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Abstract: We propose definitions of fairness in machine learning and artificial intelligence systems
that are informed by the framework of intersectionality, a critical lens from the legal, social science,
and humanities literature which analyzes how interlocking systems of power and oppression affect
individuals along overlapping dimensions including gender, race, sexual orientation, class, and
disability. We show that our criteria behave sensibly for any subset of the set of protected attributes,
and we prove economic, privacy, and generalization guarantees. Our theoretical results show
that our criteria meaningfully operationalize AI fairness in terms of real-world harms, making the
measurements interpretable in a manner analogous to differential privacy. We provide a simple
learning algorithm using deterministic gradient methods, which respects our intersectional fairness
criteria. The measurement of fairness becomes statistically challenging in the minibatch setting due
to data sparsity, which increases rapidly in the number of protected attributes and in the values per
protected attribute. To address this, we further develop a practical learning algorithm using stochastic
gradient methods which incorporates stochastic estimation of the intersectional fairness criteria on
minibatches to scale up to big data. Case studies on census data, the COMPAS criminal recidivism
dataset, the HHP hospitalization data, and a loan application dataset from HMDA demonstrate the
utility of our methods.

Keywords: fairness in AI; AI and society; intersectionality; 80% rule; privacy

1. Introduction

The increasing impact of artificial intelligence and machine learning technologies on
many facets of life, from commonplace movie recommendations to consequential criminal
justice sentencing decisions, has prompted concerns that these systems may behave in an
unfair or discriminatory manner [1–3]. A number of studies have subsequently demon-
strated that bias and fairness issues in AI are both harmful and pervasive [4–6]. The AI
community has responded by developing a broad array of mathematical formulations of
fairness and learning algorithms which aim to satisfy them [7–12]. Fairness, however, is
not a purely technical construct, having social, political, philosophical, and legal facets [13].
At this juncture, the necessity has become clear for interdisciplinary analyses of fairness in
AI and its relationship to society, to civil rights, and to the social goals that mathematical
fairness definitions are intended to support, which have not always been made explicit [14].

In particular, it is important to connect fairness and bias in algorithms to the broader
context of fairness and bias in society, which has long been the concern of civil rights and
feminist scholars and activists [3,15]. In this work, we address the specific challenges of
fairness in AI that are motivated by intersectionality, an analytical lens from the third-wave
feminist movement which emphasizes that civil rights and feminism should be considered
simultaneously rather than separately [16]. More concretely, intersectionality analyzes how
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systems of oppression in our society interact and interlock to create patterns of advantage
and disadvantage that affect people differently at the intersection of multiple protected
dimensions. Thus, in an AI fairness context, intersectionality implies not only that fairness
criteria should consider multiple protected attributes simultaneously, but also that they
should account for the impact of these unfair systems of society. While multi-attribute
fairness definitions have previously been proposed [17,18], they fall short when it comes to
the latter aspect of intersectionality. This research aims to fill this gap.

In this work, we propose intersectional AI fairness criteria and perform a comprehen-
sive, interdisciplinary analysis of their relation to the concerns of diverse fields including the
humanities, law, privacy, economics, and statistical machine learning. In order to create
our quantitative measure of fairness, we must first understand how the principles that
underlie intersectionality can be manifested in terms of decision making and in particular
how harms are manifested via causal assumptions and how ideal outcomes differ from
prior models of fairness. For instance, as we will discuss in Section 3, fairness measures that
consider intersections of sensitive attributes or protected classes may not explicitly address
how complex and interdependent systems of power and privilege impact those intersecting
groups. In Section 2 we will formulate desirable properties that any intersectional fairness
metric should have, motivating our approach.

We propose a quantitative measure of fairness, called differential fairness, and show how
it can be used to capture some aspects of intersectionality. In particular, we show how it can
be used to quantify harms from fairness violations. To obtain this interpretable guarantee,
our approach builds upon ideas from differential privacy, a mathematical quantification of
the privacy-preserving properties of an algorithmic mechanism [19,20]. Differential privacy
is an information-theoretic privacy notion, in that it is a special case of Rényi differential
privacy, a more general notion that is defined in terms of the Rényi divergence [21]. The
definition of differential privacy, due to [19,20], follows:

Definition 1. M(x) is ε-differentially private if

P(M(x) ∈ S)
P(M(x′) ∈ S) ≤ eε (1)

for all outcomes S and pairs of databases x, x′ differing in a single element.

Here, M(x) is a randomized algorithmic mechanism, and ε is the degree of differential
privacy achieved by M(x) (lower is better). Essentially, differential privacy is a promise; if
an individual contributes their data to a dataset, their resulting utility, due to algorithms
applied to that dataset, will not be substantially affected if ε is small. A particular value of ε
corresponds to an economic guarantee: a bound on the change in the expected utility for any
individual who contributes their data. As such, differential privacy operationalizes algorithmic
privacy in terms of provable guarantees on harms due to the algorithm. Differential privacy
thus has operational significance, i.e., its measurement represents the construct of “privacy”
in a meaningful way as it has a direct relationship to the real-world privacy-related harms
that may occur. The potential data contributors and other stakeholders can hence interpret
what the value of the differential privacy parameter ε means to them.

More generally, mathematical definitions that aim to operationalize abstract constructs
ideally should similarly have operational significance. For example, the source coding
theorem shows that Shannon entropy operationalizes the notion of uncertainty by providing
an interpretation with real-world implications: a bound on the number of bits per symbol
that data from a given distribution can be compressed down to. It is natural to ask whether
these ideas from algorithmic privacy can be translated to the related problem of algorithmic
fairness: can we operationalize fairness with a definition that provides an interpretable guarantee
on the fairness harms due to the algorithm?

In this work, we answer this question in the affirmative. We propose a fairness def-
inition, which we call differential fairness, that adapts differential privacy to the fairness
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setting. Crucially, it provably inherits privacy and economic guarantees that are analo-
gous to those of differential privacy, allowing suitably informed stakeholders to similarly
interpret its meaning. Hence, similar to differential privacy, it has operational significance,
in the sense that it meaningfully represents the construct of “fairness” in terms of bounds
on possible harms due to the algorithm. (Here, “possible harms” refers to direct harms
that the algorithm produces in an idealized setting. This does not account for additional
harms due to its interaction with a larger sociotechnical system [22] or harms that are not
captured by the fairness metric itself [23]. See Section 1.3 for further discussion). The
meaningful interpretation of the metric is particularly important for AI fairness, as it is
crucial that affected individuals and stakeholders are able to understand their level of risk
in order to make informed decisions, both at the personal level and at the policy level.
The legal obligation to provide information relating to these risks is trending upwards
globally; see, e.g., Europe’s General Data Protection Regulation (GDPR) and the California
Consumer Privacy Act (CCPA). (The interpretability properties of the fairness metric do
not guarantee that stakeholders with non-technical backgrounds will be able to interpret it
correctly. Addressing this is an ongoing research challenge [24–26]. See Section 1.3).

1.1. Differential Fairness: A Definition

We adapt the notation of [27] to all definitions in this paper. Suppose M(x) is a
(possibly randomized) mechanism which takes an instance x ∈ χ and produces an out-
come y for the corresponding individual, S1, . . . , Sp are discrete-valued protected attributes,
A = S1× S2× . . .× Sp, and θ is the distribution which generates x. For example, the mecha-
nism M(x) could be a deep learning model for a lending decision, A could be the applicant’s
possible gender and race, and θ the joint distribution of credit scores and protected attributes.
The protected attributes are included in the attribute vector x, although M(x) is free to dis-
regard them (e.g., if this is disallowed). We suppose that the user of the assigned outcomes
(the vendor), who may not be the data owner, may be untrusted and should not access the
input data [7]. The setting is illustrated in Figure 1.

Fair algorithm

Multiple protected attributes 

Vendor
(user of the algorithm’s

outputs, may be untrusted)
Outcomes 𝑦𝑖

Randomness in data and mechanism

Individuals’ data 
on a secure server

Figure 1. Diagram of the setting for the proposed differential fairness criterion.

Similar to differential privacy, our proposed differential fairness definition bounds ratios
of probabilities of outcomes resulting from a mechanism. (Differential fairness measures the
fairness of the mechanism and not the fairness of a larger sociotechnical system in which it
is embedded (see Section 1.3). For example, if the mechanism is an AI that is used to make
recommendations to the vendor, it does not account for the vendor injecting additional
bias into a subsequent decision. If appropriate for a particular application, human decision
making can also be factored into the “mechanism,” thereby measuring the fairness of the
human–AI super-system instead of just that of the AI).

Definition 2. A mechanism M(x) is ε-differentially fair (DF) with respect to (A, Θ) if for all
θ ∈ Θ with x ∼ θ and y ∈ Range(M),

e−ε ≤ PM,θ(M(x) = y|si, θ)

PM,θ(M(x) = y|sj, θ)
≤ eε , (2)

for all (si, sj) ∈ A× A where P(si|θ) > 0, P(sj|θ) > 0.
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In Equation (2), si, sj ∈ A are tuples of all protected attribute values, e.g., gender,
race, and nationality, and Θ is a set of distributions θ which could plausibly generate each
instance x. (The possibility of multiple θ ∈ Θ is valuable from a privacy perspective, where
Θ is the set of possible beliefs that an adversary may have about the data and is motivated
by the work of [27]. Continuous protected attributes are also possible, in which case sums
are replaced by integrals in our proofs). For example, Θ could be the set of Gaussian
distributions over credit scores per value of the protected attributes, with mean and standard
deviation in a certain range. The probabilities PM,θ are over the randomness in the data as
well as in the mechanism, so it is possible to achieve the definition when the mechanism is
deterministic, unlike for differential privacy.

1.2. Our Contribution

While the similarity of the mathematical formulation to differential privacy is clear
from a comparison of Equations (1) and (2), in what follows we will further motivate this
definition from interdisciplinary perspectives, i.e., based on principles from the law and
the humanities. In particular, we will provide arguments that motivate differential fairness
as upholding the values associated with intersectionality [16], a framework for examining
fairness, which we will discuss in Section 2.

Our contributions include:

1. A critical analysis of the consequences of intersectionality in the particular context of
fairness for AI (Section 2);

2. Three novel fairness metrics: differential fairness (DF), which aims to uphold intersec-
tional fairness for AI and machine learning systems (Section 4), DF bias amplification,
a slightly more conservative fairness definition than DF (Section 6), and differential
fairness with confounders (DFC) (Section 7);

3. Illustrative worked examples to aid with understanding (Section 5);
4. Proofs of the desirable intersectionality, privacy, economic, and generalization proper-

ties of our metrics (Section 8);
5. A simple learning algorithm which enforces our criteria using batch or deterministic

gradient methods (Section 9.1);
6. A practical and scalable learning algorithm that enforces our fairness criteria using

stochastic gradient methods (Section 9.2);
7. Extensive experiments on census, criminal recidivism, hospitalizations, and loan

application data to demonstrate our methods’ practicality and benefits (Section 10).

As AI fairness is a problem that extends well beyond the boundaries of traditional
computer science, our work aims to cross disciplinary boundaries in order to tackle it. We
view the significance of this work as more than simply the introduction of mathematical
definitions and associated algorithms and proofs. Our definitions and proofs build upon
existing work on differential privacy, which leads to results that are elegant in their simplic-
ity and yet are relatively straightforward. We do not claim that the technical novelty of our
results or the difficulty of proofs are the most significant aspects of the research. Rather, we
view the primary significance of our proposed differential fairness definition as threefold:

• It operationalizes AI fairness in a manner that is more meaningful than previous
definitions, in the sense that it can be interpreted in terms of economic and privacy
guarantees, leveraging connections to differential privacy.

• It is the first AI fairness definition to implement the principles and values behind inter-
sectionality, an important notion of fairness from the humanities and legal literature.
As such, part of the significance of this work is philosophical, not only mathematical.

• It is a stepping stone toward the holistic, trans-disciplinary research endeavor that is
necessary to adequately solve the real-world sociotechnical problem of AI fairness.

1.3. Limitations and Caveats

In order to properly contextualize our contributions, we must consider the limita-
tions of the use of AI fairness metrics, including but not limited to our proposed metrics,
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in pursuit of the real-world social goal of fairness, or more specifically, intersectional fair-
ness. In general terms, because AI algorithms are embedded in complicated sociotechnical
systems, enforcing a fairness definition—even one with provable guarantees—is not gen-
erally sufficient to ensure that the overall decision-making process, and its higher-order
consequences, are necessarily fair. We discuss several aspects of these limitations and
challenges below.

Accounting for the Sociotechnical Context: Algorithmic systems do not generally exist
in a vaccuum. They are deployed within the context of larger real-world sociotechnical
systems. Our provable guarantees on the harms caused by an algorithmic system pertain
to the direct impact of the system’s output, but not to the complicated interaction between
that algorithm and its broader context, which can be difficult to account for [22].

One important aspect of the sociotechnical context is whether the AI algorithm’s
output is the final decision that is made on an individual or whether it is used to support
such a decision that is ultimately made by a human or another algorithm. For example,
in AI-generated criminal justice risk assessments such as those made by the COMPAS
system [4], the risk score for an incarcerated individual is typically given to a judge who
takes it into account, along with additional information on the individual and their case,
in order to make bail and sentencing decisions.

Fairness issues can arise at the nexus between a human decision maker and the
AI. For example, Green and Chen [28] found that the presence of an algorithmic risk
assessment leads humans to increase the prioritization of risk at the expense of other
factors. Humans are frequently poor at overseeing AI systems due to issues such as
automation bias (deferring to an algorithm even when it is not appropriate), and human
oversight can legitimize flawed human–AI decision-making processes [29]. Like other AI
fairness metrics, differential fairness does not account for such issues.

Indeed, our theoretical analysis assumes that the decisions made on the individuals
correspond to the output of the mechanism, and not decisions made by a human decision maker who
is merely informed by the mechanism. More specifically, we assume a particular protocol in
which the individuals’ data are kept on a secure server and the output of the mechanism
is the only information available to the user of these outputs, referred to as the vendor
(see Figure 1). If this protocol is not respected, e.g., if the vendor is allowed to look at
the individuals’ data and could choose to completely ignore the output of the mechanism
in making decisions, or deviate from the algorithm’s outputs in systematically biased
ways, all bets are clearly off regarding the fairness of the overall sociotechnical system [22].
In the scenario where a judge uses knowledge of the defendant in addition to the AI-
generated risk score to make a bail or sentencing decision, our assumed protocol has been
violated (since the vendor, i.e., the judge, looked at the individual’s data, and they made
a decision that differed from the algorithm’s output), and so the overall sociotechnical
decision-making process will not enjoy the provable guarantees afforded by the differential
fairness definition, as measured on the AI risk scoring system.

One way around this is to view the human decision maker as part of the mechanism.
We can straightforwardly estimate the differential fairness of this human–AI super-system
empirically (see Section 4.2). However, our learning algorithm would not be applicable
since it is not currently possible to train a human via backpropagation!

Mismatch Between Fairness Metrics and Real-World Fairness Harms: The measurement
of fairness depends heavily on assumptions made when modeling the problem at hand,
particularly when defining and measuring class labels that encode abstract constructs and
are intended to act as proxies for decisions. For example, the COMPAS system defines its
prediction target, recidivism, as a new misdemeanor or felony arrest within two years [4].
This assumption conflates arrests with crimes, thereby encoding systemic bias in policing
into the class label itself [23]. Due to these types of issues, there is generally a gap in align-
ment between mathematical fairness metrics and the desired fairness construct regarding
the real-world harms that they are intended to measure and prevent [23]. Whenever we
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interpret our mathematical guarantees on fairness-related harms due to an algorithm, it
is important to recognize that the mathematical definition may not perfectly align with
real-world harms.
Countering Structural Oppression: Recently, Kong [30] critiqued fairness definitions
based on multiple tuples of attributes [17,18,31] regarding the extent to which they imple-
ment intersectionality. It was argued that parity-based fairness does not place the proper
emphasis on structural oppression, which is a core tenet of intersectionality, and may not
go far enough to rectify such oppression. We broadly agree with this statement. However,
as we argue here and in prior work [32], parity-based fairness is an important starting
point toward addressing structural oppression which is appropriate for many applications.
In particular, we try to explicitly incorporate the causal structure of interlocking structural
oppression. We believe our definition can be extended to correct societal unfairness beyond
the point of parity, as advocated by [30]. However, we leave this for future work.
Stakeholder Interpretation: We have motivated our work via the interpretation that our
fairness definition’s provable guarantees provide. We note, however, that it is not always
straightforward to ensure that stakeholders correctly interpret the fairness properties of
AI systems, particularly when they do not have technical backgrounds, and there is a
growing body of research on this challenge and how best to address it [24–26]. Studying
how stakeholders interpret and perceive differential fairness is beyond the scope of this
paper, but is an important question for future research.
Contextual Considerations: The impact of systems of oppression and privilege may vary
contextually. For example, gender discrimination varies widely by area of study and this is
a major factor in the choices women make in selecting college majors [33]. Similarly, in some
contexts individuals from a particular race, gender, or sexual orientation may be able to
“pass” as another, thus potentially avoiding discrimination, and in other contexts where their
“passing” status is revealed, those individuals may suffer additional discrimination [34].
Our fairness framework does not presently consider these contextual factors.
Knowledge of Protected Attributes: In order to compute (or enforce) our differential
fairness criterion, we must observe the individuals’ protected attributes. This is not always
possible in certain applications. For instance, social media users may not declare their
gender, race, or other protected demographic information. Future work could address the
extension of our methods to handle this scenario, e.g., via an imputation strategy.

2. Intersectionality and Fairness in AI

Our definition(s) differ quantitatively from prior fairness definitions (which we address
in Section 3) but more importantly represent a qualitatively different approach to defining
fairness. In order to understand what an intersectional analysis would ask from a fairness
criterion, we must describe the challenges posed by legal, political, and humanistic anal-
yses of fairness and discrimination. We now turn to describing these challenges and our
desiderata for any fairness definition which seeks to address them.

Intersectionality is a lens for examining societal unfairness which originally arose
from the observation that sexism and racism have intertwined effects, in that the harm
done to Black women by these two phenomena is more than the sum of the parts [16,35].
The notion of intersectionality was later extended to include overlapping injustices along
more general axes [36]. In its general form, intersectionality emphasizes that systems of
oppression built into society lead to systematic disadvantages along intersecting dimensions,
which include not only gender, but also race, nationality, sexual orientation, disability status,
and socioeconomic class [16,35–39]. (Please note that bell hooks prefers that her name be
written in lower case, cf. https://www.nytimes.com/2006/09/28/books/28chic.html
accessed on 4 April 2023.) These systems are interlocking in their effects on individuals at
each intersection of the affected dimensions.

The term intersectionality was introduced by Kimberlé Crenshaw in the 1980s [16] and
popularized in the 1990s, e.g., by Patricia Hill Collins [36], although the ideas are much older
[35,37]. In the context of machine learning and fairness, intersectionality was considered by

https://www.nytimes.com/2006/09/28/books/28chic.html
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Buolamwini and Gebru [5], who studied the impact of the intersection of gender and skin
color on computer vision performance, by Kearns et al. [17] and Hebert-Johnson et al. [18],
who aimed to protect certain subgroups in order to prevent “fairness gerrymandering,”
and by Yang et al. [40], who considered algorithmic fairness across multiple overlapping
groups simultaneously. From a humanities perspective, Noble [3] critiqued the behavior of
Google search with an intersectional lens by examining the search results for terms relating
to women, people of color, and their intersections, e.g., “Black girls.” Very recently La Cava
et al. [41] proposed intersectional fairness definitions combining our differential fairness
work and multicalibration [18], and Lett and La Cava [42] advanced a perspective on how
intersectionality informs AI fairness in healthcare applications.

Intersectionality has implications for AI fairness beyond the use of multiple protected
attributes. Many fairness definitions aim (implicitly or otherwise) to uphold the principle
of infra-marginality, which states that differences between protected groups in the distri-
butions of “merit” or “risk” (e.g., the probability of carrying contraband at a police stop)
should be taken into account when determining whether bias has occurred [43]. (More
specifically, Simoiu et al. [43] argue that risk scores are meritocratic, that fairness corre-
sponds to thresholding risk scores at the same point for different demographics, and that
parity-based notions of fairness are hence problematic because they may be incompatible
with this version of fairness. They refer to this concern as the infra-marginality problem. While
“infra-marginality” refers to a technical point, we use the term to also refer to the philo-
sophical viewpoint underlying this argument which emphasizes meritocracy and takes an
anti-parity stance. For more discussion, please see [32].) A closely related argument is that
parity of outcomes between groups is at odds with accuracy [7,8]. Intersectionality theory
provides a counterpoint: these differences in risk/merit, while acknowledged, are fre-
quently due to systemic structural disadvantages such as racism, sexism, inter-generational
poverty, the school-to-prison pipeline, mass incarceration, and the prison-industrial com-
plex [16,37,38,44,45]. Systems of oppression can lead individuals to perform below their
potential, for instance, by reducing available cognitive bandwidth [46] or by increasing
the probability of incarceration [44,47]. In short, the infra-marginality principle makes the
implicit assumption that society is a fair, level playing field, and thus differences in “merit”
or “risk” between groups in data and predictive algorithms are often to be considered
legitimate. In contrast, intersectionality theory posits that these distributions of merit and
risk are often influenced by unfair societal processes (see Figure 2).

As an example of a scenario affected by unfair processes, consider the task of predict-
ing prospective students’ academic performance for use in college admissions decisions.
As discussed in detail by [46] and references therein, individuals belonging to marginal-
ized and non-majority groups are disproportionately impacted by challenges of poverty
and racism (in its structural, overt, and covert forms), including chronic stress, access to
healthcare, under-treatment of mental illness, micro-aggressions, stereotype threat, disiden-
tification with academics, and belongingness uncertainty. Similarly, LGBT and especially
transgender, non-binary, and gender non-conforming students disproportionately suffer
bullying, discrimination, self-harm, and the burden of concealing their identities. These
challenges are often further magnified at the intersection of affected groups. A survey of
6,450 transgender and gender non-conforming individuals found that the most serious
discrimination was experienced by people of color, especially Black respondents [48]. Ver-
schelden explains the impact of these challenges as a tax on the “cognitive bandwidth” of
minoritized students, which in turn affects their academic performance. She states that the
evidence is clear

“...that racism (and classism, homophobia, etc.) has made people physically, mentally,
and spiritually ill and dampened their chance at a fair shot at higher education (and at
life and living).”

A classifier trained to predict students’ academic performance from historical data
hence aims to emulate outcomes that were substantially affected by unfair factors [1]. An
accurate predictor for a student’s GPA may therefore not correspond to a fair decision-making
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procedure [49]. We can resolve this apparent conflict if we are careful to distinguish between
the statistical problem of classification and the economic problem of the assignment of outcomes
(e.g., admission decisions) to individuals based on classification. (Recall that we assume
the outputs of the mechanism correspond to the final decisions made on the individuals.)
Viewing the classifier’s task as a policy question, it becomes clear that high accuracy need
not be the primary goal of the system, especially when we consider that “accuracy” is
measured on unfair data. (Amazon abandoned a job candidate classifier which was found
to be gender-biased [50]. We speculate that this was likely due to similar issues.)

(a) Inframarginality (b) Intersectionality (c) Inframarginality (d) Intersectionality
(Causal Assumption) (Causal Assumption) (Ideal World) (Ideal World)

Y

X “Merit”

A

N

Y

X “Merit”

(Dis)advantage Potential

A Sys. of oppression

N

p

Y

“Merit”

A

N

Y

Potential A

N

p

Figure 2. Implicit causal assumptions (a,b) and values-driven ideal-world scenarios (c,d) for infra-
marginality and intersectionality notions of fairness. Here, A denotes protected attributes, X observed
attributes, Y outcomes, N individuals, p number of protected attributes. Red arrows denote poten-
tially unfair causal pathways, which are removed to obtain the ideal-world scenarios (c,d). The above
summarizes broad strands of research; individual works may differ.

In Figure 2 we summarize the causal assumptions regarding society and data and the
idealized “perfect world” scenarios implicit in the two approaches to fairness. Infra-
marginality (a) emphasizes that the distribution over relevant attributes X varies across
protected groups A, which leads to potential differences in so-called “merit” or “risk”
between groups, typically presumed to correspond to latent ability and thus “deservedness”
of outcomes Y [43]. Intersectionality (b) emphasizes that we must also account for systems
of oppression which lead to (dis)advantage at the intersection of multiple protected groups,
impacting all aspects of the system including the ability of individuals to succeed (“merit”)
to their potential, had they not been impacted by (dis)advantage [16]. In the ideal world
that an algorithmic (or other) intervention aims to achieve, infra-marginality-based fairness
desires that individual “merit” be the sole determiner of outcomes (c) [8,43], which can
lead to disparity between groups [7]. In ideal intersectional fairness (d), since ability to
succeed is affected by unfair processes, it is desired that this unfairness be corrected and
individuals achieve their true potential [46]. Assuming potential does not substantially
differ across protected groups, this implies that parity between groups is typically desirable.
(Disparity could still be desirable if there are legitimate confounders which depend on
protected groups, e.g., choice of department that individuals apply to in college admissions.
We address this scenario in Section 7.)

In light of the above, we argue that an intersectional definition of fairness in AI should
satisfy the following criteria:
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A Multiple protected attributes should be considered.
B All of the intersecting values of the protected attributes, e.g., Black women, should be

protected by the definition.
C The definition should still also ensure that protection is provided on individual

protected attribute values, e.g., women.
D The definition should ensure protection for minority groups, who are particularly

affected by discrimination in society [36].
E The definition should ensure that systematic differences between the protected groups,

assumed to be due to structural oppression, are rectified, rather than codified.

These desiderata do not uniquely specify a fairness definition, but they provide a set
of guidelines to which legal, political, and contextual considerations can then be applied to
determine an appropriate fairness measure for a particular task.

3. Related Work on Fairness

Before providing our new fairness definition, we discuss some of the existing fairness
definitions and their relation to the aforementioned criteria. An overview of AI fairness
research can be found in [49].

3.1. Models for Fairness

The 80% rule: Our criterion is related to the 80% rule, also known as the four-fifths rule,
a guideline for identifying unintentional discrimination in a legal setting which identifies
disparate impact in cases where P(y = 1|s1)/P(y = 1|s2) ≤ 0.8, for a favorable outcome
y = 1, disadvantaged group s1, and best performing group s2 [51]. This corresponds to
testing that ε ≥ − log 0.8 = 0.2231, in a version of Equation (2) where only the outcome
y = 1 is considered.
Demographic Parity: Dwork et al. [7] defined (and criticized) the fairness notion of de-
mographic parity, also known as statistical parity, which requires that P(y|si) = P(y|sj) for
any outcome y and pairs of protected attribute values si, sj (here assumed to be a single
attribute). This can be relaxed, e.g., by requiring the total variation distance between the
distributions to be less than ε. Differential fairness is closely related, as it also aims to match
probabilities of outcomes but measures differences using ratios and allows for multiple
protected attributes. The criticisms of [7] are mainly related to ways in which subgroups
of the protected groups can be treated differently while maintaining demographic parity,
which they call “subset targeting,” and which [17] term “fairness gerrymandering.” Differential
fairness explicitly protects the intersection of multiple protected attributes, which can be
used to mitigate some of these abuses.
Equalized Odds: To address some of the limitations with demographic parity, Hardt et
al. [8] propose to instead ensure that a classifier has equal error rates for each protected
group. This fairness definition, called equalized odds, can loosely be understood as a notion
of “demographic parity for error rates instead of outcomes.” Unlike demographic parity,
equalized odds rewards accurate classification, and penalizes systems only performing
well on the majority group. However, theoretical work has shown that equalized odds
is typically incompatible with correctly calibrated probability estimates [52]. It is also a
relatively weak notion of fairness from a civil rights perspective compared to demographic
parity, as it does not ensure that outcomes are distributed equitably. Hardt et al. also
propose a variant definition called equality of opportunity, which relaxes equalized odds to
only apply to a “deserving” outcome. It is straightforward to extend differential fairness
to a definition analogous to equalized odds, although we leave the exploration of this
for future work. A more recent algorithm for enforcing equalized odds and equality of
opportunity for kernel methods was proposed by [53].
Individual Fairness (“Fairness Through Awareness”): The individual fairness definition,
due to [7], mathematically enforces the principle that similar individuals should achieve
similar outcomes under a classification algorithm. An advantage of this approach is that
it preserves the privacy of the individuals, which can be important when the user of the
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classifications (the vendor), e.g., a banking corporation, cannot be trusted to act in a fair
manner. However, this is difficult to implement in practice as one must define “similar” in
a fair way. The individual fairness property also does not necessarily generalize beyond the
training set. In this work, we take inspiration from Dwork et al.’s untrusted vendor scenario
and the use of a privacy-preserving fairness definition to address it.
Counterfactual Fairness: Kusner et al. [54] propose a causal definition of fairness. Un-
der their counterfactual fairness definition, changing protected attributes A, while holding
things which are not causally dependent on A constant, will not change the predicted
distribution of outcomes. While theoretically appealing, there are difficulties in imple-
menting this in practice. First, it requires an accurate causal model at the fine-grained
individual level, while even obtaining a correct population-level causal model is generally
very difficult. To implement it, we must solve a challenging causal inference problem over
unobserved variables, which generally requires approximate inference algorithms. Finally,
to achieve counterfactual fairness, the predictions (usually) cannot make direct use of any
descendant of A in the causal model. This generally precludes using any of the observed
features as inputs.
Threshold Tests: Simoiu et al. [43] address infra-marginality by modeling risk probabilities
for different subsets (i.e., attribute values) within each protected category and requiring
algorithms to threshold these probabilities at the same points when determining outcomes.
In contrast, based on intersectionality theory, our proposed differential fairness criterion spec-
ifies protected categories whose intersecting subsets should be treated equally, regardless
of differences in risk across the subsets. Our definition is appropriate when the differences
in risk are due to structural systems of oppression, i.e., the risk probabilities themselves are
impacted by an unfair process. We also provide a bias amplification version of our metric,
following [10], which is more in line with the infra-marginality perspective, namely that
differences in probabilities of outcomes for different groups may be considered legitimate.

3.2. Subgroup Fairness and Multicalibration

Relevant fairness definitions aim to detect and prevent discriminatory bias with respect
to a set of protected attributes, such as gender, race, and disability status. Given criterion A, we
focus on multi-attribute definitions. The two dominant multi-attribute approaches in the
literature are subgroup fairness [17] and multicalibration [18].

Definition 3 (Statistical Parity Subgroup Fairness [17]). Let G be a collection of protected group
indicators g : A→ {0, 1}, where g(s) = 1 designates that an individual with protected attributes
s is in group g. Assume that the classification mechanism M(x) is binary, i.e., y ∈ {0, 1}.

Then M(x) is γ-statistical parity subgroup fair with respect to θ and G if for every g ∈ G,

|PM,θ(M(x) = 1)− PM,θ(M(x) = 1|g(s) = 1)| × Pθ(g(s) = 1) ≤ γ . (3)

Note that for γ ∈ [0, 1], smaller is better. The first term penalizes a difference between
the probability of the positive class label for group g and the population average of this
probability. The term Pθ(g(s) = 1) weights the penalty by the size of group g as a proportion
of the population. Statistical parity subgroup fairness (SF) is a multi-attribute definition
satisfying criterion A. To satisfy B and C criteria, G can be all intersectional subgroups
(e.g., Black women) and top-level groups (e.g., men). The first term in Equation (3), which
encourages similar outcomes between groups, enforces criterion E.

From an intersectional perspective, one concern with SF is that it does not satisfy
criterion D, the protection of minority groups. The term Pθ(g(s) = 1) weights the “per-
group (un)fairness” for each group g, i.e., Equation (3) applied to g alone, by its proportion
of the population, thereby specifically downweighting the consideration of minorities. In Figure 3,
we show an example where varying the size of a minority group Pθ(g(minority) = 1)
drastically alters γ-subgroup fairness, which finds that a rather extreme scenario is more
acceptable when the minority group is small. Our proposed criterion, ε-DF (introduced
in Section 4), is constant in Pθ(g(minority) = 1).



Entropy 2023, 25, 660 11 of 44

Figure 3. Toy example: probability of the “positive” class is 0.8 for a majority group, 0.1 for a minority
group, varying Pθ(g(minority) = 1).

Figure 4 reports “per-group” γ’s on the UCI Adult census dataset, i.e., Equation (3)
applied separately to each group is empirically seen to have an increasing relationship with
P(group) (simplified notation of Pθ(g(minority) = 1)). The final γ-SF is determined by the
worst case of the per-group γ’s. A small minority group thereby will most likely not directly
affect γ-SF, since the downweighting makes it unlikely to be the “most unfair” group.

Figure 4. “Per-group” γ-SF and our proposed ε-DF vs. probability (i.e., size) of groups, UCI Adult
dataset. Circles: intersectional subgroups (e.g., Black women of USA). Squares: top-level groups
(e.g., men). Fitted least squares line demonstrates the overall trend between fairness measures and
group size. Largest per-group ε-DF (black “X") and γ-SF (red “X") determines the overall ε-DF and
γ-SF, respectively.

Kearns et al. [17] justify the use of the Pθ(g(s) = 1) term via statistical considerations,
as it is useful to prove generalization guarantees to extrapolate from empirical estimates of
γ (see Section 8.4). From a different ethical perspective, total utilitarianism, increasing the
utility (i.e., reducing unfairness) for a large group of individuals at the expense of smaller
groups (i.e., downweighting small minority groups) could also be justified by the increase
in the total utility of the population. The problem with total utilitarianism, of course, is that
it admits a scenario where many people possess low utility (i.e., higher unfairness). We
do not intend to dismiss SF as a valid notion of fairness. Our claim here, rather, is simply
that due to its treatment of minority groups, SF does not fully encapsulate the principles of
fairness advocated by intersectional feminist scholars and activists [16,35,36,38,39].

Other candidate multi-attribute fairness definitions include false positive subgroup
fairness [17] and multicalibration [18]. These definitions are similar to SF, but they concern
false positive rates and calibration of prediction probabilities, respectively. Since they
focus on reliability of estimation rather than allocation of outcomes, they do not directly
address the issues (criterion E) raised by the civil rights/feminist perspective. This does
not preclude their use for intersectional fairness scenarios in which harms are caused by
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incorrect predictions (e.g., higher error rates for unprivileged groups), rather than unfair
outcome assignments (e.g., higher false positive rates for privileged groups); indeed, this
is the type of approach [5] take for studying intersectional fairness in computer vision
applications. Nevertheless, we will not consider them further here.

4. Differential Fairness (DF)

We now introduce our proposed fairness measures which satisfy our intersection-
ality criteria. There are multiple conceivable fairness definitions which satisfy these cri-
teria. For example, SF could be adapted to address criterion D by simply dropping the
Pθ(g(s) = 1) term, at the loss of its associated generalization guarantees. We instead
select an alternative formulation, which is similar to this approach in spirit, but which
has additional beneficial properties from a societal perspective regarding the law, privacy,
and economics, as we shall discuss below. The privacy and economic guarantees enjoyed by
our definition demonstrate that it has operational significance, in that it provably prevents
harms, analogously to differential privacy. (Not withstanding the gap between the behavior
of an idealized algorithmic system and the complicated impacts of deploying it within a
broader real-world sociotechnical system [22] and the gap between fairness metrics and the
real-world harms they are intended to measure [23]. See Section 1.3). Our formalism has
a particularly elegant intersectionality property, in that Criterion C (protecting higher-level
groups) follows automatically from Criterion B (protecting intersectional subgroups).

We motivate our criteria from a legal perspective. Consider the 80% rule, established
in the Code of Federal Regulations [51] as a guideline for establishing disparate impact
in violation of anti-discrimination laws such as Title VII of the Civil Rights Act of 1964.
The 80% rule states that there is legal evidence of adverse impact if the ratio of probabilities
of a particular favorable outcome, taken between a disadvantaged and an advantaged
group, is less than 0.8:

P(M(x) = 1|group A)/P(M(x) = 1|group B) < 0.8 . (4)

Our first proposed criterion, which we call differential fairness (DF), extends the 80%
rule to protect multi-dimensional intersectional categories, with respect to multiple output
values. We similarly restrict ratios of outcome probabilities between groups, but instead of
using a predetermined fairness threshold at 80%, we measure fairness on a sliding scale
that can be interpreted similarly to that of differential privacy, a definition of privacy for
data-driven algorithms [19]. Differential fairness measures the fairness cost of mechanism
M(x) with a parameter ε. Combining these elements, we obtain our differential fairness
criterion, which we stated above as Definition 2.

This is an intuitive intersectional definition of fairness: regardless of the combination
of protected attributes, the probabilities of the outcomes will be similar, as measured by the
ratios versus other possible values of those variables, for small values of ε. For example,
the probability of being given a loan would be similar regardless of a protected group’s
intersecting combination of gender, race, and nationality, marginalizing over the remaining
attributes in x. If the probabilities are always equal, then ε = 0; otherwise, ε > 0.

4.1. Relationship to Privacy Definitions

Differential Privacy: Like differential privacy [19,20], the differential fairness definition
bounds ratios of probabilities of outcomes resulting from a mechanism. There are several
important differences, however. When bounding these ratios, differential fairness considers
different values of a set of protected attributes, rather than databases that differ in a single
element. It posits a specified set of possible distributions which may generate the data,
while differential privacy implicitly assumes that the data are independent [27]. Finally,
since differential fairness considers randomness in data as well as in the mechanism, it can
be satisfied with a deterministic mechanism, while differential privacy can only be satisfied
with a randomized mechanism.
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The study in Jagielski et al. [55] developed methods which aim to satisfy differential
privacy and equalized-odds fairness simultaneously. This is a different goal to our work,
which aims to ensure intersectional fairness using a fairness definition that was designed
leveraging differential privacy.

Pufferfish: We have arrived at our criterion based on the 80% rule, but it can also be derived
as an application of pufferfish [27], a generalization of differential privacy [20] which uses a
variation of Equation (2) to hide the values of an arbitrary set of secrets. Different choices
of the secrets and the data that the Pufferfish privacy-preserving mechanism operates on
lead to both differential privacy and differential fairness.

Definition 4. A mechanism M(x) is ε-pufferfish private [27] in a framework (S, Q, Θ) if for all
θ ∈ Θ with x ∼ θ, for all secret pairs (si, sj) ∈ Q and y ∈ Range(M),

e−ε ≤ PM,θ(M(x) = y|si, θ)

PM,θ(M(x) = y|sj, θ)
≤ eε , (5)

when si and sj are such that P(si|θ) > 0, P(sj|θ) > 0.

While the formulation for differential fairness is mathematically very similar to Puffer-
fish, it is used with the goal of obtaining fairness, which leads to its more specific instantia-
tion of the Pufferfish secrets (protected attributes), the input data (each individual’s feature
vectors), and the mechanism (the behavior of the classifier itself under the distribution of
the data).

4.2. Empirical DF Estimation

A major challenge for measuring fairness in an intersectional context, either via ε-DF
(differential fairness), γ-SF (subgroup fairness), or related notions, is to estimate M(x)’s
marginal behavior PM,θ(y|s, θ) for each (y, s) pair, with potentially little data for each of
these [56]. If PM,θ is unknown, it can be estimated using the empirical distribution, or via
a probabilistic model of the data. Assuming discrete outcomes, PData(y|s) =

Ny,s
Ns

, where
Ny,s and Ns are empirical counts of their subscripted values in the dataset D. Empirical
differential fairness (EDF) corresponds to verifying that for any y, si, sj, we have

e−ε ≤
Ny,si

Nsi

Nsj

Ny,sj

≤ eε , (6)

whenever Nsi > 0 and Nsj > 0. However, in the intersectional setting, the counts Ny,s
at the intersection of the values of the protected attributes become rapidly smaller as the
dimensionality and cardinality of protected attributes increase. The Ny,s counts may even
be 0, which can make the estimate of ε in Equation (6) infinite/undefined.

Alternatively, to address the zero count issue, we can estimate ε-DF via the posterior
predictive distribution of a Dirichlet-multinomial as

e−ε ≤
Ny,si + α

Nsi + |Y|α
Nsj + |Y|α
Ny,sj + α

≤ eε , (7)

where scalar α is each entry of the parameter of a symmetric Dirichlet prior with concentra-
tion parameter |Y|α, Y = Range(M). We refer to this as smoothed EDF.

Note that EDF and smoothed EDF methods can sometimes be unstable in extreme
cases when nearly all instances are assigned to the same class. To address this issue, instead
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of using empirical hard counts per group Ny,s, we can also use soft counts for (smoothed)
EDF, based on a probabilistic classifier’s predicted P(y|x), as follows:

e−ε ≤
∑x∈D:A=si

P(y|x) + α

Nsi + |Y|α
Nsj + |Y|α

∑x∈D:A=sj
P(y|x) + α

≤ eε . (8)

5. Illustrative Worked Examples

A simple worked example of differential fairness is given in Figure 5. In the example,
given an applicant’s score x on a standardized test, the mechanism M(x) = x ≥ t approves
the hiring of a job applicant if their test score x ≥ t, with t = 10.5. The scores are distributed
according to θ, which corresponds to the following process. The applicant’s protected
group is 1 or 2 with probability 0.5. Test scores for group 1 are normally distributed
N(x; µ1 = 10, σ = 1), and for group 2 they are distributed N(x; µ2 = 12, σ = 1). In the
figure, the group-conditional densities are plotted on the top, along with the threshold for
the hiring outcome being yes (i.e., M(x) = 1). Shaded areas indicate the probability of a yes
hiring decision for each group (overlap in purple). On the bottom, the calculations show
that M(x) is ε-differentially fair for ε = 2.337. This means that the probability ratios are
bounded within the range (e−ε, eε) = (0.0966, 10.35), i.e., one group has around 10 times
the probability of some particular hiring outcome than the other (y = no). Presuming that
the two groups are roughly equally capable of performing the job overall, this is clearly
unsatisfactory in terms of fairness.
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1 2
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Log Ratios of Probabilities

y si sj log PM,θ(M(x)=y|si ,θ)
PM,θ(M(x)=y|sj ,θ)

no 1 2 2.337
2 1 −2.337

yes 1 2 −1.107
2 1 1.107

Figure 5. Worked example of differential fairness from Section 5. The calculations above show that
ε = 2.337.

Differential fairness specifically addresses the intersectional setting by considering
outcome probabilities at each intersection of a set of protected variables. We illustrate
this with an example on admissions of prospective students to a particular University X
(Table 1). The protected attributes are gender and race, and the mechanism is the admissions
process, with a binary outcome. Our data are adapted from a real-world scenario involving
treatments for kidney stones, often used to demonstrate Simpson’s paradox [57,58]. Here,
the “paradox” is that for race 1, individuals of gender A are more likely to be admitted than
those of gender B, and for race 2, those of gender A are also more likely to be admitted than
those of gender B, yet counter-intuitively, gender B is more likely to be admitted overall.
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Table 1. Intersectional example: Simpson’s paradox.

Probability of Being Admitted to University X

Gender

A B Overall

Race

1 81
87 (0.931) 234

270 (0.867) 315
357 (0.882)

2 192
263 (0.730) 55

80 (0.688) 247
343 (0.720)

Overall 273
350 (0.780) 289

350 (0.826)

Since the admissions process is a black box, we model it using Equation (6), empirical
differential fairness (EDF). By calculating the log probability ratios of (gender, race) pairs
from Table 1, as well as for the pairs of probabilities for the declined admission outcome
(1− P(admit)), and plugging them into Equation (6), we see that the mechanism is ε = 1.511-
DF with A = gender× race. By calculating ε using the admission probabilities in the overall
row (gender) and the overall column (race), we find that ε = 0.2329 for A = gender,
and ε = 0.8667 for A = race. We will prove in Theorem 2 that ε with A = gender× race is
an upper bound on ε-DF for A = gender and for A = race. Thus, even with a “Simpson’s
reversal,” differential (un)fairness will not increase after summing out a protected attribute.

6. DF Bias Amplification Measure

We can adapt DF to measure fairness in data, i.e., outcomes assigned by a black
box algorithm or social process, by using (a model of) the data’s generative process as
the mechanism.

Definition 5. A labeled dataset D = {(x1, y1), . . . , (xN , yN)} is ε-differentially fair (DF) in A
with respect to model PModel(x, y) if mechanism M(x) = y ∼ PModel(y|x) is ε-differentially fair
with respect to (A, {PModel(x)}), for PModel trained on the dataset.

Similar to differential privacy, differences ε2 − ε1 between two mechanisms M2(x)
and M1(x) are meaningful (for fixed A and Θ and for tightly computed minimum values of
ε) and measure the additional “fairness cost” of using one mechanism instead of the other.
When ε1 is the differential fairness of a labeled dataset and ε2 is the differential fairness of
a classifier measured on the same dataset, ε2 − ε1 is a measure of the extent to which the
classifier increases the unfairness over the original data, a phenomenon that [10] refer to as
bias amplification.

Definition 6. A mechanism M(x) satisfies (ε2 − ε1)-DF bias amplification with respect to
(A, Θ, D,M) if it is ε2-DF and labeled dataset D is ε1-DF in A with respect to modelM.

Politically speaking, ε-DF is a relatively progressive notion of fairness which we have
motivated based on intersectionality (disparities in societal outcomes are largely due to systems
of oppression) and which is reminiscent of demographic parity [7]. On the other hand,
(ε2 − ε1)-DF bias amplification is a more conservative fairness metric than DF which
does not seek to correct unfairness in the original dataset (i.e., it relaxes criterion E), in line
with the principle of infra-marginality (a system is biased only if disparities in its behavior are
worse than those in society, which are presumed to be legitimate) [43]. Informally, ε2-DF and
(ε2 − ε1)-DF bias amplification represent “upper and lower bounds” on the unfairness
of the system in the case where the relative effect of structural oppression on outcomes
is unknown.

7. Dealing with Confounder Variables

As we have seen, ε-DF measures inequity between protected groups and their in-
tersections at different levels of granularity, although it does not determine whether the
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inequities were due to systemic factors and/or discrimination. Confounding variables can
potentially be a legitimate source of disparity. For example, a study on U.C. Berkeley
admissions in the 1970s [59] found that a disparity in overall admission rates between men
and women was due to a confounding variable, the department that a prospective student
chooses to apply to, with women being more likely to apply to more selective departments.
This scenario was similar to the worked example in Table 1. With confounders, parity in
outcomes between intersectional protected groups, which ε-DF rewards, may no longer
be desirable (see Figure 6). We propose an alternative fairness definition for when known
confounders are present.

Definition 7. Let θ ∈ Θ be distributions over (x, c), where c ∈ C are confounder variables.
A mechanism M(x) is ε-differentially fair with confounders (DFC) with respect to (A, Θ, C), if for
all c ∈ C, M(x) is ε-DF with respect to (A, Θ|c), where Θ|c = {P(x|θ, c)|θ ∈ Θ}.

In the university admissions case, Definition 7 penalizes disparity in admissions at
the department level, and the most unfair department determines the overall unfairness
ε-DFC.

Theorem 1. Let M be an ε-DFC mechanism in (A, Θ, C), then M is ε-differentially fair in (A, Θ).

Proof. Let θ ∈ Θ, y ∈ Range(M), c ∈ C, and (si, sj) ∈ A × A where P(si|θ) > 0 and
P(sj|θ) > 0. We have:

PM,θ(M(x) = y|si, θ)

PM,θ(M(x) = y|sj, θ)

=
∑c∈C PM,θ(M(x) = y|si, c, θ)PM,θ(c|si, θ)

∑c∈C PM,θ(M(x) = y|sj, c, θ)PM,θ(c|sj, θ)

=
∑c∈C

PM,θ(M(x)=y|si ,c,θ)
PM,θ(M(x)=y|sj ,c,θ)Pθ(c|si, θ)

∑c∈C
PM,θ(M(x)=y|sj ,c,θ)
PM,θ(M(x)=y|sj ,c,θ)Pθ(c|sj, θ)

= ∑
c∈C

PM,θ(M(x) = y|si, c, θ)

PM,θ(M(x) = y|sj, c, θ)
Pθ(c|si, θ)

≤ ∑
c∈C

eεPθ(c|si, θ) = eε . (9)

Reversing si and sj shows the other inequality.

From Theorem 1, if we protect differential fairness per department, we obtain differ-
ential fairness and its corresponding theoretical economic and privacy guarantees in the
university’s overall admissions, bounded by the ε of the most unfair department, even in
the case of a Simpson’s reversal. If confounder variables are latent, we can attempt to infer
them probabilistically in order to apply DFC. Alternatively, (ε2 − ε1)-DF bias amplification
can still be used to study the impact of an algorithm on fairness.

YPotential

ConfoundersA

N

D

Figure 6. Ideal-world intersectional fairness with confounder variables. Disparity in overall outcomes
between protected groups may be considered legitimate.
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8. Properties of Differential Fairness

We now discuss the theoretical properties of our definitions.

8.1. Differential Fairness and Intersectionality

Differential fairness explicitly encodes protection of intersectional groups (Criterion B).
For DF, we prove that this automatically implies fairness for each of the protected attributes
individually (Criterion C), and indeed, any subset of the protected attributes. For example,
if a loan approval mechanism M(x) is ε-DF in A = gender × race × nationality, it is also
ε-DF in, e.g., A = gender by itself, or A = gender × nationality. In other words, by ensuring
fairness at the intersection of gender, race, and nationality, we also ensure the same degree of
fairness between genders overall, between gender/nationality pairs overall, and so on. Here,
ε is a worst case, and DF may also hold for lower values of ε.

Lemma 1. The ε-DF criterion can be rewritten as: for any θ ∈ Θ, y ∈ Range(M),

log max
s∈A:P(s|θ)>0

PM,θ(M(x) = y|s, θ)

− log min
s∈A:P(s|θ)>0

PM,θ(M(x) = y|s, θ) ≤ ε . (10)

Proof. The definition of ε-differential fairness is, for any θ ∈ Θ, y ∈ Range(M), (si, sj) ∈
A× A where P(si|θ) > 0, P(sj|θ) > 0,

e−ε ≤ PM,θ(M(x) = y|si, θ)

PM,θ(M(x) = y|sj, θ)
≤ eε . (11)

Taking the log, we can rewrite this as:

−ε ≤ log PM,θ(M(x) = y|si, θ)

− log PM,θ(M(x) = y|sj, θ) ≤ ε . (12)

The two inequalities can be simplified to:

| log PM,θ(M(x) = y|si, θ)− log PM,θ(M(x) = y|sj, θ)| ≤ ε . (13)

For any fixed θ and y, we can bound the left-hand side by plugging in the worst case over
(si, sj):

| log PM,θ(M(x) = y|si, θ)− log PM,θ(M(x) = y|sj, θ)|
≤ log max

s:P(s|θ)>0
PM,θ(M(x) = y|s, θ)

− log min
s:P(s|θ)>0

PM,θ(M(x) = y|s, θ) . (14)

Plugging in this bound, which is achievable and hence is tight, the criterion is then equiva-
lent to:

log max
s:P(s|θ)>0

PM,θ(M(x) = y|s, θ)

− log min
s:P(s|θ)>0

PM,θ(M(x) = y|s, θ) ≤ ε . (15)

Theorem 2. (Intersectionality Property) Let M be an ε-differentially fair mechanism in (A, Θ),
A = S1× S2× . . .× Sp, and let D = Sa × . . .× Sk be the Cartesian product of a nonempty proper
subset of the protected attributes included in A. Then M is ε-differentially fair in (D, Θ).
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Proof. Define E = S1 × . . . × Sa−1 × Sa+1 . . . × Sk−1 × Sk+1 × . . . × Sp, the Cartesian
product of the protected attributes included in A but not in D. Then for any θ ∈ Θ,
y ∈ Range(M),

log max
s∈D:P(s|θ)>0

PM,θ(M(x) = y|D = s, θ)

= log max
s∈D:P(s|θ)>0

∑
e∈E

PM,θ(M(x) = y|E = e, s, θ)Pθ(E = e|s, θ)

≤ log max
s∈D:P(s|θ)>0

∑
e∈E

max
e′∈E:Pθ(E=e′ |s,θ)>0(

PM,θ(M(x) = y|E = e′, s, θ)
)
× Pθ(E = e|s, θ)

= log max
s∈D:P(s|θ)>0

max
e′∈E:Pθ(E=e′ |s,θ)>0

PM,θ(M(x) = y|E = e′, s, θ)

= log max
s′∈A:P(s′ |θ)>0

PM,θ(M(x) = y|s′, θ)

By a similar argument,

log min
s∈D:P(s|θ)>0

PM,θ(M(x) = y|D = s, θ) ≥ log min
s′∈A:P(s′ |θ)>0

PM,θ(M(x) = y|s′, θ). (16)

Applying Lemma 1, we hence bound ε in (D, Θ) as

log max
s∈D:P(s|θ)>0

PM,θ(M(x) = y|D = s, θ)

− log min
s∈D:P(s|θ)>0

PM,θ(M(x) = y|D = s, θ)

≤ log max
s′∈A:P(s′ |θ)>0

PM,θ(M(x) = y|s′, θ)

− log min
s′∈A:P(s′ |θ)>0

PM,θ(M(x) = y|s′, θ) ≤ ε . (17)

This property is philosophically concordant with intersectionality, which emphasizes
empathy with all overlapping marginalized groups. However, its benefits are mainly
practical; in principle, one could protect all higher-level groups in γ-SF by specifying
∑

p
j=1 (

p
j)K

j binary indicator protected groups, where K is the number of values per protected
attribute. This quickly becomes computationally and statistically infeasible. For example,
Figure 7 counts the number of protected groups that must be explicitly considered under
the two intersectional fairness definitions, in order to respect the intersectional fairness
Criteria B and C. The intersectionality property (Theorem 2) implies that when the the
bottom-level intersectional groups are protected (blue curve), differential fairness will
automatically protect all higher-level groups (red curve). Since statistical parity subgroup
fairness does not have this property, all of the groups and subgroups (red curve) must
be protected explicitly with their own group indicators g(s). Although the number of
bottom-level groups grows exponentially in the number of protected attributes, the total
number of groups grows much faster, at the combinatorial rate of ∑

p
j=1 (

p
j)K

j.
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Figure 7. The number of groups and intersectional subgroups to protect when varying the number of
protected attributes, with 2 values per protected attribute.

8.2. Privacy Interpretation

The differential fairness definition and the resulting level of fairness obtained at any
particular measured fairness parameter ε can be interpreted by viewing the definition
through the lens of privacy. Differential fairness ensures that given the outcome, an
untrusted vendor/adversary can learn very little about the protected attributes of the individual,
relative to their prior beliefs, assuming their prior beliefs are in Θ:

e−ε P(si|θ)
P(sj|θ)

≤ P(si|M(x) = y, θ)

P(sj|M(x) = y, θ)
≤ eε P(si|θ)

P(sj|θ)
. (18)

For example, if a loan is given to an individual, an adversary’s Bayesian posterior beliefs
about their race and gender will not be substantially changed. Thus, the adversary will be
unable to infer that “this individual was given a loan, so they are probably white and male.”
Our definition thereby provides fairness guarantees when the user of M(x) is untrusted,
cf. [7], by preventing subsequent discrimination, e.g., in retaliation to a fairness correction.
Although DF is a population-level definition, it provides a privacy guarantee for individuals.
The privacy guarantee only holds if θ ∈ Θ, which may not always be the case. Regardless,
the value of ε may typically be interpreted as a privacy guarantee against a “reasonable
adversary.” The privacy guarantee is inherited from pufferfish, a general privacy framework
which DF instantiates [27].

8.3. Economic Guarantees

We also show that an economic guarantee for DF holds. An ε-differentially fair
mechanism admits a disparity in expected utility of as much as a factor of exp(ε) ≈ 1 + ε
(for small values of ε) between pairs of protected groups with si ∈ A, sj ∈ A, for any
utility function that could be chosen. For example, consider a loan approval process,
where the utility of being given a loan is 1, and being denied is 0. Suppose the approval
process is ln(3)-differentially fair. The process could then be three times as likely to award
a loan to white men as to white women, and thus award white men three times the
expected utility as white women. The proof follows the case of differential privacy [20]. Let
u(y) : Range(M(x))→ R≥0 be a utility function. Then:

EPM,θ

[
u(y)|si

]
=
∫

PM,θ(y|si)u(y)dy (19)

≤
∫

eεPM,θ(y|sj)u(y)dy = eεEPM,θ

[
u(y)|sj

]
.

Similarly, for (ε2 − ε1)-DF bias amplification, M(x) admits at most an exp(ε2 − ε1) ≈
1 + ε2 − ε1 (for small values of ε2 − ε1) multiplicative increase in the disparity of expected
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utility between pairs of protected intersections of groups with si ∈ A, sj ∈ A, relative to
the data-generating processM, for any utility function.

Note that the privacy and economic guarantees afforded by differential fairness
(Equations (18) and (19), respectively) show that the definition is operationally signifi-
cant, in the sense that the definition provides a guarantee on the harms due to the algorithm
(or at least, its direct harms, neglecting its broader impacts within the complicated so-
ciotechnical system in which it is embedded [22]). Impacted individuals and stakeholders
can interpret the mechanism’s value of ε in terms of how its privacy and utility properties
might impact them. This interpretability is a key advantage over competing definitions.

8.4. Generalization Guarantees

In order to ensure that an algorithm is truly fair, it is important that the fairness
properties obtained on a dataset will extend to the underlying population.
Kearns et al. [17] proved that empirical estimates of the quantities per group which deter-
mine subgroup fairness, PM,θ(y = 1|g(s) = 1)Pθ(g(s) = 1), will be similar to their true
values, with enough data relative to the VC dimension of the classification model’s concept
classH. We state their result below.

Theorem 3. [17]’s Theorem 2.11 (SP Uniform Convergence). Fix a class of functions H and
a class of group indicators G. For any distribution P, let S ∼ Pm be a dataset consisting of m
examples (xi, yi) sampled i.i.d. from P. Then for any 0 < δ < 1, with probability 1− δ, for every
h ∈ H and g ∈ G, we have:

|P(y = 1|g(s) = 1, h)P(g(s) = 1) (20)

− PS(y = 1|g(s) = 1, h)PS(g(s) = 1)|

≤ Õ
(√ (VCDIM(H) + VCDIM(G)) log m + log(1/δ)

m

)
.

Here, Õ hides logarithmic factors, and PS is the empirical distribution from the S
samples. It is natural to ask whether a similar result holds for differential fairness. As Kearns
et al. [17] note, the SF definition was chosen for statistical reasons, revealed in the above
equation; the Pθ(g(s) = 1) term in SF arises naturally in their generalization bound. For DF,
we specifically avoid this term due to its impact on minority groups and must instead bound
PM,θ(y|s) per group s. For this case, we prove the following generalization guarantee.

Theorem 4. Fix a class of functionsH, which w.l.o.g. aim to discriminate the outcome y = 1 from
any other value, denoted as y = 0. For any conditional distribution P(y, x|s) given a group s, let
S ∼ Pm be a dataset consisting of m examples (xi, yi) sampled i.i.d. from P(y, x|s). Then for any
0 < δ < 1, with probability 1− δ, for every h ∈ H, we have:

|P(y = 1|s, h)− PS(y = 1|s, h)|

≤ Õ
(√VCDIM(H) log m + log(1/δ)

m

)
. (21)

Proof. Let g(s′) = 1 when s′ = s and 0 otherwise, and let G = {g(s′)}. We see that G has a
VC-dimension of 0. The result follows directly by applying Theorem 3 (Kearns et al. [17]’s
Theorem 2.11) to H and G and considering the bound for the distributions P over (x, y)
where P(g(s′) = 1) = 1.

While SF has generalization bounds which depend on the overall number of data
points, DF’s generalization guarantee requires that we obtain a reasonable number of data
points for each intersectional group in order to accurately estimate ε-DF. This difference,
the price of removing the minority-biasing term, should be interpreted in the context of
the differing goals of our work and Kearns et al. [17], who aimed to prevent fairness
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gerrymandering by protecting every conceivable subgroup that could be targeted by
an adversary.

In contrast, our goal is to uphold intersectionality, which simply aims to enact a
more nuanced understanding of unfairness than with a single protected dimension such
as gender or race. In practice, the consideration of two or three intersecting protected
dimensions already improves the nuance of assessment. Sufficient data per intersectional
group can often be readily obtained in such cases, e.g., Buolamwini and Gebru [5] studied
the intersection of gender and skin color on fairness. Similarly, Kearns et al. [17] focus on the
challenge of auditing subgroup fairness when the subgroups cannot easily be enumerated,
which is important in the fairness gerrymandering setting. In contrast, in our intended
applications of preserving intersectional fairness, the number of intersectional groups is
often only between around 22 (e.g., binary gender and race, as originally considered by [16])
to around 25 (e.g., the Civil Rights Act of 1964 prohibits discrimination along lines of five
attributes: race, color, religion, sex, and national origin).

9. Learning Algorithm

In this section we introduce simple and practical learning algorithms for differen-
tially fair classifiers (DF-Classifiers). Our algorithms use the fairness cost as a regularizer
to balance the trade-off between fairness and accuracy. We minimize, with respect to
the classifier MW(x)’s parameters W, a loss function L such as cross-entropy loss plus a
penalty on unfairness which is weighted by a tuning parameter λ > 0. In practice, we
found that a warm start optimizing loss function L only for several “burn-in” iterations
improves convergence.

The fairness penalty term RX(ε) for training data X is designed as

RW(ε) = max(0, εMW(x) − ε1), (22)

where εMW(x) is the ε-DF measures for MW(x). If ε1 is 0, this penalizes ε-DF, and if ε1 is
the data’s ε, this penalizes bias amplification. Optimizing for bias amplification will also
improve ε-DF, up to the ε1 threshold. We develop two approaches of learning algorithm
that ensure the reliable and data-efficient estimation of εMW(x) in the training phase.

9.1. Batch Method

We process all the training examples D = (x, y) simultaneously for batch DF (BDF)
model MWB(x). The learning objective for BDF becomes

min
WB

[
1

nD

nD

∑
i=1

L( f (x(i); WB), y(i)) + λRDWB(ε)], (23)

where RDWB(ε) = max(0, εMWB (x) − ε1) represents the fairness penalty term in the batch

method, and f (x; WB) is the predicted output (analogous to P(y|x) in Equation (8)) for
nD training examples. εMWB (x) is measured for the entire training data D using soft
counts (Equation (8)) to make the objective differentiable. We train BDF using batch or
deterministic gradient descent (GD) with learning step size schedule ρWB

t on the objective
(Equation (23)). Pseudo-code to train the BDF model is given in Algorithm 1. In practice,
we use Adam optimization [60] via backpropagation (BP) [61] and automatic differentiation
(autodif) [62] with a fixed step size ρWB

. The main limitation of the BDF algorithm is that
it involves calculating the relevant probabilities for all intersecting protected groups in
every iteration, which is exponential in the number of top-level groups. To address this, we
present a stochastic method in the following section.
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Algorithm 1: Training Algorithm for Batch Differential Fair (BDF) Model
Require: Train data D = (x, y)
Require: Tuning parameter λ > 0
Require: Learning step size schedule ρWB

1 , ρWB

2 , . . .
Require: Randomly initialize model parameters WB

Output: BDF model MWB (x)

• For each burn-in iteration tb:

– Apply update using batch GD with ρWB

tb
:

WB := WB − ρWB

tb
1

nD∇WB ∑nD
i=1 L( f (x(i); WB), y(i))

• For each iteration t:

– Compute εMWB (x) ≤
∑x∈D:A=si

f (x;WB)+α

Nsi+|Y|α
Nsj+|Y|α

∑x∈D:A=sj
f (x;WB)+α

≤ εMWB (x)

– Apply update using batch GD with ρWB

t :
WB := WB − ρWB

t
1

nD∇WB [∑nD
i=1 L( f (x(i); WB), y(i)) + λRDWB (ε)]

//in practice, Adam optimization via BP and autodif with a fixed ρWB

9.2. Stochastic Method

The stochastic DF (SDF) method MWS(x) uses a minibatch or a small subset of all the
training examples Dm ∈ D for each iteration of learning. Pseudo-code to train SDF is given
in Algorithm 2. The objective for SDF with minibatch size nDm is equivalent to that of the
the batch method:

min
WS

[
1

nDm

nDm

∑
i=1

L( f (x(i); WS), y(i)) + λRDm
WS(ε)], (24)

where RDm
WS(ε) = max(0, εMWS (x) − ε1) represents the fairness penalty term for a minibatch.

However, the reliable estimation of εMWS (x) for a minibatch becomes statistically challeng-
ing due to data sparsity of intersectional groups [56]. For example, one or more missing
intersectional groups for a minibatch is a typical scenario in the stochastic models that can
lead to inaccurate estimation of intersectional fairness, i.e., ε-DF or γ-SF, which affects the
training of the models.

We develop a stochastic approximation-based approach to address data sparsity in
ε-DF estimation for training the SDF model. Our approach is mainly inspired by the online
EM algorithm of [63]. It is a general-purpose method for learning latent variable models in
an online setting that alternates between a standard M-step that maximizes the EM lower
bound with respect to model parameters β and a stochastic expectation step that updates
exponential family sufficient statistics Φ with an online average.

Φ := (1− ρt)Φ + ρtΦ̂(x(n+1); β), (25)

where x(n+1) is a new data point, ρt is the step size at time step t, and Φ̂(x(n+1); β) is the
estimation of the sufficient statistics based on the latest model parameters β. Inspired by
the online EM algorithm, stochastic variational inference was proposed [64,65] to scale
models such as topic models up to an enormous number of documents [66–68].
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Algorithm 2: Training Algorithm for Stochastic Differential Fair (SDF) Model
Require: Train data D = (x, y)
Require: Tuning parameter λ > 0
Require: Constant learning step size schedule ρNG

1 , ρNG

2 , . . . and ρWS

1 , ρWS

2 , . . .
Require: Randomly initialize model parameters WS and count parameters NG

y,s and NG
s

Output: SDF model MWS (x)

• For each burn-in epoch:

– For each iteration tb:

* Draw a minibatch Dm ∈ D

* Apply update using SGD with ρWS

tb
:

WS := WS − ρWS

tb
1

nDm
∇WS ∑

nDm
i=1 L( f (x(i); WS), y(i))

• For each epoch:

– For each iteration to in the outer loop:

* For each iteration ti in the inner loop:

· Draw a minibatch Dm ∈ D
· Empirically estimate N̂L

y,s = ∑x∈Dm :A=s f (x; WS) and N̂L
s

· Apply update: NG
y,s := (1− ρNG

ti
)NG

y,s + ρNG

ti

nD
nDm

N̂L
y,s

· Apply update: NG
s := (1− ρNG

ti
)NG

s + ρNG

ti

nD
nDm

N̂L
s

* Compute εMWS (x) ≤
NG

y,si
+α

NG
si
+|Y|α

NG
sj
+|Y|α

NG
y,sj

+α
≤ εMWS (x)

* Draw a minibatch Dm ∈ D

* Apply update using SGD with ρWS

to
:

WS := WS − ρWS

to
1

nDm
∇WS [∑

nDm
i=1 L( f (x(i); WS), y(i)) + λRDm

WS (ε)]

To compute εMWS (x), we iterate over an inner loop ti for each outer loop to, with mul-
tiple minibatches drawn from training examples Dm ∈ D. First, we empirically estimate
noisy expected counts per group N̂L

y,s and N̂L
s for each minibatch in the inner loop and

update global expected counts per group NG
y,s and NG

s (shared within inner and outer loop

iterations) with learning step size schedule ρNG
ti

, which is typically annealed towards zero,
as follows:

NG
y,s := (1− ρNG

ti
)NG

y,s + ρNG

ti

nD
nDm

N̂L
y,s, (26)

NG
s := (1− ρNG

ti
)NG

s + ρNG

ti

nD
nDm

N̂L
s , (27)

where N̂L
y,s = ∑x∈Dm :A=s f (x; WS) are empirically estimated for each minibatch Dm with

respect to the latest WS (from the last outer loop iteration), while N̂L
s is the total population

per group for the corresponding minibatch. Note that it is too time-consuming to run the
above inner loop for several minibatch examples. In practice, we found that one inner
loop pass with a fixed learning step size ρNG

is enough to train SDF model successfully,
since NG

y,s and NG
s are continuously updated and shared in the outer loop iterations. Then,

εMWS (x) is estimated in the outer loop via the posterior predictive distribution of a Dirichlet-
multinomial (similar to Equation (7)) as

εMWS (x) ≤
NG

y,si
+ α

NG
si
+ |Y|α

NG
sj
+ |Y|α

NG
y,sj + α

≤ εMWS (x) . (28)

Finally, the SDF model is trained using stochastic gradient descent (SGD) with step
size schedule ρWS

to
in the outer loop. In practice, we use Adam optimization algorithm on the
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objective in Equation (24) via BP and autodif with a fixed step size ρWS
. We also provide

the pseudo-code to our more practical approach for the SDF model in Algorithm 3.

Algorithm 3: Practical Approach for Stochastic Differential Fair (SDF) Model
Require: Train data D = (x, y)
Require: Tuning parameter λ > 0
Require: Constant learning step size ρNG

and ρWS

Require: Randomly initialize model parameters WS and count parameters NG
y,s and NG

s
Output: SDF model MWS (x)

• For each burn-in epoch:

– For each iteration tb:

* Draw a minibatch Dm ∈ D

* Apply Adam optimizer with ρWS
via BP and autodif on the objective:

min
WS

[ 1
nDm

∑
nDm
i=1 L( f (x(i); WS), y(i))]

• For each epoch:

– For each iteration t:

* Draw a minibatch Dm ∈ D
* Empirically estimate N̂L

y,s = ∑x∈Dm :A=s f (x; WS) and N̂L
s

* Apply update: NG
y,s := (1− ρNG

)NG
y,s + ρNG nD

nDm
N̂L

y,s

* Apply update: NG
s := (1− ρNG

)NG
s + ρNG nD

nt
Dm

N̂L
s

* Compute εMWS (x) ≤
NG

y,si
+α

NG
si
+|Y|α

NG
sj
+|Y|α

NG
y,sj

+α
≤ εMWS (x)

* Apply Adam optimizer with ρWS
via BP and autodif on the objective:

min
WS

[ 1
nDm

∑
nDm
i=1 L( f (x(i); WS), y(i)) + λRDm

WS (ε)]

9.3. Convergence Analysis for Stochastic Method

Our convergence analysis is conducted using the Robbins–Monro stochastic approxi-
mation (SA) [69] interpretation of the stochastic ε-DF estimation in the SDF algorithm. We
have the following theorem:

Theorem 5. If 0 < ρt ≤ 1 ∀t, ∑∞
t=1 ρt = ∞, and limt→∞ ρt = 0, then in the limit as the number

of steps t approaches infinity stochastic ε-DF estimation converges to a stationary point of the
objective function for the SDF model.

Proof. Consider the inner loop for stochastic ε-DF estimation in the SDF algorithm, with an
update schedule for t steps. Noisy expected counts N̂L

y,s and N̂L
s are empirically estimated

with respect to the SDF parameters WS and drawn minibatch Dm ∈ D at the iteration
step t of the inner loop. Given WS, we do not need to maintain N̂L

y,s and N̂L
s between

inner loop iterations. Thus, stochastic ε-DF estimation is operated only on the global
expected count parameters NG

y,s and NG
s . For each count parameter c ∈ {NG

y,s, NG
s }, let

fc(D, WS, φ) : Φc → Φc be a mapping from a current value to the updated value after an
iteration t, where Φc is the space of possible assignments for c.

Let φ̄ = (NG
y,s, NG

s ) be an assignment of the expected count parameters, with φ̄c refer-

ring to a parameter c, and φ̄(t) be the c parameters at step t. Furthermore, let ˆ̄φc(D(t+1)
m , WS)

be the noisy estimate of fc(D, WS, φ) based on the minibatch D(t+1)
m examined at step t + 1.

Finally, let ξ(t+1) = ˆ̄φc(D(t+1)
m , WS)− fc(D, WS, φ(t)) be the stochastic error made at step

t + 1, and observe that E[ξ(t+1)] = 0. We can rewrite the update for each c parameter as
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φ̄
(t+1)
c = (1− ρc

t+1)φ̄
(t)
c + ρc

t+1
ˆ̄φc(D(t+1)

m , WS)

= φ̄
(t)
c + ρc

t+1(−φ̄
(t)
c + ˆ̄φc(D(t+1)

m , WS))

= φ̄
(t)
c + ρc

t+1( fc(D, WS, φ̄(t))− φ̄
(t)
c + ˆ̄φc(D(t+1)

m , WS)− fc(D, WS, φ̄(t)))

= φ̄
(t)
c + ρc

t+1( fc(D, WS, φ̄(t))− φ̄
(t)
c + ξ(t+1)) . (29)

In this form, we can see that iterating each of the c parameter updates over the inner loop
to ε-DF estimation corresponds to the Robbins–Monro SA algorithm [69] for finding the
zeros of fc(D, WS, φ(t))− φ

(t)
c , i.e., the fixed points for φc that lead to the stationary point

for εMWS (x) estimation in the SDF algorithm. Theorem 2.3 of [70] states that under the
existence of a Lyapunov function along with a boundedness condition, this implies that
such an SA algorithm will converge with step size schedules such as mentioned above.
Note that a Lyapunov function can be viewed as an objective function in the absence of
stochastic noise and the SA algorithm would improve the function monotonically with
small enough steps in the direction of the updates.

10. Experiments and Results

In this section, we performed an extensive experimental analysis of the proposed fair-
ness metric in terms of fair learning algorithms and intersectionality. Our implementation’s
source code is provided in the GitHub (https://github.com/rashid-islam/Differential_
Fairness accessed on 10 April 2023).

10.1. Datasets

We performed all experiments with the following four small and large-scale datasets.
We recognize that using risk assessment datasets such as COMPAS or HMDA for fairness research
is contested due to the biases inherent in criminal justice and financial systems [71]. Our results
should be taken as an illustration of how our definition is operationally different rather than as an
endorsement of using automated decison making for these applications.

• COMPAS: The COMPAS dataset regarding a system that is used to predict criminal
recidivism, and which has been criticized as potentially biased [4]. We used race
and gender as protected attributes. Gender was coded as binary. Race originally had
six values, but we merged “Asian” and “Native American” with “other,” as all three
contained very few instances. We predict “actual recidivism,” which is binary, within a
2-year period for 7.22 K individuals.

• Adult: The Adult 1994 U.S. census income data from the UCI ML-repository [72]
consists of 14 attributes regarding work, relationships, and demographics for individ-
uals, who are labeled according to whether their income exceeds USD 50,000/year
(Predicted income used for consequential decisions such as housing approval may
result in digital redlining [1].) pre-split into a training set of 32.56 K and a test set of
16.28 K instances. We considered race, gender, and nationality as the protected attributes.
Gender was coded as binary. As most instances have U.S. nationality, we treat nation-
ality as binary also between U.S. and “other.” The race attribute originally had five
values, but we merged the “Native American” with “other,” as both contained very
few instances.

• HHP: This is a medium-sized dataset which is derived from the Heritage Health
Prize (HHP) milestone 1 challenge (https://www.kaggle.com/c/hhp accessed on
10 April 2023). The dataset contains information for 171.07 K patients over a 3-year
period. Our goal is to predict whether the Charlson Index, an estimation of patient
mortality, is greater than zero. Following Song et al. [73], we consider age and gender
as the protected attributes, where there are nine possible age values and two possible
gender values.

https://github.com/rashid-islam/Differential_Fairness
https://github.com/rashid-islam/Differential_Fairness
https://www.kaggle.com/c/hhp
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• HMDA: This is the largest dataset in our study, which is derived from the loan appli-
cation register form for the Home Mortgage Disclosure Act (HMDA) [74]. The HMDA
is a federal act approved in 1975 which requires mortgage lenders to keep records of
information regarding their lending practices to create greater transparency and bor-
rower protections in the residential mortgage market (https://www.ffiec.gov/hmda/
accessed on 10 April 2023). The downstream task is to predict whether the loan appli-
cation is approved. We used ethnicity, race, and gender as protected attributes, where
ethnicity and gender were coded as binary. The race attribute originally had five val-
ues such as “American-Indian/Alaska-Native,” “Asian,” “Black/African-American,”
“Native-Hawaiian or Other Pacific-Islander,” and “White.” we merged “American-
Indian/Alaska-Native,” “Asian,” and “Native-Hawaiian or Other Pacific-Islander” to
the same category as “other” since all three contained very few instances. Note that we
filtered out individuals who did not declare information, i.e., incomplete or missing,
related to the protected and/or other attributes. After pre-processing, the HMDA
data consist of 30 attributes regarding loan type, property type, loan purpose, etc., for
2.33 M individuals.

10.2. Fair Learning Algorithms

The goals of our experiments were to demonstrate the practicality of our batch dif-
ferential fair (BDF) and stochastic differential fair (SDF) classifiers in learning intersection-
ally fair classifiers and to compare their behavior to baseline methods, especially with
regards to minorities. Instead of Kearns et al. [17]’s algorithm, we trained subgroup
fair classifiers as batch (BSF) and stochastic (SSF) methods using the same approach in
Algorithms 1 and 3, respectively, replacing ε with γ in Equation (23), i.e., RDWB(γ) =

max(0, γMWB (x) − γ1), and Equation (24), i.e., RDm
WS(γ) = max(0, γMWS (x) − γ1), respec-

tively. This simplifies and speeds up learning to handle deep neural networks used in our
experiments. We also compare the models with a demographic parity-based p%-Rule [75]
classifier baseline, which generalizes the 80% rule to measure disparate impact toward
one protected group. Since demographic parity, by definition, assumes binary protected
attributes, we select the most marginalized bottom-level group as the protected group
(black women non-USA for Adult, black women for COMPAS, women with age ≥ 85 for HHP,
and black hispanic women for HMDA), compared to its complement. A logistic regression
or SVM-based algorithm subject to p%-Rule constraint was proposed by Zafar et al. [75],
but the performance of their algorithm was very poor compared to our deep learning-based
approach. Therefore, we implemented batch p%-Rule classifier (BPR) and stochastic p%-Rule
classifier (SPR) using our DNN-based Algorithms 1 and 3, respectively. Since higher is
better for p%-Rule, we modified Equation (23) as RDWB(p%) = max(0, p%1 − p%MWB (x)),

and Equation (24) as RDm
WS(p%) = max(0, p%1 − p%MWS (x)) for BPR and SPR, respectively.

We also considered deep learning-based typical classifiers in batch (BT) and stochastic (ST)
methods that do not incorporate any fairness interventions with their objective functions.
The summary of learning algorithms is given in Table 2.

Table 2. Summary of learning algorithms.

Abbreviation Definition Description

BT Batch Typical (vanilla) model Train deep learning classifier with batch method without any fairness interventions
BPR Batch p%-Rule model Train deep learning classifier with batch method that enforces p%-Rule criteria
BSF Batch Subgroup Fair model Train deep learning classifier with batch method that enforces γ-SF criteria
BDF Batch Differential Fair model Train deep learning classifier with batch method that enforces proposed ε-DF criteria
ST Stochastic Typical (vanilla) model Train deep learning classifier with stochastic method without any fairness interventions
SPR Stochastic p%-Rule model Train deep learning classifier with stochastic method that enforces p%-Rule criteria
SSF Stochastic Subgroup Fair model Train deep learning classifier with stochastic method that enforces γ-SF criteria
SDF Stochastic Differential Fair model Train deep learning classifier with stochastic method that enforces proposed ε-DF criteria

https://www.ffiec.gov/hmda/
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10.2.1. Experimental Settings

All classifiers were trained on a common neural network architecture via adaptive gra-
dient descent optimization (Adam) with learning rate = 0.001 using PyTorch [76]. The con-
figuration of the network was 3 hidden layers, 16 neurons in each layer with drop out
probability 0.5, “relu” and “sigmoid” activations for the hidden and output layers, re-
spectively. For all batch fair methods, we trained for 500 iterations, disabling the fairness
penalties for an additional 50 “burn-in” iterations. For all stochastic fair methods, we
trained for 5 epochs with an additional “burn-in” epoch for the large-scale HMDA dataset,
while 100 epochs + 5 “burn-in” epochs were used for the other datasets. Note that we did
not use any “burn-in” period for the typical models (both BT and ST), since a warm start is
redundant here due to the absence of fairness interventions.

We split the COMPAS dataset into 60% train, 20% development, and 20% test set.
For Adult, we used the pre-specified test set and held out 30% from the training data as the
development set. We held out 10% and 5% from the HHP and HMDA datasets, respectively,
as the test set, using the remainder for training. We further held out 10% and 5% from the
HHP and HMDA training sets, respectively, as the development set for each dataset. Since
HMDA is a very large dataset, it was not feasible in terms of runtime and memory to train
the models in batch setting for the entime HMDA training set. Therefore, we trained the
batch models on HMDA by randomly taking a subset with 10% of the HMDA training set.

We learned fair classifiers in several settings; we set the target thresholds (1) to perfect
fairness in terms of the corresponding fairness metric, ε1 = 0.0, γ1 = 0.0, p%1 = 100.0% for
DF-Classifiers (BDF and SDF), SF-Classifiers (BSF and SSF), and p%-Rule classifiers (BPR
and SPR), respectively, and (2) to penalize bias amplification by the algorithm, by setting
the thresholds to ε1 = εdata and γ1 = γdata for DF-Classifiers and SF-Classifiers, respectively.
Finally, to protect the 80% rule, we set ε1 = − log 0.8 = 0.2231 for DF-Classifiers. Since there
is no straightforward way to enforce the 80% rule for SF-Classifier, it was not considered
in this analysis. To evaluate the predictive performance of the classifiers, we compute
Accuracy, F1 score, and ROC AUC for the held-out data. Finally, we compute ε-DF, γ-SF,
p%-Rule, bias amplification on held-out data (using Equation (8)) to evaluate the classifiers in
terms of fairness.

10.2.2. Fairness and Accuracy Trade-Off

Fair learning algorithms divert the learning objective from accuracy only to both accu-
racy and fairness, which may hurt the predictive performance of the models. The tuning
parameter λ allows the stakeholders to balance between fairness and accuracy. We chose
λ for all fair learning algorithms via rigorous grid search on the development set based
on a pre-defined rule: select λ that provides the fairest (under the corresponding fairness metric,
e.g., ε for DF-Classifiers, γ for SF-Classifiers) model on the development set, allowing up to 5%
degradation in accuracy from the typical classifier. Since fairness is a multi-stakeholder issue,
the amount of slack tolerance on the accuracy can be amended based on the stakeholders’
preferences when deploying these methods in practice.

In Figure 8, we show the impact of the tuning parameter λ on the accuracy and
corresponding fairness metric for the SDF and SSF classifiers on the development set
of Adult and HHP datasets. Black circles in the plots represent the SDF or SSF model
corresponding to different λ values (larger to smaller from left to right), while red square is
the stochastic typical classifier (ST) (no fairness interventions in the objective). Larger λ
incorporated with the corresponding fairness penalty for the SDF or SSF model allows us
to achieve more fairness, but with greater loss in predictive performance, while smaller
λ has the opposite impact on the models’ output. So, λ needs to be chosen as a trade-
off between accuracy and fairness. Parallel dotted lines represent the valid region of 5%
degraded accuracy from the ST model, and green asterisk is the fairest SDF or SSF model,
in terms of their corresponding fairness metric, within the valid region for a particular λ
value. According to our pre-defined rule, these λ values (green arrow) are then selected for
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SDF and SSF models. The trade-off between fairness and accuracy was similar for other
datasets and is provided in the Appendix A (see Figure A1).

(a) Adult

(b) HHP

Figure 8. Fairness and accuracy trade-off plots for stochastic DF (SDF) and SF (SSF) models on the
development set of (a) Adult and (b) HHP datasets. Red square: stochastic typical (ST) classifier that
does not incorporate fairness penalty in the objective; dotted lines: indicate the valid region of 5%
degraded accuracy from ST; black circles: fair models (SDF or SSF) correspond to different λ values
(larger to smaller from left to right); green asterisk: fairest model within the valid region for a particular
λ value.

10.2.3. Comparative Analysis for Batch and Stochastic Methods

In this experiment, we compare the accuracy and fairness for the batch and stochastic
fair models (DF-Classifiers and SF-Classifiers) in terms of the training algorithm’s runtime.
Stochastic fair models are scalable to very large data due their minibatch setting. For exam-
ple, we trained the stochastic models on the entire HMDA training data (largest dataset
in our study) without any additional complexity, while the batch models were trained on
a small subset of the HMDA training data due to extremely high memory requirements
and runtime. The purpose of this analysis is to show that the noisy updates used to train
stochastic fair models do not introduce any additional harm to the accuracy or fairness of
the models as we estimate the fairness penalty using noisy updates of the empirical counts
(see Equations (26) and (27)).

Figure 9 shows ε-DF and accuracy in terms of runtime for the BDF and SDF models
on the development set of Adult and HHP datasets. The red X indicates the end of burn-in
iterations and burn-in epochs for the BDF and SDF models, respectively. Recall that, in the
case of these two datasets, we disabled the fairness penalty for 50 burn-in iterations and
5 burn-in epochs in the training process of BDF and SDF models, respectively. In the SDF
model, the burn-in epochs were enough to obtain a model that shows similar performance
to the typical model (high accuracy and high ε-DF), while the model started declining in
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accuracy and improving ε-DF (lower is better) after burn-in due to the fairness interventions
in the objective. Due to the fewer burn-in iterations in the training of the BDF model, we
found that the model performed with relatively lower accuracy and less extreme ε-DF, since
the predicted probability of the outcomes across protected groups were approximately
similar. After burn-in, the BDF model improved the predictive performance and also
maintained a low ε-DF from imposing the fairness penalty in the objective. Note that λ was
pre-selected based on our pre-defined rule, as discussed in Section 10.2.2. Since both the
BDF and SDF models were constrained to comply with the pre-defined rule for λ selection,
after a certain period of runtime, both models converged to approximately similar solutions
for both datasets (Adult in Figure 9a and HHP in Figure 9b) in terms of ε-DF and accuracy.
We show a similar trend in Figure 10 for BSF and SSF models by comparing the γ-SF and
accuracy with respect to the runtime. We conclude that stochastic models do not cause any
additional harm to the model’s fairness or predictive performance comparing to the batch
methods. See the appendix for similar results with the other datasets (Figures A2 and A3).

(a) Adult

(b) HHP

Figure 9. Comparison of ε-DF and accuracy in terms of runtime for the batch differential fair (BDF)
and stochastic differential fair (SDF) models on the development set of (a) Adult and (b) HHP datasets.
Red X: end of burn-in (disabling the fairness interventions) iterations and epochs for the BDF and
SDF models, respectively.
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(a) Adult

(b) HHP

Figure 10. Comparison of γ-SF and accuracy in terms of runtime for the batch subgroup fair (BSF)
and stochastic subgroup fair (SSF) models on the development set of (a) Adult and (b) HHP datasets.
Red X: end of burn-in (disabling the fairness interventions) iterations and epochs for the BSF and SSF
models, respectively.

10.2.4. Performance for Fair Classifiers

In this experiment, we evaluate the accuracy-based performance and fairness metrics
for batch and stochastic classifiers on the unseen test set of all datasets. Table 3 compares
the batch methods on the Adult and COMPAS datasets. Both the BDF and BSF classifiers
were able to substantially improve their fairness metrics over the BPR and BT classifiers,
with modest costs in accuracy, F1 score, and ROC AUC, and the trade-off varied roughly
monotonically in the target value ε1 or γ1. The BDF model with ε1 = 0 improved from
ε = 0.743 to ε = 0.205 on COMPAS data without any loss in accuracy, while also improving
all other fairness metrics substantially. Surprisingly, BDF (and also the BPR classifier)
slightly improved accuracy on this data compared to BT. This counter-intuitive result is
presumably due to the regularization behavior of the fairness penalty on the objective,
which can sometimes lead fair models to reduce overfitting to some degree compared to the
typical model, a phenomenon which we observed in our previous work on the equitable
allocation of healthcare resources [12]. On Adult, it improved from ε = 1.591 to ε = 0.305,
corresponding to a worst-case difference in utility between groups of a factor of eε ≈ 1.4
(Equation (19)), with a loss of 3.6 percentage points in accuracy. In terms of γ and p%-Rule,
the BSF model with γ1 = 0 showed the highest improvement on the Adult data.
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Table 3. Comparison of batch differential fair (BDF), batch subgroup fair (BSF), batch p%-Rule (BPR),
and batch typical (BT) classifiers on the test set of COMPAS and Adult datasets (ε1 = 0.2231 is the
80% rule). Higher is better for measures with ↑; lower is better for measures with ↓.

COMPAS Dataset

Models BDF-Classifier BSF-Classifier BPR-Classifier BT-Classifier
ε1 = 0.0 ε1 = 0.2231 ε1 = εdata γ1 = 0.0 γ1 = γdata

Tuning Parameter λ 0.800 5.000 50.000 25.000 100.000 0.010 X

Performance Measures
Accuracy ↑ 0.672 0.674 0.665 0.660 0.667 0.674 0.671
F1 Score ↑ 0.560 0.580 0.580 0.560 0.580 0.620 0.630
ROC AUC ↑ 0.700 0.698 0.687 0.701 0.701 0.700 0.686

Fairness Measures

ε-DF ↓ 0.205 0.252 0.308 0.249 0.303 0.630 0.743
γ-SF ↓ 0.003 0.016 0.019 0.003 0.012 0.035 0.034
p%-Rule ↑ 66.027 65.278 64.276 63.853 62.296 63.096 60.062
Bias Amp-DF ↓ −0.333 −0.286 −0.230 −0.289 −0.235 0.092 0.205
Bias Amp-SF ↓ −0.017 −0.004 −0.001 −0.017 −0.008 0.015 0.014

Adult Dataset

Models BDF-Classifier BSF-Classifier BPR-Classifier BT-Classifier
ε1 = 0.0 ε1 = 0.2231 ε1 = εdata γ1 = 0.0 γ1 = γdata

Tuning Parameter λ 0.100 0.100 10.000 10.000 25.000 0.001 X

Performance Measures
Accuracy ↑ 0.795 0.802 0.802 0.798 0.818 0.827 0.831
F1 Score ↑ 0.380 0.440 0.420 0.420 0.500 0.580 0.600
ROC AUC ↑ 0.836 0.847 0.860 0.835 0.876 0.876 0.883

Fairness Measures

ε-DF ↓ 0.305 0.442 1.194 0.733 1.355 1.362 1.591
γ-SF ↓ 0.007 0.011 0.031 0.001 0.030 0.033 0.042
p%-Rule ↑ 55.590 54.855 46.988 58.112 47.128 54.071 45.019
Bias Amp-DF ↓ −1.075 −0.938 −0.186 −0.647 −0.025 −0.018 0.211
Bias Amp-SF ↓ −0.026 −0.022 −0.002 −0.032 −0.003 0.000 0.009

We found a similar trend in performance for stochastic methods. Table 4 compares
the accuracy and fairness measures for the stochastic methods on the HHP and HMDA
datasets. Similar to batch methods, SDF and SSF substantially improve fairness over the
SPR and ST classifiers with modest costs in accuracy-based measures. On the HHP dataset,
the SDF method with ε1 = 0 improved from ε = 1.791 to ε = 0.21, corresponding to a
worst-case difference in utility between groups of a factor of eε ≈ 1.2, with an accuracy loss
of 4.2 percentage points. SDF also showed the best improvement on this dataset in terms
of γ (improved from γ = 0.022 to γ = 0.004). In the case of HMDA, it improved from
ε = 0.673 to ε = 0.24 with a loss of 4.4 percentage points in accuracy. When BDF and SDF
were trained to protect the 80% rule (i.e., ε1 = 0.2231) or to prevent bias amplification (i.e.,
ε1 = εdata), the fairness metrics were improved with relatively little reduction in accuracy.

Our overall conclusions from Tables 3 and 4 are as follows: the DF-Classifiers (BDF
and SDF) typically had comparable accuracy under the same settings compared to the SF-
Classifiers (BSF and SSF) and p%-Rule Classifiers (BPR and SPR), while the DF-Classifiers
often greatly improved γ-SF and p%-Rule, but the SF- and p%-Rule Classifiers had
modest improvements, or even increases, in ε-DF.

An important goal of this work was to address fairness for minority groups. In
Figures 11 and 12, we report the “per-group fairness”, defined as Equation (3) (γ-SF) and
Equation (2) (ε-DF) with the group held fixed, versus the group’s probability (i.e., size)
for batch and stochastic models, respectively. Both the DF-Classifiers and SF-Classifiers
generally improved their corresponding unfairness per group over the Typical-Classifiers
(BT or ST). On the other hand, similar to Figure 4, the γ-SF metric assigns the highest per-
group γ-SF values, which determines overall fairness, to large groups, so minority groups
were not able to influence the overall γ-SF. For example, overall γ-SF is determined by a
top-level group (red “X") for BSF on both Adult and COMPAS datasets and SSF on both
HHP and HMDA datasets. This was not the case for the ε-DF metric, where groups of
various sizes had similarly high per-group ε-DF values. For example, the overall ε-DF is



Entropy 2023, 25, 660 32 of 44

determined by an intersectional subgroup (blue “X") regardless of the subgroup’s size for
both the BDF and SDF models on all the example datasets. Furthermore, the DF-Classifiers
improved the per-group fairness under both metrics for groups of all sizes, while the
SF-classifiers made per-group γ-SF and ε-DF worse for very small groups. Our overall
conclusion is that the DF-Classifiers are able to achieve intersectionally fair classification with
minor loss in performance, while providing greater protection to minority groups than when
enforcing SF. Similar experimental results on the other datasets are provided in Appendix A
(see Tables A1 and A2 and Figures A4 and A5).

Table 4. Comparison of stochastic differential fair (SDF), stochastic subgroup fair (SSF), stochastic
p%-Rule (SPR), and stochastic typical (ST) classifiers on the test set of HHP and HMDA datasets
(ε1 = 0.2231 is the 80% rule). Higher is better for measures with ↑; lower is better for measures with ↓.

HHP Dataset

Models SDF-Classifier SSF-Classifier SPR-Classifier ST-Classifier
ε1 = 0.0 ε1 = 0.2231 ε1 = εdata γ1 = 0.0 γ1 = γdata

Tuning Parameter λ 0.900 0.900 1000.000 100.000 500.000 0.100 X

Performance Measures
Accuracy ↑ 0.801 0.801 0.832 0.813 0.829 0.818 0.843
F1 Score ↑ 0.580 0.580 0.680 0.620 0.660 0.650 0.720
ROC AUC ↑ 0.796 0.803 0.859 0.870 0.887 0.873 0.895

Fairness Measures

ε-DF ↓ 0.210 0.229 0.762 1.164 1.444 1.688 1.791
γ-SF ↓ 0.004 0.005 0.013 0.007 0.010 0.022 0.022
p%-Rule ↑ 61.507 61.292 56.183 53.678 51.169 61.720 49.860
Bias Amp-DF ↓ −1.250 −1.231 −0.698 −0.296 −0.016 0.228 0.331
Bias Amp-SF ↓ −0.009 −0.008 0.000 −0.006 −0.003 0.009 0.009

HMDA Dataset

Models SDF-Classifier SSF-Classifier SPR-Classifier ST-Classifier
ε1 = 0.0 ε1 = 0.2231 ε1 = εdata γ1 = 0.0 γ1 = γdata

Tuning Parameter λ 0.600 0.600 1.000 50.000 1000.000 0.010 X

Performance Measures
Accuracy ↑ 0.819 0.821 0.848 0.851 0.858 0.858 0.863
F1 Score ↑ 0.890 0.890 0.900 0.900 0.910 0.910 0.910
ROC AUC ↑ 0.903 0.903 0.917 0.921 0.927 0.926 0.931

Fairness Measures

ε-DF ↓ 0.240 0.296 0.417 0.436 0.549 0.554 0.673
γ-SF ↓ 0.004 0.005 0.007 0.002 0.005 0.008 0.011
p%-Rule ↑ 71.018 69.938 66.822 70.260 64.643 71.256 62.045
Bias Amp-DF ↓ −0.421 −0.365 −0.244 −0.225 −0.112 −0.107 0.012
Bias Amp-SF ↓ −0.005 −0.004 −0.002 −0.007 −0.004 −0.001 0.002

10.3. Inequity of Fairness Measures

We have seen that the γ-SF metric downweights the consideration of minorities
(cf. Figures 4, 11 and 12). In this experiment, we quantify the resulting inequity of
fairness consideration using the Gini coefficient [77], a commonly used measure of statistical
dispersion which is often used to represent the inequity of income. We calculate the Gini
coefficient G of a fairness metric F as

G =
1

2µ

n

∑
i=1

n

∑
j=1

P(si)P(sj)|Fsi − Fsj | , (30)

where µ = ∑n
i=1 Fsi P(si) and P(si) is the fraction of population belonging to the ith inter-

sectional group, while Fsi represents the fairness measure (i.e., per-group ε or γ) of that
group. For a fixed algorithm and data distribution, a fairness metric with a smaller Gini
coefficient distributes its (un)fairness consideration more equitably across the population,
which is typically desirable.
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(a) COMPAS

(b) Adult

Figure 11. Per-group measurements of ε-DF and γ-SF for the batch differential fair (BDF), batch
subgroup fair (BSF), batch p%-Rule (BPR), and batch typical (BT) classifiers vs. group size (proba-
bility), (a) COMPAS and (b) Adult datasets, calculated using Equation (3) (γ-SF) and Equation (2)
(ε-DF) with the group held fixed. Circles: intersectional subgroups. Squares: top-level groups. Fitted
least squares line demonstrates the overall trend between fairness measures and group size. Largest
per-group ε-DF and γ-SF, indicated using “X", determines the overall ε-DF and γ-SF, respectively.

Table 5 shows a comparison of G values for the ε-DF and γ-SF metrics on all datasets.
Both fairness metrics are measured for the labeled dataset (i.e., εData) as well as for a logistic
regression (LR) classifier (i.e., εLR) trained on the same dataset. In all the experiments, the G
value for ε-DF is much lower compared to γ-SF’s G value. Thus, ε-DF was observed to
provide a more equitable distribution of its per-group fairness measurements, presumably
due to its more inclusive treatment of minority groups.

Table 5. Comparison of the inequity in the per-group allocation of the ε-DF and γ-SF metrics via the
Gini coefficient.

Gini Coefficient (G)
Dataset G(εData) G(γData) G(εLR) G(γLR)
COMPAS 0.151 0.376 0.135 0.343
Adult 0.099 0.256 0.126 0.257
HHP 0.113 0.311 0.105 0.305
HMDA 0.073 0.423 0.094 0.358
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(a) HHP

(b) HMDA

Figure 12. Per-group measurements of ε-DF and γ-SF for the stochastic differential fair (SDF),
stochastic subgroup fair (SSF), stochastic p%-Rule (SPR), and stochastic typical (ST) classifiers vs.
group size (probability), (a) HHP and (b) HMDA datasets, calculated using Equation (3) (γ-SF) and
Equation (2) (ε-DF) with the group held fixed. Circles: intersectional subgroups. Squares: top-level
groups. Fitted least squares line demonstrates the overall trend between fairness measures and group
size. Largest per-group ε-DF and γ-SF, indicated using “X", determines the overall ε-DF and γ-SF,
respectively.

10.4. Evaluation of Intersectionality Property

In our final experiment (Table 6), we studied the ability of γ-SF to preserve the inter-
sectionality property shown for ε-DF in Theorem 2, by measuring fairness with different
sets of protected attributes on all datasets.

Table 6. Protection of intersectionality property (Theorem 2). The cases in red are where γ-SF violates
the intersectionality property enjoyed by ε-DF. Note that ε-DF and γ-SF are in different scales, so
their values are not comparable. The purpose of this experiment is not to compare the values for
ε-DF and γ-SF, but rather to empirically verify whether they respect the intersectionality property.

COMPAS Dataset HHP Dataset
Protected Attributes ε-DF γ-SF Protected Attributes ε-DF γ-SF
race 0.1003 0.0070 gender 0.0505 0.0039
gender 0.9255 0.0656 age 2.0724 0.0469
race, gender 1.3156 0.0604 gender, age 2.2505 0.0241

Adult Dataset HMDA Dataset
Protected Attributes ε-DF γ-SF Protected Attributes ε-DF γ-SF
nationality 0.2177 0.0045 ethnicity 0.1846 0.0056
race 0.9188 0.0128 race 0.6067 0.0126
gender 1.0266 0.0434 gender 0.1702 0.0088
gender, nationality 1.1511 0.0431 gender, ethnicity 0.3221 0.0118
race, nationality 1.1534 0.0163 race, ethnicity 0.6911 0.0167
race, gender 1.7511 0.0451 race, gender 0.6855 0.0137
race, gender, nationality 1.9751 0.0455 race, gender, ethnicity 0.8498 0.0163
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The property is violated if removing a protected attribute increases the metric. As ex-
pected, ε-DF obeyed the intersectionality property for all datasets, but γ-SF violated it as γ
for gender > γ for race × gender (COMPAS); γ for gender > γ for gender × nationality (Adult);
γ for age > gender × age (HHP); and γ for race × ethnicity > γ for race × gender × ethnicity
(HMDA).

11. Discussion

In this work, we introduced fairness measures for AI/ML algorithms and data with
regard to multiple protected attributes. Our proposed differential fairness (DF) metrics are
informed by the framework of intersectionality, which analyzes how interlocking systems
of power and oppression affect individuals along overlapping dimensions including race,
gender, sexual orientation, class, and disability. DF has a particularly elegant intersection-
ality property that protects higher-level groups (e.g., women) automatically by protecting
intersectional subgroups (Black women). There are several other attractive properties of our
formalism and we provided proofs for the privacy, economic, and generalization properties.
DF is lightweight, in that it does not require the specification or estimation of a causal
model [54] or a latent model of risk distributions [43]. It is nevertheless able to make use
of a probabilistic model of the data, when available, but does not require one. While no
fairness definition is suitable in all contexts, due to these properties we recommend the use
of differential fairness when an intersectional measure of fairness is appropriate.

It has been recently shown that many fairness notions can be captured for fair classifica-
tions as a combination of equality constraints between protected groups using Lagrangian
dual approaches [78–80]. However, these methods were developed to enforce group fair-
ness notions and cannot be directly adapted to learn fairness in an intersectional context,
especially for learning in stochastic settings, due to the data sparsity of multi-dimensional
protected attributes. We developed simple and practical learning algorithms which enforce
DF, thereby ensuring fairness in a manner which behaves sensibly for any subset of the set
of protected attributes. Our experimental results on multiple benchmark datasets demon-
strate that the proposed algorithms substantially improve DF metrics over the baseline
models, with modest costs in accuracy. Furthermore, unlike the baseline models, our
algorithms often greatly improve other group-level (p%-Rule) and subgroup-level (SF)
fairness metrics. Finally, we showed that our DF metric-based methods are able to achieve
intersectionally fair classification with little loss in predictive performance, while providing
greater protection to minority groups (in terms of population size per group) compared to
SF metric-based methods.

However, the measurement of fairness becomes statistically challenging in the inter-
sectional setting due to data sparsity, which increases rapidly in the number of dimensions
(e.g., gender, race, age, etc.), and in the values per dimension (e.g., race attributes may include
black, white, asian, etc.). In this paper, we addressed this by developing a learning algorithm
for the reliable and stochastic approximation-based estimation of intersectional fairness
penalty, incorporated with the objective function of deep neural networks. In our previous
work [56], we proposed using hierarchical Bayesian probabilistic modeling to manage
uncertainty of the intersectional fairness measures via MCMC or variational inference. It
would be interesting to extend our approach to use this fully Bayesian uncertainty esti-
mation strategy during training, although it would be costly to compute and differentiate
MCMC samples or a variational posterior per minibatch for deep learning-based methods
trained via stochastic gradient descent.

In other future work, differential privacy has been extended and generalized in various
ways, including notably its generalization to Rényi differential privacy [21]. It would be
interesting to investigate analogous generalizations for differential fairness. Another
potential extension of the definition which is important for applications is a version that
protects error rates as opposed to outcomes, following [8].

More generally, an important aspect of this work is to integrate research on fairness and
bias issues in our society from disciplines such as the humanities, social science, and law,
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in our case regarding intersectionality, with technical methods for fair AI/machine learning.
AI fairness is not a purely technical issue, and hence the field of computer science cannot
solve it alone. There is an urgent need for more research on interdisciplinary approaches
and perspectives on AI fairness, and this work is one small step in that direction. A special
issue on this topic recently published in the IEEE Data Engineering Bulletin, edited by two
of the authors of this paper, also aims to promote this emerging direction of research [81].

12. Conclusions

In this research we took an interdisciplinary approach to fairness in AI and machine
learning systems by developing technical methods to implement intersectionality, a per-
spective on fairness and bias arising from the humanities, law, and the social sciences
disciplines. We introduced three AI fairness definitions satisfying intersectional fairness
desiderata, differential fairness and its bias amplification and confounder-aware counterparts,
and proved their attractive properties regarding law, privacy, economics, and statistical
learning. Our theoretical results show that differential fairness operationalizes fairness
in a meaningful and interpretable way, as it quantifies the potential real-world economic
and privacy harms due to the algorithm. We developed learning algorithms to enforce
our criteria. We further addressed the data sparsity problem of intersectional fairness
estimation which arises in SGD minibatches, using a novel intersectionally fair stochastic
learning algorithm. In extensive experiments, we showed that our criteria can be practi-
cally attained, and that they behave more equitably with regard to minority groups than
subgroup fairness. Going forward, we argue that it is essential to deeply integrate research
from the humanities and social science on fairness and bias issues with work from the field
of computer science, in order to holistically address both the human and algorithmic sides
of the AI fairness equation. This work is a step in that direction, but much more remains to
be done.
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Appendix A. Additional Experimental Results

Appendix A.1. Fairness and Accuracy Trade-Off

We report in Figure A1 additional results for the rest of the datasets (COMPAS and
HMDA), for our experiment in Section 10.2.2, regarding fairness and accuracy trade-off.
The results validate the conclusions drawn in Section 10.2.2. For the COMPAS dataset,
note that we found a noisy relation between fairness and accuracy, presumably due to the
unstable prediction by the deep neural network on this small dataset. Therefore, Pareto
frontier is used to show the impact of λ on the fair models (Figure A1a).

(a) COMPAS

(b) HMDA

Figure A1. Fairness and accuracy trade-off plots for stochastic DF (SDF) and SF (SSF) models on the
development set of (a) COMPAS and (b) HMDA datasets. Red square: stochastic typical (ST) classifier
that does not incorporate fairness penalty in the objective; dotted lines: indicate the valid region of 5%
degraded accuracy from ST; black circles: fair models (SDF or SSF) correspond to different λ values
(larger to smaller from left to right); green asterisk: fairest model within the valid region for a particular
λ value.

Appendix A.2. Comparative Analysis for Batch and Stochastic Methods

We report the additional results for rest of the datasets regarding the experiment of
comparative analysis in Section 10.2.3 between batch and stochastic fair models. Figure A2
compares the computed ε-DF and accuracy for the BDF and SDF models, and Figure A3
compares γ-SF and accuracy for the BSF and SSF models in terms of runtime on the
development set of COMPAS and HMDA. Our conclusion for this experiment remains
the same: that the stochastic fair models do not cause any additional harm to the model’s
fairness or predictive performance due to the noisy estimation of fairness metrics for
intersectional groups in minibatches during training. Note that it was not feasible to train
the models in batch setting for the very large HMDA training data. So, we randomly took a
subset with 10% of the whole HMDA training data to train the batch methods.
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(a) COMPAS

(b) HMDA

0  5,000 10,000 15,000  0  5,000 10,000 15,000

Figure A2. Comparison of ε-DF and accuracy in terms of runtime for the batch differential fair (BDF)
and stochastic differential fair (SDF) models on the development set of (a) COMPAS and (b) HMDA
datasets. Red X: end of burn-in (disabling the fairness interventions) iterations and epochs for the
BDF and SDF models, respectively.

(a) COMPAS

(b) HMDA

0 5,000 15,000 0 10,000 15,000 10,000   5,000

Figure A3. Comparison of γ-SF and accuracy in terms of runtime for the batch subgroup fair (BSF)
and stochastic subgroup fair (SSF) models on the development set of (a) COMPAS and (b) HMDA
datasets. Red X: end of burn-in (disabling the fairness interventions) iterations and epochs for the
BSF and SSF models, respectively.
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Appendix A.3. Performance for Fair Classifiers

In this additional experiment, we again compare the batch and stochastic classifiers
on the test set for the rest of the datasets to complement the experiment in Section 10.2.4.

In Table A1, we compare the batch methods on the HHP and HMDA test sets, respec-
tively. Both BDF and BSF classifiers were found to substantially improve fairness over the
BPR and BT classifiers, however with modest decrements in accuracy, F1 score, and ROC
AUC. For the HHP dataset, the BDF with ε1 = 0 improved from ε = 1.654 to ε = 0.215
with a sacrifice of 4.7 percentage points in accuracy. Similar to HMDA, it improved from
ε = 0.553 to ε = 0.242, while it decreased the accuracy by 4.9. BDF performed as the best
fair model in terms of both ε-DF and γ-SF on these datasets.

Stochastic fair models also showed similar trends in the performance on the COMPAS
and Adult test data (Table A2). On COMPAS, SDF with ε1 = 0 performed again as the best
fair model in terms of both ε-DF and γ-SF with an accuracy loss of 1.2 percentage points,
while it improved from ε = 1.446 to ε = 0.104, with 2.9 percentage points of decrease in
accuracy, on Adult data. When SDF trained to prevent bias amplification (i.e., ε1 = εdata),
there were modest improvements in the fairness metrics with relatively little reduction
in accuracy.

The performance analysis of fair models (Tables A1 and A2) points to the same
conclusion of Section 10.2.4; DF-Classifiers (BDF and SDF) typically had comparable
accuracy under the same settings compared to SF-Classifiers (BSF and SSF) and p%-Rule
Classifiers (BPR and SPR), while DF-Classifiers often greatly improved γ-SF and p%-Rule,
but the SF- and p%-Rule Classifiers had modest improvements, or even increases, in ε-DF.

Table A1. Comparison of batch differential fair (BDF), batch subgroup fair (BSF), batch p%-Rule
(BPR), and batch typical (BT) classifiers on the test set of HHP and HMDA datasets (ε1 = 0.2231 is
the 80% rule). Higher is better for measures with ↑; lower is better for measures with ↓.

HHP Dataset

Models BDF-Classifier BSF-Classifier BPR-Classifier BT-Classifier
ε1 = 0.0 ε1 = 0.2231 ε1 = εdata γ1 = 0.0 γ1 = γdata

Tuning Parameter λ 0.100 0.100 50.000 10.000 70.000 0.010 X

Performance Measures
Accuracy ↑ 0.801 0.810 0.800 0.818 0.835 0.816 0.848
F1 Score ↑ 0.590 0.610 0.650 0.640 0.700 0.660 0.730
ROC AUC ↑ 0.777 0.792 0.848 0.847 0.868 0.842 0.885

Fairness Measures

ε-DF ↓ 0.215 0.277 1.232 0.996 1.594 1.450 1.654
γ-SF ↓ 0.003 0.004 0.017 0.007 0.012 0.021 0.020
p%-Rule ↑ 61.610 60.628 53.809 55.060 50.281 62.128 51.122
Bias Amp-DF ↓ −1.245 −1.183 −0.228 −0.464 0.134 −0.010 0.194
Bias Amp-SF ↓ −0.010 −0.009 0.004 −0.006 −0.001 0.008 0.007

HMDA Dataset

Models BDF-Classifier BSF-Classifier BPR-Classifier BT-Classifier
ε1 = 0.0 ε1 = 0.2231 ε1 = εdata γ1 = 0.0 γ1 = γdata

Tuning Parameter λ 0.070 0.100 1.000 5.000 70.000 0.001 X

Performance Measures
Accuracy ↑ 0.800 0.803 0.856 0.812 0.825 0.839 0.849
F1 Score ↑ 0.870 0.870 0.900 0.880 0.880 0.890 0.900
ROC AUC ↑ 0.888 0.895 0.924 0.898 0.898 0.910 0.916

Fairness Measures

ε-DF ↓ 0.242 0.375 0.605 0.457 0.390 0.537 0.553
γ-SF ↓ 0.001 0.002 0.009 0.001 0.003 0.006 0.008
p%-Rule ↑ 70.528 71.846 65.888 69.342 67.231 71.642 66.122
Bias Amp-DF ↓ −0.419 −0.286 −0.056 −0.204 −0.271 −0.124 −0.108
Bias Amp-SF ↓ −0.008 −0.007 0.000 −0.008 −0.006 −0.003 −0.001

To showcase the impact of our work in addressing fairness for minority groups, we
report again the “per-group fairness” of the classifiers for the rest of the datasets versus
the group’s probability (i.e., size) in Figures A4 and A5. The batch fair models (BDF and
BSF) and the stochastic fair models (SDF and SSF) generally improved their corresponding
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fairness measure per group over the BT and ST models, respectively. However, the minority
groups were not able to influence the overall γ-SF, since the γ-SF metric assigns the highest
per-group γ-SF values to large groups (i.e., top-level group). As an example for the HHP
and HMDA datasets, the overall γ-SF is determined by a top-level group (Red “X") for SSF
classifiers. On the other hand, the overall ε-DF is determined by an intersectional subgroup
(Blue “X") regardless of the subgroup’s size for all the examples in Figures A4 and A5.

(a) HHP

(b) HMDA

Figure A4. Per-group measurements of ε-DF and γ-SF for the batch differential fair (BDF), batch sub-
group fair (BSF), batch p%-Rule (BPR), and batch typical (BT) classifiers vs. group size (probability),
(a) HHP and (b) HMDA datasets, calculated using Equation (3) (γ-SF) and Equation (2) (ε-DF) with
the group held fixed. Circles: intersectional subgroups. Squares: top-level groups. Fitted least squares
line demonstrates the overall trend between fairness measures and group size. Largest per-group
ε-DF and γ-SF, indicated using “X", determines the overall ε-DF and γ-SF, respectively.

Table A2. Comparison of stochastic differential fair (SDF), stochastic subgroup fair (SSF), stochastic
p%-Rule (SPR), and stochastic typical (ST) on the test set of COMPAS and Adult datasets (ε1 = 0.2231
is the 80% rule). Higher is better for measures with ↑; lower is better for measures with ↓.

COMPAS Dataset

Models SDF-Classifier SSF-Classifier SPR-Classifier ST-Classifier
ε1 = 0.0 ε1 = 0.2231 ε1 = εdata γ1 = 0.0 γ1 = γdata

Tuning Parameter λ 1.000 1.000 70.000 10.000 70.000 0.010 X

Performance Measures
Accuracy ↑ 0.671 0.667 0.670 0.660 0.674 0.669 0.683
F1 Score ↑ 0.600 0.600 0.590 0.600 0.600 0.610 0.630
ROC AUC ↑ 0.704 0.698 0.694 0.694 0.703 0.706 0.713

Fairness Measures

ε-DF ↓ 0.176 0.343 0.374 0.313 0.517 0.676 0.888
γ-SF ↓ 0.004 0.014 0.020 0.005 0.012 0.029 0.032
p%-Rule ↑ 63.064 62.953 64.306 61.885 62.727 64.684 61.680
Bias Amp-DF ↓ −0.362 −0.195 −0.164 −0.225 −0.021 0.138 0.350
Bias Amp-SF ↓ −0.016 −0.006 0.000 −0.015 −0.008 0.009 0.012
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Table A2. Cont.

Adult Dataset

Models SDF-Classifier SSF-Classifier SPR-Classifier ST-Classifier
ε1 = 0.0 ε1 = 0.2231 ε1 = εdata γ1 = 0.0 γ1 = γdata

Tuning Parameter λ 1.000 1.000 25.000 100.000 1000.000 0.100 X

Performance Measures
Accuracy ↑ 0.803 0.808 0.810 0.802 0.811 0.815 0.832
F1 Score ↑ 0.390 0.440 0.420 0.410 0.390 0.480 0.600
ROC AUC ↑ 0.821 0.844 0.861 0.843 0.871 0.858 0.885

Fairness Measures

ε-DF ↓ 0.104 0.259 0.648 0.821 1.028 1.268 1.446
γ-SF ↓ 0.003 0.012 0.023 0.002 0.017 0.028 0.042
p%-Rule ↑ 59.896 58.054 52.147 59.036 50.220 59.616 46.052
Bias Amp-DF ↓ −1.276 −1.121 −0.732 −0.559 −0.352 −0.112 0.066
Bias Amp-SF ↓ −0.030 −0.021 −0.010 −0.031 −0.016 −0.555 0.009

(a) COMPAS

(b) Adult

Figure A5. Per-group measurements of ε-DF and γ-SF for the stochastic differential fair (SDF),
stochastic subgroup fair (SSF), stochastic p%-Rule (SPR), and stochastic typical (ST) classifiers vs.
group size (probability), (a) COMPAS and (b) Adult datasets, calculated using Equation (3) (γ-SF) and
Equation (2) (ε-DF) with the group held fixed. Circles: intersectional subgroups. Squares: top-level
groups. Fitted least squares line demonstrates the overall trend between fairness measures and
group size. Largest per-group ε-DF and γ-SF, indicated using “X", determines the overall ε-DF and
γ-SF, respectively.

Our overall conclusion for this experiment remains the same as in Section 10.2.4: DF
metric-based BDF and SDF models are able to achieve intersectionally fair classification with a minor
loss in performance, while providing greater protection to minority groups than when enforcing SF,
such as in BSF and SSF models.
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