step used was ht = 0.1. We simulated a single
hyperthermia treatment session of 50 min.

The first scenario considers a single tumor located in the center of the domain and a
single injection point. The second scenario considers two tumors in the domain and two
injection points. The third scenario considers three tumors and two or three injection points.
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Almost all parameters are common to all scenarios. Table 1 presents the parameter
values that represent healthy and tumorous tissues. The missing parameter, Np, changes
its value according to the considered scenario.

The optimization strategy was executed using different seeds to certify that the algo-
rithm did not converge to a local minimum. The DE population size is proportional to
the number of parameters to be adjusted (Nparam), i.e., Nparam × pop where we considered
pop = 35 for all scenarios. Moreover, if the simulation does not reach the convergence crite-
rion after 10,000 steps, the DE stops considering this optimization attempt unsuccessfully.

Table 1. Parameter values used for all scenarios, for healthy and tumor tissues, to solve Equation (1).
The parameters are adapted from the literature [12,34,35].

Parameters Unit Healthy Tissue Tumor Tissue

k W/m ◦C 0.51 0.64
ωb s−1 5.0× 10−4 1.25× 10−3

ρ Kg/m3 1000.0 1000.0
ρb Kg/m3 1000.0 1000.0

Qm W/m3 420.0 4200.0
c J/Kg ◦C 4200.0 4200.0
cb J/Kg ◦C 4200.0 4200.0
A W/m3 0.08× 106 0.08× 106

r0 m 1.9× 10−2 1.9× 10−2

3.3. Grid Independence Study

The first scenario was used to execute a grid independence study. A grid independence
study is a systematic investigation to determine the numerical solution’s sensitivity to the
size of the computational grid. It involves evaluating the solution of a problem using
different grid sizes to determine the point at which the solution becomes insensitive to the
grid size. The grid independence study is an essential step in numerical simulations to
ensure the accuracy and reliability of the results.

The grid independence study was performed using the first scenario, starting with a
mesh size of Nx = Ny = Nz = 256. We observed that the healthy tissue affected was equal
to 1.49% for the best individual. Then, we reduced the mesh size to Nx = Ny = Nz = 128.
For this mesh size, we observed that the healthy tissue damage was equal to 1.53% for
the best individual, i.e., a small variation of 0.04%. We adopted the mesh size of Nx =
Ny = Nz = 128 for all three scenarios because this coarse-grained mesh allows us to obtain
accurate and reliable numerical solutions while minimizing computational costs.

3.4. Results of the Optimization Method

Tables 2–4 present, for each scenario, the best individuals found for ten executions of
the optimization method. These tables present the position suggested for the nanoparticle
injection and the value of its objective function O(p) (Equation (6)). In this optimization
problem, the best individual is the one that obtains an O(p) value closer to 0. The last two
lines show the mean and standard deviation values for each column, respectively.

3.4.1. First Scenario

The first scenario considers a tumor centered at (0.050, 0.050, 0.050), i.e., in the center
of the domain (as shown in Figure 3). The DE tries to find a single injection point for the
nanoparticles that can kill all tumor cells, and at the same time minimize the number of
healthy cells killed. This scenario considers the values shown in Tables 1 and Np = 1 to
solve the Equation (1). The points found, for each execution, are presented in Table 2.
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Table 2. Results for 10 executions of the optimization method considering the first scenario. The first
three columns show the suggested injection points in X, Y, and Z. The last column shows the value of its
objective function. The last two lines show the mean and the standard deviation value for each column.

Optimization
P1

O(p)
X1 Y1 Z1

1 0.050329 0.048464 0.051144 1.528931
2 0.047534 0.049658 0.052657 1.530411
3 0.049302 0.050300 0.048829 1.529602
4 0.048908 0.051205 0.049924 1.528976
5 0.050408 0.050745 0.048888 1.528015
6 0.050429 0.051157 0.050696 1.528015
7 0.049702 0.049928 0.049644 1.528488
8 0.051778 0.050468 0.048926 1.528595
9 0.050470 0.048895 0.050958 1.529312
10 0.049211 0.051133 0.050279 1.529404

Mean 0.049807 0.050195 0.050195 1.528975
SD 0.001152 0.000958 0.001219 0.000744

Figure 4 presents different views of the simulation results. They represent the damages
due to one 50 min section of the hyperthermia treatment. The panels on the left column
of Figure 4a–d are the results of the naive approach of injecting the nanoparticles in the
middle of the tumor, while the right column of the Figure presents the results obtained
when the best result of Table 2 is considered, i.e., when the nanoparticles are injected at the
coordinates given by line 5 (0.050408, 0.050745, 0.048888). In this scenario, the results of the
naive and optimized approach were very similar: in both cases, the total tissue damage of
the tumor was observed, and 1.53% of healthy tissue was damaged.

z

y x

Figure 3. This figure illustrates the tissue used in the first scenario. The red sphere represents the
tumor, and the blue area represents the healthy tissue.

The damage caused by the treatment can be better observed in Figure 5, which presents
the heatmap of the model solution in the plane x = −y at t = 50 min. The naive (a) and the
optimized (b) solutions are presented in Figure 5.
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Figure 4. Results for the first scenario are presented in (a–h), showing different views of tissue
damage using the results of Equation (1) at t = 50 min. The red area denotes tissue that reached
T ≥ 43 ◦C, i.e., the accepted temperature for thermal damage in various tissues. The left panel
(a–d) considers P1 = (0.050, 0.050, 0.050), i.e., the naive solution. The right panel (e–h) considers
P1 = (0.050408, 0.050745, 0.048888), i.e., the injection point suggested by the optimization method.
As can be observed, no visual difference is noticeable between the two strategies.
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Figure 5. Heatmap of the model solution (Equation (1)) in the plane x = −y at t = 50 min. The solid
black contour highlights the portion of the domain that reaches T ≥ 43 ◦C. The solid white contour
represents the tumor location, and the blue dot is the position of the nanoparticle injection. (a) presents
the injection positioned in the center of the tumor (P1 = (0.050, 0.050, 0.050)), while (b) represents the
injection in the point suggested by the optimization method (P1 = (0.050408, 0.050745, 0.048888)).

3.4.2. Second Scenario

The second experiment considered two injection points and two tumors. One tumor
was centered at (0.040, 0.040, 0.040), and the other was centered at (0.060, 0.060, 0.060),
as shown in Figure 6. This second scenario considers the healthy and tumorous tissue
properties, this time using the values presented in Table 1 and Np = 2 as parameters to the
algorithm described in Section 2. The injection points found by the algorithm are shown in
Table 3.

a b

z

xy

z

y

x

Figure 6. This figure illustrates the tissue used in the second scenario. The red spheres represent the
tumors, and the blue area represents the healthy tissue. (a) shows the x = y view and (b) the x = 0
view.
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Table 3. Results for 10 executions of the optimization method considering the second scenario. The
first six columns show the two injection points in X, Y, and Z found using the DE algorithm. The last
column shows the value of its objective function. The last two lines show the mean and the standard
deviation value for each column.

Optimization
P1 P2

O(p)
X1 Y1 Z1 X2 Y2 Z2

1 0.033568 0.033437 0.034166 0.066204 0.066198 0.065880 4.719711
2 0.033158 0.033216 0.034887 0.066381 0.066216 0.064923 4.758118
3 0.034075 0.033586 0.033561 0.065539 0.067372 0.065266 4.730225
4 0.033551 0.034300 0.033462 0.066756 0.065333 0.066400 4.717499
5 0.033578 0.034553 0.033297 0.065525 0.065819 0.067165 4.723206
6 0.034213 0.033093 0.034340 0.066077 0.066589 0.066171 4.719650
7 0.034027 0.033663 0.033887 0.066522 0.066382 0.065932 4.714081
8 0.033460 0.033370 0.034243 0.067113 0.065617 0.065466 4.719421
9 0.033804 0.035086 0.032993 0.066942 0.065411 0.066230 4.736603

10 0.033357 0.034644 0.033353 0.066553 0.065626 0.066493 4.710052

Mean 0.033679 0.033895 0.033819 0.066361 0.066056 0.065993 4.724857
SD 0.000340 0.000692 0.000585 0.000538 0.000627 0.000654 0.013938

Figure 7 presents different views of the simulation results. They represent the damages
due to one 50 min section of the hyperthermia treatment. The panels on the left column
of Figure 7a–d are the results of the naive approach of injecting the nanoparticles in the
middle of the two tumors, while the right column of the Figure presents the results obtained
when the best results of Table 3 are considered, i.e., when the nanoparticles are injected
at the coordinates given by line 10 ((0.033357, 0.034644, 0.033353) and (0.066553, 0.065626,
0.066493)). This time, the results of the naive and optimized approach were distinct. The
naive version resulted in 7.03% of healthy tissue damage, while the optimized version
resulted in 4.71% of damage, a significant reduction of 33%. Both the optimized and naive
versions resulted in total damage to the tumor tissue.

Figure 8 presents the damage caused by the treatment as a heatmap of the model
solution in the plane x = −y at t = 50 min. The naive (a) and the optimized (b) solutions
are shown in Figure 8, which delimits the portion of the domain that reaches T ≥ 43 ◦C,
and presents the tumor sites and injection points. In both cases, one can observe that the
isoline T = 43 ◦C includes the whole tumor.
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Figure 7. Results for the second scenario. (a–h) present different views of tissue damage us-
ing the results of Equation (1) at t = 50 min. The red area denotes the tissue that reached
T ≥ 43 ◦C. The left panel (a–d) considers P1 = (0.040, 0.040, 0.040) and P2 = (0.060, 0.060, 0.060),
i.e., the naive solution. The right panel (e–h) considers P1 = (0.033357, 0.034644, 0.033353) and
P2 = (0.066553, 0.065626, 0.066493), i.e., the injection point suggested by the optimization method.
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Figure 8. Heatmap of the model solution (Equation (1)) in the plane x = −y at t = 50 min. The
solid black contour highlights the portion of the domain that reaches T ≥ 43 ◦C. The solid white
contour represents the tumor locations, and the blue dot is the position of the nanoparticle injections.
(a) presents the injection positioned in the center of the tumors (P1 = (0.040, 0.040, 0.040) and
P2 = (0.060, 0.060, 0.060)), while (b) represents the injection in the point suggested by the optimization
method (P1 = (0.033357, 0.034644, 0.033353) and P2 = (0.066553, 0.065626, 0.066493)).

3.4.3. Third Scenario

The last experiment considers three tumors, which are centered at (0.045, 0.035, 0.040),
(0.045, 0.055, 0.045), and (0.065, 0.055, 0.060), as depicted in Figure 9. The first attempt
for the optimization in the third scenario was using Np = 3, i.e., searching for the three
best injection points localizations. However, the optimization algorithm pushes one of the
three points away from the tumor, in the domain’s borders, or, in other words, out of the
simulated tissue. Thus, we tried to use Np = 2, and the algorithm obtained less damage to
the healthy tissue, and at the same time, the tumor site reached a temperature of 43 ◦C or
higher. So, although three tumors are present, the optimization considers only two injection
points, while the naive approach keeps considering one injection for each tumor, i.e., three
injection points. The third scenario uses the values shown in Tables 1 and Np = 2 or Np = 3
to solve Equation (1). The points found by the DE are presented in Table 4.
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Figure 9. This figure illustrates the tissue used in the third scenario. The red sphere represents the
tumor, and the blue area represents the healthy tissue. Both figures show different views of the same
simulated domain. Figure (a) shows the x = y view and Figure (b) the x = 0 view.

Table 4. Results for 10 executions of the optimization method considering the third scenario, i.e.,
three tumor positioned at (0.045, 0.035, 0.040), (0.045, 0.055, 0.045) and (0.065, 0.055, 0.060). The first
six columns show the two injection points in X, Y, and Z found using the DE algorithm. The last
column shows the value of its objective function. The last two lines show the mean and the standard
deviation value for each column.

Optimization
P1 P2

O(p)
X1 Y1 Z1 X2 Y2 Z2

1 0.035316 0.038939 0.037442 0.060828 0.064375 0.062292 5.794724
2 0.036168 0.040316 0.039479 0.061440 0.065741 0.064563 5.820786
3 0.036026 0.039912 0.038796 0.063148 0.064854 0.062461 5.791748
4 0.036452 0.038837 0.036926 0.058517 0.064564 0.064386 5.817810
5 0.035807 0.040034 0.039717 0.062029 0.065424 0.063476 5.831345
6 0.036532 0.040267 0.038953 0.062181 0.065351 0.064058 5.804321
7 0.035845 0.038814 0.036999 0.059579 0.064102 0.063266 5.825226
8 0.036897 0.038718 0.037442 0.059815 0.064756 0.063467 5.833176
9 0.036306 0.039930 0.038255 0.062287 0.064951 0.063020 5.798340

10 0.035855 0.039716 0.038324 0.061546 0.065134 0.063371 5.777054

Mean 0.036120 0.039548 0.038233 0.061137 0.064925 0.063436 5.809453
SD 0.000450 0.000646 0.001005 0.001439 0.000504 0.000747 0.018912

Figure 10 presents different views of the simulation results. They represent the dam-
ages due to one 50 min section of the hyperthermia treatment. The panels on the left
column of Figure 10a–d are the results of the naive approach of injecting the nanoparticles
in the middle of the three tumors, while the right column of the Figure presents the results
obtained when the best results of Table 4 are considered, i.e., when the nanoparticles are
injected at the coordinates given by line 10 ((0.035855, 0.039716, 0.038324) and (0.061546,
0.065134, 0.063371)). Again, the results of the naive and optimized approaches were distinct.
The naive version resulted in 14.05% of healthy tissue damage, while the optimized version
resulted in 5.78% of damage, a significant reduction of about 59%. As occurred in the first
and second scenarios, both the optimized and naive versions resulted in total damage to
the tumor tissue, as can be observed in the heatmaps of Figures 11 and 12. This time we
opt to show the results of the naive and optimized approaches in separate figures because
the naive version cannot show all injection points in a single heatmap.



Entropy 2023, 25, 684 15 of 21

z z

z

y y

y

y y

x x

x x

x x

z z

z

a

b

c

d

e

f

g

h

z

y

y yx x

Figure 10. Results for the third scenario. (a–h) present different views of tissue damage us-
ing the results of Equation (1) at t = 50min. The red area denotes the tissue that reached
T ≥ 43 ◦C. The left panel (a–d) considers P1 = (0.045, 0.035, 0.040), P2 = (0.045, 0.055, 0.045)
and P3 = (0.065, 0.055, 0.060), i.e., the naive solution. The right panel (e–h) considers P1 =

(0.035855, 0.039716, 0.038324) and P2 = (0.061546, 0.065134, 0.063371), i.e., the injection point sug-
gested by the optimization method.
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Figure 11. Heatmap of the model solution (Equation (1)) in the plane x = −y at t = 50 min for
the naive approach. The solid black contour highlights the portion of the domain that reaches
T ≥ 43 ◦C. The solid white contour represents the tumor locations, and the blue dot is the position
of the nanoparticle injections. (a) presents the injection positioned in the center of the tumors
(P1 = (0.045, 0.035, 0.040) and P2 = (0.065, 0.055, 0.060)), while (b) presents the injection in the center
of the tumor P3 = (0.045, 0.055, 0.045).

yx

Z

Figure 12. Heatmap of the model solution (Equation (1)) in the plane x = −y at t = 50 min for
the point suggested by the optimization method (P1 = (0.035855, 0.039716, 0.038324) and P2 =

(0.061546, 0.065134, 0.063371)). The solid black contour highlights the portion of the domain that
reaches T ≥ 43 ◦C. The solid white contour represents the tumor locations, and the blue dot is the
position of the nanoparticle injections.
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3.5. Performance Evaluation

This section evaluates the performance of the parallel version of the code, using for this
purpose the first scenario executed with three different mesh sizes: (a) N = 64; (b) N = 128;
and (c) N = 256, where N = Nx = Ny = Nz.

As shown in Section 2, the total execution time of the code is dominated by the
resolution of Pennes’ model. For this reason, the speedups reported in Table 5 refer only to
the execution of a single call of this function. The execution times reported in this Table
are the mean of 10 executions, with a confidence interval of 95%. Figure 13 presents the
boxplot for these ten sequential and parallel executions, considering the three mesh sizes
used in the performance evaluation.

As one can observe from the figures presented in Table 5, the parallel implementation
was very effective to improve performance: a minimum speedup of 82 times was achieved.
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Figure 13. Boxplot for ten executions for distinct discretizations. The first, second, and third lines
represent the execution time for N = 64, N = 128, and N = 256, respectively. The first column (a–c),
presents the execution time for the sequential version of the code, while the second column (d–f),
presents the execution time for parallel one.
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Table 5. Execution time of the sequential and parallel versions of the code for distinct meshes sizes,
and their speedups, considering the first scenario executed with the naive approach. Speedup is
defined as the ratio between sequential and parallel execution times. The reported execution times
are the mean for 10 executions, with a confidence interval of 95%.

Mesh
(Nx ×Ny ×Nz) CPU Time (s) GPU Time (s) Speedup

64× 64× 64 90.7 ± 0.55 1.1 ± 0.002 82.5
128× 128× 128 759.2 ± 2.38 9.0 ± 0.04 84.4
256× 256× 256 5998.96 ± 22.60 72.1 ± 0.05 83.2

4. Discussion

In all simulated scenarios, for both the naive and optimized strategies, the tumor
damage reached 100%. The main difference between the strategies was the reduction in
healthy tissue damage: the proposed algorithm reduced damage by up to 33% in the second
scenario and 59% in the third. In the case of the first scenario, similar results were obtained,
as can be observed in Figure 4: no visual difference is noticeable between the naive strategy
and the optimized one. These numerical experiments suggest that the proposed method
is better suited for controlling healthy tissue damage in hyperthermia treatment since it
suggests non-intuitive sites for injecting the nanoparticles.

The results shown in Tables 2–4 show that this strategy is robust for different numbers
of tumors once all executions of the algorithm converge to a viable solution. Moreover, all
absolute standard deviations (SD) of the injection points positions are lower than 10−2, and
the SD of healthy tissue damage is only 0.0189.

The main disadvantage of the proposed method is the time required for its execution.
The function that implements the DE optimization has to call the function that computes
Pennes’s algorithm multiple times, and this function demands large amounts of time to
finish its work. The proposed solution to solve this issue is to implement a parallel version
of the code using CUDA, which was very effective in reducing the execution time: speedups
up to 84 times were observed. This speedup allows us to use more refined meshes, whose
parallel execution time is lower than the sequential execution time of the coarse mesh. The
use of refined meshes contributes to improving the quality of simulations.

This paper presents some limitations. The model used to represent heat propagation
adopts some simplifications on purpose: to reduce the cost of evaluating the objective
function of the differential evolution method thousands of times. These simplifications
could give way to other methods. For example, this paper considered a target temperature
of T ≥ 43 ◦C as the threshold for tissue damage and induction of cell necrosis which is
considered a threshold temperature to induce cell necrosis within a reasonable duration. In
our experiments, we simulated 50 min of hyperthermia treatment, but the duration was
not considered a parameter of hyperthermia success. Additionally, at this temperature,
there is a delay in achieving tissue damage, which was not considered in this paper.
Moreover, there are more precise ways to quantify tumor ablation, such as the Arrhenius
models [36,37], or considering a temperature-dependent time delay, such as the Pearce
model [38,39]. Furthermore, the blood perfusion rate (ωb) was considered constant, but
recent studies have analyzed its dependencies on blood temperature [11] and thermal
damage [36]. It is also possible to include the thermal bystander effect [40] in the model. In
addition, there are different ways to model the external heat source due to the nanoparticle
injections (Qr in Equation (1)), such as the one described in Singh [41]. Still, we opt for
the model used by Salloum et al. [31] due to its simplicity. These changes would increase
the time required to calculate the objective for each individual in differential evolution,
impairing performance. On the other hand, the use of simplifications allowed us to obtain
the optimization results in 72 s when using the parallel version of the code. Finally, it is
necessary to note that this study is based on a theoretical model and may not fully represent
the complex biological processes observed in real tumors. Additionally, the results of this
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study may not be directly applicable to clinical settings, and further experimental validation
is required.

Numerous studies propose administering multiple injections into tumors to facilitate
even heating throughout the tumor area [42]. Multi-injections could be considered a
feasible choice for tumors located near the skin, where the likelihood of further tumor
spread (metastasis) is minimal to negligible. On the other hand, some studies suggest
that multi-injections in deep tissue might lead to tumor spread [41]. Therefore, there is no
consensus on the viability of using multi-injections.

5. Conclusions and Future Works

This work proposes a strategy for planning the injection sites of magnetic nanoparti-
cles in hyperthermia treatments. The proposed method uses an optimization algorithm,
differential evolution, to define injection points that maximize tumor tissue damage while
minimizing damage to healthy tissue. Simulation results show that this strategy reduced
healthy tissue damage by up to 59% compared to the naive scenario of injecting nanoparti-
cles in the middle of the tumor, in contrast to the non-trivial positions suggested by the
algorithm in the third scenario (see Section 3.4.3). The resolution of the mathematical
model in a three-dimensional domain requires a significant amount of time to obtain the
best injection points. We chose to keep the model as simple as possible to reduce the
computational time required to solve the optimization strategy in an n-dimensional search
space associated with the resolution of the set of PDEs in a three-dimensional domain.
Additionally, the implementation of a parallel version of the code using CUDA improved
performance up to 84 times (see Table 5).

In future work, we plan to evaluate the proposed method for more realistic tumors and
tissue shapes [43,44], or even those obtained from patient-specific images [45]. The simplifi-
cations adopted in this model may not be the best choices to represent some phenomena.
For this reason, we also plan to implement a new version of the code considering anisotropic
magnetic nanoparticle distribution, nanoparticle migration, and thermal damage index,
comparing its results with our simplified approach [40]. Moreover, when considering sev-
eral tumors close to each other, the simulation results raised an unexpected question: what
is the minimum number of injection points required to remove all tumors? Additionally, we
plan to investigate the use of multiple GPUs to solve the PDEs, as this architecture is more
commonly available in desktop computers that can be used for treatment planning [46–48].
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