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Abstract: Temporal knowledge graphs (KGs) have recently attracted increasing attention. The tempo-
ral KG forecasting task, which plays a crucial role in such applications as event prediction, predicts
future links based on historical facts. However, current studies pay scant attention to the following
two aspects. First, the interpretability of current models is manifested in providing reasoning paths,
which is an essential property of path-based models. However, the comparison of reasoning paths in
these models is operated in a black-box fashion. Moreover, contemporary models utilize separate
networks to evaluate paths at different hops. Although the network for each hop has the same archi-
tecture, each network achieves different parameters for better performance. Different parameters
cause identical semantics to have different scores, so models cannot measure identical semantics
at different hops equally. Inspired by the observation that reasoning based on multi-hop paths is
akin to answering questions step by step, this paper designs an Interpretable Multi-Hop Reasoning
(IMR) framework based on consistent basic models for temporal KG forecasting. IMR transforms
reasoning based on path searching into stepwise question answering. In addition, IMR develops
three indicators according to the characteristics of temporal KGs and reasoning paths: the question
matching degree, answer completion level, and path confidence. IMR can uniformly integrate paths
of different hops according to the same criteria; IMR can provide the reasoning paths similarly to
other interpretable models and further explain the basis for path comparison. We instantiate the
framework based on common embedding models such as TransE, RotatE, and ComplEx. While being
more explainable, these instantiated models achieve state-of-the-art performance against previous
models on four baseline datasets.

Keywords: temporal knowledge graphs; forecasting; interpretable reasoning

1. Introduction

Knowledge graphs (KGs) are collections of triples, such as Freebase [1] and YAGO [2].
Temporal KGs introduce a new dimension into static knowledge graphs [3], i.e., a timestamp
for each triple to form a quadruple. Although there are billions of triples in temporal KGs,
they are still incomplete. These incomplete knowledge bases will lead to limitations in
practical applications. Since temporal KGs involve the time dimension, the completion
of temporal KGs can be divided into interpolation and forecasting. The former utilizes
the facts of all timestamps to predict the triples at a particular moment; the latter employs
historical facts to predict future triples. Due to the importance of temporal KG forecasting
in event prediction, it has attracted growing attention recently. This paper mainly focuses
on temporal KG forecasting.

Most current research on temporal KG completion focuses on interpolation [4–10].
Recently, there have been attempts to investigate temporal KG forecasting [3,4,7,11–13].
According to the interpretability, research on temporal KG forecasting can be divided
into two categories. One type is the black-box model, which designs an unexplainable
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scoring function for quadruples’ rationality. The other type is interpretable approaches.
CyGNet [11] utilizes one-hop repetitive facts to realize prediction. Its performance is limited
by the lack of direct repetitive knowledge of historical moments. xERTR [7], CluSTeR [3],
and TITer [14] are all path-based temporal KG forecasting models. xERTR [7] adopts the
inference subgraphs to aggregate local information around the question. CluSTeR [3]
and TITer [14] manipulate reinforcement learning for the path search and improve the
performance through temporal reasoning.

Thus far, however, there has been little discussion on the following two aspects. Firstly,
uniformly measuring the paths of different hops requires handling the same semantics
equivalently at different hops. Current models utilize separate networks to evaluate paths
at different hops. Although each hop’s network has the same architecture, each network
acquires different parameters for better performance. Different parameters cause identical
semantics to have different scores, so current models cannot truly compare multi-hop
paths according to the same criteria. For example, xERTR [7] simply gathers the scores
of different paths for comparison, which is mainly based on training datasets. Secondly,
although current models can provide reasoning paths, the comparison of paths operates
in a black-box fashion. The interpretability of the current models means providing the
reasoning paths, which is an essential property of path-based models. These models lack
an explanation of the preference for various paths, i.e., they cannot provide the basis for
path comparison.

In practice, forecasting based on path searching aims to find the appropriate multi-hop
paths, the combination of whose relations is equivalent to the question’s relation. As
we observe, reasoning based on multi-hop paths is akin to stepwise question answering.
Inspired by stepwise question answering, this paper designs a new Interpretable Multi-
Hop Reasoning (IMR) framework based on consistent basic models, which can uniformly
integrate the paths of different hops and perform more interpretable reasoning.

The primary pathway of IMR can be as follows. IMR first transforms reasoning
based on path searching into stepwise question answering based on basic KG embedding
models [1,15–18] and IRN [19]. This framework calculates the unanswered parts of ques-
tions after each hop as the new question for the next hop during the stepwise question
answering, which is named the remainder of questions in this paper. Moreover, IMR
designs three indicators based on the unanswered parts of questions and the inferred tails:
the query matching degree, answer completion level, and path confidence. The query
matching degree, i.e., the matching degree between the reasoning tails and the original
questions, measures the rationality of the new quadruples. The answer completion level,
i.e., the matching degree between the relations of paths and that of the questions, measures
the answer’s completeness. Path confidence, i.e., the difference between the same entities
with different timestamps, measures the reliability of the reasoning paths. IMR achieves
the unified scoring of multi-hop paths and better explainable reasoning simultaneously
with these indicators’ combination.

The major contributions of this work are as follows. (1) A new Interpretable Multi-Hop
Reasoning framework (IMR) is proposed in this paper, which provides a new framework
for the specific design of forecasting models. Furthermore, IMR defines three indicators:
the query matching degree, answer completion level, and path confidence. (2) Unlike
other models that cannot measure the paths of different hops uniformly, IMR can measure
the paths of different hops according to the same criteria and utilize multi-hop paths for
inference. (3) IMR can provide reasoning paths similarly to other interpretable models and
further explain the basis for path comparison. (4) Based on basic embedding models, IMR
is instantiated as the specific model. Experiments on four benchmark datasets show that
these instantiated models achieve state-of-the-art performance against previous models.

2. Related Work

Static KG reasoning. Knowledge graph reasoning based on representation learning
has been widely investigated by scholars. These approaches to reasoning can be categorized
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into geometric models [1,17,20–22], tensor decomposition models [15,16,18,23], and deep
learning models [24–26]. In recent years, some scholars have attempted to introduce GCN
into knowledge graph reasoning [27], which can improve the performance of basic models.
Some other scholars focus on multi-hop reasoning with symbolic inference rules learned
from relation paths [28,29]. The above methods are all designed for static KGs, making it
challenging to deal with temporal KG reasoning.

Temporal KG reasoning. Temporal KGs import the time dimension into static KGs,
which makes the facts of a specific timestamp extremely sparse. The temporal KG rea-
soning task can be divided into two categories: reasoning about historical facts [4–8,30],
i.e., interpolation on temporal KGs, and reasoning about future facts [3,4,7,11], i.e., fore-
casting on temporal KGs. The former predicts the missing facts of a specific historical
moment based on the facts of all moments, and the latter predicts future events based
only on the past facts. There are many studies on the task of temporal KG interpolation.
However, these studies are all black-box models, which cannot explain predictions. Most
of the proposed models for temporal KG forecasting are also black-box models. BoxTE [31]
utilizes BoxEmbedding for temporal KG forecasting, which is expressive and possesses
an inductive capacity. Recently, xERTR [7], CluSTer [3], and TITer [14] were shown to
explain predictions to some extent. These models can provide the reasoning paths for the
predictions. However, both models cannot truly handle multi-hop paths crossing the same
criteria, which is more similar to the weighted combination. xERTR and TiTer combine the
scores of paths with different hops by training weights. Experiments show that CluSTeR
performs worse on paths with multiple hops than on paths with only one hop.

Most current temporal KG forecasting models are black-box models. Only some mod-
els can provide reasoning paths for prediction. Moreover, none of them can explain how
path comparisons work and none of them can integrate paths of different hops uniformly.

3. Preliminaries

The task of temporal KG forecasting. Suppose that E ,R, and T represent the entity
set, predicate set, and timestamp set, respectively. The temporal KG is a collection of
quadruples, which can be expressed as

K = {(es, r, eo, t), es, eo ∈ E , r ∈ R, t ∈ T } (1)

(es, r, eo, t) denotes a quadruple; es and eo represent the subject and object, respectively. r
represents the relation, and t represents the time that the quadruple occurs. Suppose that
facts happening before the selected time tk can be expressed as

Gtk =
{(

ei, r, ej, ti
)
∈ K|ti < tk

}
(2)

Temporal KG forecasting predicts future links based on past facts. This means that its
foundation is the process of predicting eo based on a question

(
es, rq, ?, tq

)
and the previous

facts Gtq , where rq, tq denote the relation and timestamp of the question. Temporal KG
forecasting involves ranking all entities of the specific moment and obtaining the preference
for prediction.

Temporal KG forecasting based on paths. Knowledge graph embedding associates
the entities e ∈ E and relations r ∈ Rwith vectors e, r. Different from static KGs, the entities
in temporal KGs contain time information. The entity may contain different attributes
at different moments. In order to better characterize the entity in temporal KGs, we
associate each entity e with a specific time label ti ∈ T , so the entity e can be depicted
as eti and its embedding can be denoted as eti . The set of quadruples directly associated
with eti

s , which can be defined as the 1-hop paths associated with eti
s , can be expressed

as P(es ,ti)
=
{(

es, r, ej, tk
)
|
(
es, r, ej, tk

)
∈ Gti

}
, where es, ej ∈ E , rp ∈ R, tk < ti ∈ T . In this

way, P(es ,ti)
can represent all associated quadruples. The set of entities directly associated

with e
tq
s in the path P(es ,tq), i.e., the 1-hop neighbors of e

tq
s , can be denoted as N(es ,tq) =
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{
eth

i |(es, r, ei, th) ∈ P(es ,tq)

}
, where es, ei ∈ E , r ∈ R, th < tq ∈ T . Given the question(

es, rq, ?, tq
)
, the forecasting task can be depicted as requesting the entity eo based on path

searching. For example, we search the path with es as the starting point:(
es, rp(1) , e1, t1

)
,
(

e1, rp(2) , e2, t2

)
, . . . ,

(
ei−1, rp(i) , ei, ti

)
(3)

where rp(i) denotes the relations of the ith-hop. Thus, answers to the question may be
e1, e2, e3, . . . , ei, and the corresponding inference hop is 1, 2, 3, . . . , i, respectively. Moreover,
es(i) , rq(i) denotes the remaining (or unanswered) subjects and relations of questions after
the ith-hop paths, which will be explained in Section 4.3.2.

Uniformly measuring paths of different hops. Uniformly measuring paths of differ-
ent hops requires models scoring paths of different hops according to the same criteria.
For example, given question

(
es, rq, ?, tq

)
and the searched 1-hop path

(
es, rp, e1, t1

)
, the

score obtained for the searched 1-hop path is f . If we find no path during the first hop,
the original question is left to the second hop to solve. Thus, the remaining question (unan-
swered question) for the second hop is still

(
es, rq, ?, tq

)
. When the path searched at the

second hop is also
(
es, rp, e1, t1

)
, the score for the searched path at the second hop should

also be f . As is shown in this example, we should score identical semantics equivalently
even under different hops. Moreover, the equal comparison of paths provides the basis
for the interpretability of path comparison. This attribute constrains models to have an
identical scoring mechanism at each hop, i.e., each hop’s separate networks for the models
based on neural networks should have the same parameters. However, only IMR can meet
the attribute.

Fact matching based on TransE. This paper is the first study of the design of inter-
pretable evaluation indicators from the perspective of actual semantics. We instantiate IMR
to better illustrate the design pathway and thus choose the basic embedding model TransE as
the basis of IMR. In TransE, relations are represented as translations in the embedding space.
If the triple (es, r, eo) holds in static KGs, TransE [1] assumes the following relationship.

|es + r− eo| = 0 (4)

where es, r and eo ∈ Rk, and k denotes the dimension of each vector.
For each quadruple

(
es, rq, eo, tq

)
in temporal KGs, the relation rq can also be taken as

the translation from the subject es to the object eo, i.e., e
tq
s + rq = e

tq
o . We suppose that when

the distance d of quadruples is smaller, the quadruple will be better matched. The distance
of the quadruple

(
es, rq, eo, tq

)
can be expressed as

d =
∣∣∣etq

s + rq − e
tq
o

∣∣∣ (5)

The relations in KG embedding models indicate the translations between entities, whose
specific design determines the complexity of the indicators designed by IMR. The design
route of IMR originates from the perspective of reasoning from actual semantics, which is
not limited to specific basic models. The consistent basic model of IMR-TransE is TransE, i.e.,
all IMR-TransE’s specific formulas are based on TransE, which will not be explained below.
To limit the length of the paper, we move the details of IMR-TransE and IMR-ComplEx to
Appendix A.2.

4. IMR: Interpretable Multi-Hop Reasoning

We introduce the Interpretable Multi-Hop Reasoning framework (IMR) in this section.
We first provide an overview of IMR in Section 4.1. IMR comprises three modules: the
path searching module, query updating module, and path scoring module. The path
searching module searches related paths hop by hop from the subjects of questions, in-
volving path sampling and entity clipping, whose motivation and design are presented in
Section 4.2. The query updating module calculates the remaining questions hop-by-hop



Entropy 2023, 25, 666 5 of 21

for each path, involving the update of the subject and relations, whose motivation and
design are introduced in Section 4.3. The path scoring module designs three indicators: the
question matching degree, answer completion level, and path confidence. This module
combines three indicators to evaluate each path, whose motivation and design are pre-
sented in Section 4.4. We introduce training strategies and the regularizations on state
continuity in Section 4.5. IMR conducts uniform path comparisons based on consistent ba-
sic models. To better illustrate this framework, we also include the corresponding instance
model (IMR-TransE) in Sections 4.3–4.5. The detailed implementations of IMR-RotatE and
IMR-ComplEx are included in Appendix A.2.

4.1. Framework Overview

We notice that predicting unknown facts based on paths is akin to answering questions,
i.e., the question can be answered directly via finding triples with an equal relation or grad-
ually by utilizing the multi-hop equivalent paths. Inspired by this observation, we take the
task of link prediction as stepwise question answering. IMR primarily consists of searching
for paths hop by hop, updating the remaining questions for each path, and filtering the
best answers based on three indicators: the question matching degree, answer completion
level, and path confidence.

We show a toy example in Figure 1. Given a question
(
es, rq, ?, tq

)
and the previous

facts Gtq , the task of forecasting is predicting the missing object eo. The steps of IMR are
as follows.

Step 1: Starting from the subject es, we first acquire the associated quadruples P(es ,tq),
namely 1-hop paths. We temporally bias the neighborhood sampling using an exponential
distribution for the neighbors [7]. The distribution negatively correlates with the time
difference between node es and its neighbor N(es ,tq). Then, we calculate the remaining
questions (the remaining subject es(1) and the remaining relation rq(1) ) for each sampled
path. Finally, IMR scores 1-hop paths based on three indicators, which is discussed in
Section 4.4.

Step 2: To prevent the path searching from exploding, the model samples the tails
of 1-hop paths for the 2-hop path searching. As shown by the pink arrow in Figure 1,
the tails of 1-hop paths are clipped according to the scores of 1-hop paths. For the 2-hop
paths searched from the clipped tails, IMR samples the paths negatively correlated with
time distances. Then, IMR calculates the remaining questions for each 2-hop path (the
remaining subject es(2) and the remaining relation rq(2) ) and scores the 2-hop paths based on
three indicators.

Step 3: Rank the scores of 1-hop and 2-hop paths to obtain the preference answer.

4.2. Path Searching Module

Inspired by the observation that reasoning based on multi-hop paths is akin to stepwise
question answering, this module searches related paths hop by hop from the subjects
of questions.

Path sampling. For the path searching from the starting subject e
tq
s , the number of

triples in P(es ,tq) may be very large. To prevent the path searching from exploding, we
sample a subset of the paths. In fact, the attributes of entities in temporal KGs may change
over time. Consider the observation that when t1 is closer to tq, the attributes of et1

s should

be more similar to those of e
tq
s . We also verify the correlation between attributes and the

time distance in Appendix A.6. Therefore, we are more prone to sample nodes whose time
is closer to tq. In this paper, we employ time-aware exponentially weighted sampling in
xERTR [7]. xERTR temporally biases the neighborhood sampling using an exponential
distribution of temporal distance.

Entity pruning. The search for next-hop paths is based on the tails of previous-hop
paths, so the number of paths is increased by the exponent of dimensions. To avoid the
explosion of next-hop path searching, this paper proposes to select the top-K entities for
the next-hop search based on the sorted scores of the previous hops.
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( )MLP

Sub Rel Time

Sub R1 Time1 Obj1

Sub R2 Time2 Obj2
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Calculate the rest of questions for 
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Obj1 R5 Time5 Obj5

Obj1 R6 Time6 Obj6

Obj2 ... … …

Obj2 … … …

Time-aware exponentially weighted 
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Query
Remaining Query

After path (Src,R1,Time1,Obj1)

Sub” Rel” Time

Remaining Query
After path [(Src,R1,Time1,Obj1), 

(Obj1,R5,Time5,Obj5)]

Scores  for 1-hop path

(Src,R1,Time1,Obj1)

Scores for 2-hop path 

[ (Src,R1,Time1,Obj1) ,

(Obj1,R5,Time5,Obj5) ]

Prune based on the scores of paths

Path Score 

Module

…

？

Query Update 

Module

Path Search  

Module

qmdf pcf
acf

qmdf pcf
acf( )MLP

？ ？

Figure 1. The architecture of IMR. We take the 2-hop path search as an example. The black
and red arrows denote time-aware exponentially weighted sampling and pruning based on the
scores of paths, respectively (Section 4.2). The blue arrows denote the calculation of the rest of
the questions for each path (Section 4.3). (Sub, Rel, ?, Time) is regarded as the original ques-
tion, which can be denoted as

(
es, rq, ?, tq

)
. The searched two paths are [(Sub,R1,Obj1,Time1)]

and [(Sub,R1,Obj1,Time1),(Obj1,R5,Obj5,Time5)], which can be denoted as
[(

es, rp(1) , e1, t1

)]
and

[(
es, rp(1) , e1, t1

)
,
(

e1, rp(2) , e2, t2

)]
, respectively. (Sub’, Rel’, ?, Time) and (Sub”, Rel”, ?,

Time) denote the remaining questions after the 1-hop and 2-hop path, which can be taken as(
es(1) , rq(1) , , ?, tq

)
,
(

es(2) , rq(2) , ?, tq

)
, respectively.

4.3. Query Updating Module

Given a question
(
es, rq, ?, tq

)
, there may be a few relations directly equivalent to rq

in the temporal KGs for the task of link prediction. More questions need to go through
multi-hop paths to infer the outcome. In question answering, a complex question can be
decomposed into multiple sub-questions, with one sub-question answered at each step.
Thus, inference based on the multi-hop path is equivalent to answering complex questions
step by step. Moreover, we need to remove the part resolved to focus on the remaining
questions. IMR proposes to update the question according to the last hop and focus on
finding the unsolved parts. The query updating module mainly calculates the remaining
questions, i.e., the unanswered questions.

The embedding of entities is first introduced in this subsection, followed by the query
updating module of IMR-TransE.

4.3.1. Entity Representation

The attributes contained in the entities may change over time. This paper divides the en-
tity embeddings of each timestamp into a static representation and dynamic representation.

e = act
(

MLP([ esta || edy ])
)

(6)

Here, the vector esta denotes the static embedding, which captures time-invariant
features and global dependencies over the temporal KGs. The vector edy represents the
dynamic embedding for each entity that changes over time. || denotes the operation of
concatenation and MLP(·) denotes the multilayer perceptron (MLP). act(·) denotes the
activation function. We provide more details about esta and edy in Appendix A.3.
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4.3.2. Question Updating

Each path contains a different set of relations. After each hop, the question needs
to discard the processed semantic, i.e., to obtain the remaining subject and relation of
the question.

Question updating for IMR-TransE. As shown in Figure 1, the subject and relation
of the question after the i-th hop path are updated based on Equation (5) as follows.

es(i) = es(i−1) + rp(i) (7)

rq(i) = rq(i−1) − rp(i) (8)

where the embedding es(i) and rq(i) represent the remaining subject and relation of the
question after the i-hop path, respectively. Moreover, es(0) = es, rq(0) = eq and rp(i) denotes
the relation of i-th hop path and i is the number of hops for each path.

4.4. Path Scoring Module

For the question (Sub, Rel, ?, Tq), we search the 2-hop path (Sub, R1, Obj1, T1),(Obj1,
R2, Obj2, T2). The pink box indicates that the original question and the tail of the path
are combined as a quadruple to measure the rationality of searched tails, i.e., the question
matching degree fqmd. The purple box represents the comparison between the question’s
relation and the path relations to measure the semantic equivalence between the question
and the path, i.e., the answer completion level fac. These green boxes compare the attributes
of the same entities with different timestamps to measure the reliability of the search path,
i.e., the path confidence fpc.

We evaluate the path searching from three perspectives. First, the searched tails should
match the original question, which means that the correct tails searched by paths and the
question should satisfy the consistent basic embedding model. Secondly, the ideal path
should be the search for equivalent semantics for relations, not merely the search for the
correct tails. It is necessary to ensure the correctness of semantic equivalence, i.e., the
path is semantically equivalent to the relation of the question. Finally, considering the
particularity of the temporal KGs, the attributes of the same entity may change over time.
The current sampling strategy for path searching is to sample adjacent timestamp triples
of the same entity. When the attribute value of the entity changes significantly over
time, it is inappropriate to perform this sampling strategy for the next hop. We need to
ensure that the same entity with different timestamps has similar properties in the same
path. In this way, three indicators have been developed by IMR to measure the rationality
of the reasoning path, respectively: the question matching degree, answer completion
level, and path confidence. Although the current methods, such as models based on
reinforcement learning, can have complicated designs, the score functions simply belong
to a type of question matching degree. We provide a detailed analysis of the correlation
between IMR and reinforcement-learning-based models in Appendix A.5.

4.4.1. Question Matching Degree

For the tails found by path searching, we need to measure the matching degree
between the tails and the question, the question matching degree. In fact, the scoring
function applied by some traditional reinforcement learning methods is a type of question
matching degree. As shown in the yellow box in Figure 2, for the entity eti

p(i) searched by

the paths with i hops, we combine the entity eti
i and the question

(
es, rq, ?, tq

)
into a new

quadruple
(

es, rq, eti
p(i) , tq

)
.
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Query

2-hop Path

pcf

Sub,Tq
Rel

Sub,T1

R1

?

Obj1,T1 Obj1,T2

R2
Obj2,T2

pcf
qmdfacf

Figure 2. A brief illustration of the path scoring module.

Question matching degree for IMR-TransE. Question matching degree fqmd in IMR-
TransE calculates the distance of the constructed quadruple based on TransE [1]. The
better the entity matches the question, the smaller the distance of quadruples will be. The
calculation of fqmd for ith-hop path is as follows.

f i
qmd =

∥∥∥etq
s + rq − eti

p(i)

∥∥∥
p

(9)

where the p-norm of a complex vector V is defined as ‖V‖p = p
√
|Vi|p. We use the L1-norm

for all indicators in the following.

4.4.2. Answer Completion Level

Among the paths to the right tails, some paths are not related to the semantics of
the question. Although these paths can infer the tail, these paths are invalid due to being
unrelated to the question in semantics. Therefore, IMR designs an index to measure
the semantic relevance between the path and the question. Answer completion level fac
indicates whether the combination of path relations can reflect the relation of the question
in semantics. IMR takes the remaining relations of the question as the answer completion
level, which is calculated based on the distance between the relations of paths rp(1) , rp(2) , . . .
and the relation rq. The fewer the relations of a question that remain, the more complete
the answer given by the combination of path relations.

Answer completion level for IMR-TransE. The calculation of fac for ith-hop path in
IMR-TransE is as follows.

f i
ac =

∥∥∥rq − rp(1) − rp(2) − rp(3) − . . .− rp(i)

∥∥∥
p

=
∥∥∥rq(1) − rp(2) − rp(3) − . . .− rp(i)

∥∥∥
p

=
∥∥∥rq(i)

∥∥∥
p

(10)

4.4.3. Path Confidence

Path searching is the process of searching for the next-hop paths based on the tail of
the previous hop. When searching for a path, the current sampling strategy is to sample
adjacent timestamp triples of the same entity. There are deviations between the same
entities with different timestamps in temporal KGs. The premise of this sampling strategy
is that only when entities have similar attributes under different timestamps, the path
searching is valid. When the entity’s attributes change significantly over time, performing
an effective next path search is inappropriate. The reasoning path is more reliable when
the deviations between entities are smaller. IMR designs path confidence fpc, i.e., the error
between the subject of the updated question es(i) and the tails eti

p(i) of the path with i hops.
Path confidence for IMR-TransE. The calculation of fpc for ith-hop path in IMR-

TransE is as follows.
f i
pc =

∥∥∥es(i) − eti
p(i)

∥∥∥
p

(11)
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where eq(i) represents the remaining subject of the question updated by paths of the length

i, and eti
p(i) represents the tail reasoned by the i-hop paths.

4.4.4. Combination of Scores

IMR merges indicators with positive weights to obtain the final score of each path, i.e.,
f = wqmd ∗ fqmd + wac ∗ fac + wpc ∗ fpc, where wqmd, wac, wpc ∈ R+.

Entity aggregation for IMR. Considering that the searched paths may lead to entities
with different timestamps, IMR adopts specific aggregation for searched entities. First,
entities with the same timestamp may be inferred by different paths, so IMR needs to
combine the scores of entities with unique timestamps. Considering that only one path
matches the question best, IMR employs max aggregation to various paths reaching the
same entities with the same timestamp. Moreover, specific paths may infer the same
entity with different timestamps. IMR performs average aggregation on the scores of
entities with different timestamps. Finally, IMR obtains the score of each entity at the
question timestamp.

4.5. Learning

We utilize binary cross-entropy as the loss function, which is defined as

L = − 1
|Q| ∑

q∈Q

1∣∣∣εp
q

∣∣∣ ∑
ei∈ε

p
q

(
yei ,q log

(
fei ,q

∑ei∈ε
p
q

fei ,q

))

+
1
|Q| ∑

q∈Q

1∣∣∣εp
q

∣∣∣ ∑
ei∈ε

p
q

((
1− yei ,q

)
log

(
1−

fei ,q

∑ei∈ε
p
q

fei ,q

)) (12)

where ε
p
q represents the set of entities reasoned by selected paths. yei ,q represents the binary

label that indicates whether it is the answer for q and Q represents the training set. fei ,q
denotes the score obtained by Section 4.4.4 for each path. We jointly learn the embeddings
and other model parameters by end-to-end training.

Regularization. For the same entity with different timestamps, the closer its time
distance is, the closer its dynamic embedding is [32]. IMR proposes the regularization on
continuity for the dynamic vectors of entities.

The specific regularization for IMR is as follows.

reg =
∥∥∥e

tj
k − e

tj−1
k

∥∥∥
p
+
∥∥∥e

tj
k − e

tj+1
k

∥∥∥
p

(13)

where e
tj
k denotes the dynamic embedding of the k-th entity at the j-th timestamp. e

tj−1
k , e

tj+1
k

denotes the dynamic embedding of the previous and later timestamp against e
tj
k , respec-

tively. ‖·‖p denotes the p norm of the vectors and we take p as 1 in this paper.

5. Experiments
5.1. Datasets and Baselines

To evaluate the proposed module, we consider two standard temporal KG datasets In-
tegrated Crisis Early Warning System (ICEWS) [33], WIKI [34], and YAGO [35]. The ICEWS
dataset contains information about political events with time annotations. We select two
subsets of the ICEWS dataset, i.e., ICEWS14 and ICEWS18, containing event facts in 2014
and 2018. WIKI and YAGO is a temporal KG that fuses information from Wikipedia with
WordNet [36]. Following the experimental settings of HyTE [37], we deal with year-level
granularity by dropping the month and date information. We compare IMR and baseline
methods by performing the temporal KG forecasting task on ICEWS14, ICEWS18, WIKI,
and YAGO. Details of these datasets are listed in Table 1. We adopt the same dataset split
strategy as in [38].
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Table 1. Statistics of three benchmark datasets.

Dataset ICEWS14 ICEWS18 WIKI YAGO

entity 7128 23,033 12,554 10,623
relation 230 256 24 10

timestamp 365 304 232 189
training 63,685 373,018 539,286 161,540

validation 13,823 45,995 67,538 19,523
test 13,222 49,545 63,110 20,026

We compare the performance of IMR-TransE against the temporal KG reasoning
models, including TTransE [34], TA-DistMult/TA-TransE [30], DE-SimplE [39], TNTCom-
plEx [32], CyGNet [11], RE-Net [38], TANGO [40], TITer [14], and xERTR [7].

In the experiments, the widely used Mean Reciprocal Rank (MRR) and Hits@1,3,10 are
employed as the metrics. The filtered setting for static KGs is not suitable for the reasoning
task under the exploration setting, as mentioned in xERTR [7]. This paper adopts the
time-aware filtering scheme, which only filters out genuine triples at the question time.

5.2. Experimental Results

Main results. Tables 2 and 3 show the comparison between IMR-TransE, IMR-RotatE,
IMR-ComplEx, and other baseline models on ICEWS, WIKI, and YAGO. Overall, the
instantiated models of IMR outperform the baseline models in all metrics while being
more interpretable, which convincingly verifies its effectiveness. Due to the limited paper
length, a detailed analysis of the interpretability is provided in Appendix A.1. Compared
to the best baseline (TiTer), IMR-TransE obtains a relative improvement of 3.3% and 2.5% in
MRR and Hits@1, averaged on ICEWS, WIKI, and YAGO. Moreover, different IMR models
achieve the best performance across unique datasets due to basic models.

Table 2. Results comparison on ICEWS14 and ICEWS18. Compared metrics are time-aware filtered
MRR (%) and Hits@1/3/10 (%), which are multiplied by 100. The best results among all models are
in bold.

ICEWS14 ICEWS18

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TTransE 13.43 3.11 17.32 34.55 8.31 1.92 8.56 21.89
TA-DistMult 26.47 17.09 30.22 45.41 16.75 8.61 18.41 33.59
DE-SimplE 32.67 24.43 35.69 49.11 19.30 11.53 21.86 34.80

TNTComplEx 32.12 23.35 36.03 49.13 27.54 19.52 30.80 42.86 9

CyGNet 32.73 23.69 36.31 50.67 24.93 15.90 28.28 42.61
RE-NET 38.28 28.68 41.34 54.52 28.81 19.05 32.44 47.51
xERTE 40.79 32.70 45.67 57.30 29.31 21.03 33.51 46.48 8

TANGO-Tucker – – – – 28.68 19.35 32.17 47.04
TANGO-DistMult – – – – 26.75 17.92 30.08 44.09

TITer 41.73 32.74 46.46 58.44 29.98 22.05 33.46

IMR-TransE 44.76 35.64 49.49 62.30 32.45 22.97 36.05 49.36
IMR-RotatE 44.21 35.13 48.72 62.04 32.67 23.53 36.76 50.67

IMR-ComplEx 44.03 34.55 49.21 62.11 33.33 24.07 37.65 51.51

Comparison of multi-hop paths. Figure 3 shows the performance of IMR-TransE on
ICEWS, WIKI, and YAGO as the maximum length of paths increases. The performance
basically continues rising with the increase in the paths’ length. However, as the maximum
length of paths increases, the performance on ICEWS18 hardly improves. Further analysis
on ICEWS18 in [3] explains that there are no strong dependencies between the relations of
the question and the multi-hop paths. Thus, longer paths provide little gain for inference.
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Moreover, as the maximum length of paths increases, the number of inference paths
increases exponentially and most of the invalid paths will suppress the performance of
IMR-TransE. In order to ensure that the performance of the model does not decrease, we
propose to control the sampling number of next-hop paths to limit the total number of
multi-step paths and suppress the impact of noisy samples. This paper set the number of
next-hop samplings to 5. In summary, experiments show that unified indicators designed
by IMR based on consistent basic models can uniformly measure the paths of different
hops, allowing better reasoning based on paths with different hops, which verifies the
claim in Section 4.4. We present an extra ablation study on three indicators in IMR-TransE
in Appendix A.4.

Table 3. Results comparison on WIKI and YAGO. Compared metrics are time-aware filtered MRR
(%) and Hits@1/3/10 (%), which are multiplied by 100. The best results among all models are in bold.

WIKI YAGO

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TTransE 29.27 21.67 34.43 42.39 31.19 18.12 40.91 51.21
TA-DistMult 44.53 39.92 48.73 51.71 54.92 48.15 59.61 66.71
DE-SimplE 45.43 42.6 47.71 49.55 54.91 51.64 57.30 60.17

TNTComplEx 45.03 40.04 49.31 52.03 57.98 52.92 61.33 66.69

CyGNet 33.89 29.06 36.10 41.86 52.07 45.36 56.12 63.77
RE-NET 49.66 46.88 51.19 53.48 58.02 53.06 61.08 66.29
xERTE 71.14 68.05 76.11 79.01 84.19 80.09 88.02 89.78

TANGO-Tucker 50.43 48.52 51.47 53.58 57.83 53.05 60.78 65.85
TANGO-DistMult 51.15 49.66 52.16 53.35 62.70 59.18 60.31 67.90

TITer 75.50 72.96 77.49 79.02 87.47 84.89 89.96 90.27

IMR-TransE 80.41 76.04 84.91 85.95 90.24 87.91 92.65 92.77
IMR-RotatE 79.43 74.36 84.59 85.79 90.34 88.10 92.69 92.78

IMR-ComplEx 80.54 76.12 84.98 85.97 90.19 87.80 92.71 92.78
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Figure 3. Comparison of the performance of paths with different maximum hops on four datasets.
We average the output of four experiments with different random seeds and fixed hyperparameters.

6. Conclusions

We propose an Interpretable Multi-Hop Reasoning framework for temporal KG fore-
casting tasks. IMR transforms reasoning based on path searching into stepwise question
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answering based on consistent basic models. Moreover, IMR develops three indicators to
measure the answer and reasoning paths, and this is the first study to develop interpretable
evaluation indicators from the perspective of actual semantics for the temporal KG fore-
casting task. IMR can measure the paths of different hops according to the same criteria
and be more explainable. Extensive experiments on four benchmark datasets demonstrate
the effectiveness of our method. In the future, we plan to enhance the prediction by
integrating different paths reaching the same tail, which will be more effective and inter-
pretable. We will also continue to explore the models based on GAT [3] for temporal KG
forecasting tasks.
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Appendix A

Appendix A.1. Case Studies and Interpretability

For the question (John Kerry, Make a visit, ?, 2014-11-11), we extract some of the paths
for the case study in Table A1. The lower the scores or indicators in Table A1, the better the
performance of the path. We compare the paths based on the total score, analyze various
aspects of the paths based on detailed indicators, and verify the interpretation of the model
with actual semantics.

The first block of Table A1 selects reasoning paths with the same objects to analyze
the answer completion level. First, we compare path 1-1 and path 1-2. The score of path
1-1 is lower than that of path 1-2. As we analyze the three indicators further, we find that
the answer completion level of path 1-1 is smaller than that of path 1-2. The comparison
of the answer completion level indicates that the relation of path 1-1 should be closer to
the relations of the question. Practically, path 1-1 has the same relation as the question,
which is closer to the relation of question than path 1-2. Thus, actual semantics verify the
interpretation of the model. Comparing path 1-4 and path 1-5, we find that the total score
of path 1-4 is lower than that of path 1-5, and the answer completion level of path 1-5 is
higher than that of path 1-4. IMR shows that the combination of reasoning relations of path
1-4 is better than that of path 1-5. In fact, these two paths for inference do not seem to be
particularly appropriate to the question. Nevertheless, the combination of relations [Meet
at a ’third’ location + Make a visit] is actually closer to the relation of the question [Make
a visit] than the combination of relations [Consult + Consult]. To summarize, the first set
of experiments shows that the answer completion level can effectively indicate how well
the combination of path relations equals the question’s relation, verifying the statement in
Section 4.4.
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Table A1. Reasoning paths searched for the question (John Kerry, Make a visit, ?, 2014-11-11) and their scores, respectively.

Question: John Kerry Make a Visit Oman 2014-11-11

Path-ID
Reasoning Path Score

es r2 e2 t2 e2 r3 e3 t3 fac fqmd fpc Combined Score

path 1-1 John Kerry Make a visit Oman 2014-11-09 - - - - 0 74 74 137
path 1-2 John Kerry Express intent to meet or negotiate Oman 2014-11-09 - - - - 26 74 69 169
path 1-3 John Kerry (Reversed) Host a visit Oman 2014-11-09 - - - - 27 74 76 178
path 1-4 John Kerry Meet at a ’third’ location Catherine Ashton 2014-11-10 Catherine Ashton Make a visit Oman 2014-11-09 38 74 90 206
path 1-5 John Kerry Consult Mohammad Javad Zarif 2014-11-10 Mohammad Javad Zarif Consult Oman 2014-11-09 73 74 107 254

path 2-1 John Kerry Express intent to meet or negotiate Oman 2014-11-10 - - - - 26 47 41 119
path 2-2 John Kerry Express intent to meet or negotiate Oman 2014-11-09 - - - - 26 74 69 170
path 2-3 John Kerry Express intent to meet or negotiate Oman 2014-11-05 - - - - 26 89 83 196
path 2-4 John Kerry Express intent to meet or negotiate Oman 2014-11-02 - - - - 26 90 82 197
path 2-5 John Kerry Reversed Meet at a ’third’ location Catherine Ashton 2014-11-10 Catherine Ashton Express intent to meet or negotiate Oman 2014-11-03 49 91 101 246
path 2-6 John Kerry Reversed Meet at a ’third’ location Catherine Ashton 2014-11-10 Catherine Ashton Express intent to meet or negotiate Oman 2014-11-05 49 89 100 242
path 2-7 John Kerry Make a visit China 2014-11-05 - - - - 0 88 88 162
path 2-8 John Kerry Make a visit North Atlantic Treaty Organization 2014-06-25 - - - - 0 87 87 160
path 2-9 John Kerry Make a visit Canada 2014-10-27 - - - - 0 85 85 157

path 3-1 John Kerry Reversed Meet at a ’third’ location Catherine Ashton 2014-11-10 - - - - 53 46 40 155
path 3-2 John Kerry Express intent to meet or negotiate Oman 2014-11-09 - - - - 26 74 69 169
path 3-3 John Kerry Make a visit Afghanistan 2014-07-21 - - - - 0 88 88 162
path 3-4 John Kerry Make a visit Afghanistan 2014-07-21 Afghanistan Reversed Make statement Barack Obama 2014-07-18 34 94 104 241
path 3-5 John Kerry Make a visit Angola 2014-08-05 Angola (Reversed) Make statement Anthony Foxx 2014-08-04 35 93 105 241
path 3-6 John Kerry (Reversed) Make a visit Catherine Ashton 2014-11-10 Catherine Ashton Make a visit Oman 2014-11-09 33 74 85 197
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Table A2. Reasoning paths searched for the query (Citizen (Nigeria), Use unconventional violence, ?, 8016) and their scores, respectively.

Query: Citizen (Nigeria) Use Unconventional Violence Secretariat (Nigeria) 8016

Path-ID
Reasoning Path Score

es r2 e2 t2 fac fqmd fpc Combined Score

path 4-1 Citizen (Nigeria) Use unconventional violence Militant (Nigeria) 7968 0 162 162 215
path 4-1 Citizen (Nigeria) Use unconventional violence Militant (Nigeria) 7728 0 185 185 245

path 5-2 Citizen (Nigeria) Reversed Use unconventional violence Terrorist (Boko Haram) 7824 72 204 199 359
path 5-3 Citizen (Nigeria) Reversed Use unconventional violence Terrorist (Boko Haram) 7776 72 174 168 319
path 5-4 Citizen (Nigeria) Reversed Use unconventional violence Militant (Boko Haram) 7872 72 206 202 363
path 5-5 Citizen (Nigeria) Reversed Use unconventional violence Militant (Boko Haram) 7776 72 173 166 317
path 5-6 Citizen (Nigeria) Reversed Use unconventional violence Militant (Boko Haram) 7752 72 175 167 319

Path 6-1 Citizen (Nigeria) Reversed fight with small arms and light weapons Boko Haram 7992 73 95 95 220
path 6-2 Citizen (Nigeria) Reversed fight with small arms and light weapons Boko Haram 7872 73 174 168 321
path 6-3 Citizen (Nigeria) Reversed fight with small arms and light weapons Boko Haram 7848 73 177 171 324
path 6-4 Citizen (Nigeria) Reversed fight with small arms and light weapons Boko Haram 7824 73 178 171 325
path 6-5 Citizen (Nigeria) Reversed fight with small arms and light weapons Boko Haram 7680 73 180 173 328

path 7-1 Citizen (Nigeria) Reversed fight with small arms and light weapons Boko Haram 7848 73 177 171 324
path 7-2 Citizen (Nigeria) Make an appeal or request Government (Nigeria) 7848 78 167 158 315
path 7-3 Citizen (Nigeria) Reversed fight with small arms and light weapons Boko Haram 7848 73 177 171 324
path 7-4 Citizen (Nigeria) Reversed Make an appeal or request Tony Momoh 7848 80 207 205 377
path 7-5 Citizen (Nigeria) Reversed Express intent to meet or negotiate South Africa 7848 85 169 165 330
path 7-6 Citizen (Nigeria) Reversed Bring lawsuit against Fessehaye Yohannes 7848 80 210 206 379
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The second block of Table A1 selects the paths of the same reasoning relations to
verify the path confidence and the question matching degree. Comparing paths 2-1, 2-2,
2-3, and 2-4, we observe that the scores of the paths are increasing. Additionally, the path
confidence of these three paths is also growing. In fact, the time distance between the
paths and the question is gradually increasing, which means that the reliability of the paths
gradually decreases. The reliability indicated by path confidence is consistent with the
actual reliability. Similarly, we find that the path confidence of path 2-5 is higher than that
of path 2-6, indicating that path 2-5 is less reliable. The actual situation is that the timestamp
of path 2-5 (2014-11-03 < 2014-11-05) is farther from the timestamp of the question, which is
consistent with the explanation. Comparing path 2-9 with paths 2-7 and 2-8, respectively,
the model further infers that the path confidence and question matching degree of path 2-9
are better than those of the other two paths. The actual situation is that the timestamp error
with the question satisfies path 2-7 > path 2-9 > path 2-8. This is because the question
matching degree covers the path confidence. Because the path confidence contains the
error of the triple in the training dataset, the triple error covers the error caused by different
timestamps, which makes path 2-9 more reliable than path 2-7. In general, the second set
of experiments illustrates that the path confidence can effectively indicate the validity of
each path.

In the third block of Table A1, we randomly select the paths, explain the paths based
on these indicators, and verify them with the actual situation. We first sort three paths
according to the answer completion level : path 3-1 < path 3-2 < path 3-3. Therefore, the se-
mantic similarity of relations between the three paths and the question should satisfy path
3-3 > path 3-2 > path 3-1. The actual semantic similarity between the relations of paths and
that of the question satisfies Make a visit > Express intent to meet or negotiate > Meet
at a ‘third’ location, which is consistent with the interpretation of IMR. Sort three paths by
path confidence: path 3-1 < path 3-2 < path 3-3. The reliability of the three inference paths
should satisfy path 3-1 < path 3-2 < path 3-3. We observe that the time distance between
the three paths and the question is gradually increasing, which verifies the explanation
by path confidence. The analysis of paths 3-4 to 3-6 is similar to the analysis of former
paths. Case studies show that IMR can provide reasoning paths and offer a valid basis for
path comparison.

Appendix A.2. Details on IMR-RotatE and IMR-ComplEx

Appendix A.2.1. IMR-RotatE

RotatE. RotatE [17] defines each relation as a rotation from head entities to tail entities
in a complex vector space. Given a triplet (h, t, r), we expect that t = h ◦ r, where h, r, t ∈ Ck

are the embeddings, the modulus for each dimension of relations satisfies |ri| = 1, and ◦
denotes the Hadamard product. The score function for

(
es, rq, eo, tq

)
is

frq

(
etq

s , etq
o

)
= −

∥∥∥etq
s ◦ rq − etq

o

∥∥∥
2

(A1)

where etq
s , rq, etq

o ∈ Ck,
∣∣rq i

∣∣ = 1.
Question updating for IMR-RotatE.

es(i) = es(i−1) ◦ rp(i) (A2)

rq(i) = rq(i−1) − rp(i) (A3)

Question matching degree for IMR-RotatE. Question matching degree fqmd in IMR-
RotatE calculates the distance of the constructed quadruple based on RotatE [17]. The
better the entity matches the question, the smaller the distance of quadruples will be. The
calculation of fqmd for ith-hop path is as follows.
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f i
qmd =

∥∥∥etq
s ◦ rq − eti

p(i)

∥∥∥
p

(A4)

where the p-norm of a complex vector V is defined as ‖V‖p = p
√
|Vi|p. We use the L1-norm

for all indicators in the following.
Answer completion level for IMR-RotatE. The calculation of fac for ith-hop path in

IMR-RotatE is as follows.

f i
ac =

∥∥∥rq − rp(1) − rp(2) − rp(3) − . . .− rp(i)

∥∥∥
p

=
∥∥∥rq(1) − rp(2) − rp(3) − . . .− rp(i)

∥∥∥
p

=
∥∥∥rq(2) − rp(3) − . . .− rp(i)

∥∥∥
p

=
∥∥∥rq(i)

∥∥∥
p

(A5)

Path confidence for IMR-RotatE. The calculation of fpc for ith-hop path in IMR-RotatE
is as follows.

f i
pc =

∥∥∥es(i) − eti
p(i)

∥∥∥
p

(A6)

where eq(i) represents the remaining subject of the question updated by paths of the length

i, and eti
p(i) represents the tail reasoned by the i-hop paths.

Appendix A.2.2. IMR-ComplEx

ComplEx. ComplEx [15] extends the real space to the complex space and constrains
the embeddings for relations to be diagonal matrices. The bilinear product becomes
a Hermitian product in the complex space. The score function for

(
es, rq, eo, tq

)
can be

expressed as

frq

(
etq

s , etq
o

)
= Re

((
etq

s

)T
diag

(
rq
)
etq

o

)
(A7)

where etq
s , rq, etq

o ∈ Ck.
Question updating for IMR-ComplEx. Considering that such tensor decomposition

models are difficult to interpret geometrically, the metrics of IMR-ComplEx are not com-
puted stepwise. The index of each path is calculated independently, which will lead to a
certain increase in the amount of calculation.

Question matching degree for IMR-ComplEx. Question matching degree fqmd in
IMR-RotatE calculates the distance of the constructed quadruple based on RotatE [17]. The
better the entity matches the question, the smaller the distance of quadruples will be. The
calculation of fqmd for ith-hop path is as follows.

f i
qmd = Re

((
etq

s

)T
diag

(
rq
)
eti

p(i)

)
(A8)

where the p-norm of a complex vector V is defined as ‖V‖p = p
√
|Vi|p. We use the L1-norm

for all indicators in the following.
Answer completion level for IMR-ComplEx. The calculation of fac for ith-hop path

in IMR-ComplEx is as follows.

f i
ac =

∥∥∥rq − rp(1) × rp(2) × rp(3) × . . .× rp(i)

∥∥∥
p

(A9)

Path confidence for IMR-ComplEx. The calculation of fpc for ith-hop path in IMR-
ComplEx is as follows.
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f i
pc =

∥∥∥es(i) − eti
p(i)

∥∥∥
p

(A10)

where eq(i) represents the remaining subject of the question updated by paths of the length

i, and eti
p(i) represents the tail reasoned by the i-hop paths.

Appendix A.3. Entity Representation

We denote the static embedding of the entity ek with esta−k ∈ Rd, which is a vector
independent of time. IMR-TransE adopts the static embedding in xERTR [41]. xERTR [41]
proposes a generic time encoding to generate the time-variant part of entity representations,
which can be denoted as Φ(t).

Φ(t) =

√
1
d
[cos(ω1t + φ1), . . . , cos(ωdt + φd)], Φ(t) ∈ Rd (A11)

where ωi, φi, i = 1, 2, . . . , d denote the frequencies and phase shift of time encoding, re-
spectively. Employing this time encoding, quadruples with the same subject, predicate,
and object can have different attention scores. Specifically, quadruples that occurred re-
cently tend to have higher attention scores. This makes the embedding more interpretable
and effective.

In fact, the attribute deviation caused by the time deviation is the only assumption
obtained after statistics. It is the semantic attributes of entities that determine the reasoning.
In order to avoid being only affected by time factors, we propose a new time-specific entity
representation Ψk(t) ∈ Rd, i.e., each entity has a different representation at different times-
tamps. If each entity applies different representations at every moment, it will consume
enormous resources. As most of the entities are only observed at limited timestamps, this
paper characterizes the entities whose timestamps only appear in the training dataset. IMR
utilizes the embedding of the separate entity when it last occurred in the training dataset to
represent the embedding at the timestamps missing from the training dataset. Moreover,
we apply regularizations on time continuity to avoid over-fitting caused by too many
parameters. This regularization believes that the temporally continuous entities should
have closer embeddings, which is described in Section 4.5. Finally, we combine Φ(t) and
Ψk(t) to construct et

dy−k ∈ R2d.

et
dy−k = [ Φ(t) || Ψk(t) ] (A12)

In summary, the embedding for each entity et
k can be represented as follows:

et
k = act

(
MLP([ esta−k || et

dy−k ])
)

(A13)

The entities’ timestamps in actual datasets are sparse, e.g., ICEWS114 and YAGO have
only 11 and 21 timestamps per entity on average. In view of the huge memory usage, we
reduce the parameters by basis vectors in actual implementations. The entities’ dynamic
embeddings are linearly combined by 50 shared vectors. Table A3 shows the memory usage
in the ablation experiments on entity-time-specific embeddings.

Table A3. The memory usage of the ablation experiments on entity-time-specific embeddings.

Dataset Ent-Time-Specific Non-Ent-Time-Specific Memory Increment

ICEWS14 45.21 G 39.84 G 5.37 G
ICEWS18 61.45 G 46.00 G 15.37 G

WIKI 54.39 G 21.36 G 33.03 G
YAGO 38.40 G 26.60 G 11.80 G



Entropy 2023, 25, 666 18 of 21

We can find that using entities’ dynamic embeddings brings an extra 5-15 G in memory
usage, which is under the affordable range.

Appendix A.4. Combination of Indicators

The three indicators measure different aspects of the path: the matching degree
between answers and the question, the completeness of relational equivalence, and the
reliability of the reasoning paths. We verify the performance of each metric through ablation
experiments. As shown in Tables A4 and A5, the first block displays the performance with
only one indicator, the second block presents the performance with a combination of two
parameters, and the last is a combination of three indicators. The bottom line shows
the error between the combination of the three parameters and the best result. Since the
distribution varies across two datasets, there are certain differences in performance when
employing a single indicator to rank paths. The model’s performance has significantly
improved after incorporating the three indicators in pairs, but a few differences remain.
IMR-TransE can obtain the best inference performance in most datasets by combining three
indicators. In summary, the experiment illustrates that the combination of three indicators
designed by IMR-TransE can effectively measure the reasoning paths.

Table A4. The comparison of the three indicators in different combinations between YAGO and
ICEWS14 datasets. We average the output of ten experiments with different random seeds and fixed
hyperparameters. All metrics are multiplied by 100.

Dataset YAGO ICEWS14

Indicator Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR

fqmd 87.32 92.53 92.76 89.87 22.61 39.20 55.32 33.48
fac 87.79 92.67 92.78 90.18 31.67 46.02 59.21 41.05
fpc 87.74 92.67 92.77 90.15 25.65 43.03 58.25 36.63

fac, fqmd 87.95 92.67 92.77 90.26 34.91 49.26 61.12 43.82
fpc, fqmd 87.74 92.67 92.75 90.15 25.64 43.16 58.30 36.63
fac, fpc 87.91 92.65 92.77 90.24 34.81 49.02 61.15 43.74

fac, fpc, fqmd 88.31 92.66 92.77 90.48 34.96 49.27 61.09 43.89
Distance to the best 0 0.01 0 0 0 0 0.06 0

Table A5. The comparison of the three indicators in different combinations between WIKI and
ICEWS18 datasets. We average the output of ten experiments with different random seeds and fixed
hyperparameters. All metrics are multiplied by 100.

Dataset WIKI ICEWS18

Indicator Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR

fqmd 70.75 83.39 85.87 77.12 12.76 26.47 43.75 22.66
fac - - - - 20.41 33.50 47.48 29.45
fpc 70.72 83.35 85.31 77.00 14.92 29.00 45.58 24.82

fac, fqmd 76.12 84.90 85.94 80.46 23.05 36.20 49.47 31.84
fpc, fqmd 73.85 84.12 85.65 78.99 13.10 26.38 43.27 22.75
fac, fpc 76.04 84.91 85.95 80.41 23.04 36.10 49.46 31.83

fac, fpc, fqmd 76.09 84.92 85.96 80.44 23.15 36.12 49.52 31.89
Distance to the best 0.03 0 0 0.02 0 0.08 0 0

From the above experiments, we can only use two indicators in IMR-TransE. However,
IMR can be instantiated based on other models. For example, the performance of IMR-
RotatE with any two indicators is quite different. Thus, we should reserve all indicators for
the best performance.
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Appendix A.5. Correlation between IMR and Other Models

Correlation between IMR and PTransE. Both IMR and PTransE consider measuring
the semantic equivalence between relations. PtransE resembles the ensemble, which
combines the scores of relations and triples in different models. IMR indicators are based
on unified theoretical models (such as TransE or RotatE), which can effectively combine
different paths. IMR can truly measure the paths of different hops under the same criteria.
Moreover, IMR further designs path confidence for time attributes.

Correlation between IMR and reinforcement-learning-based models. First, the re-
inforcement learning models are black-box models, which cannot explain the basis of
judgment. Moreover, reinforcement learning utilizes rewards, which is essentially a measure
of the matching degree between tails and the question. This end-to-end design is essentially
that of the question matching degree in IMR, which is unexplainable and complicated.

Moreover, IMR is the first to design indicators from the perspective of actual semantics,
so we select the basic embedding models as the basis for IMR to better illustrate the pathway.
The modeling of triples in TransE is elementary, so the formulas of indicators are simple.
Compared with the complex greedy algorithm, it is natural to take the design of IMR as too
simple. Although the design of IMR-TransE is simple, it achieves better performance than
reinforcement learning models, such as Titer. The indicators of instantiated IMR models
can be more complex and their performance will be better.

Finally, we should design other indicators of IMR based on consistent basic models
(such as RotatE). Current reinforcement learning models are commonly based on multi-
layer networks. We cannot further design the other two indicators.

Appendix A.6. Correlation between Path Confidence and Time Distance in IMR-TransE

The current sampling strategy believes that the greater the time distance of the same
entity, the greater the deviation of its semantic properties. Therefore, IMR adopts a time-
negative sampling strategy to search for more effective paths. Path reliability is affected by
semantic similarity, and negative time-aware correlation is a general situation or statistical
result. IMR proposes path reliability to better measure the reliability of the searched path.
Here, we utilize the path confidence of the same path with different timestamps to analyze the
changes in semantic similarity over time. For the same problem, we find the same path with
various timestamps. We randomly select 20 questions for the path search, and each question
selects the same path containing ten different timestamps to calculate the path confidence.
Figure A1 shows how the path confidence of each path changes with time and distance.

Figure A1 shows that as the time distance between the paths and questions increases,
the score of path confidence gradually increases, indicating that its confidence is gradually
decreasing. Experiments show that the semantic deviation of the same entity increases as
the time distance increases, which verifies the rationality of time-aware negative exponen-
tial sampling.
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Figure A1. The relation between path confidence and time distance. The questions and paths
corresponding to each polyline are shown in (a,b).
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Appendix A.7. The Offsetting Property in Question Updating

In order to infer the correct tails, the query updating module should satisfy that the
question still matches the same tail entity even after updating. As shown in Equation (A14),
we take IMR-TransE to analyze the offsetting property.

eq−i + rq−i = eq−i−1 + rpi + rq−i−1 − rpi

= eq−i−1 + rq−i−1

= eq−0 + rq−0

= eq + rq

= eo

(A14)

This cancellation of the relation guarantees that the answers to questions will not
change along with the paths. In addition, the offset will not appear in the calculation of
the indicator. Only the subject of the question is applied in the calculation of the path
confidence, and only the relation in the question is used in the calculation of the answer
completion level.
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