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Abstract: As is well-known, ship-radiated noise (SN) signals, which contain a large number of
ship operating characteristics and condition information, are widely used in ship recognition and
classification. However, it is still a great challenge to extract weak operating characteristics from SN
signals because of heavy noise and non-stationarity. Therefore, a new mono-component extraction
method is proposed in this paper for taxonomic purposes. First, the non-local means algorithm
(NLmeans) is proposed to denoise SN signals without destroying its time-frequency structure. Sec-
ond, adaptive chirp mode decomposition (ACMD) is modified and applied on denoised signals
to adaptively extract mono-component modes. Finally, sub-signals are selected based on spectral
kurtosis (SK) and then analyzed for ship recognition and classification. A simulation experiment and
two application cases are used to verify the effectiveness of the proposed method and the results
show its outstanding performance.

Keywords: adaptive chirp mode decomposition; non-local means denoising; feature extraction;
ship-radiated noise

1. Introduction

As ocean trade plays an increasingly important role worldwide, ship faults and marine
terrorist attacks have been causing greater losses. To ensure unimpeded access and safety
of international sea lanes, reliable technologies for ship classification and tracking are of
great concern [1,2]. SN-signal-based analysis, as one of the most effective methods of
ship detection and classification, is a potential solution in this area [3]. However, non-
stationarity and heavy noise caused by the harsh ocean environment make it scarcely
possible to extract shafting characteristics from raw SN signals. Specifically, inner-product-
based methods, such as Fourier transformation (FT) and wavelet transform (WT) are
unqualified for multiple feature matching because of fixed basis functions [4,5]. Although
double-tree complex wavelet and multiwavelet are developed to solve the problem, they
merely build more fixed basis functions to deal with different features. Therefore, adaptive
feature extraction methods are expected.

Hilbert-Huang transform (HHT), proposed by Huang in 1998, is an effective method
for nonlinear and non-stationary signal analysis [6]. Its core, empirical mode decomposition
(EMD), is totally a self-organizing method and is based on the local scale characteristics
of the signal itself [7]. It decomposes the multi-modulation signal into a few intrinsic
mode functions (IMFS), and each IMF is considered as a mono-component. Once born,
EMD is widely used in the fields of mechanical failure diagnosis, biomedical science, and
underwater acoustic signal analysis [8–13]. However, the result of EMD is highly dependent
on the local extremum searching algorithm. The end effects in interpolation and Hilbert
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transform (HT) also possibly lead to IMF mixing, reducing the effectiveness of feature
extraction [14].

In spite of disadvantages and lack of strict mathematical derivation, EMD is still a
powerful tool for signal denoising and feature extraction, which inspires researchers to
develop more adaptive methods, such as ensemble empirical mode decomposition (EEMD),
complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), local
mean decomposition (LMD), empirical wavelet transform (EWT), and variational mode
decomposition (VMD). As the ship feature express as the multi-modulation phenomenon
in the SN signal, each modified method has been introduced to underwater acoustic signal
analysis and has achieved great success. In 2017, Li proposed a new ship classification
method by using EEMD and IMF energy criterion [15]. In 2019, Li denoised underwater
acoustic signals by combining CEEMDAN and least mean square adaptive filter (LM-
SAF) [16]. In 2022, Tian proposed a multi-layer adaptive separation method based on
EEMD for various target detection and experimental results show that multiple targets can
be well-estimated even in a complex acoustic environment [17]. Similarly, in 2022, Spinosa
proposed a denoising strategy based on EEMD to reduce the background noise in testing
of the emergency water landing of aircrafts [18].

As for LMD, EWT, and VMD, they are also concerned in the field of acoustic signal
analysis. In 2021, Lu proposed a modified ACELMD method and employed it to extract
features from complex underwater acoustic signals. The comparison between ACELMD,
ELMD, and LMD shows that ACELMD can effectively reduce the modal aliasing in the
decomposition results [19]. In 2021, Li extracted weak features from SN signals by combin-
ing EWT and reverse dispersion entropy [20]. In 2017, Li firstly used VMD to decompose
underwater acoustic signals and subsequently classified different ships according to multi-
scale permutation entropy [21]. Inspired by Li, Hou and Yang proposed VMD-based
underwater acoustic signal processing methods in 2021, respectively, and both achieved
great success [22,23]. However, these signal decomposition methods suffer from their own
intrinsic contradictions. For example, the fixed binary band partition strategy of EWT may
divide a mono-component feature into adjacent bands. Meanwhile, the harsh underwater
acoustic environment makes it hard to define the mode number and the bandwidth of
VMD accurately, which highly influence the accuracy of VMD [24].

Aiming at solving the above-mentioned problems and achieving an adaptive and
sparse decomposition, a novel signal decomposition method, named adaptive chirp mode
decomposition (ACMD), is developed to extract meaningful segments from a time se-
ries [25]. Born from VMD, it can extract characteristic modes adaptively by minimizing
their bandwidth, which ensures that each mode contains less noise and meaningless in-
terference. Although it is a recursive method, it can preferentially obtain characteristic
modes because of the modulation phenomena of ship features, which reduce the cost
of computation. Therefore, ACMD is a more suitable method for SN signal processing
than the above-mentioned methods. Firstly, ACMD is employed for rotating machinery
fault diagnosis. Chen developed ACMD in 2019 and used it to identify rub-impact fault
for rotor-stator systems [26]. In 2020, Yang proposed a new fault detection method for
circuit-breakers by combining ACMD and morphological characteristics [27]. In 2021,
Srivastava developed a rotor rub model which can detect the onset of rotor rub efficiently
whilst revealing the properties of IF of rubbing rotor; ACMD is used to detect the rub and
establish the properties of IF during model building [28]. In the same year, Ma exploited a
novel fault identification method based on particle swarm optimization (PSO) and ACMD
for bearing, and fast SK algorithm is used to get the resonance band signal [29]. Ding
proposed a sparsity-assisted ACVMD method, which incorporates a sparsity-assisted IF
update scheme that fully exploits the sparse prior of fast-oscillating IF caused by rub-impact
fault [30]. Since the SN signal is similar to the vibration signal, ACMD can be introduced
into underwater acoustic feature extraction.

The main consideration of this paper focuses on a development of noise reduction
and mode selection to perform modified ACMD. Considering that the performance of
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ACMD is highly influenced by background noise, a modified ACMD method based on the
NLmeans is proposed in this paper. Moreover, SK is calculated for mode selection after
mode decomposition, which ensures a more reliable feature extraction result.

The organization of the rest of this paper is summarized as follows. Section 2 succinctly
reviews ACMD. Section 3 introduces the procedure of the modified method and shows its
performance by using simulated signals. In Section 4, two real applications of the proposed
method are presented. Finally, the conclusions are drawn in Section 5.

2. Theoretical Background

ACMD, which is a tractable version of the variational nonlinear chirp mode decompo-
sition (VNCMD), can analyze multi-modal signals with strongly time-varying modulation
characteristics. They both regard the raw signal as a combination of AM-FM signals. There-
fore, VNCMD is briefly introduced in the following chapter first and then ACMD with its
limitations is illustrated.

2.1. A Brief Introduction of VNCMD

A FM-AM signal with K sub-signals can be expressed as:

s(t) = ∑K
i=1 Ai(t) cos

(
2π
∫ t

0
fi(τ)dτ + ϕi

)
(1)

where Ai(t) > 0, fi(τ) > 0 are instantaneous amplitude (IA) and instantaneous frequency
(IF), respectively.ϕi is the initial phase of the i-th component. What should be noticed is
that IA and IF vary more slowly than ϕi does. The purpose of VNCMD is to estimate IA
and IF of each sub-signal recursively [31], and its procedure can be shown as follows.

Firstly, Equation (1) can be rewritten by using a demodulation technique:

s(t) = ∑K
i=1

[
ai(t) cos

(
2π
∫ t

0 f̃i(τ)dτ
)
+ bi(t) sin

(
2π
∫ t

0 f̃i(τ)dτ
)]

where ai(t) = Ai(t) cos
(

2π
∫ t

0

(
fi(τ)− f̃i(τ)

)
dτ + ϕi

)
bi(t) = −Ai(t) sin

(
2π
∫ t

0

(
fi(τ)− f̃i(τ)

)
dτ + ϕi

) (2)

In Equation (2), the IF of the i-th component is fi(τ)− f̃i(τ) and ideally when fi(τ) = f̃i(τ),
the i-th component will be purely AM signals, which have the narrowest bandwidths. Therefore,
VNCMD tries to estimate all components by minimizing their bandwidth:

min
{ai(t),bi(t), f̃i(t)}

{
∑K

i=1

(
‖a′′i (t)‖

2
2 + ‖b

′′
i (t)‖

2
2

)}
s.t.s(t) = ∑K

i=1

[
ai(t) cos

(
2π
∫ t

0 f̃i(τ)dτ
)
+ bi(t) sin

(
2π
∫ t

0 f̃i(τ)dτ
)] (3)

where ‖ · ‖2
2 is the L2 norm and the bandwidth is evaluated using the square of the L2 norm

of the second-order derivate. Equation (3) can be regarded as a constrained optimization
problem and solved by the augmented Lagrange multiplier method, as VMD does.

Generally speaking, the result of VNCMD highly depends on accurate sub-signal
number and suitable initial IFs. However, it is scarcely possible to define the number of sub-
signals and the initial IFs accurately in real situations because of heavy noise and unknown
load. Therefore, a novel decomposition method for real AM-FM signals is desired.

2.2. ACMD

Inspired by VNCMD, ACMD can also estimate the IF and IA of the i-th mode by
minimizing its bandwidth [32]. Motivated by the matching pursuit method, ACMD extracts
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modes recursively, which means for the i-th signal component, the bandwidth optimization
problem should be solved as:

min
ai(t),bi(t), f̃i(t)

{
‖a′′i (t)‖

2
2 + ‖b

′′
i (t)‖

2
2 + α‖s(t)− si(t)‖2

2

}
with si(t) = ai(t) cos

(
2π
∫ t

0 f̃i(τ)dτ
)
+ bi(t) sin

(
2π
∫ t

0 f̃i(τ)dτ
) (4)

where ‖s(t)− si(t)‖2
2 denotes the residue energy after removing the i-th estimated com-

ponent; α is a penalty factor. Like the matching pursuit, ACMD recursively finds the
i-th component which has the most energy [26]. Considering that SN signals are discrete,
Equation (4) can be rewritten as:

min
ui , fi

{
‖Θui‖2

2 + α‖s− Giui‖2
2

}
(5)

where Θ =

[
Ω

Ω

]
and Ω is a second-order difference matrix, ui =

[
aT

i , bT
i
]T denotes the

corresponding demodulated signals which can restructure IA as Ai(t) =
√

a2
i (t) + b2

i (t),
and Gi = [Ci, Si] with Ci = diag[cos(ϕi(t0)), . . . , cos(ϕi(tN))] and Si = diag[sin(ϕi(t0)), . . . ,
sin(ϕi(tN))]. Equation (5) means that ACMD is actually a L2-regularized least-squares
problem and it can be solved by updating the demodulated signal and the IF function
iteratively. The demodulated signal is updated as:

uj
i =

[
aj

i
bj

i

]
= argmin

ui

{
‖Θui‖2

2 + α‖s− Giui‖2
2

}
=

(
1
α

ΘTΘ +
(

Gj
i

)T
Gj

i

)−1(
Gj

i

)T
s (6)

where j stands for the time of iterations and the i-th component can then be estimated as:

sj
i = Gj

i u
j
i (7)

After Equation (7) is gained, we can calculate the frequency increment ∆ f̃ j
i and subse-

quently update the IF function:

∆ f̃ j
i = − 1

2π

d
dt

(
arctan

(
bj

i(t)

aj
i(t)

))
=

bj
i(t) ∗

(
aj

i(t)
)′
− aj

i(t) ∗
(

bj
i(t)
)′

2π

((
aj

i(t)
)2

+
(

bj
i(t)
)2
) (8)

f j+1
i = f j

i +

(
1
β

ΩTΩ + I
)−1

∆ f̃ j
i (9)

where I is an identity matrix and
(

1
β ΩTΩ + I

)−1
works as a low-pass filter. The updating is

executed iteratively until the convergence criterion is satisfied, and then the i-th component
and the residual signal are gained as:

Ri+1(t) = Ri(t)− s̃i(t) (10)

Then, the residual signal Ri+1(t) is regarded as the original signal for the next decom-
position until the energy of the residual signal is smaller than a certain threshold. After each
IA and IF is obtained, an adaptive TF spectrum is employed to represent the time-varying
characteristics of the SN signal:

ATFS(t, f ) = ∑K
i=1 Ãi(t)δ

(
f − f̃i(t)

)
(11)
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2.3. Simulation Validation

Since ACMD regards signal components as AM-FM signals and extracts modes adap-
tively, it can extract the SN signal features effectively if the reasonable IFs are set in advance.
In order to verify this, we used ACMD to decompose a simulated signal and extract the
modulated characteristics mixed in the signal. As shown in Equation (12), the simulated
signal is generated by mixing two AM-FM signals, which represent the axial frequency
characteristic and the propeller frequency characteristic in the SN signal. The sample rate
of the simulated signal we design is 10 kHz and the length of the signal is one second.
Figure 1 shows the waveform and spectrum of the simulated signal.

x(t) = x1(t) + x2(t)
x1(t) = e−0.35∗t cos

(
2π ∗

(
400 ∗ t + 1

2 π ∗ cos(2π ∗ 40t)
))

x2(t) = e−0.50∗t cos
(

2π ∗
(

100 ∗ t + 1
2 π ∗ cos(2π ∗ 15t)

)) (12)
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Then, we decompose the simulated signal by ACMD, and the TF spectrum with the
STFT result are shown in Figure 2a,b. Comparing two figures, we notice that ACMD can
distinguish the mixed AM-FM signals more accurately than STFT. The spectrum of the two
decomposed modes are also calculated, and the center frequencies 100 Hz and 400 Hz with
their modulated frequencies 15 Hz and 40 Hz are clearly shown in Figure 3.

2.4. Limitation on Acoustic Feature Extraction

Although ACMD can extract AM-FM components from SN signals effectively, it is still
hard to identify weak ship features in practical cases because of heavy background noise.
Background noise influence the performance of ACMD from two aspects: firstly, ACMD
employs time-frequency ridge detection (TFRD) to gain initial IF function, and the accuracy
of TFRD based on STFT depends on a high signal-to-noise ratio (SNR) of the raw signal.
Secondly, the constraint of the smoothness of IF functions also makes ACMD sensitive
to noise.
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To show the limitation of ACMD, we add white Gaussian noise with the SNR per
sample in −5 dB to the simulated signal built in the above section. The new signal is shown
in Figure 4, while its STFT spectrum is displayed in Figure 5a. In Figure 5b, it can be noticed
that a large number of meaningless components appear, and the ridge lines are indistinct.
We still use ACMD to decompose the noisy signal and the result is shown in Figure 6.
Comparing Figures 2a and 6, we can notice that the ridge lines representing sub-signal
1 and 2 are totally different. Meanwhile, the spectrum in Figure 6 is also changed because
of heavy noise.
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Therefore, a plain conclusion can be drawn that some denoising method should be em-
ployed before we decompose the SN signal through ACMD. Furthermore, axial frequency
characteristics and propeller frequency characteristics should be extracted after signal
decomposition, but ACMD trends to decompose the raw signal into several components.
Therefore, we need to build an effective criterion to select the mode which contains the
most features.
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3. The Proposed Method

Considering that real SN signals are contaminated by heavy noise and axial frequency
characteristics and propeller frequency characteristics are weak, we propose a 3-step under-
water acoustic feature extraction method. Firstly, we use NLmeans to denoise the SN signal;
secondly, ACMD is employed to decompose the denoised signal into AM-FM components;
and finally, SK is applied to select the sub-signal which contains the most ship frequency
characteristics, and the chosen sub-signal is demodulated. The procedure is summarized in
Figure 7.
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3.1. The Improved Non-Local Means

There are many denoising algorithms available, such as Wavelet, Morphological
Filtering [33], and Matrix Completion [34,35]. To keep the spectral structure of the raw
signal, we select NLmeans as the pre-treatment method. NLmeans is proposed by Buades
to estimate the true value of each sample point. It can exploit the inherent repeatability of
time series to find similar points of a certain sampling point and denoise this point using
the average of its similar ones [36]. The original algorithm is explained as follows:

A raw SN signal mixed with an additive noise n(t) can be expressed as:

s(t) = x(t) + n(t) (13)

The estimated value at the time τ is computed as the weighted average of all the signals:

ŝ(τ) = ∑t ω(τ, t)s(t)
∑t ω(τ, t)

(14)

And the weighting function can be defined as:

ω(τ, t)= e
−∑λ∈∆ (s(t−λ)−s(τ−λ))2

B∆2h2 (15)

where s(t− λ) means the value of the observed signal at the time (t− λ), ∆ represents a
local patch of samples surrounding t and B∆ is its total sample. h is a smoothing parameter
and ‖‖a denotes the Euclidean distance based on a Gaussian kernel of a radius a. The kernel
here can be regarded as a Gaussian window function for filtering.

It has been shown that the NLmeans algorithm can be interpreted as the first iteration
of minimizing a general energy functional, and the original exponential form of weighting
function is not immutable [37]. However, traditional weighting functions such as LECLERC,
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HUBER, and LOGISTIC neglect the distance distribution of neighborhoods, so we choose a
novel weighting function for NLmeans, which is shown in Equation (16):

ω(τ) =


1 ‖r‖ ≤ h(

1− (‖r‖−h)2

h2

)8
h < ‖r‖ ≤ 2h

0 ‖r‖ ≤ h

(16)

In Section 2, we notice that the original ACMD method cannot effectively deal with
the noisy signal. Therefore, we use NLmeans with the new weighting function to denoise
the simulated signal structured in Section 2. The waveform of the noisy signal and the
denoised signal are shown in Figure 8. It can be noticed that simulated impulses can be
hardly found in Figure 8a. However, in Figure 8b, clear periodic characteristics can be
observed, which shows the performance of NLmeans.
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Figure 8. (a) The waveform of the noisy signal and (b) the waveform of the denoised signal.

3.2. ACMD Algorithm

After denoising, ACMD can be employed to decompose the signal. In a real scenario,
we use the correlation coefficient between the raw signal and the reconstructed signal
rather than residual energy to judge whether the decomposition loop should be ended. The
correlation coefficient is calculated by Equation (17):

ρs =
∑n
(
sn
′ − s′

)
(sn − s)√

∑n
(
sn ′ − s′

)2
∑n(sn − s)2

(17)

In the simulation, we set the correlation coefficient to be 0.6, which means when the
correlation coefficient ρs

′ ≥ 0.6, the algorithm should be ended. As for the denoised signal,
it is decomposed into 8 AM-FM components as shown in Figure 9.
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Figure 9. Decomposed sub-signals.

3.3. Component Selection Based on Spectral Kurtosis

According to Figure 10, lots of meaningless noise components are generated during the
decomposition. Meanwhile, the energy of the noise components may even be greater than
components containing ship features when background noise is heavy or when the ship is
too far away. Therefore, we introduce SK to select a suitable component for subsequent
demodulation analysis. SK [38] can be defined as Equation (18):

Ki( f ) =

〈
|F(n, f )|4

〉
〈
|F(n, f )|2

〉 − 2 (18)

where the operator 〈·〉 can be defined as 〈g(n)〉 = limN→∞N−1∑N g(n). Usually, SK splits
the raw signal into sub-signals according to a 1/2 tree filter-bank and then the SK of each
sub-signal is calculated. Now that we have gained all AM-FM components using ACMD,
the component with the largest value of SK can be selected as the component containing the
most features. The SK of each component is shown in Table 1. Then, we select component
1 and 2 for subsequent analysis. In Figure 10, the structure of the spectrum is highly similar
to Figures 1 and 3, which means the proposed method can effectively deal with noisy
SN signals.

Entropy 2023, 25, x FOR PEER REVIEW 11 of 20 

 

 

containing the most features. The SK of each component is shown in Table. 1. Then, we 
select component 1 and 2 for subsequent analysis. In Figure 10, the structure of the 
spectrum is highly similar to Figures 1 and 3, which means the proposed method can 
effectively deal with noisy SN signals. 

 
Figure 10. Component 1 and 2(Blue: the first sub-signal ( )1x t , Red: the second sub-signal ( )2x t ). 

Table 1. SK of each component. 

1 2 3 4 5 6 7 8 
1360.1 2240.6 7.9 10.1 6.62 16.6 7.8 6.8 

4. Applications 
In this section, we use data from the National Park Service and our own hydrophones 

to prove the effectiveness of the proposed method for SN signals. Moreover, traditional 
signal decomposition methods, such as EEMD, are also employed for comparison. 

4.1. Data Collected by National Park Service 
Data Introduction and Performance Comparison 

The proposed feature extraction method is utilized to analyze real measured ship-
radiated noise. The data sets are composed of sound samples radiated from various 
different ships (cruise ship, ocean liner, motorboat, and ferry), and contain 8 certain SN 
signals. The wave shapes of 8 SN signals are shown in Figure 11. With respect to each kind 
of SN signal, we re-sample all SN signals at a sampling frequency of 5 kHz, extract a 
fragment with 5 s length from each signal for decomposition, and add the same white 
Gaussian noise to the raw signal. 

 

Figure 10. Component 1 and 2 (Blue: the first sub-signal x1(t), Red: the second sub-signal x2(t) ).

Table 1. SK of each component.

1 2 3 4 5 6 7 8

1360.1 2240.6 7.9 10.1 6.62 16.6 7.8 6.8



Entropy 2023, 25, 669 11 of 19

4. Applications

In this section, we use data from the National Park Service and our own hydrophones
to prove the effectiveness of the proposed method for SN signals. Moreover, traditional
signal decomposition methods, such as EEMD, are also employed for comparison.

4.1. Data Collected by National Park Service

Data Introduction and Performance Comparison
The proposed feature extraction method is utilized to analyze real measured ship-

radiated noise. The data sets are composed of sound samples radiated from various
different ships (cruise ship, ocean liner, motorboat, and ferry), and contain 8 certain SN
signals. The wave shapes of 8 SN signals are shown in Figure 11. With respect to each
kind of SN signal, we re-sample all SN signals at a sampling frequency of 5 kHz, extract
a fragment with 5 s length from each signal for decomposition, and add the same white
Gaussian noise to the raw signal.
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boat powered by a 60hp outboard engine passes the hydrophone at approximately 20 knots, (8): a
boat with a whining propeller).

To show the advantages of the proposed method, we choose a traditional binary-SK
method as the comparison object. The comparison result is shown in Table 2. It is obvious
that the proposed method has the best ability of feature extraction, with an accuracy of 8/8.
Meanwhile, SK has a lower accuracy of 5/8 (the standard is clear spectral lines appearing
in the envelop spectra of modes).

Table 2. Performance of different methods.

Method Effective Signals Samples Accuracy

M-ACMD 8 8 100%
SK 5 8 62.5%

Then, we choose a specific SN signal of a small diesel engine (Signal 4) for further
comparison. The initial signal is shown in Figure 12a. First, the proposed method is applied
for the signal. The raw signal is denoised by NLmeans and periodic pulses are found in
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the waveform of the denoised signal, as Figure 12b shows. Then, the denoised signal is
decomposed by modified ACMD and the result of the decomposition is given in Figure 13.
It can be seen that the signal is decomposed into 9 components.
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Subsequently, the value of SK of each component is calculated and component 1 with
the largest SK value is selected for demodulation. The envelope spectrum of component
1 is drawn in Figure 14. In the figure, we can notice that the characteristic frequency 10.0
Hz is clear.
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Figure 14. Envelope spectrum of component 1.

A 4-layer SK is also used for comparison and the result is shown in Figure 15a. The
sub-signal with the highest SK is located between 0 Hz to 416.66 Hz, but unfortunately no
obvious characteristic frequency can be identified from the envelop spectrum in Figure 15b.
Therefore, we can conclude that the proposed method shows a better ability of feature
extraction for SN signals than SK.
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4.2. Data Collected by Our Own Hydrophones

In 2016, our research group designed and implemented a SN signal exploration and
collection experiment in the South China Sea. The surveying ship with three hydrophones
and the target ship are shown in Figure 16. The engine of the surveying ship stalls, and the
target ship sails with a uniform speed. In the experiment, we collect 61 SN signals with
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a sampling rate of 20 kHz. Most of the SN signals can be easily analyzed and shafting
characteristic frequencies contained are obvious.
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Figure 16. The SN signal exploration and collection experiment.

As we gain an effective SN signal processing method, we attempt to process these
intractable signals again, and a typical case is illustrated in this section. First, the raw signal
and its Fourier spectrum are shown in Figure 17. Because of the complicated underwater
acoustic environment and a quite long distance between the surveying ship and the target,
the hidden shafting feature cannot be found directly.
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Therefore, the signal is decomposed by the proposed method and the threshold
value of correlation coefficient is designed as 0.6. The raw signal is decomposed into
9 components, as Figure 18b shows.
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Then, the decomposed components are selected according to their SK value and the
envelop spectrum of the most suitable component (component 3) is drawn in Figure 19.
Clear spectral lines appear in the envelop spectrum and they can be regarded as the shafting
characteristic frequency and its harmonics.
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Figure 19. The envelop spectrum of component 3.

As a widely used signal decomposition method, EEMD is also employed to deal
with the raw signal for comparison. It divides the signal into 13 IMFs. The spectra of the
first six modes are shown in Figure 20a, because higher-order modes are low-frequency
narrow-band signals without any modulation information. We demodulate the first six
modes and show their envelop spectra in Figure 20b, but it can be noticed that none of the
related frequencies appear.
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Since ACMD is born out of VMD, we also use a parameter-optimized VMD [39] to
decompose the same signal for comparison. Coincidently, it also uses SK to optimize
its parameters. According to Ref. [39], when the optimal number of modes is 8 and the
optimal bandwidth is 1500, the envelope signal kurtosis value takes the maximum of 4.49.
Therefore, the raw signal is decomposed by VMD with the optimal mode number 8 and
bandwidth 1500; the decomposition result is shown in Figure 21.
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Figure 21. The result of the parameter-optimized VMD method.

Then, we select mode 4 for demodulation analysis because the kurtosis value of mode
4 is the largest among all 8 modes. Figure 22 shows the envelop spectrum of mode 4,
and in Figure 22, we notice that only one spectral line is clear, and the whole spectrum
is submerged by expected interference. Therefore, we can draw a conclusion that the
proposed method shows a stronger ability for the feature extraction of SN signals.
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We analyze the elapsed time of involved methods in both case 1 and 2 and gain the
following Table 3 (the algorithms run on a desktop computer with CPU: 11th Gen Intel (R)
Core (TM) i7-11700F, Memory: 16 GB, System: Windows 10-19044.2728 and Matlab 2020b).

Table 3. The elapsed time of the involved methods(s).

The Proposed Method SK EEMD Parameter-Optimized VMD [1]

Case1 (25,000 points) 90.22 1.65 / /

Case2 (25,000 points) 85.47 / 45.77 360.47

From Table 1, we can notice that the efficiency of M-ACMD is far lower than EEMD
and SK, because M-ACMD is a recursive method and for each mode, it has to update
many times to gain the final estimated IF function and estimated IA function. However, SK
and EEMD cannot extract the ship features in case 1 and 2; therefore, the elapsed time of
M-ACMD is acceptable.

The parameter-optimized VMD costs the longest time because it has to try different
combinations of parameters to gain the optimal decomposition result. Compared with the
parameter-optimized VMD, M-ACMD can be regarded as an effective method.

5. Conclusions and Prospect
5.1. Conclusions

SN signal processing and feature extraction play a vital role in ship recognition and
classification. In this paper, a modified signal decomposition method based on NLmeans,
ACMD, and SK is proposed to deal with SN signals and extract shafting characteristic
frequencies.

The modified method has been used in two real cases and compared with other
traditional decomposition methods, such as EEMD, SK, and the parameter-optimized
VMD. Some benefits of this paper can also be drawn after the above-mentioned work:
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1. We introduce ACMD to SN signal extraction and underwater acoustic target identifi-
cation. Moreover, we build a new correlation-coefficient-based convergence criterion
for ACMD instead of the energy of the residual signal.

2. Considering heavy noise of real SN signals, we use NLmeans denoising to improve
SNR. However, traditional weighting functions such as LECLERC, HUBER, and
LOGISTIC neglect the distance distribution of neighborhoods, so we build a novel
weighting function for NLmeans denoising. The modified algorithm has better poten-
tial for denoising.

3. We choose SK rather than energy-based criteria as a mode selection criterion because
SK is sensitive to ship operation features and insensitive to noise and unexpected
interference. The simulation and two cases in Section 4 prove the effectiveness of SK.

4. Both the simulation experiments and real cases show the superiority of the proposed
method in weak feature extraction.

5.2. Prospect

Although an effective ship feature extraction method is proposed for taxonomic
purposes in this paper, there are still three different ways to improve the potential of
underwater acoustic target identification:

1. Sensitive mode selection criteria, such as entropy-based criteria [40,41], can be built
and used to assist the feature extraction. Since entropy reflects the degree of disorder
of a time series, we can build and calculate the entropy-based index of each mode and
choose those modes with the smallest value of the index for demodulation analysis.
Take multi-scale permutation entropy (MPE) [42] as a brief example. We calculated the
MPE of all 9 modes obtained in case 2 and the result is shown in Figure 23 as follows:
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Figure 23. The result of MPE of 9 modes.

The largest value of PE is 1, meaning that all permutations have an equal probability;
the smallest value of PE is 0, indicating that the time series is very regular. In other words,
the smaller the value of PE is, the more regular the time series is. It can be noticed that the
value of the MPE of mode 1 is the smallest among all modes, but mode 1 is low-frequency
signals and always contains strong periodical interference. Therefore, we still choose mode
3 for demodulation analysis and get the same result as that in case 2.

2. ACMD is also a suitable pre-processing method to obtain characteristic modes and can
be combined with self-organizing ship identification methods, such as the entropy-
based methods. For real SN signals, we can choose a certain mode (such as the first
obtained mode by ACMD) and calculate its entropy for ship identification [43]. It is
also feasible to calculate entropies of all modes and input them into an artificial neural
network for automatic identification.

3. New signal decomposition methods should be proposed. Actually, VMD-based meth-
ods, such as VNCMD, FMD and ACMD, can be regarded as constrained optimization
problems. Considering that entropy is a significant optimization objective, we can
propose new signal decomposition methods by structuring entropy-based objective
function and solving the constrained optimization problem.
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