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Abstract: Using the visibility graph algorithm (VGA), a complex network can be associated with
a time series, such that the properties of the time series can be obtained by studying those of the
network. Any value of the time series becomes a node of the network, and the number of other
nodes that it is connected to can be quantified. The degree of connectivity of a node is positively
correlated with its magnitude. The slope of the regression line is denoted by k-M, and, in this work,
this parameter was calculated for the cardiac interbeat time series of different contrasting groups,
namely: young vs. elderly; healthy subjects vs. patients with congestive heart failure (CHF); young
subjects and adults at rest vs. exercising young subjects and adults; and, finally, sedentary young
subjects and adults vs. active young subjects and adults. In addition, other network parameters,
including the average degree and the average path length, of these time series networks were also
analyzed. Significant differences were observed in the k-M parameter, average degree, and average
path length for all analyzed groups. This methodology based on the analysis of the three mentioned
parameters of complex networks has the advantage that such parameters are very easy to calculate,
and it is useful to classify heartbeat time series of subjects with CHF vs. healthy subjects, and also for
young vs. elderly subjects and sedentary vs. active subjects.

Keywords: visibility; tachograms; k-M slope; complex networks; average degree; average path length

1. Introduction

Nowadays, the scientific community is studying new tools for physiological sig-
nal analysis that can be successfully used for the classification of different groups by
computational algorithms [1–4]. Especially, the analyses of electrocardiograms (ECG) by
different methods have shown potential applications for the prediagnosis of several dis-
eases [5]. These tools could be helpful for physicians when giving a diagnosis. Some tradi-
tional techniques for the analysis are based on measurements of time and frequency [6,7].
For example, De Abreu et al. [8] analyzed the performance of cyclists with different kinds
of training by using time and frequency domain markers on beat-to-beat heart period series.
However, these methods have limitations due to the sampling frequency of the equipment
used to measure and the sensitivity of the results to the definition of the filter bandwidth [9].
For instance, vagal modulation could be studied in high-frequency heartbeat time series,
known as respiratory sinus arrhythmia [10]. Hence, new methodologies have emerged
for the analysis of these kinds of signals. Guzzetti et al. [11] showed that signals in a
group containing patients with chronic heart failure and in a healthy control group have
significant differences using linear and nonlinear methods. Therefore, the measurement
of the signals’ complexity and the application of nonlinear dynamic techniques have
shown relevant results for classifying the signals of healthy subjects from those of diseased
subjects [2,4,12]. Moreover, the influence of aging, gender, and the physical condition of
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subjects has been studied with heart rate variability (HRV) analysis with entropy calcula-
tions [9,13–15]. Furthermore, the results of Porta et al. [16] suggest that age is a factor in
the decrease in vagal modulation and increase in sympathetic modulation, which reduce
the complexity of cardiovascular regulation.

On the other hand, to characterize the irregular behavior of time series data, al-
ternative techniques have recently been applied in different areas of science, such as
network analysis, based on the concepts of statistical physics and graph theory [17,18].
The idea of transforming a discrete set of data into a network involves considering a set
of nodes and the links between them. The transformation of a time series into a network
allows the investigation of the dynamics of complex systems through analysis of the prop-
erties of the network [19,20]. Several methods have been proposed to convert time series
into networks as well as to characterize these series in terms of the parameters with which
the network is described. For example, Zhang and Small [21], starting from time series
with periodic properties, obtained complex networks representing each cycle as a node.
The work of Xu et al. [22] is also important; they analyzed the properties of complex net-
works and the distribution of subsets of the networks’ graphs. Gao et al. [23,24] proposed a
methodology to study chaotic time series and developed a new network, which they called
a multivariate recurrence network.

One of the most important methodologies in this field of research is the visibility graph
algorithm (VGA) [25], which consists of transforming a time series into a complex network
while maintaining its basic characteristics and making use of network theory to characterize
the original data. Through this mapping, the dynamic characteristics of the time series
become the characteristics of the network, and conversely, the features of the time series
can be deduced from those of the network. This algorithm has recently been applied in
various areas, such as finance [26–30], weather forecasting [31–33], medical science [34–37],
and especially in real [20,38–42], experimental [19], and synthetic seismicity analyses [43].

In the VGA approach, a segment connects two time series values that can see each
other. In terms of graph theory, each time series value is assigned a node, and there exists
a connection (or edge) between two nodes if there is visibility between them. The degree
of connectivity is the number of connections per node. Each node is visible at least to its
nearest neighbors (left and right), and there is invariance under related transformations
of the time series [25]. The graphs developed using the VGA method have been shown to
transform periodic, random, and fractal time series into regular, random, and unscaled
networks, respectively [25,44,45].

In the seismicity field, Telesca et al. [38] have used the VGA method to study se-
quences of seismic magnitude, and they observed power law behavior in the distribution
of connectivity degrees. This unscaled signature on connectivities is concomitant with
other scale-invariant properties observed in earthquake research. Earthquakes are complex
phenomena, both in terms of their spatial and temporal characteristics, and many of the
laws of seismology exhibit fractal properties, as reflected by scale exponents [46,47].

In the visibility graph methodology, the degree of connectivity k is defined for each
event according to its magnitude and position in the time series. The k-M parameter is the
slope of the straight regression line, with the magnitude on the x-axis and the degree of
connectivity on the ordinate axis. Telesca et al. [19] conducted a similar analysis on regional
seismicity in Pannonia and proposed that the correlation between these two parameters is
almost universal. Similar results have been obtained when analyzing seismicity time series
obtained experimentally [19]. Additional studies in this direction have been performed
by Azizzadeh-Roodpish et al. [42,48] for Southern California and the Alaskan Crustal and
Aleutian subduction zones; by Khoshnevis et al. [41] on the seismicity of northern Iran;
and by Pérez-Oregon et al. [43] in synthetic earthquake time series. All of these studies
have strengthened this universal linear correlation.

The variability in the human heart rate is the result of the combination of different
physiological control systems that allow the body’s functioning to adapt to physical, envi-
ronmental, or other changes. Time series of long-term R–R intervals (or tachograms) are
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nonlinear time series that present fractal properties. The behavior of heart rate variability
is altered with age, when subjects exercise, and when they are ill [9,49–53]. When HRV
is reduced, there is an increased risk of cardiovascular disease [54,55], and higher mortal-
ity has also been reported in patients with diseases of the circulatory system [56,57]. As
tachograms are nonlinear, inhomogeneous, and non-stationary time series, nonlinear meth-
ods can better capture changes in HRV than linear methods [12,58–60]. To analyze these
time series, many nonlinear methodologies have been used, such as detrended fluctuation
analysis (DFA) [61–63], fractal dimension [64,65], and multifractal analysis [4,66].

Changes in HRV induced by low or intense physical activity have been widely
studied [1,13,15,67–74]; when the subject is exercising, cardiovascular disorders can be
detected that are not observed when the subject is inactive [70]. Therefore, by introducing
extra work for the heart while exercising and monitoring the subject’s heart activity with an
electrocardiograph, it may be possible to discern heart problems that are not seen when the
subject is at rest [68]. Heart rate has been shown to increase during physical activity due
to the withdrawal of the parasympathetic system and increased sympathetic activity (of
course, this depends on the intensity of the exercise) [69]. Furthermore, it has been reported
in animal models that improving physical fitness can reduce problems caused by heart
disease [75].

Very interesting works analyzing cardiac interbeat series using the visibility algo-
rithm have been published; for example, Jiang et al. [76] applied the VGA to study the
dynamics of the human heartbeat during chi meditation and yoga. Their results indicated
that VGA analysis can reveal changes caused by meditation training, which manifest as
regular heartbeats, and they concluded that this methodology constitutes a reliable tool
for the assessment of the dynamic changes in heartbeat under different physiological
and pathological conditions, even when using a short series with only 400 beats. In 2018,
Bhaduri et al. [3] studied heartbeat time series taken from the Physionet databases, corre-
sponding to two groups of subjects: one healthy and the other with congestive heart failure.
As the distribution degree of the nodes was found to satisfy a power law, they proposed the
parameter of power of scale-freeness in visibility graph (PSVG), which could significantly
differentiate between healthy and diseased subjects and also allow for the determination
of different stages of the disease. Choudhary et al. [77] used the horizontal visibility
algorithm and proposed the parameter of grouped horizontal visibility entropy (GHVE) to
quantify the complexity as a function of the probability distribution of the observations.
They concluded that the proposed GHVE measure is more accurate in distinguishing
healthy from pathological subjects than its ungrouped HVE counterpart. Therefore, it is
better suited for the detection of changes related to aging, disease severity, and activity
levels. Other researchers [78] have investigated the possible impact of meditation on the
complexity of heart rate signals using the VGA. Using data from Physionet, they analyzed
the dynamics of heartbeat time series both before and during meditation by examining
the complexity of the VGs using the graphical index complexity (GIC) [79]. In general, the
results obtained showed that heart rate signals were more complex during meditation.

On the other hand, there are other parameters characterizing complex networks, such
as the average degree, which is the mean number of neighboring nodes for each node, and
the average path length, which is the mean distance between all pairs of nodes [17].

The objective of this work is to study the behavior of the k-M parameter for a totally
different complex system: the heart rate variability time series [50]. To do this, heartbeat
time series obtained from different people in various situations are studied: first, we
compare healthy young and elderly subjects, then healthy subjects and patients with
congestive heart failure (CHF), and, finally, subjects at rest and while exercising. In addition,
we analyze the average degree and average path length of the networks obtained for each
time series. We show, in this work, that these parameters are useful to determine differences
in time series and, remarkably, that the selected parameters are the simplest to obtain from a
network due to the low computational costs for time and resources. It is worth mentioning
that the main contribution of this work is to identify the network parameters that can be
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implemented for the classification of the heartbeat time series of patients with CHF vs.
healthy subjects, young vs. elderly subjects, and sedentary vs. active subjects. Although
VGA is not a new tool, in this paper we explore its use in heartbeat time series, something
that has not been widely studied, in order to enlarge the range of tools that can be used for
series analysis.

The remainder of the work is organized as follows. Section 2 presents the methods
of the VGA performed (Section 2.1) and the databases used for analysis (Section 2.2); this
last subsection is divided according to the kinds of series considered. First, we generate
white, pink, and Brownian noises to verify the differences between network parameters in
these artificial series; then, we obtain series from Physionet [80] with registers of young and
elderly subjects and another database with healthy subjects and subjects with CHF; and,
finally, the third database was generated by our own records of subjects at rest and during
exercise. Section 3 presents the results of the k-M slope, the average degree and average path
length of all databases mentioned above, and the statistical analysis to validate significant
differences between the groups. Section 4 opens the discussion and the contribution of the
work. Finally, Section 5 shows the concluding remarks.

2. Materials and Methods
2.1. Visibility Algorithm

The visibility graph algorithm is a method that maps a time series into a complex
network. We illustrate the method in Figure 1 in terms of a bar graph, where the height
of the bars represents the magnitude of the events. Two events are connected if they are
visible to each other, and this happens if any event between them intersects the straight
line that connects them. This visibility algorithm [25] has attracted a lot of attention as it
can reveal the nonlinear characteristics of time series. By mapping the time series into a
graph with connected nodes, this complex graph (or network) inherits various properties
of the time series; for example, random time series result in random graphs, periodic time
series result in random graphs, and time series with fractal properties result in scale-free
networks [17,18]. Let x(i), 1 ≤ i ≤ N be a time series composed of N data, and consider
each data point as a node in the VGA. Nodes x(i) and x(j) are connected only when the
following condition is satisfied [25]:

∀l ∈ (i, j); x(l) < x(i)− (j− l)
x(j)− x(i)

j− 1
. (1)
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Figure 1. Description of the visibility method. Each bar represents the magnitude of a single value
from a time series (called a node) and continuous lines represent connections between nodes. If a
node with higher magnitude (taller bar) is between two non-adjacent nodes, these other nodes do not
have a connection.
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This is the basic definition of an undirected visibility graph. The following properties
always hold for a VG graph [25]:

• A node is visible at least to its nearest neighbors (left and right).
• The edges do not have a direction.
• Visibility is not affected by the scaling of either horizontal or vertical axes, nor hori-

zontal or vertical translations.

There are various modified versions of the method, such as the horizontal visibility
algorithm and the directed visibility algorithm, in which the connection is defined in only
one direction. The direction can be forward (away from the node) or backward (toward
the node) [81–83]. In some applications, these variations have been applied with good
results; for example, in the analysis of chaotic periodic signals [81,82], as well as in other
randomly correlated ones, for which the correlation [81] or the reversibility have been
characterized [83].

We can build matrices for the visibility graph of a time series, called the adjacency
matrix. The dimension of the adjacency matrix is the number of nodes in the network.
If there is a connection between the nodes corresponding to a certain row and column,
the element of the matrix is equal to one; otherwise, it is equal to zero. For an undirected
visibility graph, this matrix is symmetric, with the elements of the main diagonal equal to
zero. There are usually ones around the main diagonal, as neighboring events are more
likely to be visible to each other. In the case of a directed visibility graph, the matrix is
asymmetric. The degree of connectivity of each node is obtained as the sum of the number
of connections in the matrix for each corresponding row [25].

The reliability of this methodology has been confirmed through its application to both
artificial fractal series and real series [25]. As has been reported, this method can provide
good results with relatively small series; for example, Jiang et al. [76] have claimed that
reliable results can be obtained with only 400 data.

In seismicity, the term k-M refers to a graph in which the degree of connectivity k
is plotted against the magnitude of the earthquake; however, for any time series, the
magnitude refers to the time series value that corresponds to that node. It is expected
that a small value of the time series will have a small value of k, and a large value of the
time series (which, in the visibility diagram, looks like a very high bar) would have a high
degree of connectivity as, from this point, many other bars can be seen [84].

2.2. k-M Slope, Average Degree, and Average Path 0 for White, Pink, and Brownian Noise

We illustrate the k-M calculations for 100 time series generated using white, pink (1/ f ),
and Brownian noise. Self-affine series were obtained with N = 1024 data and with values of
the spectral exponent β as follows: β = 0.5 (white), β = 1 (pink), and β = 2 (Brownian).
The methodology of [85–87] was used to generate the time series. In addition, the average
degree and average path length of networks generated from the aforementioned series were
also calculated. Furthermore, analysis of variance (ANOVA) was used to find significant
differences between the networks’ parameters calculated; if this was found, the contrast
test of Fisher’s least significant difference (LSD) was performed to determine exactly which
groups showed statistical differences.

2.3. Heartbeat Time Series
2.3.1. Young and Elderly Healthy Subjects

In order to evaluate the complexity lost with age [9], the VGA was applied to heartbeat
time series obtained from Physionet [49,80], a database containing data from 20 elderly
(68–85 years old) and 20 young (21–34 years old) healthy subjects, whose electrocardiog-
raphy signals (ECG) were recorded while they remained in a resting state watching the
movie Fantasia. Each subgroup included equal numbers of women and men. We extracted
samples with 1500 events from each time series. Then, we obtained the visibility graph and
the corresponding complex network for each time series, and the k-M value was obtained by
fitting the connectivity degree versus the magnitude (i.e., the duration of the time interval
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in seconds) of each R–R interval. In addition, the average degree and average path length
were also calculated. In order to prove that the differences between the obtained values
were statistically significant, we performed Student’s t tests with a significance level of 0.05
for comparison.

2.3.2. Healthy Subjects and CHF Patients

In addition, heartbeat time series of healthy subjects and patients with congestive heart
failure (CHF) were obtained from Physionet [80], and we considered the following data:

• 54 registers over 24 h from subjects with normal sinus rhythm R–R interval
(30 men, aged 28.5–76; 26 women, aged 58–73).

• 29 registers over 24 h from subjects with CHF, New York Heart Association (NYHA)
classifications I, II, and III.

• 15 registers over 24 h from subjects with severe CHF, NYHA classifications III and IV
(11 men, aged 22–71; 4 women, aged 54–63).

We obtained six-hour sub-series when the subjects were sleeping and also six-hour sub-
series when patients were awake. However, for comparison purposes, we only separated
sub-series with 1500 data, as with the data on healthy old and young people from the
previous section. To obtain the k-M, average degree, and average path length, the same
procedure was followed as in the previous section. A Student’s t test was also performed
with a significance level of 0.05 for the comparison of these values calculated for both
groups. With this analysis, we intended to verify if there is also a loss of complexity in
the signals of subjects with CHF, as occurs in the aging process, which is associated with
an increase in sympathetic modulation due to the constant cardiac stress generated by
the disease.

2.3.3. Cardiac Interbeat Series Obtained at Rest and While Exercising

In total, tachograms of 152 subjects at rest and exercising (walking on a treadmill)
were analyzed. Of these 152, 84 were young men and women with an average age of
20.8 years, while the other 68 were middle-aged adults with a mean age of 51.9 years.
The measurements were repeated for all subjects. For each participating subject, personal
information was collected, including age, gender, weight, height, and so on. Subjects with
any disease related to the cardiovascular system were discarded, and it was ensured that
they were not taking medication of any kind. The tests were carried out in the morning,
at a suitable temperature. The average body mass indices of the subjects were as follows:
for young people, it was 25.24± 3.53; for middle-aged adults, it was 28.08± 4.54. For
each record, there were two measurements: a 60 min rest period and a 30 min walking
period on a treadmill. A total of 4096 and 2048 data were analyzed for resting and exercise
series, respectively. At the beginning of the test, seven electrodes were placed on the
subjects to take their ECG recordings, using a Fukuda Denshi Holter monitor model FM-
180 with a sampling frequency of 125 Hz. Once the 60 min rest period had ended, the young
subjects (under 30 years of age) were put on a commercial electric treadmill to walk at
1.56 m/s for 30 min. The speed for the older subjects was 1.34 m/s. The beat-by-beat signal,
or tachogram, was obtained for each digitized ECG using a peak detection algorithm.

The participants were volunteers and signed the informed consent form. The proto-
col for this research was approved by the Ethics Committee of the FES-UNAM-Mexico
under document number CE/FESI/022020/1348. Before the test, all subjects answered
the International Physical Activity Questionnaire (IPAQ) in order to classify their physical
activity [88]. With the help of this questionnaire, the subjects were classified into three
levels of physical activity (high, moderate, and low); all comparisons were made with
subjects with high and low physical activity because time series of subjects with moderate
results were discarded, so comparisons were made with 31 series of active middle-aged
adults, 24 series of sedentary middle-aged adults, 51 series of active young subjects, and
30 series of sedentary young subjects.
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In addition, all visibility graphs were generated from the R–R series of each person in
the previously described databases, allowing us to compare the k-M, the average degree,
and the average path length for the different populations. In order to prove that the
differences between the obtained values were statistically significant, we performed a
hypothesis test by ANOVA followed by Fisher’s LSD contrast test to determine which
groups showed significant differences. The objective of this analysis was to identify changes
in series through VGA. Subjects who performed regular exercise achieved the inhibition
of the sympathetic system during physical activity, causing an improvement in the vagal
response [8], which could be seen in minimal changes between series taken at rest and those
during exercise. This fact was evaluated in both young and middle-aged adult subjects.

3. Results
3.1. Visibility Parameters from White, Pink, and Brownian Noise

Figure 2a shows the visibility graph obtained for white noise, where the node color
depends on its degree (k), with darker colors representing higher degrees. The series that
generated this graph is shown in Figure 2b. Figure 2c shows the plot of connectivity degree
(k) vs. magnitude (M) for each value from the series, and the linear fit of the data by mean
least squares, which was used to obtain the k-M slope, can also be observed. Figure 3
corresponds to the 1/f noise, while Figure 4 corresponds to the Brownian noise. It can be
seen that the appearance of the networks, as these types of noise are different, presented
the following characteristics:

• White noise has more dispersion between nodes, providing a lower average degree in
the network and a greater average path length.

• With Brownian noise, the nodes form many large clusters with high connectivity,
leading to a greater average degree and a lower average path length.

• For pink noise, the average path length and average degree values were between those
obtained for white and Brownian noise.

From the plots of k (connectivity degree) vs. M (magnitude), we obtained the linear
fits: for white noise, k = 4.8787 M + 10.4871; for 1/f noise, k = 13.5515 M + 0.0853; and, for
Brownian noise, k = 19.4626 M− 5.0672.
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Figure 2. (a) Visibility graph generated for the white noise shown in (b); and (c) k vs. M plot with
linear fit.
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Figure 3. (a) Visibility graph generated for the pink noise shown in (b); and (c) k vs. M plot with
linear fit.
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Figure 4. (a) Visibility graph generated for the Brownian noise shown in (b); and (c) k vs. M plot with
linear fit.

In the graph of k vs. M, despite the fact that the distribution of points was not close
to a straight line, we proved that the correlation was significant with the corresponding
hypothesis test for the white, 1/f, and Brownian noises. Considering a level of significance of
0.05, we obtained p-values less than 3.5× 10−3 in all cases; therefore, the correlation was sig-
nificant despite the large spread of the data in the k versus M plots, and other mathematical
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models were not considered to fit the data since the linear fit was statistically validated, as
indicated above.

On the other hand, 100 different series of white noise with 1024 data as well as
100 series of 1/ f noise and Brownian noise were generated. For each of the three hundred
series, the value of the slope k-M was obtained. The averages for each type were as follows:
for white noise, 21.6203± 2.1061; for 1/ f noise, 15.4359± 2.4233; and, for Brownian noise,
5.8246± 6.9253.

Figure 5a shows the average values of k and M from the 100 series for each kind of
noise. It is worth mentioning, in this context, that the hypothesis tests to validate the
correlation coefficients of the linear fit to calculate the k-M slope were also performed. In
addition, Figure 5b shows the distribution of the k-M slopes obtained from the series, from
which the differences between the k-M values of these three kinds of series can be observed.
The average values of the means are clearly separated, although the values of the standard
deviations are large, especially for Brownian noise. However, the ANOVA results indicated
significant differences between the k-M of the three groups. Since differences were found by
ANOVA, posthoc tests were necessary for evaluating pair-wise differences; hence, Fisher’s
least significant difference (LSD) procedure was performed, and the results showed that
there were significant differences between all the pairs of noise types (p < 1.0× 10−5 in all
cases, α = 0.05).
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Figure 5. (a) Average connectivity degree vs. average magnitude plot for white, pink, and Brownian
noise; and (b) histogram and distribution of k-M slopes from 100 series of the above-mentioned noises.

It is precisely the very different values obtained for the average of the k-M slopes that
motivated us to think that this parameter may distinguish between different time series,
especially those of cardiac interbeat. In terms of the β spectral exponent, it has already
been reported that the R–R series has a β value of around one or a DFA exponent value of
one [60–62], which corresponds to the 1/f noise; however, deviations from this value may
occur in the elderly or in people with heart disease.

In addition, we compared the average degree and average path length in the white,
pink, and Brownian noise networks. Figure 6 shows the histogram of the average degrees,
from which we observed similar differences to those mentioned above. The values obtained
were as follows: 5.8249 ± 0.0855 for white noise, 7.0797 ± 0.1734 for pink noise, and
14.2925± 2.0838 for Brownian noise. Furthermore, an ANOVA was performed, and the
results indicated significant differences between the average degrees for the three series.



Entropy 2023, 25, 677 10 of 22

Thus, a contrast pair-wise test was necessary, and in all cases, there were significant
differences when the corresponding Fisher’s LSD test was performed (p < 1.0× 10−5

in all comparisons). On the contrary, the average path length values did not present
significant differences.
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Figure 6. Histogram of average degree for white, pink, and Brownian noises.

3.2. Analysis of Physionet Database

By analyzing the Fantasia database, it was possible to observe a difference between
the k-M plots of the two populations. While the mean and standard deviation of the slopes
of the k-M plots for young people had lower values, these values were higher for the older
subjects. The obtained values for the mean and standard deviation for both populations
can be observed in Table 1. These two populations were statistically different, with a
p-value of p = 0.004. It is worth mentioning that the average degree and average path
length calculated for these series can also be observed in Table 1; however, these results
did not indicate significant differences between populations. These results suggest that the
k-M value could be a network parameter that is useful to evaluate the aging process and
the complexity loss presented in the series of the elderly subjects, which also indicates a
reduction in regulatory mechanisms.

Table 1. Values of mean and standard deviation for the slope of the k-M plots, average degree, and
average path length for the Physionet database.

k-M Slope Average Degree Average Path Length

Young (Fantasia) 37.00± 4.05 7.48± 0.88 5.09± 0.26
Elderly (Fantasia) 65.00± 6.40 7.90± 1.28 5.02± 0.43

Healthy (awake) 47.38± 6.12 9.15± 1.35 4.62± 0.63
CHF (awake) 137.73± 11.58 8.15± 1.23 4.37± 0.81

Healthy (asleep) 48.09± 4.88 8.41± 1.26 4.79± 0.55
CHF (asleep) 120.97± 10.07 7.68± 0.97 4.37± 0.46

Similar results were observed when comparing the healthy subjects with the congestive
heart failure (CHF) patients from the Physionet database. The series were split into asleep
and awake periods, which were compared separately for the two populations. In both
periods, the healthy subjects reported lower values for the slope in the k-M plot than the
CHF patients, and these differences resulted in significant p-values (pawake = 9.0× 10−5,
psleep = 9.0× 10−5). The results of this analysis are provided in Table 1. Furthermore,
Table 1 also presents the average degree and average path length calculated for these
series, from which it was found that there were significant differences between the average
degree of healthy and diseased subjects in awake and asleep period (pawake = 2.7× 10−3,
pasleep = 2.4× 10−4); meanwhile, for the average path length, only significant differences
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were observed for the asleep series (pasleep = 3.73× 10−4). Hence, these results indicate
that these network parameters can be useful tools for the classification of tachograms from
healthy subjects and those with CHF, but apparently it is better to make the comparisons
when the patients are asleep.

3.3. Heartbeat Time Series of Exercising Subjects

Figure 7 shows the recorded ECG signal from a young subject during rest and exercise
testing. From the Figure, it can be easily identified when the person is at rest and when they
are on the treadmill due to the time intervals between the R peaks decreasing in the exercise
period, caused by the blood and oxygen demand of the skeletal muscle cells to perform the
movement. Therefore, it is easy to differentiate the tachograms at rest and those of physical
activity once the artifacts are removed. When the Holter Fukuda Denshi FM 180 was used
to measure the ECG signal of subjects at rest and walking at low speeds, the signal obtained
was very stable and has almost no artifacts, so our results were not affected by the presence
of many non-stationarities [89]. The time series for physical activity were not taken from
the time the subject got on the treadmill, as the signal takes time to stabilize; that is, data in
the rest–exercise transition region were not considered.
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Figure 7. (a) Electrocardiography signal; and (b) R–R time interval series in rest period and during
physical activity.

A sample of networks for rest and activity for a young subject are shown in Figure 8,
from which it can be observed that the rest series graph generated more clusters and
the nodes have a greater connectivity degree compared with the graph derived from the
exercise series. We compared the k-M values for young and middle-aged subjects’ time
series at rest and during physical activity, from which it was found that differences were
higher than those in the previous results. The k-M mean and standard deviation for this
test are displayed in Table 2. In this case, an ANOVA was used to compare the calculations
of the k-M slope for the four groups. Using this test, significant differences were found
between the k-M means. Hence, we proceeded to performed a contrast test by using
Fisher’s LSD method, obtaining the following results:

• Series recorded of young subjects and middle aged adults at rest did not show signifi-
cant differences (p = 0.26).
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• Series of young subjects at rest comparing with those during exercise showed signifi-
cant differences (p < 1× 10−5).

• Series of middle-aged adults at rest comparing with those recorded while exercising
showed significant differences (p < 1× 10−5).

• Series of young subjects and middle-aged adults during exercise showed significant
difference (p = 5.7× 10−3).

These results showed that the k-M slope of the two populations at rest are similar
and this is attributed to the classification of all subjects as healthy, since it has been re-
ported [13] that healthy subjects, during rest periods, conserve their heart rate variability
and tachogram complexity. However, during physical efforts, the HRV and heart interbeat
time series’ complexity decreased, producing k-M slopes that were significantly higher in
the exercise series than those during rest in both populations.

Figure 8. (a) Visibility graph of a young subject at rest; (b) visibility graph of same subject during exercise.
The node color depends on its connectivity degree, where darker colors represent higher degrees.

Table 2. Mean and standard deviation of the slope of k-M plots, average degree, and average path
length for young and middle-aged subjects at rest and during exercise.

k-M Slope Average Degree Average Path Length

Young (rest) 27.24± 14.14 8.32± 1.07 5.80± 0.89
Adults (rest) 50.15± 20.04 7.87± 0.98 6.41± 3.47

Young (exercise) 196.97± 118.60 6.99± 1.10 5.18± 0.68
Adults (exercise) 214.27± 50.34 6.28± 0.75 5.36± 0.87

In order to ensure that the observed results were trustworthy and reproducible, we
compared the k-M values of young and adult subjects from the Fantasia database with
those we measured using a Holter monitor. As the Fantasia series were recorded while
the subjects were watching a movie, we compared these series with our subjects at rest.
The means and standard deviations can be observed in Tables 1 and 2 for the Fantasia
database and the subjects at rest, respectively. The Student’s t tests indicated that there were
no significant differences for these populations; that is, young subjects from the Fantasia
database were comparable to those measured at rest (and the same for the adults). The
p-values obtained in these statistical tests were pyoung = 0.56 and padult = 0.81.

The IPAQ results were used to compare the k-M slope differences between subjects
with high physical activity levels and those who preferred a sedentary lifestyle. The k-M
mean and standard deviation of these groups at rest and during activity can be observed
in Table 3. In addition, Figure 9 depicts the k-M values obtained from series for the two
groups, with the continuous line representing the average. The ANOVA was performed
and the results showed significant differences. Furthermore, the following results were
obtained by the Fisher’s LSD test:

• There were no significant differences between series of subjects with high physical
activity levels and sedentary subjects in both populations at rest (p > 0.36 in all cases).
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• There were significant differences found between series of subjects with high physical
activity levels and sedentary subjects in both populations at rest and those recorded
during exercise (p < 1.3× 10−5 in all cases).

• A significant difference was found in series recorded during exercise of young subjects
with high physical activity levels and sedentary subjects (p = 9.7× 10−6).

• A significant difference was found in series recorded during exercise of middle-aged
adults with high physical activity levels and sedentary subjects (p = 9.7× 10−4).

• Series of young subjects who exercise regularly and sedentary middle-aged adults
during exercise did not show a significant difference (p = 0.12).

Table 3. Values of mean and standard deviation for the slope of the k-M plots, average degree, and
average path length of young and middle-aged subjects classified as subjects with high physical
activity levels and subjects with sedentary lifestyle, in resting period and during physical activity.

Condition Subjects k-M Slope Average
Degree

Average Path
Length

Rest Young subjects with high
physical activity levels 27.83± 13.53 8.33± 1.09 5.72± 0.34

Young subjects with
sedentary lifestyle 26.23± 17.99 8.28± 1.043 5.93± 1.40

Exercise Young subjects with high
physical activity levels 169.23± 81.84 7.20± 1.04 5.08± 0.59

Young subjects with
sedentary lifestyle 244.13± 151.22 6.63± 1.13 5.35± 0.80

Rest Adults with high
physical activity levels 40.82± 33.59 7.76± 0.89 6.48± 3.62

Adults with sedentary
lifestyle 44.07± 39.35 8.05± 0.92 5.61± 0.55

Exercise Adults with high
physical activity levels 131.53± 71.64 7.04± 1.12 5.00± 0.43

Adults with sedentary
lifestyle 196.96± 65.71 6.33± 0.75 5.423± 0.85

Figure 9. Comparison of k-M slope from sedentary young subjects and high-physical activity young
subjects in (a) resting period and (b) during exercise; and those corresponding to middle-aged subjects
in (c) resting period and (d) during physical activity. Markers represent every value of k-M, and
continuous lines indicate the means.
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It can be observed in Table 3, that the k-M slopes obtained for the series of subjects in-
crease during exercise, above all in series of young subjects the increase is higher compared
with that of middle-aged adults. In addition, the k-M is greater in subjects with a sedentary
lifestyle in both groups. This fact produces an overlap in the series of sedentary adults and
young subjects with high physical activity levels.

It is worth mentioning that significant differences in this parameter were not obtained
for the resting series. We also attributed this to all subjects having been declared as healthy;
during the rest period, heart rate variability (HRV) is conserved, while during heart effort,
the variability decreases. These results indicate that the hearts of subjects with high physical
activity levels manage activity conditions better and maintain HRV, while the opposite is
observed in sedentary individuals.

Furthermore, the average degree of networks obtained from rest and exercise time
series were analyzed. Table 2 shows the results of the means and standard deviations for
young subjects and adults. In this case, the average degree of exercise series decreased in
physical activity. Significant differences between rest and physical activity periods were
obtained by ANOVA test and the contrast Fisher’s test showed the following:

• Average degree values of series recorded of subjects of both groups at rest showed
significant differences (p = 0.01).

• Average degree values of young subjects’ series at rest compared with those during
exercise showed significant differences (p < 1× 10−5).

• Average degree values of middle-aged adults’ series at rest compared with those
recorded while exercising also showed significant differences (p < 1× 10−5).

• Series of young subjects and middle aged adults during exercise did not show a
significant difference (p = 0.16).

Similar to the k-M slope, comparisons of the average degree calculated from subjects
with high physical activity levels and sedentary subjects were performed, with the averages
and standard deviations shown in Table 3 and a graphic representation in Figure 10. The
ANOVA results indicated that there were significant differences between the averages of
the eight groups, and the following results were found by Fisher’s LSD test:

• Series of young subjects with high physical activity levels and sedentary subjects at
rest did not show a significant difference (p = 0.85).

• Series of middle-aged adults with high physical activity levels and sedentary subjects
at rest did not show a significant difference (p = 0.30).

• Significant differences were found between the average degree values of series of sub-
jects with high physical activity levels and sedentary subjects from both populations
at rest and those recorded during exercise (p < 6.0× 10−3 in all cases).

• A significant difference was found in exercise series of young subjects with high and
low physical activity levels (p = 1.5× 10−2).

• A significant difference was found in exercise series of middle-aged subjects with high
and low physical activity levels (p = 1.0× 10−2).

• Series of young subjects and middle-aged adults classified with high physical activity
levels while exercising did not show a significant difference (p = 0.50).

• Series of sedentary young subjects and middle-aged adults in exercise period did not
show a significant difference (p = 0.28).

It was also found that there were no significant differences in the rest series; again,
this was attributed to all subjects in database being healthy, such that the real difference in
HRV was observed only during physical activity. In addition, the results suggest that the
average degree calculated in series of subjects who exercise regularly are similar regardless
of age, and the same occurs for sedentary subjects.
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Figure 10. Comparison of average degree from visibility graph of sedentary young subjects and
high-physical activity young subjects in (a) resting period and (b) during physical activity; and
those corresponding to middle-aged subjects in (c) resting period and (d) during physical activity.
Markers represent every value of average degree and continuous lines indicate the means.

The average path length of networks obtained from resting and exercise series were
also analyzed. Table 2 shows the results in terms of the averages and standard deviations
of young subjects and adults in both conditions. In this case, the average path length is
lower during exercise and this difference is greater in middle-aged adults. The ANOVA
was performed and the Fisher’s LSD test showed the following:

• Average path length values of series of both groups at rest did not show significant
differences (p = 0.22).

• Average path length values of series during rest period and exercise of both groups
showed significant differences (p = 6.0× 10−3 in all cases).

• Average path length values of series of both groups recorded during exercise did not
show significant differences (p = 0.99).

Finally, the comparisons of the average path length of networks from subjects with
high and low physical activity were performed. The results are provided in Table 3 and
depicted in Figure 11, and we obtained the following significant differences:

• Average path length values of middle-aged adults with high physical activity levels at
rest and during exercise showed a significant difference (p = 4.5× 10−5).

• Average path length values of young subjects with high physical activity levels at rest
and during exercise showed a significant difference (p = 0.021).

In these comparisons, significant differences were only obtained in the average path
length of series of active subjects at rest and during physical activity. On the contrary, this
parameter for series of sedentary subjects in both populations was similar.
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Figure 11. Comparison of average path length from visibility graph of sedentary young sub-
jects and high-physical activity young subjects in (a) resting period and (b) during exercise; and
those corresponding to middle-aged subjects in (c) resting period and (d) during physical activity.
Markers represent every value of average path length and continuous lines indicate means.

4. Discussion

Once we had analyzed the selected visibility graph parameters for white, pink, and
Brownian noises and we had verified the differences, we decided to applied these calcula-
tions in heartbeat time series, since it has been reported that series of young and healthy
subjects present long-term correlations [1], such as in the pink noise. However, some condi-
tions (age or illness) modify this behavior, causing decorrelations or short-term correlations
in series, such as in the white and Brownian noises, respectively [60–62,90].

Generally the work was divided in three stages. In the first stage, we analyzed the se-
ries of young and elderly subjects watching the movie Fantasia, and significant differences
were obtained in the k-M values between both groups, which were attributed to a com-
plexity loss due to age [14,66]. This reduction also indicated alterations in the homeostatic
regulatory mechanisms, which may compromise the capacity of physiological adaptations
before several external conditions [9,10]. The second stage showed significant differences
in three parameters calculated in series of healthy and CHF subjects, especially during
sleeping periods. This was attributed to the fact that the complexity changes caused by the
aging process are also present in the disease process [9]. In addition, Guzzetii et al. [11]
reported that neuroendrocrine activation present in chronic heart failure can also be asso-
ciated with the parameters of the time and frequency domain analysis of heartbeat time
series. In this work, we confirmed that these changes also could be identified with VG
parameters. Finally, the third stage consisted of the comparison between series at rest
and during exercise of both sedentary and high physical activity subjects. The analysis
concluded that there were significant differences in three parameters mentioned above
between groups in both conditions, which is associated to the fact that the subjects who
regularly performed aerobic exercise promote the inhibition of sympathetic regulation and
the enhancement of vagal regulation [8], which causes a reduction in the loss of complexity
of the signal in athletes compared to sedentary subjects. This was also identified by the
VGA realized in this work.

In this study, we showed that the value of the slope for the k-M plots of the visibility
graph, the average degree, and the average path length created from the R–R time series
vary significantly for subjects under different conditions. It was confirmed that k-M values
are useful for classifying heartbeat time series of young and elderly subjects due to these
shown significant differences. In addition, with these parameters it can be distinguished
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between series of healthy subjects and patients with CHF, series of subjects at rest and
during exercise, and series of sedentary subjects and subjects with high physical activity
levels. Furthermore, the networks parameters selected are some of the simplest and fastest
to calculate and, even so, the results were effective in identifying between different groups.
This methodology has the advantage over traditional techniques of not being sensitive to
the definition of the filter bandwidth to analyze the series.

Several studies [1,2,4,8,12,13,51–53] have showed the correlation between the results
of nonlinear dynamic techniques applied to heartbeat time interval series (or tachograms)
and the health status or age of a subject. When we observed the graphical representation of
the networks obtained (Figures 2a–4a and 8), noticeable differences could be observed with
the naked eye. However, the task of distinguishing between different types of time series
should not be based solely on visual inspection. For this reason, several parameters were
considered; in particular, in this work, we emphasized the parameter k-M, which has been
used with great success in the analysis of seismic time series [38]. As we have attempted
to show, the three network parameters used can distinguish between cardiac interbeat
time series of young subjects and the elderly, between healthy subjects and CHF patients,
people at rest and people exercising, as well as sedentary people and people who exercise
regularly. The latter allowed us to glimpse some possible applications to help characterize
the physical state of people, as the complex networks obtained using the VGA algorithm
from the cardiac interbeat time series of sedentary people are very different to those of
people who exercise regularly, as has already been reported according to other types of
parameters [13,72].

Therefore, our work adds complementary information to the results that other au-
thors have reported, with the advantage that they were applied to a wider variety of
groups of subjects. As mentioned above, the VG algorithm has been used in several pre-
viously reported analyses [3,76–78], in which the time series of heartbeats were studied.
However, the parameters that have been used to study them previously differed from those
used in this work; in fact, in no previous work has the k-M, the average degree, and the
average length of the path been used together to distinguish heartbeat time series from
subjects under different conditions. Hence, this is the first time that the VGA algorithm
has been used to analyze heartbeat time series of subjects who exercise in an attempt to
distinguish between sedentary and active individuals. This means that these parameters
can be used to characterize the physical condition of a person, and may be used to measure
the progress of people who undergo an exercise routine to improve their physical condition.

As has been reported by Bhaduri et al. [3], this methodology can distinguish between
healthy individuals and individuals with congestive heart failure. We also considered
this aspect, but using the three parameters mentioned above, we found that we can also
distinguish between the series of heartbeats of young and old people. Of course, such
separations are made with respect to the mean values, namely, the means of the two
populations are different and their difference is statistically significant, but this does not
mean that there are no overlaps; that is, at the time of performing the separation, there
will always be some cases of healthy people who appear ill and some ill people who
appear healthy. This overlap is not exclusive to our work, but also occurs in other works
already published. For this reason, the joint use of several parameters is necessary to
make classifications; in addition to the list of already existing ones, we propose these three
relatively new parameters. In this sense, what we propose is that, if we wish for these
types of tools to be used, for example, to provide a diagnosis, we should use many of
these techniques together (even considering traditional analysis techniques), including
the ranges of values for these and other parameters with respect to the control groups of
healthy people, in such a way that deviations from these values can be quantified. Then,
when several deviations are observed in different parameters, it can be affirmed that the
person has a health concern, which could help the physician to provide a final diagnosis.
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5. Conclusions

In this work we used the visibility algorithm to map time series in complex networks
and calculate for these networks the parameters k-M, average degree, and average path
length, initially for white, pink, and Brownian noise time series. We used a broad set of
parameters that are used for complex networks, but we decided to only focus on those that
are easier to evaluate and that also gave us better results. Since the k-M parameter and the
average degree of the aforementioned noise networks showed significant differences, we
concluded that such parameters can be used to distinguish between heartbeat time series
from different groups, for which comparisons were made, for example, in young people vs.
elderly people, healthy subjects vs. CHF patients, resting subjects vs. exercising subjects,
and sedentary youth or adults vs. regularly exercising youth or adults.

Using time series obtained from Physionet [80], we found that there are significant
differences in k-M values between the heartbeat times series of young people and those
of the elderly, which is attributed to the fact that heart rate variability decreases with
age [66]. In addition, with Physionet data, we found statistically significant differences in
these parameters when comparing series of healthy subjects and patients with congestive
heart failure. In our research group, we have made electrocardiography (ECG) recordings
using Holter monitors of people who are first at rest and then performing physical activity.
The physical condition of the participating subjects was characterized using the IPAQ
questionnaire [88], so we were able to compare heartbeat time series of people with a
sedentary lifestyle (low physical activity) and people who exercise regularly (high physical
activity). There are significant differences in both sedentary and active young subjects and
middle-aged adults. In addition, it was found that there are no significant differences in
the series of the rest period, neither in young people nor in middle-aged adults. However,
during physical effort, the k-M slope, the average degree, and the average path length of the
series from sedentary and highly physically active young and middle-aged adults showed
statistically significant differences.

The k-M parameter has given excellent results applied to real and synthetic seismicity
time series. In this case, the results showed that the calculation of this parameter with the
average degree and average path length, despite them having been described several years
earlier for different applications, could be useful as a new tool for ECG analysis and the iden-
tification of subjects with CHF and sedentary subjects and for evaluation of aging process.
We are continuing to work on increasing the size of our database with the aim that in the
future other complex network parameters can be incorporated into this methodology.
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Abbreviations
The following abbreviations are used in this manuscript:

ANOVA Analysis of Variance
CHF Congestive heart failure
DFA Detrended fluctuation analysis
ECG Electrocardiogram
GHVE Grouped horizontal visibility entropy
GIC Graphical index complexity
HRV Heart rate variability
HVE Horizontal visibility entropy
IPAQ International Physical Activity Questionnaire
LSD Least significant difference
NYHA New York Heart Association
PSVG Power of scale-freeness in visibility graph
VG Visibility graph
VGA Visibility graph algorithm

References
1. Salcedo-Martínez, A.; Zamora-Justo, J.; Pérez-López, N.; Gálvez-Coyt, G.; Muñoz-Diosdado, A. The detrended fluctuation

analysis of heartbeat intervals in time series during stress tests. AIP Conf. Proc. 2019, 2090, 050013.
2. Salcedo-Martínez, A.; Zamora-Justo, J.; Muñoz-Diosdado, A. Analysis of the Hurst exponent in RR series of healthy subjects

and congestive patients in a state of sleep and wakefulness and in healthy subjects in physical activity. AIP Conf. Proc. 2021,
2348, 040009.

3. Bhaduri, A.; Bhaduri, S.; Ghosh, D. Visibility graph analysis of heart rate time series and bio-marker of congestive heart failure.
Phys. A Stat. Mech. Appl. 2017, 482, 786–795. [CrossRef]

4. Aguilar-Molina, A.M.; Angulo-Brown, F.; Muñoz-Diosdado, A. Multifractal Spectrum Curvature of RR Tachograms of Healthy
People and Patients with Congestive Heart Failure, a New Tool to Assess Health Conditions. Entropy 2019, 21, 581. [CrossRef]

5. Zamora-Justo, J.; Gutiérrez-Calleja, R.; Muñoz-Diosdado, A. Acquisition software development for monitor Holter prototype
signals and its use for pre-diagnosis of cardiac damage based on nonlinear dynamic techniques. AIP Conf. Proc. 2016, 1747, 090001.
[CrossRef]

6. Melo, R.C.; Quitério, R.J.; Takahashi, A.C.M.; Silva, E.; Martins, L.E.B.; Catai, A.M. High eccentric strength training reduces heart
rate variability in healthy older men. Br. J. Sports Med. 2008, 42, 59–63. [CrossRef]

7. Milan-Mattos, J.C.; Porta, A.; Perseguini, N.M.; Minatel, V.; Rehder-Santos, P.; Takahashi, A.C.M.; Mattiello, S.M.; Catai,
A.M. Influence of age and gender on the phase and strength of the relation between heart period and systolic blood pressure
spontaneous fluctuations. J. Appl. Physiol. 2018, 124, 791–804. [CrossRef] [PubMed]

8. De Abreu, R.; Porta, A.; Rehder-Santos, P.; Cairo, B.; Da Silva, C.D.; De Favari Signini, E.; Sakaguchi, C.A.; Catai, A.M. Effects of
inspiratory muscle-training intensity on cardiovascular control in amateur cyclists. Am. J. Physiol. Regul. Intgr. Comp. Physiol.
2019, 317, R891–R902. [CrossRef] [PubMed]

9. Takahashi, A.C.M.; Porta, A.; Melo, R.C.; Quitério, R.J.; da Silva, E.; Borghi-Silva, A.; Tobaldini, E.; Montano, N.; Catai, A.M.
Aging reduces complexity of heart rate variability assessed by conditional entropy and symbolic analysis. Intern. Emerg. Med.
2012, 7, 229–235. [CrossRef] [PubMed]

10. La Rovere, M.T.; Porta, A.; Schwartz, P.J. Autonomic Control of the Heart and Its Clinical Impact. A Personal Perspective. Front.
Physiol. 2020, 11, 582. [CrossRef]

11. Guzzetti, S.; Mezzetti, S.; Magatelli, R.; Porta, A.; De Angelis, G.; Rovelli, G.; Malliani, A. Linear and non-linear 24 h heart rate
variability in chronic heart failure. Auton. Neurosci. Basic Clin. 2000, 86, 114–119. [CrossRef] [PubMed]

12. Ivanov, P.C.; Amaral, L.A.N.; Goldberger, A.L.; Havlin, S.; Rosenblum, M.G.; Stanley, H.E.; Struzik, Z.R. From 1/f noise to
multifractal cascades in heartbeat dynamics. Chaos 2001, 11, 641–652. [CrossRef] [PubMed]

13. Solís-Montufar, E.; Gálvez-Coyt, G.; Muñoz-Diosdado, A. Entropy Analysis of RR-Time Series From Stress Tests. Front. Physiol.
2020, 11, 981. [CrossRef]

14. Catai, A.M.; Takahashi, A.C.M.; Perseguini, N.M.; Milan, J.C.; Minatel, V.; Rehder-Santos, P.; Marchi, A.; Bari, V.; Porta, A. Effect
of the postural challenge on the dependence of the cardiovascular control complexity on age. Entropy 2014, 16, 6686–6704.
[CrossRef]

15. Shi, B.; Zhang, Y.; Yuan, C.; Wang, S.; Li, P. Entropy Analysis of Short-Term Heartbeat Interval Time Series during Regular
Walking. Entropy 2017, 19, 568. [CrossRef]

16. Porta, A.; Tobaldini, E.; Guzzetti, S.; Furlan, R.; Montano, N.; Gnecchi-Ruscone, T. Assessment of cardiac autonomic modulation
during graded head-up tilt by symbolic analysis of heart rate variability. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H702–H708.
[CrossRef] [PubMed]

17. Albert, B.; Barabási, A.R. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47. [CrossRef]

http://doi.org/10.1016/j.physa.2017.04.091
http://dx.doi.org/10.3390/e21060581
http://dx.doi.org/10.1063/1.4954134
http://dx.doi.org/10.1136/bjsm.2007.035246
http://dx.doi.org/10.1152/japplphysiol.00903.2017
http://www.ncbi.nlm.nih.gov/pubmed/29212671
http://dx.doi.org/10.1152/ajpregu.00167.2019
http://www.ncbi.nlm.nih.gov/pubmed/31596110
http://dx.doi.org/10.1007/s11739-011-0512-z
http://www.ncbi.nlm.nih.gov/pubmed/21253879
http://dx.doi.org/10.3389/fphys.2020.00582
http://dx.doi.org/10.1016/S1566-0702(00)00239-3
http://www.ncbi.nlm.nih.gov/pubmed/11269916
http://dx.doi.org/10.1063/1.1395631
http://www.ncbi.nlm.nih.gov/pubmed/12779503
http://dx.doi.org/10.3389/fphys.2020.00981
http://dx.doi.org/10.3390/e16126686
http://dx.doi.org/10.3390/e19100568
http://dx.doi.org/10.1152/ajpheart.00006.2007
http://www.ncbi.nlm.nih.gov/pubmed/17308016
http://dx.doi.org/10.1103/RevModPhys.74.47


Entropy 2023, 25, 677 20 of 22

18. Newman, M.E.J. Networks: An introduction; Oxford University Press: Oxford, UK, 2010.
19. Telesca, L.; Lovallo, M.; Ramírez-Rojas, A.; Flores-Marquez, L. Relationship between the Frequency Magnitude Distribution

and the Visibility Graph in the Synthetic Seismicity Generated by a Simple Stick-Slip System with Asperities. PLoS ONE 2014,
9, e106233. [CrossRef] [PubMed]

20. Aguilar-SanJuan, B.; Guzmán-Vargas, L. Earthquake magnitude time series: Scaling behavior of visibility networks. Eur. Phys. J.
B 2013, 86, 454. [CrossRef]

21. Zhang, J.; Small, M. Complex network from pseudoperiodic time series: Topology versus dynamics. Phys. Rev. Lett. 2006,
96, 238701. [CrossRef]

22. Xu, X.; Zhang, J.; Small, M. Superfamily phenomena and motifs of networks induced from time series. Proc. Natl. Acad. Sci. USA
2008, 105, 19601–19605. [CrossRef] [PubMed]

23. Gao, Z.K.; Jin, N.D.; Wang, W.X.; Lai, Y.C. Motif distributions in phase space networks for characterizing experimental two-phase
flow patterns with chaotic features. Phys. Rev. E 2010, 82, 016210. [CrossRef]

24. Gao, Z.K.; Zhang, X.W.; Jin, N.D.; Donner, R.V.; Marwan, N.; Kurths, J. Recurrence networks from multivariate signals for
uncovering dynamic transitions of horizontal oil-water stratified flows. Europhys. Lett. 2013, 103, 50004. [CrossRef]

25. Lacasa, L.; Luque, B.; Ballesteros, F.; Luque, J.; Nuno, J.C. From time series to complex networks: The visibility graph. Proc. Natl.
Acad. Sci. USA 2008, 105, 4972–4975. [CrossRef]

26. Quian, M.C.; Jiang, Z.Q.; Zhou, W.X. Universal and nonuniversal allometric scaling behaviors in the visibility graphs of world
stock market indices. J. Phys. A Math. Theor. 2010, 43, 335002. [CrossRef]

27. Wang, N.; Li, D.; Wang, Q. Visibility graph analysis on quarterly macroeconomic series of China based on complex network
theory. Phys. A Stat. Mech. Appl. 2012, 391, 6543–6555. [CrossRef]

28. Long, Y. Visibility graph network analysis of gold price time series. Phys. A Stat. Mech. Appl. 2013, 392, 3374–3384. [CrossRef]
29. Zhang, R.; Ashuri, Y.S.B.; Deng, Y. Forecasting construction cost index based on visibility graph: A network approach. Phys. A

Stat. Mech. Appl. 2018, 493, 239–252. [CrossRef]
30. Ni, X.; Jiang, Z.Q.; Zhou, W.X. Degree distributions of the visibility graphs mapped from fractional Brownian motions and

multifractal random walks. Phys. Lett. A 2009, 373, 3822–3826. [CrossRef]
31. Elsner, J.B.; Jagger, T.H.; Fogarty, E.A. Visibility network of United States hurricanes. Geophys. Res. Lett. 2009, 36, L16702.

[CrossRef]
32. Chen, S.; Hu, Y.; Mahadevan, S.; Deng, Y. A visibility graph averaging aggregation operator. Phys. A Stat. Mech. Appl. 2014,

403, 1–12. [CrossRef]
33. Jiang, W.; Wei, B.; Zhan, J.; Xie, C.; Zhou, D. A visibility graph power averaging aggregation operator: A methodology based on

network analysis. Comput. Ind. Eng. 2016, 101, 260–268. [CrossRef]
34. Zhu, G.; Li, Y.; Wen, P.P. An efficient visibility graph similarity algorithm and its application on sleep stages classification.

In Proceedings of the International Conference on Brain Informatics, Macau, China, 4–7 December 2012; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 185–195.

35. Nilanjana, P.; Anirban, B.; Susmita, B.; Dipak, G. Noninvasive alarm generation for sudden cardiac arrest: A pilot study with
visibility graph technique. Transl. Biomed. 2016, 7, 79.

36. Yu, M.; Hillebrand, A.; Gouw, A.A.; Stam, C.J. Horizontal visibility graph transfer entropy (HVG-TE): A novel metric to
characterize directed connectivity in large-scale brain networks. NeuroImage 2017, 156, 249–264. [CrossRef] [PubMed]

37. Bhaduri, A.; Ghosh, D. Quantitative Assessment of Heart Rate Dynamics during Meditation: An ECG Based Study with
Multi-Fractality and Visibility Graph. Front. Physiol. 2016, 7, 44. [CrossRef] [PubMed]

38. Telesca, L.; Lovallo, M. Analysis of seismic sequences by using the method of visibility graph. Europhys. Lett. 2012, 97, 50002.
[CrossRef]

39. Telesca, L.; Lovallo, M.; Ramírez-Rojas, A.; Flores-Marquez, L. Investigating the time dynamics of seismicity by using the visibility
graph approach: Application to seismicity of Mexican subduction zone. Phys. A Stat. Mech. Appl. 2013, 392, 6571–6577. [CrossRef]

40. Telesca, L.; Lovallo, M.; Toth, L. Visibility graph analysis of 2002–2011 Pannonian seismicity. Phys. A Stat. Mech. Appl. 2014,
416, 219–224. [CrossRef]

41. Khoshnevis, N.; Taborda, R.; Azizzadeh-Roodpish, S.; Telesca, L. Analysis of the 2005–2016 Earthquake Sequence in Northern
Iran Using the Visibility Graph Method. Pure Appl. Geophys. 2017, 174, 4003–4019. [CrossRef]

42. Azizzadeh-Roodpish, S.; Cramer, C.H. Visibility Graph Analysis of Alaska Crustal and Aleutian Subduction Zone Seismicity: An
Investigation of the Correlation between b Value and k–M Slope. Pure Appl. Geophys. 2018, 175, 4241–4252. [CrossRef]

43. Perez-Oregon, J.; Muñoz-Diosdado, A.; Rudolf-Navarro, A.H.; Angulo-Brown, F. Some Common Features Between a Spring-
Block Self-Organized Critical Model, Stick–Slip Experiments with Sandpapers and Actual Seismicity. Pure Appl. Geophys. 2019,
177, 889–903. [CrossRef]

44. Donner, R.V.; Donges, J.F. Visibility graph analysis of geophysical time series: Potentials and possible pitfalls. Acta Geophys. 2011,
60, 589–623. [CrossRef]

45. Campanharo, A.S.L.O.; Sirer, M.I.; Malmgren, R.D.; Ramos, F.M.; Amaral, L.A.N. Duality between time series and networks.
PLoS ONE 2011, 6, e23378. [CrossRef] [PubMed]

46. Bak, P.; Christensen, K.; Danon, L.; Scanlon, T. Unified Scaling Law for Earthquakes. Phys. Rev. Lett. 2002, 88, 178501. [CrossRef]
[PubMed]

http://dx.doi.org/10.1371/journal.pone.0106233
http://www.ncbi.nlm.nih.gov/pubmed/25162728
http://dx.doi.org/10.1140/epjb/e2013-40762-2
http://dx.doi.org/10.1103/PhysRevLett.96.238701
http://dx.doi.org/10.1073/pnas.0806082105
http://www.ncbi.nlm.nih.gov/pubmed/19064916
http://dx.doi.org/10.1103/PhysRevE.82.016210
http://dx.doi.org/10.1209/0295-5075/103/50004
http://dx.doi.org/10.1073/pnas.0709247105
http://dx.doi.org/10.1088/1751-8113/43/33/335002
http://dx.doi.org/10.1016/j.physa.2012.07.054
http://dx.doi.org/10.1016/j.physa.2013.03.063
http://dx.doi.org/10.1016/j.physa.2017.10.052
http://dx.doi.org/10.1016/j.physleta.2009.08.041
http://dx.doi.org/10.1029/2009GL039129
http://dx.doi.org/10.1016/j.physa.2014.02.015
http://dx.doi.org/10.1016/j.cie.2016.09.009
http://dx.doi.org/10.1016/j.neuroimage.2017.05.047
http://www.ncbi.nlm.nih.gov/pubmed/28539247
http://dx.doi.org/10.3389/fphys.2016.00044
http://www.ncbi.nlm.nih.gov/pubmed/26909045
http://dx.doi.org/10.1209/0295-5075/97/50002
http://dx.doi.org/10.1016/j.physa.2013.08.078
http://dx.doi.org/10.1016/j.physa.2014.08.048
http://dx.doi.org/10.1007/s00024-017-1617-8
http://dx.doi.org/10.1007/s00024-018-1947-1
http://dx.doi.org/10.1007/s00024-019-02320-2
http://dx.doi.org/10.2478/s11600-012-0032-x
http://dx.doi.org/10.1371/journal.pone.0023378
http://www.ncbi.nlm.nih.gov/pubmed/21858093
http://dx.doi.org/10.1103/PhysRevLett.88.178501
http://www.ncbi.nlm.nih.gov/pubmed/12005787


Entropy 2023, 25, 677 21 of 22

47. Davidsen, J.; Goltz, C. Are seismic waiting time distributions universal? Geophys. Res. Lett. 2004, 31, 5. [CrossRef]
48. Azizzadeh-Roodpish, S.; Khoshnevis, N.; Cramer, C.H. Visibility graph analysis of southern California. In Proceedings of the

Annual Meeting of the Seismological Society of America, Denver, CO, USA, 18–20 April 2017; Volume 10.
49. Iyengar, N.; Peng, C.K.; Morin, R.; Goldberger, A.L.; Lipsitz, L.A. Age-related alterations in the fractal scaling of cardiac interbeat

interval dynamics. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1996, 271, R1078–R1084. [CrossRef]
50. Ivanov, P.C.; Amaral, L.A.N.; Goldberger, A.L.; Havlin, S.; Rosemblum, M.G.; Struzik, Z.R.; Stanley, H.E. Multifractality in human

heartbeat dynamics. Nature 1999, 399, 461–465. [CrossRef]
51. Bernaola-Galván, P.A.; Gómez-Extremera, M.; Romance, A.R.; Carpena, P. Correlations in magnitude series to assess nonlinearities:

Application to multifractal models and heartbeat fluctuations. Phys. Rev. E 2017, 96, 032218. [CrossRef]
52. Gómez-Extremera, M.; Bernaola-Galván, P.A.; Vargas, S.; Benítez-Porres, J.; Carpena, P.; Romance, A.R. Differences in nonlinear

heart dynamics during rest and exercise and for different training. Physiol. Meas. 2018, 39, 084008. [CrossRef]
53. Faes, L.; Gómez-Extremera, M.; Pernice, R.; Carpena, P.; Nollo, G.; Porta, A.; Bernaola-Galván, P. Comparison of methods for the

assessment of nonlinearity in short-term heart rate variability under different physiopathological states. Chaos 2019, 29, 123114.
[CrossRef]

54. Tsuji, H.; Venditti, F., Jr.; Manders, E.; Evans, J.; Larson, M.; Feldman, C.; Levy, D. Reduced heart rate variability and mortality
risk in an elderly cohort. The Framingham Heart Study. Circulation 1994, 90, 878–883. [CrossRef] [PubMed]

55. Dietrich, F.D.; Schindler, C.; Schwartz, J.; Barthelemy, J.C.; Tschopp, J.M.; Roche, F.; von Eckardstein, A.; Brändli, O.; Leuenberger,
P.; Gold, D.R.; et al. Heart rate variability in an ageing population and its association with lifestyle and cardiovascular risk factors:
Results of the sapaldia study. Europace 2006, 8, 521–529. [CrossRef] [PubMed]

56. Ziegler, D.; Zentai, C.P.; Perz, S.; Rathmann, W.; Haastert, B.; Döring, A.; Meisinger, C. Prediction of mortality using measures of
cardiac autonomic dysfunction in the diabetic and nondiabetic population: The monica/kora augsburg cohort study. Diabetes
Care 2008, 31, 556–561. [CrossRef]

57. Drawz, P.; Babineau, D.; Brecklin, C.; He, J.; Kallem, R.R.; Soliman, E.Z.; Xie, D.; Appleby, D.; Anderson, A.H.; Rahman, M.; et al.
Heart rate variability is a predictor of mortality in chronic kidney disease: A report from the cric study. Am. J. Nephrol. 2013,
38, 517–528. [CrossRef]

58. Sugihara, G.; Allan, W.; Sobel, D.; Allan, K.D. Nonlinear control of heart rate variability in human infants. Proc. Natl. Acad. Sci.
USA 1996, 93, 2608–2613. [CrossRef] [PubMed]

59. Voss, B.A.; Schulz, S.; Schroeder, R.; Baumert, M.; Caminal, P. Methods derived from nonlinear dynamics for analyzing heart rate
variability. Phil. Trans. R. Soc. A 2009, 367, 277–296. [CrossRef]

60. Guzmán-Vargas, L.; Muñoz-Diosdado, A.; Angulo-Brown, F. Influence of the loss of time-constants repertoire in pathologic
heartbeat dynamics. Phys. A Stat. Mech. Appl. 2005, 348, 304–316. [CrossRef]

61. Peng, C.K.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Quantification of scaling exponents and crossover phenomena in
nonstationary heartbeat time series. Chaos 1995, 5, 82–87. [CrossRef]

62. Hu, K.; Ivanov, P.C.; Chen, Z.; Carpena, P.; Stanley, H.E. Effect of trends on detrended fluctuation analysis. Phys. Rev. E 2001,
64, 011114/1–011114/19. [CrossRef]

63. Muñoz-Diosdado, A.; Vargas, L.G.; Rojas, A.R.; Río-Correa, J.L.D.; Brown, F.A. Some cases of crossover behavior in heart interbeat
and electroseismic series. Fractals 2005, 13, 253–263. [CrossRef]

64. Higuchi, T. Approach to an irregular time series on the basis of the fractal theory. Phys. D Nonlinear Phenom. 1988, 31, 277–283.
[CrossRef]

65. Eke, A.; Herman, P.; Kocsis, L.; Kozak, L.R. Fractal characterization of complexity in temporal physiological signals (Review).
Physiol. Meas. 2002, 23, R1–R38. [CrossRef] [PubMed]

66. Goldberger, A.L.; Amaral, L.A.N.; Hausdorff, J.M.; Ivanov, P.C.; Peng, C.K.; Stanley, H.E. Fractal dynamics in physiology:
Alterations with disease and aging. Proc. Natl. Acad. Sci. USA 2002, 99, 2466–2472. [CrossRef] [PubMed]

67. Tulppo, M.; Makikallio, T.; Takala, T.; Seppanen, T.; Huikuri, H. Quantitative beat-to-beat analysis of heart rate dynamics during
exercise. Am. J. Physiol. Heart Circ. Physiol. 1996, 271, H244–H252. [CrossRef] [PubMed]

68. Karasik, R.; Sapir, N.; Ashkenazy, Y.; Ivanov, P.C.; Dvir, I.; Lavie, P.; Havlin, S. Correlation differences in heartbeat fluctuations
during rest and exercise. Phys. Rev. E 2002, 66, 062902. [CrossRef]

69. Aubert, A.E.; Seps, B.; Beckers, F. Heart rate variability in athletes. Sports Med. 2003, 33, 889–919. [CrossRef]
70. Leicht, A.S.; Sinclair, W.H.; Spinks, W.L. Effect of exercise mode on heart rate variability during steady state exercise. Eur. J. Appl.

Physiol. 2008, 102, 195–204. [CrossRef]
71. Goya-Esteban, R.; Barquero-Perez, O.; Sarabia-Cachadina, E.; de la Cruz-Torres, B.; Naranjo-Orellana, J.; Rojo-Alvarez, J.L.

A modified Hilbert-Huang algorithm to assess spectral parameters in intense exercise. In Proceedings of the Computing in
Cardiology Conference (CinC), Zaragoza, Spain, 22–25 September 2013; IEEE: Krakow, Poland, 2013; pp. 409–412.

72. Weippert, M.; Behrens, M.; Rieger, A.; Behrens, K. Sample entropy and traditional measures of heart rate dynamics reveal
different modes of cardiovascular control during low intensity exercise. Entropy 2014, 16, 5698–5711. [CrossRef]

73. Taylor, K.A.; Wiles, J.D.; Coleman, D.D.; Sharma, R.; O’Driscoll, J.M. Continuous cardiac autonomic and haemodynamic responses
to isometric exercise. Med. Sci. Sports Exerc. 2017, 49, 1511–1519. [CrossRef]

74. Richman, J.; Moorman, J. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart
Circ. Physiol. 2000, 278, H2039–H2049. [CrossRef]

http://dx.doi.org/10.1029/2004GL020892
http://dx.doi.org/10.1152/ajpregu.1996.271.4.R1078
http://dx.doi.org/10.1038/20924
http://dx.doi.org/10.1103/PhysRevE.96.032218
http://dx.doi.org/10.1088/1361-6579/aad929
http://dx.doi.org/10.1063/1.5115506
http://dx.doi.org/10.1161/01.CIR.90.2.878
http://www.ncbi.nlm.nih.gov/pubmed/8044959
http://dx.doi.org/10.1093/europace/eul063
http://www.ncbi.nlm.nih.gov/pubmed/16798766
http://dx.doi.org/10.2337/dc07-1615
http://dx.doi.org/10.1159/000357200
http://dx.doi.org/10.1073/pnas.93.6.2608
http://www.ncbi.nlm.nih.gov/pubmed/8637921
http://dx.doi.org/10.1098/rsta.2008.0232
http://dx.doi.org/10.1016/j.physa.2004.09.019
http://dx.doi.org/10.1063/1.166141
http://dx.doi.org/10.1103/PhysRevE.64.011114
http://dx.doi.org/10.1142/S0218348X05002970
http://dx.doi.org/10.1016/0167-2789(88)90081-4
http://dx.doi.org/10.1088/0967-3334/23/1/201
http://www.ncbi.nlm.nih.gov/pubmed/11876246
http://dx.doi.org/10.1073/pnas.012579499
http://www.ncbi.nlm.nih.gov/pubmed/11875196
http://dx.doi.org/10.1152/ajpheart.1996.271.1.H244
http://www.ncbi.nlm.nih.gov/pubmed/8760181
http://dx.doi.org/10.1103/PhysRevE.66.062902
http://dx.doi.org/10.2165/00007256-200333120-00003
http://dx.doi.org/10.1007/s00421-007-0574-9
http://dx.doi.org/10.3390/e16115698
http://dx.doi.org/10.1249/MSS.0000000000001271
http://dx.doi.org/10.1152/ajpheart.2000.278.6.H2039


Entropy 2023, 25, 677 22 of 22

75. Amaral, L.; Silva, F.A.; Correia, V.B.; Andrade, C.E.F.; Dutra, B.A.; Oliveira, M.V.; de Magalhães, A.C.M.; Volpini, R.A.; Seguro,
A.C.; Coimbra, T.M.; et al. Beneficial effects of previous exercise training on renal changes in streptozotocin-induced diabetic
female rats. Exp. Biol. Med. 2016, 241, 437–445. [CrossRef] [PubMed]

76. Jiang, S.; Bian, C.; Ning, X.; Ma, Q.D.Y. Visibility graph analysis on heartbeat dynamics of meditation training. Appl. Phys. Lett.
2013, 102, 253702. [CrossRef]

77. Choudhary, G.I.; Aziz, W.; Khan, I.R.; Rahardja, S.; Fränti, P. Analysing the Dynamics of Interbeat Interval Time Series Using
Grouped Horizontal Visibility Graph. IEEE Access 2019, 7, 9926–9934. [CrossRef]

78. Nasrolahzadeh, M.; Mohammadpoory, Z.; Haddadnia, J. Analysis of heart rate signals during meditation using visibility graph
complexity. Cogn. Neurodyn. 2019, 13, 45–52. [CrossRef] [PubMed]

79. Kim, J.; Wilhelm, T. What is a complex graph? Phys. A Stat. Mech. Appl. 2008, 387, 2637–2652. [CrossRef]
80. Goldberger, A.; Amaral, L.; Glass, L.; Hausdorff, J.; Ivanov, P.C.; Mark, R.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet:

Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [CrossRef] [PubMed]
81. Luque, B.; Lacasa, L.; Ballesteros, F.; Luque, J. Horizontal visibility graphs: Exact results for random time series. Phys. Rev. E

2009, 80, 046103. [CrossRef]
82. Nuñez, A.; Lacasa, L.; Valero, E.; Gómez, J.; Luque, B. Detecting series periodicity with horizontal visibility graphs. Int. J. Bifurc.

Chaos 2012, 22, 1250160. [CrossRef]
83. Lacasa, L.; Nuñez, A.; Roldán, E.; Parrondo, J.M.R.; Luque, B. Time series irreversibility: A visibility graph approach. Eur. Phys. J.

B 2012, 85, 217. [CrossRef]
84. Pierini, J.O.; Lovallo, M.; Telesca, L. Visibility graph analysis of wind speed records measured in central Argentina. Phys. A Stat.

Mech. Appl. 2012, 391, 5041–5048. [CrossRef]
85. Malamud, B.D.; Turcotte, D.L. Self-Affine Time series: Generation and Analyses. Adv. Geophys. 1999, 40, 1–90.
86. Mandelbrot, B.B.; Ness, J.W.V. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 1968, 10, 422–437.

[CrossRef]
87. Gálvez-Coyt, G.; Muñoz-Diosdado, A.; Del-Río-Correa, J.L.; Angulo-Brown, F. A comparative study of validity ranges of some

fractal methods. Fractals 2010, 18, 235–246. [CrossRef]
88. Craig, C.; Marshall, A.; Sjöström, M.; Bauman, A.; Booth, M.; Ainsworth, B.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.; et al.

International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395.
[CrossRef]

89. Cohen, M.; Taylor, J. Short-term cardiovascular oscillations in man: Measuring and modelling the physiologies. J. Physiol. 2002,
542, 669–683. [CrossRef]

90. Francis, D.; Willson, K.; Georgiadou, P.; Wensel, R.; Davies, L.; Coats, A.; Piepoli, M. Physiological basis of fractal complexity
properties of heart rate variability in man. J. Physiol. 2002, 15, 619–629. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1177/1535370215609696
http://www.ncbi.nlm.nih.gov/pubmed/26490345
http://dx.doi.org/10.1063/1.4812645
http://dx.doi.org/10.1109/ACCESS.2018.2890542
http://dx.doi.org/10.1007/s11571-018-9501-5
http://www.ncbi.nlm.nih.gov/pubmed/30728870
http://dx.doi.org/10.1016/j.physa.2008.01.015
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://www.ncbi.nlm.nih.gov/pubmed/10851218
http://dx.doi.org/10.1103/PhysRevE.80.046103
http://dx.doi.org/10.1142/S021812741250160X
http://dx.doi.org/10.1140/epjb/e2012-20809-8
http://dx.doi.org/10.1016/j.physa.2012.05.049
http://dx.doi.org/10.1137/1010093
http://dx.doi.org/10.1142/S0218348X10004774
http://dx.doi.org/10.1249/01.MSS.0000078924.61453.FB
http://dx.doi.org/10.1113/jphysiol.2002.017483
http://dx.doi.org/10.1113/jphysiol.2001.013389

	Introduction
	Materials and Methods
	Visibility Algorithm
	k-M Slope, Average Degree, and Average Path 0 for White, Pink, and Brownian Noise
	Heartbeat Time Series
	Young and Elderly Healthy Subjects
	Healthy Subjects and CHF Patients
	Cardiac Interbeat Series Obtained at Rest and While Exercising


	Results
	Visibility Parameters from White, Pink, and Brownian Noise
	Analysis of Physionet Database
	Heartbeat Time Series of Exercising Subjects

	Discussion
	Conclusions
	References

