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Abstract: We present a simple method to approximate the Fisher–Rao distance between multivariate
normal distributions based on discretizing curves joining normal distributions and approximating
the Fisher–Rao distances between successive nearby normal distributions on the curves by the square
roots of their Jeffreys divergences. We consider experimentally the linear interpolation curves in
the ordinary, natural, and expectation parameterizations of the normal distributions, and compare
these curves with a curve derived from the Calvo and Oller’s isometric embedding of the Fisher–Rao
d-variate normal manifold into the cone of (d + 1)× (d + 1) symmetric positive–definite matrices.
We report on our experiments and assess the quality of our approximation technique by comparing
the numerical approximations with both lower and upper bounds. Finally, we present several
information–geometric properties of Calvo and Oller’s isometric embedding.

Keywords: Fisher–Rao normal manifold; symmetric positive–definite matrix cone; isometric embedding;
information geometry; exponential family; elliptical distribution; maximal invariant

1. Introduction
1.1. The Fisher–Rao Normal Manifold

Let Sym(d) be the set of d× d symmetric matrices with real entries and P(d) ⊂ Sym(d)
denote the set of symmetric positive–definite d× d matrices that forms a convex regular
cone. Let us denote by N (d) = {N(µ, Σ) : (µ, Σ) ∈ Λ(d) = Rd × P(d)} the set of d-
variate normal distributions, MultiVariate Normals or MVNs for short, also called Gaussian
distributions. A MVN distribution N(µ, Σ) has probability density function (pdf) on the
support Rd:

pλ=(µ,Σ)(x) = (2π)
d
2 |Σ|−

1
2 exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
, x ∈ Rd,

where |M| = det(M) denotes the determinant of matrix M.
The statistical model N (d) is of dimension m = dim(Λ(d)) = d + d(d+1)

2 = d(d+3)
2

since it is identifiable, i.e., there is a one-to-one correspondence λ ↔ pλ(x) between
λ ∈ Λ(d) and N(µ, Σ) ∈ N (d). The statistical model N (d) is said to be regular since the

second-order derivatives ∂2 pλ
∂λi∂λj

and third-order derivatives ∂3 pλ
∂λi∂λj∂λk

are smooth functions
(defining the metric and cubic tensors in information geometry [1]), and the set of first-order
partial derivatives

{
∂pλ
∂λ1

, . . . , ∂pλ
∂λ1

}
are linearly independent.

Let Cov(X) denote the covariance of X (variance when X is scalar). A matrix M is a
semi-positive–definite if and only if ∀x 6= 0, x>Mx ≥ 0. The Fisher information matrix [1,2]
(FIM) is the following symmetric semi-positive–definite matrix:

I(λ) = Cov[∇ log pλ(x)] � 0.
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For regular statistical models {pλ}, the FIM is positive–definite: I(λ) � 0, i.e., ∀x 6= 0,
x> I(λ)x > 0. M1 � M2 denotes Löwner partial ordering, i.e., the fact that M1 − M2
is positive–definite.

The FIM is covariant under the reparameterization of the statistical model [2]. That is,
let θ(λ) be a new parameterization of the MVNs. Then we have:

Iθ(λ) =

[
∂λ

∂θ

]>
× Iλ(λ(θ)) ×

[
∂λ

∂θ

]
.

For example, we may parameterize univariate normal distributions by λ = (µ, σ2) or
θ = (µ, σ). We obtain the following Fisher information matrices for these parameterizations:

Iλ(λ(µ, σ)) =

[
1

σ2 0
0 1

2σ4

]
and Iθ(θ(µ, σ)) =

[
1

σ2 0
0 1

2σ2

]
.

In higher dimensions, parameterization λ = (µ, σ2) corresponds to the parameterization
(µ, Σ) while parameterization θ = (µ, L) where Σ = LL> is the unique Cholesky decompo-
sition with L ∈ GL(d), the group of invertible d× d matrices. Another useful parameteri-
zation for optimization is the log–Cholesky parameterization [3] (η = (µ, log σ2) ∈ R2 for
univariate normal distributions) which ensures that a gradient descent always stays in the
domain. The Fisher information matrix with respect to the log–Cholesky parameterization

is Iη(η(µ, σ)) =

[ 1
σ2 0
0 2

]
with η(µ, σ) ∈ R2.

Since the statistical model N (d) is identifiable and regular, the Fisher information
matrix can be written equivalently as follows [2,4]:

I(µ, Σ) = Cov[∇ log p(µ,Σ)] = Ep(µ,Σ)

[
∇ log p(µ,Σ)∇ log p>(µ,Σ)

]
, (1)

= −Ep(µ,Σ)

[
∇2 log p(µ,Σ)

]
. (2)

For multivariate distributions parameterized by a m-dimensional vector (with m = d(d+3)
2 )

θ = (θ1, . . . , θd, θd+1, . . . , θm) ∈ Rm,

with µ = (θ1, . . . , θd) and Σ(θ) = vech(θd+1, . . . , θm) (inverse half-vectorization of matri-
ces [5]), we have [6–9]:

I(θ) = [Iij(θ)], with Iij(θ) =

[
∂µ

∂θi

]>
Σ−1 ∂µ

∂θj
+

1
2

tr

(
Σ−1 ∂µ

∂θi
Σ−1 ∂µ

∂θj

)
.

By equipping the regular statistical model N (d) with the Fisher information metric

gFisher
N (µ, Σ) = Cov[∇ log p(µ,Σ)(x)]

we obtain a Riemannian manifoldM =MN called the Fisher–Rao Gaussian or normal
manifold [6,7]. The tangent space TNM is identified with the product space Rd × Sym(d).
Let {∂µ, ∂Σ} be a natural vector basis in TNM, and denote by [v] and [V] the vector
components in that natural basis. We have

gFisher
(µ,Σ) ((v1, V1), (v2, V2)) = 〈(v1, V1), (v2, V2)〉(µ,Σ),

= [v1]
>Σ−1[v2] +

1
2

tr
(

Σ−1[V1]Σ−1[V2]
)

.

The induced Riemannian geodesic distance ρN (·, ·) is called the Rao distance [10] or
the Fisher–Rao distance [11,12]:
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ρN (N(λ1), N(λ2)) = inf
c(t)

c(0)=pλ1
c(1)=pλ2

{Length(c)}, (3)

where the Riemannian length of any smooth curve c(t) ∈ M is defined by

Length(c) =
∫ 1

0

√
〈ċ(t), ċ(t)〉c(t)dt =

∫ 1

0
dsN (t)dt =

∫ 1

0
‖ċ(t)‖c(t)dt, (4)

where ˙ = d
dt denotes the derivative with respect to parameter t, dsN (t) is the Riemannian

length element of (M, gFisher
N ) and ‖ · ‖c(t) =

√
〈·, ·〉c(t). We also write ρN (pλ1 , pλ2) for

ρN (N(λ1), N(λ2)).
The minimizing curve c(t) = γN (pλ1 , pλ2 ; t) of Equation (3) is called the Fisher–Rao

geodesic. The Fisher–Rao geodesic is also an autoparallel curve [2] with respect to the
Levi–Civita connection ∇Fisher

N induced by the Fisher metric gFisher
N .

Remark 1. If we consider the Riemannian manifold (M, βg) for β > 0 instead of (M, g) then
the length element ds is scaled by

√
β: dsβg = β dsg. It follows that the length of a curve c becomes

Lengthβg(c) =
√

β Lengthg(c).

However, the geodesics joining any two points p1 and p2 of M are the same: γβg(p1, p2; t) =
γg(p1, p2; t) (with γg(p1, p2; 0) = p1 and γg(p1, p2; 1) = p2).

Historically, Hotelling [13] first used this Fisher Riemannian geodesic distance in the
late 1920s. From the viewpoint of information geometry [1], the Fisher metric is the unique
Markov invariant metric up to rescaling [14–16]. The counterpart to the Fisher metric on
the compact manifold has been reported in [17], proving its uniqueness under the action
of the diffeomorphism group. The Fisher–Rao distance has been used to design statistical
hypothesis testing [18–21], to measure the distance between the prior and posterior distri-
butions in Bayesian statistics [22], in clustering [23,24], in signal processing [25–28], and in
deep learning [29], just to mention a few.

The squared line element induced by the Fisher metric of the multivariate normal
family [6,7] is

ds2
N (µ, Σ) =

[
dµ
dΣ

]>
I(µ, Σ)

[
dµ
dΣ

]
, (5)

= dµ>Σ−1dµ +
1
2

tr
((

Σ−1dΣ
)2
)

.

There are many ways to calculate the FIM/length element for multivariate normal
distributions [7,9]. Let us give a simple approach based on the fact that the family N (d) of
normal distributions forms a regular exponential family [30]:

N (d) =
{

pθ(λ) = exp
(
〈θv(µ), x〉+ 〈θM(Σ), xx>〉 − FN (θv, θM)

)}
,

with θ(λ) = (θv = (Σ−1µ, θM = 1
2 Σ−1) the natural parameters and log-partition function

(also called cumulant function)

FN (θ) =
1
2

(
d log π − log |θM|+

1
2

θ>v θ−1
M θv

)
.

The vector inner product is 〈v1, v2〉 = v>1 v2, and the matrix inner product is 〈M1, M2〉 =
tr(M1M>2 ). The exponential family is said to be regular when the natural parameter space



Entropy 2023, 25, 654 4 of 41

is open. Using Equation (2), it follows that the MVN FIM is Iθ(θ) = −E[∇2 log pθ ] =
∇2F(θ). This proves that the FIM is well-defined, i.e., (Iθ(θ))ij < ∞. As an exponential
family [1], we also have Iθ(θ) = E[t(x)], where t(x) = (x, xx>) is the sufficient statistic.
Thus, the Fisher metric is a Hessian metric [31]. Let FN (θv, θM) = Fv(θv) + FM(θM) with
Fv(θv) = 1

2

(
d log π + 1

2 θ>v θ−1
M θv

)
and FM(θM) = − 1

2 log |θM|. We obtain the following
block-diagonal expression of the FIM:

I(θ(λ)) = ∇2FN (θ(µ, Σ)) =

[
Σ−1 0
0 1

2∇2
θM

log | 12 Σ−1|

]
.

Therefore ds2
N (µ, Σ) = ds2

v +ds2
M with ds2

v(µ) = dµ>Σ−1dµ and ds2
M(Σ) = 1

2 tr
((

Σ−1dΣ
)2
)

.

Let us note in passing that ∇2
θM

log |θM| is a fourth order tensor [4].
The familyN (d) can also be considered to be an elliptical family [32], thus highlighting

the affine-invariance property of the Fisher information metric. That is, the Fisher metric
is invariant with respect to affine transformations [33]: Let (a, A) be an element of the
affine group Aff(d) with a ∈ Rd and A ∈ GL(d). The group identity element of Aff(d) is
e = (0, I) and the group operation is (a1, A1).(a2, A2) = (a1 + A1a2, A1 A2) with inverse
(a, A)−1 = (−A−1a, A−1)). Then we have

Property 1 (Fisher–Rao affine invariance). For all A ∈ GL(d), a ∈ Rd, we have

ρN (N(Aµ1 + a, AΣ1 A>), N(Aµ2 + a, AΣ2 A>)) = ρN (N(µ1, Σ1), N(µ2, Σ2)). (6)

This can be proven by checking that dsN (µ′, Σ′) = dsN (µ, Σ) where µ′ = Aµ + a and
Σ′ = AΣ2 A>. It follows that we can reduce the calculation of the Fisher–Rao distance to a
canonical case where one argument is Nstd = N(0, I), the standard d-variate distribution:

ρN (N(µ1, Σ1), N(µ2, Σ2)) = ρN

(
Nstd, N

(
Σ−

1
2

1 (µ2 − µ1), Σ−
1
2

1 Σ2Σ−
1
2

1

))
,

= ρN

(
N
(

Σ−
1
2

2 (µ1 − µ2), Σ−
1
2

2 Σ1Σ−
1
2

2

)
, Nstd

)
,

where Σp is the fractional matrix power which can be calculated from the Singular Value
Decomposition ODO> of Σ (where O is an orthogonal matrix and D = diag(λ1, . . . , λd) a
diagonal matrix): Σp = ODpO> with Dp = diag(λp

1 , . . . , λ
p
d).

The family of normal elliptical distributions can be obtained from the standard normal
distribution by the action of the affine group [12,32] Aff(d):

N(µ, Σ) = (µ, Σ
1
2 ).Nstd = N((µ, Σ

1
2 ).(0, I)).

1.2. Fisher–Rao Distance between Normal Distributions: Some Subfamilies with Closed-Form Formula

In general, the Fisher–Rao distance ρN (N1, N2) between two multivariate normal
distributions N1 and N2 is not known in closed form [34–37], and several lower and upper
bounds [38], and numerical techniques such as the geodesic shooting [39–41] have been
investigated. See [42] for a recent review. Unfortunately, the geodesic shooting (GS) ap-
proach is time-consuming and numerically unstable for large Fisher–Rao distances [21,42].
In 3D Diffusion Tensor Imaging (DTI), 3× 3 covariance matrices Σi,j,k are stored a 3D grid
locations µi,j,k thus generating 3D MVNs Ni,j,k = N(µi,j,k, Σi,j,k) with means µi,j,k regularly
spaced to each others. The Fisher–Rao distances can be calculated between an MVN Ni,j,k
and another MVN Ni′ ,j′ ,k′ in a neighborhood of Ni,j,k (using 6- or 26-neighborhood) using
geodesic shooting. For larger Fisher–Rao distances between non-neighbors MVNs, we can
use the shortest path distance using Dijkstra’s algorithm [43] on the graph induced by the
MVNs with edges between adjacent MVNs weighted by their Fisher–Rao distances.

The two main difficulties with calculating the Fisher–Rao distance are
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1. to know explicitly the expression of the Riemannian Fisher–Rao geodesic
γFR
N (pλ1 , pλ2 ; t) and

2. to integrate, in closed form, the length element dsN along this Riemannian geodesic.

Please note that the Fisher–Rao geodesics [1] γFR
N (pλ1 , pλ2 ; t) are parameterized by

constant speed (i.e., µ̇(t) = µ̇(0) and Σ̇(t) = Σ̇(0)), or equivalently parametrized using the
arc length:

ρN
(

γFR
N (pλ1 , pλ2 ; s), γFR

N (pλ1 , pλ2 ; t)
)
= |s− t| ρN (pλ1 , pλ2), ∀s, t ∈ [0, 1].

However, in several special cases, the Fisher–Rao distance between normal distribu-
tions belonging to restricted subsets of N is known.

Three such prominent cases are (see [42] for other cases)

1. when the normal distributions are univariate (d = 1),
2. when we consider the set Nµ = {N(µ, Σ) : Σ ∈ P(d)} ⊂ MN of normal distribu-

tions sharing the same mean µ (with the embedded submanifold Sµ ∈ M), and
3. when we consider the set NΣ = {N(µ, Σ) : Σ ∈ P(d)} ⊂ N of normal distributions

sharing the same covariance matrix Σ (with the corresponding embedded submanifold
SΣ ∈ M).

Let us report the formula of the Fisher–Rao distance in these three cases:

• In the univariate case N (1), the Fisher–Rao distance between N1 = N(µ1, σ2
1 ) and

N2 = N(µ2, σ2
2 ) can be derived from the hyperbolic distance [44] expressed in the

Poincaré upper space since we have

ds2
N = g(µ,σ)(dµ, dσ) =

dµ2 + 2dσ2

σ2 = 2

(
dµ√

2

)2
+ dσ2

σ2 = 2
dx2 + dy2

y2 = ds2
Poincaré,

where x = µ√
2

and y = σ. It follows that

ρN (N1, N2) =
√

2 ρPoincaré((x1, y1), (x2, y2)) =
√

2 ρPoincaré

((
µ1√

2
, σ1

)
,
(

µ2√
2

, σ2

))
.

Thus, we have the following expression for the Fisher–Rao distance between univariate
normal distributions:

ρN (N1, N2) =
√

2 log
(

1 + ∆(µ1, σ1; µ2, σ2)

1− ∆(µ1, σ1; µ2, σ2)

)
, (7)

with

∆(a, b; c, d) =

√
(c− a)2 + 2(d− b)2

(c− a)2 + 2(d + b)2 , (a, b, c, d) ∈ R4\{0}. (8)

In particular, we have

– ∆(a, b; a, d) =
∣∣∣ d−b

d+b

∣∣∣ when a = c (same mean),

– ∆(a, b; c, b) =
√

1
1+8 b2

(c−a)2

when b = d (same variance),

– ∆(0, 1; c, d) =
√

c2+2(d−1)2

c2+2(d+1)2 when a = 0 and b = 1 (standard normal).

In 1D, the affine-invariance property (Property 1) extends to function ∆ as follows:

∆(µ1, σ1; µ2, σ2) = ∆
(

0, 1;
µ2 − µ1

σ1
,

σ2

σ1

)
= ∆

(
µ1 − µ2

σ2
,

σ1

σ2
; 0, 1

)
.

Using one of the many identities between inverse hyperbolic functions (e.g., arctanh,
arccosh, arcsinh), we can obtain an equivalent formula for Equation (7). For example,
since arctanh(u) := 1

2 log
(

1+u
1−u

)
for 0 < u < 1, we have equivalently:

ρN (N1, N2) = 2
√

2 arctanh(∆(µ1, σ1; µ2, σ2)). (9)
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The Fisher–Rao geodesics are semi-ellipses with centers located on the x-axis. See
Appendix A.1 for the parametric equations of Fisher–Rao geodesics between univariate
normal distributions. Figure 1 displays four univariate normal distributions with their
pairwise geodesics and Fisher–Rao distances.
Using the identity arctanh

(
u2−1
u2+1

)
= arccosh

(
1+u2

2u

)
with arccosh(x) := log(x +

√
x2 − 1), we also have

ρN (N1, N2) = 2
√

2 arccosh

(
1√

(1− ∆(µ1, σ1; µ2, σ2))(1 + ∆(µ1, σ1; µ2, σ2))

)
,

Since the inverse hyperbolic cosecant (CSC) function is defined by arccsch(u) :=
arccosh(1/u), we further obtain

ρN (N1, N2) = 2
√

2 arccsch
(√

(1− ∆(µ1, σ1; µ2, σ2))(1 + ∆(µ1, σ1; µ2, σ2))

)
,

We can also write

ρN (N1, N2) =
√

2 arccosh
(

1 +
(µ2 − µ1)

2 + 2(σ2 − σ1)
2

4σ1σ2

)
Thus, using the many-conversions formula between inverse hyperbolic functions, we
obtain many equivalent different formulas of the Fisher–Rao distance, which are used
in the literature.

• In the second case, the Fisher–Rao distance between N1 = N(µ, Σ1) and N2 = N(µ, Σ2)
has been reported in [6,7,45–47]:

ρNµ
(N1, N2) =

√√√√1
2

d

∑
i=1

log2 λi(Σ−1
1 Σ2), (10)

= ρNµ
(Σ1, Σ2), (11)

where λi(M) denotes the i-th generalized largest eigenvalue of matrix M, where the
generalized eigenvalues are solutions of the equation |Σ1 − λΣ2| = 0. Let us notice
that ρNµ

((µ, Σ1), (µ, Σ2)) = ρNµ
((µ, Σ−1

1 ), (µ, Σ−1
2 )) since λi(Σ−1

2 Σ1) =
1

λi(Σ
−1
1 Σ2)

and

log2 λi(Σ−1
2 Σ1) = (− log λi(Σ−1

1 Σ2))
2 = log2 λi(Σ−1

1 Σ2). Matrix Σ−1
1 Σ2 may not be

SPD and thus the λi’s are generalized eigenvalues. We may consider instead the SPD

matrix Σ−
1
2

1 Σ2Σ−
1
2

1 which is SPD and such that λi(Σ−1
1 Σ2) = λi(Σ

− 1
2

1 Σ2Σ−
1
2

1 ). The
Fisher–Rao distance of Equation (11) can be equivalently written [48] as

ρNµ
(N1, N2) =

1√
2

∥∥∥∥Log
(

Σ−
1
2

1 Σ2Σ−
1
2

1

)∥∥∥∥
F
,

where Log(M) is the matrix logarithm (unique when M is SPD) and ‖M‖F =
√

∑i,j M2
i,j =√

tr(MM>) is the matrix Fröbenius norm. This metric distance between SPD matri-
ces although first studied by Siegel [45] in 1964 was rediscovered and analyzed recently

in [49] (2003). Let ρSPD(P1, P2) =
√

∑d
i=1 log2 λi(P−1

1 P2) so that ρNµ
(N(µ, P1), N(µ, P2)) =

1√
2

ρSPD(P1, P2).
The Riemannian SPD distance ρSPD enjoys the following well-known invariance properties:

– Invariance by congruence transformation:

∀X ∈ GL(d), ρSPD(XP1X>, XP2X>) = ρSPD(P1, P2), (12)

– Invariance by inversion:
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∀P1, P2 ∈ P(d), ρ(P−1
1 , P−1

2 ) = ρSPD(P1, P2).

Let P1 = L1L>1 be the Cholesky decomposition (unique when P1 � 0). Then
apply the congruence invariance for X = L−1

1 :

ρSPD(P1, P2) = ρSPD(L−1
1 P1(L−1

1 )>, L−1
1 P2(L−1

1 )>) = ρSPD(I, L−1
1 P2(L−1

1 )>). (13)

We can also consider the factorization P1 = S1S1 where S1 = P
1
2

1 is the unique
symmetric square root matrix [50]. Then we have

ρSPD(P1, P2) = ρSPD(S−1
1 P1(S−1

1 )>, S−1
1 P2(S−1

1 )>) = ρSPD(I, S−1
1 P2(S−1

1 )>).

• The Fisher–Rao distance between N1 = N(µ1, Σ) and N2 = N(µ2, Σ) has been re-
ported in closed form [42] (Proposition 3). The method is described with full details in
Appendix B. We present a simpler scheme based on the inverse Σ−

1
2 of the symmetric

square root factorization [50] of Σ = Σ
1
2 Σ

1
2 (ith (Σ−

1
2 )> = Σ−

1
2 ). Let us use the affine-

invariance property of the Fisher–Rao distance under the affine transformation Σ−
1
2

and then apply affine invariance under translation as follows:

ρN (N(µ1, Σ), N(µ2, Σ)) = ρN (N(Σ−
1
2 µ1, Σ−

1
2 ΣΣ−

1
2 ), N(Σ−

1
2 µ2, Σ−

1
2 ΣΣ−

1
2 )),

= ρN (N(0, I), N(Σ−
1
2 (µ2 − µ1), I)),

= ρN (N(0, 1), N(‖Σ−
1
2 (µ2 − µ1)‖2, 1)).

The right-hand side Fisher–Rao distance is computed from Equation (7) and justified
by the method [42] (Proposition 3) described in Appendix B using a rotation matrix R
with RR> = I so that

ρN (N(0, I), N(Σ−
1
2 (µ2 − µ1), I)) = ρN (N(0, I), N(RΣ−

1
2 (µ2 − µ1), RIR>)),

= ρN (N(0, I), ‖Σ−
1
2 (µ2 − µ1)‖2, I)).

Then we apply the formula of Equation (23) of [42]. Section 1.5 shall report a simpler
closed-form formula by proving that the Fisher–Rao distance between N(µ1, Σ) and
N(µ2, Σ) is a scalar function of their Mahalanobis distance [51] using the algebraic
method of maximal invariants [52].

Figure 1. Four univariate normal distributions N1 = N(0, 1), N2 = N(3, 1), N3 = N(2, 2.5),
N4 = N(0, 2), and their pairwise full geodesics in gray and geodesics linking them in red. The
Fisher–Rao distances are ρN (N1, N2) = 2.6124 . . ., ρN (N3, N4) = 0.9317 . . ., ρN (N1, N4) = 0.9803 . . .,
ρN (N2, N3) = 1.4225 . . . ρN (N2, N4) = 2.1362 . . ., and ρN (N1, N3) = 1.7334 . . . The ellipses are Tissot
indicatrices, which visualize the metric tensor gFisher

N at grid positions.
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1.3. Fisher–Rao Distance: Totally versus Non-Totally Geodesic Submanifolds

Consider N ′ = {N(λ) : λ′ ∈ Λ′} ⊂ N a statistical submodel of the MVN statistical
model N . Using the Fisher information matrix Iλ′(λ

′), we obtain the intrinsic Fisher–Rao
manifoldM′ =MN ′ . We may also considerM′ to be an embedded submanifold ofM.
Let us write S ′ = SN ′ ⊂M the embedded submanifold.

A totally geodesic submanifold S ′ ⊂ M is such that the geodesics γM′(N′1, N′2; t)
fully stay in M′ for any pair of points N′1, N′2 ∈ N ′. For example, the submanifold
Mµ = {N(µ, Σ) : Σ ∈ P(d)} ⊂ M of MVNs with fixed mean µ is a totally geodesic
submanifold [53] of M but the submanifold MΣ = {N(µ, Σ) : µ ∈ Rd} ⊂ M of
MVNs sharing the same covariance matrix Σ is not totally geodesic. When an embedded
submanifold S ⊂ M is totally geodesic, we always have ρM(N1, N2) = ρS (N1, N2).
Thus, we have ρN (N(µ, Σ1), N(µ, Σ2)) = ρSPD(Σ1, Σ2). However, when an embedded
submanifold S ⊂ M is not totally geodesic, we have ρM(N1, N2) ≤ ρS (N1, N2) because
the Riemannian geodesic length in S is necessarily longer or equal than the Riemannian
geodesic length in M. The merit to consider submanifolds is to be able to calculate in
closed form the Fisher–Rao distance which may then provide an upper bound on the
Fisher–Rao distance for the full statistical model. For example, consider N1 = N(µ1, Σ)
and N2 = N(µ2, Σ) inMΣ, a non-totally geodesic submanifold. The Rao distance between
N1 and N2 inM is upper bounded by the Riemannian distance inMΣ (with line element
ds2

Σ = dµ>Σ−1dµ) which corresponds to the Mahalanobis distance [10,51] ∆Σ(µ1, µ2):

ρMµ
(N1, N2) ≤ ∆Σ(µ1, µ2) :=

√
(µ2 − µ1)>Σ−1(µ2 − µ1). (14)

The Mahalanobis distance can be interpreted as the Euclidean distance DE(p, q) =

∆I(p, q) =
√
(p− q)>(p− q) (where I denotes the identity matrix) after an affine transfor-

mation: Let Σ = LL> = U>U be the Cholesky decomposition of Σ � 0 with L a lower
triangular matrix or U = L> an upper triangular matrix. Then we have

∆Σ(µ1, µ2) =
√
(µ2 − µ1)>(L>)−1L−1(µ2 − µ1),

= ‖Σ−
1
2 (µ2 − µ1)‖2,

= ∆I(L−1µ1, L−1µ2) = DE(L−1µ1, L−1µ2),

where ‖ · ‖2 denotes the vector `2-norm.
The Rao distance ρΣ of Equation (A1) between two MVNs with fixed covariance matrix

emanates from the property that the submanifoldM[v],Σ = {N(av, Σ) : a ∈ R} is totally
geodesic [54].

Let us emphasize that for a submanifold S ⊂ M to be totally geodesic or not depend
on the underlying metric inM. The same subset N ′ ⊂ N with N equipped with two
different metrics g1 and g2 can be totally geodesic regarding g1 and non-totally geodesic
regarding g2. See Remark 3 for such an example.

In general, using the triangle inequality of the Riemannian metric distance ρN , we can
upper bound ρN (N1, N2) with N1 = (µ1, Σ1) and N1 = (µ2, Σ2) as follows:

ρN (N1, N2) ≤ ρMµ1
(N1, N12) + ρMΣ2

(N12, N2),

≤ ρMΣ1
(N1, N21) + ρMµ2

(N21, N2),

where N12 = (µ1, Σ2) and N21 = N(µ2, Σ1). See Figure 2 for an illustration of the Fisher–
Rao geodesic triangle4N1, N2, N12. Furthermore, since ρNΣ1

(N1, N21) ≤ ∆Σ1(µ1, µ2) and
ρNΣ2

(N12, N2) ≤ ∆Σ2(µ1, µ2), we obtain the following upper bound on the Rao distance
between MVNs:

ρN (N1, N2) ≤ ρP (Σ1, Σ2) + min{∆Σ1(µ1, µ2), ∆Σ2(µ1, µ2)}. (15)



Entropy 2023, 25, 654 9 of 41

See also [55].

µ

Σ

µ0

Σ0

Nµ0

NΣ0

totally geodesic

not totally geodesic
N ′

1 = (µ′
1,Σ0)

N ′
2 = (µ′

2,Σ0)∆Σ0
(µ′

1, µ
′
2) ≥ ρN (N ′

1, N
′
2)

ρN (N ′
1, N

′
2)

N1 = (µ1,Σ1)

N2 = (µ2,Σ2)N12 = (µ1,Σ2)

N21 = N(µ2,Σ1)

ρN (N1, N2) ≤ ρP(Σ1,Σ2) + min{∆Σ1
(µ1, µ2),∆Σ2

(µ1, µ2)}

Figure 2. The submanifolds NΣ are not totally geodesic (i.e., ρN (N′1, N′2) is upper bounded by their
Mahalanobis distance) but the submanifolds Nµ are totally geodesic. Using the triangle inequality of
the Riemannian metric distance ρN , we can upper bound ρN (N1, N2).

In general, the difficulty with calculating the Fisher–Rao distance comes from the
fact that

1. we do not know the Fisher–Rao geodesics with boundary value conditions (BVP)
in closed form but the geodesics with initial value conditions [48] (IVP) are known
explicitly using the natural parameters (Σ−1µ, Σ−1) of MVNs,

2. we must integrate the line element dsN along the geodesic.

As we shall see in Section 3.1, the above first problem is much harder to solve than the
second problem which can be easily approximated by discretizing the curve. The lack of a
closed-form formula and fast and good approximations for ρN between MVNs is a current
limiting factor for its use in applications. Indeed, many applications (e.g., [56,57]) consider
the restricted case of the Rao distance between zero-centered MVNs which have closed
form (distance of Equation (11) in the SPD cone). The SPD cone is a symmetric Hadamard
manifold, and its isometries have been fully studied and classified in [58] (Section 4). The
Fisher–Rao geometry of zero-centered generalized MVNs was recently studied in [59].

1.4. Contributions and Paper Outline

The main contribution of this paper is to propose an approximation of ρN based on
Calvo and Oller’s embedding [19] (C&O for short) and report its experimental performance.
First, we concisely recall C&O’s family of embeddings fβ of N (d) as submanifolds N β of
P(d + 1) in Section 2. Next, we present our approximation technique in Section 3 which
differs from the usual geodesic shooting approach [39], and report experimental results.
Finally, we study some information–geometric properties [1] of the isometric embedding in
Section 5 such as the fact that it preserves mixture geodesics (embedded C&O submanifold
is autoparallel with respect to the mixture affine connection) but not exponential geodesics.
Moreover, we prove that the Fisher–Rao distance between multivariate normal distributions
sharing the same covariance matrix is a scalar function of their Mahalanobis distance in
Section 1.5 using the framework of Eaton [52] of maximal invariants.

1.5. A Closed-Form Formula for the Fisher–Rao Distance between Normal Distributions Sharing
the Same Covariance Matrix

Consider the Fisher–Rao distance between N1 = (µ1, Σ) and N1 = (µ2, Σ) for a fixed
covariance matrix Σ and the translation action a.µ := µ + a of the translation group Rd (a
subgroup of the affine group). Both the Fisher–Rao distance and the Mahalanobis distance
are invariant under translations:

ρN ((µ1 + a, Σ), (µ2 + a, Σ)) = ρN ((µ1, Σ), (µ2, Σ)), ∆Σ(µ1 + a, µ2 + a) = ∆Σ(µ1, µ2).
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To prove that ρN ((µ1, Σ), (µ2, Σ)) = hFR(∆Σ(µ1, µ2)) for a scalar function hFR(·), we shall
prove that the Mahalanobis distance is a maximal invariant, and use the framework of
maximal invariants of Eaton [52] (Chapter 2) who proved that any other invariant function
is necessarily a function of a maximal invariant, i.e., a function of the Mahalanobis distance
in our case.

The Mahalanobis distance is a maximal invariant because we can write ∆Σ(µ1, µ2) =
∆1(0, ∆Σ(µ1, µ2)) and when ∆Σ(µ1, µ2) = ∆Σ(µ

′
1, µ′2) in 1D there exists a ∈ R such that

(µ1 + a, µ2 + a) = (µ′1, µ′2). We must prove equivalently that when |m1 −m2| = |m′1 −m′2|
that there exists a ∈ R such that (m1 + a, m2 + a) = (m′1, m′2). Assume without loss of
generality that m1 ≥ m2. When m1 − m2 = m′1 − m′2, there exists a = m′1 − m1 so that
m′1 = a.m1 = m1 + a and m′2 = a.m2 = m2 + a with m′1 − m′2 = m1 − m2. Thus, using
Eaton’s theorem [52], there exists a scalar function hFR such that ρN ((µ1, Σ), (µ2, Σ)) =
hFR(∆Σ(µ1, µ2)).

To find explicitly the scalar function hFR(·), let us consider the univariate case of normal
distributions for which the Fisher–Rao distance is given in closed form in Equation (7). In that case,
the univariate Mahalanobis distance is ∆σ2(µ1, µ2) =

√
(µ2 − µ1)(σ2)−1(µ2 − µ1) =

|µ2−µ1|
σ

and we can write formula of Equation (7) as hFR(∆σ2(µ1, µ2)) with

hFR(u) =
√

2 log

(√
8 + u2 + u√
8 + u2 − u

)
, (16)

=
√

2 arccosh
(

1 +
1
4

u2
)

, (17)

using the identities

log(x) = arccosh
(

1 + x2

2x

)
= arctanh

(
x2 − 1
1 + x2

)
, x > 1,

where arctanh(u) = 1
2 log 1+u

1−u .

Proposition 1. The Fisher–Rao distance ρN ((µ1, Σ), (µ2, Σ)) between two MVNs with same
covariance matrix is

ρN ((µ1, Σ), (µ2, Σ)) = ρN ((0, 1), (∆Σ(µ1, µ2), 1)), (18)

=
√

2 log


√

8 + ∆2
Σ(µ1, µ2) + ∆Σ(µ1, µ2)√

8 + ∆2
Σ(µ1, µ2)− ∆Σ(µ1, µ2)

, (19)

=
√

2 arccosh
(

1 +
1
4

∆2
Σ(µ1, µ2)

)
, (20)

where ∆Σ(µ1, µ2) =
√
(µ2 − µ1)>Σ−1(µ2 − µ1) is the Mahalanobis distance.

Indeed, notice that the d-variate Mahalanobis distance ∆Σ(µ1, µ2) can be interpreted
as a univariate Mahalanobis distance between the standard normal distribution N(0, 1)
and N(∆Σ(µ1, µ2), 1):

∆Σ(µ1, µ2) = ∆1(0, ∆Σ(µ1, µ2)).

Thus, we have ρN ((µ1, Σ), (µ2, Σ)) = ρN ((0, 1), (∆Σ(µ1, µ2), 1)), where the right-hand-side
term is the univariate Fisher–Rao distance of Equation (7). Let us notice that the square
length element onMΣ is ds2 = dµ>Σ−1dµ = ∆2

Σ(µ, µ + dµ). This result can be extended
to elliptical distributions [12] (Theorem 1).

Let us corroborate this result by checking the formula of Equation (1) with two ex-
amples in the literature: In [38] (Figure 4), we Fisher–Rao distance between N1 = (0, I)
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and N2 =

([ 1
2
1
2

]
, I
)

is studied. We find ρN (N1, N2) = 0.69994085 in accordance with

their result shown in Figure 4. The second example is Example 1 of [42] (p. 11) with

N1 =

([
−1
0

]
, Σ
)

and N2 =

([
6
3

]
, Σ
)

for Σ =

[
1.1 0.9
0.9 1.1

]
. Formula of Equa-

tion (18) yields the Fisher–Rao distance 5.006483034546878 in accordance with [42] which
reports 5.00648.

Similarly, the statistical Ali–Silvey–Csiszár f -divergences [60,61]

I f [p(µ1,Σ) : p(µ2,Σ)] =
∫
Rd

p(µ1,Σ)(x) f

(
p(µ2,Σ)

p(µ1,Σ)

)
dx,

between two MVNs sharing the same covariance matrix are increasing functions of the
Mahalanobis distance because the f -divergences between two MVNs sharing the same
covariance matrix are invariant under the action of the translation group [62]. Thus, we have
I f [p(µ1,Σ : p(µ2,Σ)] = h f (∆Σ(µ1, µ2)). Since ∆Σ(µ1, µ2) = ∆1(0, ∆Σ(µ1, µ2)), we thus have

I f [p(µ1,Σ : p(µ2,Σ)] = h f (∆1(0, ∆Σ(µ1, µ2)) = I f [p(0,1 : p(∆Σ(µ1,µ2),1)],

where the right-hand side f -divergence is between univariate normal distributions. See
Table 2 of [62] for some explicit functions h f .

2. Calvo and Oller’s Family of Diffeomorphic Embeddings

Calvo and Oller [19,32] noticed that we can embed the space of normal distributions
in P(d + 1) by using the following mapping:

fβ(N) = fβ(µ, Σ) =
[

Σ + βµµ> βµ

βµ> β

]
∈ P(d + 1), (21)

where β ∈ R>0 and N = N(µ, Σ). Notice that since the dimension of P(d + 1) is (d+1)(d+2)
2 ,

we only use (d+1)(d+2)
2 − d(d+3)

2 = 1 extra dimension for embedding N (d) into P(d + 1).
By foliating P = R>0 × Pc where Pc = {P ∈ P : |P| = c} denotes the subsets of P
with determinant c, we obtain the following Riemannian Calvo and Oller metric on the
SPD cone:

ds2
CO =

1
2

tr
((

f−1(µ, Σ)d f (µ, Σ)
)2
)

,

=
1
2

(
dβ

β

)2
+ βdµ>Σ−1dµ +

1
2

tr
((

Σ−1dΣ
)2
)

.

Let
N β(d) =

{
P̄ = fβ(µ, Σ) : (µ, Σ) ∈ N (d) = Rd ×P(d)

}
denote the submanifold of P(d + 1) of codimension 1, and N = N 1 (i.e., β = 1). The
family of mappings fβ provides diffeomorphisms betweenN (d) andN β(d). Let f−1

β (P̄) =

(µP̄, ΣP̄) denote the inverse mapping for P̄ ∈ N β(d), and let f = f1 (i.e., β = 1):

f (N) = f (µ, Σ) =
[

Σ + µµ> µ

µ> 1

]
.

By equipping the cone P(d + 1) by the trace metric [63,64] (also called the affine
invariant Riemannian metric, AIRM) scaled by 1

2 :

gtrace
P (P1, P2) := tr(P−1P1P−1P2)
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(yielding the squared line element ds2
P = 1

2 tr((P dP)2)), Calvo and Oller [19] proved that
N (d) is isometric to N (d) (i.e., the Riemannian metric of P(d + 1) restricted to N (d)
coincides with the Riemannian metric of N (d) induced by f ) but N (d) is not totally
geodesic (i.e., the geodesics γP (P̄1, P̄2; t) for P̄1 = f (N1), P̄2 = f (N2) ∈ N (d) leaves
the embedded normal submanifold N (d)). Please note that gtrace

P can be interpreted as
the Fisher metric for the family N0 of 0-centered normal distributions. Thus, we have
(N (d), gFisher) ↪→ (P(d + 1), gtrace), and the following diagram between parameter spaces
and corresponding distributions:

N (d) ↪→ N0(d + 1)
l l

Λ(d) ↪→ P(d + 1)

Remark 2. The trace metric was first studied by Siegel [45,65] using the wider scope of complex
symmetric matrices with positive–definite imaginary parts generalizing the Poincaré upper half-
plane (see Appendix D).

We omit to specify the dimensions and write for short N , N , and P when clear from
the context. Thus, C&O proposed to use the embedding f = f1 to give a lower bound ρCO
of the Fisher–Rao distance ρN between normals:

LCCO : ρN (N1, N2) ≥ ρCO( f (µ1, Σ1)︸ ︷︷ ︸
P̄1

, f (µ2, Σ2)︸ ︷︷ ︸
P̄2

) =

√√√√1
2

d+1

∑
i=1

log2 λi(P̄−1
1 P̄2). (22)

We let ρCO(N1, N2) = ρCO( f (N1), f (N2)). The ρCO distance is invariant under affine
transformations such as the Fisher–Rao distance of Property 1:

Property 2 (affine invariance of C&O distance [19]). For all A ∈ GL(d), a ∈ Rd, we have
ρCO((Aµ1 + a, AΣ1 A>), (Aµ2 + a, AΣ2 A>)) = ρCO(N(µ1, Σ1), N(µ2, Σ2)).

When Σ1 = Σ2 = Σ, we have |P̄1| = |P̄2| = |Σ|. Since the Riemannian geodesics

γP(P1, P2; t) in the SPD cone are given by γP(P1, P2; t) = P
1
2

1 (P−
1
2

1 P2P−
1
2

1 )tP
1
2

1 [66] (also
written γSPD(P1, P2; t)), we have |γP(P1, P2; t)| = |Σ|. Although the submanifold Pc = {P ∈
P : |P| = c} is totally geodesic with respect to the trace metric, it is not totally geodesic
with respect to 1

2 tr((P̄dP̄)2). Thus, although γP(P1, P2) ∈ N , it does not correspond to the
embedded MVN geodesics with respect to the Fisher metric. The C&O distance between
two MVNs N(µ1, Σ) and N(µ2, Σ) sharing the same covariance matrix [19] is

ρCO(N(µ1, Σ), N(µ2, Σ)) = arccosh
(

1 +
1
2

∆2
Σ(µ1, µ2)

)
, (23)

where arccosh(x) := log(x +
√

x2 − 1) for x ≥ 1 and ∆Σ(µ1, µ2) is the Mahalanobis dis-
tance between N(µ1, Σ) and N(µ2, Σ). In that case, we thus have ρCO(N(µ1, Σ), N(µ2, Σ)) =
hCO(∆Σ(µ1, µ2)) where hCO(u) = arccosh

(
1 + 1

2 u2
)

is a strictly monotone increasing func-
tion. Let us note in passing that in [19] (Corollary, page 230) there is a confusing or
typographic error since the distance is reported as arccosh

(
1 + 1

2 dM(µ1, µ2)
)

where dM

denotes “Mahalanobis distance” [51]. Therefore, either dM = ∆2
Σ, Mahalanobis D2-distance,

or there is a missing square in the equation of the Corollary page 230. To obtain a flavor
of how good is the approximation of the C&O distance, we may consider the same co-
variance case where we have both closed-form solutions for ρN (Equation (20)) and ρCO
(Equation (23)). Figure 3 plots the two functions hCO and hFR (with hCO(u) ≤ hFR(u) ≤ u
for u ∈ [0, ∞)).
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Figure 3. Quality of the C&O lower bound compared to the exact Fisher–Rao distance in the case of
N1, N2 ∈ MΣ (MVNs sharing the same covariance matrix Σ). We have ρCO ≤ ρN ≤ ∆Σ.

Let us remark that similarly all f -divergences between N1 = (µ1, Σ) and N2 = (µ2, Σ)
are scalar functions of their Mahalanobis distance ∆Σ(µ1, µ2) too, see [62].

The C&O distance ρCO is a metric distance that has been used in many applications
ranging from computer vision [57,67–69] to signal/sensor processing, statistics [70,71],
machine learning [29,72–76] and analogical reasoning [77].

Remark 3. In a second paper, Calvo and Oller [32] noticed that we can embed normal distributions
in P(d + 1) by the following more general mapping (Lemma 3.1 [32]):

gα,β,γ(µ, Σ) = |Σ|α
[

Σ + βγ2µµ> βγµ

βγµ> β

]
∈ P(d + 1), (24)

where α ∈ R, β ∈ R>0 and γ ∈ R. It is show in [32] that the induced length element is

ds2
α,β,γ =

1
2

(
α((d + 1) + 2α)tr2(Σ−1dΣ) + tr((Σ−1dΣ)2)

+2βγ2dµ>Σ−1dµ + 2αtr(Σ−1dΣ)
dβ

β
+

(
dβ

β

)2
)

.

When γ = β = 1, we have

ds2
α =

1
2

(
α((d + 1) + 2α)tr2(Σ−1dΣ) + tr((Σ−1dΣ)2) + 2βγ2dµ>Σ−1dµ

)
.

Thus, to cancel the term tr2(Σ−1dΣ), we may either choose α = 0 or α = − 2
1+d .

In some applications [78], the embedding

g− 1
d+1 ,1,1(µ, Σ) = |Σ|−

1
d+1

[
Σ + µµ> µ

µ> 1

]
:= f̂ (µ, Σ), (25)

is used to ensure that
∣∣∣g− 1

d+1 ,1,1(µ, Σ)
∣∣∣ = 1. That is normal distributions are embedded dif-

feomorphically into the submanifold of positive–definite matrices with a unit determinant (also
called SSPD, acronym of Special SPD). In [32], C&O showed that there exists a second isometric
embedding of the Fisher–Rao Gaussian manifold N (d) into a submanifold of the cone P(d + 1):

fSSPD(µ, Σ) = |Σ|−
2

d+1

[
Σ + µµ> µ

µ> 1

]
. Let P̂ = fSSPD(µ, Σ). This mapping can be understood

as taking the elliptic isometry P 7→ |P|−
2

d+1 P of P ∈ P(d + 1) [64] since |Σ| = |P̄(µ, Σ)| (see
proof in Proposition 3). It follows that
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ρCO(N1, N2) = ρP (P̄1, P̄2) = ρP (P̂1, P̂2) ≤ ρN (N1, N2).

Similarly, we could have mapped P 7→ P−1 to obtain another isometric embedding. See the
four types of elliptic isometric of the SPD cone described in [64]. Finally, let us remark that the
SSPD submanifold is totally geodesic with respect to the trace metric but not with respect to the
C&O metric.

Interestingly, Calvo and Oller [48] (p. 131) proved that ((µ̄1, . . . , µ̄d), diag(σ̄2
1 , . . . , σ̄2

d ))
is a maximal invariant for the action of the affine group Aff(d), where µ̄ = Q−1(µ2 − µ1)
and Σ2Σ−1

1 = Q diag(σ̄2
1 , . . . , σ̄2

d ) Q−1 (in [48], the authors considered Σ1Σ−2
1 ). Thus, we

consider the following dissimilarity

DCO(N(µ1, Σ1), N(µ2, Σ2)) =
√

2

√√√√ d

∑
i=1

log2
(

1 + ∆(0, 1; µ̄i, σ̄i)

1− ∆(0, 1; µ̄i, σ̄i)

)
. (26)

Dissimilarity DCO is symmetric (i.e., DCO(N1, N2) = DCO(N2, N1)) and DCO(N1, N2) = 0
if and only if N1 = N2. Please note that when d = 1, DCO is different from the Fisher–Rao
distance of Equation (7).

3. Approximating the Fisher–Rao Distance
3.1. Approximating Length of Curves

Recall that the Fisher–Rao’s distance [79] is the Riemannian geodesic distance

ρN (N(λ1), N(λ2)) = inf
c(t)

c(0)=pλ1
c(1)=pλ2

{Length(c)},

where

Length(c) =
∫ 1

0

√
〈ċ(t), ċ(t)〉

c(t)︸ ︷︷ ︸
dsN (t)

dt.

We can approximate the Rao distance ρN (N1, N2) by discretizing regularly any smooth
curve c(t) joining N1 = c(0) to N2 = c(1) (Figure 4):

ρN (N1, N2) ≤
1
T

T−1

∑
i=1

ρN

(
c
(

i
T

)
, c
(

i + 1
T

))
,

with equality holding iff c(t) = γN (N1, N2; t) is the Riemannian geodesic defined by the
Levi–Civita metric connection induced by the Fisher information metric.

When the number of discretization steps T is sufficiently large, the normal distribu-
tions c

(
i
T

)
and c

(
i+1

T

)
are close to each other, and we can approximate ρN

(
c
(

i
T

)
, c
(

i+1
T

))
by
√

DJ

[
c
(

i
T

)
, c
(

i+1
T

)]
, where DJ [N1, N2] = DKL[N1, N2] + DKL[N2, N1] is Jeffreys diver-

gence, and DKL is the Kullback–Leibler divergence:

DKL[p(µ1,Σ1)
: p(µ2,Σ2)

] =
1
2

(
tr(Σ−1

2 Σ1) + ∆µ>Σ−1
2 ∆µ− d + log

|Σ2|
|Σ1|

)
.

Thus, the costly determinant computations cancel each other in Jeffreys divergence (i.e.,
log |Σ2|

|Σ1|
+ log |Σ1|

|Σ2|
= 0) and we have:

DJ [p(µ1,Σ1)
: p(µ2,Σ2)

] = tr

(
Σ−1

2 Σ1 + Σ−1
1 Σ2

2
− I

)
+ ∆µ>

Σ−1
1 + Σ−1

2
2

∆µ.

Figure 4 summarizes our method to approximate the Fisher–Rao geodesic distance.
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N1 = N(µ1,Σ1)

N2 = N(µ2,Σ2)

intractable Fisher-Rao geodesic γFRN (t)

c
(

i
T

) c
(
i+1
T

)
tractable c(t)

ρN
(
c
(

i
T

)
, c
(
i+1
T

))
≈
√
DJ

[
c
(

i
T

)
, c
(
i+1
T

)]

Figure 4. Approximating the Fisher–Rao geodesic distance ρN (N1, N2): The Fisher–Rao geodesic
γFR
N is not known in closed form. We consider a tractable curve c(t), discretize c(t) at T + 1 points

c( i
T ) with c(0) = N1 and c(1) = N2, and approximate ρN

(
c
(

i
T

)
, c
(

i+1
T

))
by
√

DJ

[
c
(

i
T

)
, c
(

i+1
T

)]
,

considering that different tractable curves c(t) yield different approximations.

In general, it holds that

I f [p : q] ≈ f ′′(1)
2

ds2
Fisher,

between infinitesimally close distributions p and q (ds ≈
√

2 I f [p:q]
f ′′(1) ), where I f [· : ·] denotes

a f -divergence [1]. The Jeffreys divergence is a f -divergence obtained for f J(u) = − log u +
u log u with f ′′J (1) = 2. It is thus interesting to find low computational cost f -divergences
between multivariate normal distributions to approximate the infinitesimal length element
ds. Please note that f -divergences between MVNs are also invariant under the action of
the affine group [62]. Thus, for infinitesimally close distributions p and q, this informally
explains that dsFisher is invariant under the action of the affine group (see Proposition 1).

Although the definite integral of the length element along the Fisher–Rao geodesic γFR
N

is not known in closed form (i.e., Fisher–Rao distance), the integral of the squared length
element along the mixture geodesic γm

N (N1, N2) and exponential geodesic γe
N (N1, N2)

coincide with Jeffreys divergence DJ [N1, N2] between N1 and N2 [1]:

Property 3 ([1]). We have

DJ [pλ1 , pλ2 ] =
∫ 1

0
ds2
N (γ

m
N (pλ1 , pλ2 ; t))dt =

∫ 1

0
ds2
N (γ

e
N (pλ1 , pλ2 ; t))dt.

Proof. Let us report a proof of this remarkable fact in the general setting of Bregman
manifolds. Indeed, since

DJ [pλ1 , pλ2 ] = DKL[pλ1 : pλ2 ] + DKL[pλ2 : pλ1 ],

and DKL[pλ1 : pλ2 ] = BF(θ(λ2) : θ(λ1)), where BF denotes the Bregman divergence
induced by the cumulant function of the multivariate normals and θ(λ) is the natural
parameter corresponding to λ, we have

DJ [pλ1 , pλ2 ] = BF(θ1 : θ2) + BF(θ2 : θ1),

= SF(θ1; θ2) = (θ2 − θ1)
>(η2 − η1) = SF∗(η1; η2),

where η = ∇F(θ) and θ = ∇F∗(η) denote the dual parameterizations obtained by the Leg-
endre–Fenchel convex conjugate F∗(η) of F(θ). Moreover, we have F∗(η) = −h(pµ,Σ) [1],
i.e., the convex conjugate function is Shannon negentropy.

Then we conclude using the fact that SF(θ1; θ2) =
∫ 1

0 ds2(γ(t))dt =
∫ 1

0 ds2(γ∗(t))dt,
i.e., the symmetrized Bregman divergence amounts to integral energies on dual geodesics
on a Bregman manifold. The proof of this general property is reported in Appendix E.
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It follows the following upper bound on the Fisher–Rao distance:

Property 4 (Fisher–Rao upper bound). The Fisher–Rao distance between normal distributions

is upper bounded by the square root of the Jeffreys divergence: ρN (N1, N2) ≤
√

DJ(N1, N2).

Proof. Consider the Cauchy–Schwarz inequality for positive functions f (t) and g(t):∫ 1
0 f (t)g(t)dt ≤

√
(
∫ 1

0 f (t)2dt)(
∫ 1

0 g(t)2dt)), and let f (t) = dsN (γc
N (pλ1 , pλ2 ; t) and

g(t) = 1. Then we obtain:

(∫ 1

0
dsN (γc

N (pλ1 , pλ2 ; t)dt
)2

≤
(∫ 1

0
ds2
N (γ

c
N (pλ1 , pλ2 ; t)dt

)∫ 1

0
12dt︸ ︷︷ ︸
=1

.

Furthermore, since by definition of γFR
N , we have∫ 1

0
dsN (γc

N (pλ1 , pλ2 ; t)dt ≥
∫ 1

0
dsN (γFR

N (pλ1 , pλ2 ; t)dt =: ρN (N1, N2).

It follows for c = γe
N (i.e., e-geodesic) using Property 3 that we have:

ρN (N1, N2)
2 ≤

∫ 1

0
ds2
N (γ

e
N (pλ1 , pλ2 ; t)dt = DJ(N1, N2).

Thus, we conclude that ρN (N1, N2) ≤
√

DJ(N1, N2).
Please note that in Riemannian geometry, a curve γ minimizes the energy E(γ) =∫ 1

0 ‖γ̇(t)‖
2dt if it minimizes the length L(γ) =

∫ 1
0 ‖γ̇(t)‖dt and ‖γ̇(t)‖ is constant. Using

Cauchy-Schwartz inequality, we can show that L(γ) ≤ E(γ).

This upper bound is tight at infinitesimal scale (i.e., when N2 = N1 + dN) since

ρN (N1, N2) ≈ dsN (N1) ≈
√

2 I f [N1 :N2]

f ′′(1) and the f -divergence in right-hand side of the

identity can be chosen as Jeffreys divergence. To appreciate the quality of the square
root of Jeffreys divergence upper bound of Property 4, consider the case where N1, N2 ∈
MΣ. In that case, we have ρN (N(µ1, Σ), N(µ2, Σ)) =

√
2 arccosh(1 + 1

4 ∆2
Σ(µ1, µ2)) and√

DJ [N(µ1, Σ), N(µ2, Σ)] = ∆Σ(µ1, µ2) (since DKL[N(µ1, Σ), N(µ2, Σ)] = 1
2 ∆2

Σ(µ1, µ2)).

The upper bound can thus be checked since we have
√

2 arccosh(1 + 1
4 x2) ≤ x for x ≥ 0.

The plots of Figure 5 shows visually the quality of the
√

DJ upper bound.

D
is

ta
n
ce

Mahalanobis distance Δμ

Fisher-Rao distance and  sqrt(Jeffreys) upper bound

Upper bound
Fisher-Rao

 0
 0.5

 1
 1.5

 2
 2.5

 3

 0  0.5  1  1.5  2  2.5  3

Figure 5. Quality of the
√

DJ upper bound on the Fisher–Rao distance ρN when normal distributions
have the same covariance matrix.
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For any smooth curve c(t), we can thus approximate ρN for large T by

ρ̃c
N (N1, N2) :=

1
T

T−1

∑
i=1

√
DJ

[
c
(

i
T

)
, c
(

i + 1
T

)]
. (27)

For example, we may consider the following curves onMN which admit closed-form
parameterizations in t ∈ [0, 1]:

• linear interpolation (LERP, Linear intERPolation) cλ(t) = t(µ1, Σ1) + (1− t)(µ2, Σ2)
between (µ1, Σ1) and (µ2, Σ2),

• the mixture geodesic [80] cm(t) = γm
N (N1, N2; t) = (µm

t , Σm
t ) with µm

t = µ̄t and
Σm

t = Σ̄t + tµ1µ>1 + (1− t)µ2µ>2 − µ̄tµ̄
>
t where µ̄t = tµ1 + (1− t)µ2 and Σ̄t = tΣ1 +

(1− t)Σ2,
• the exponential geodesic [80] ce(t) = γe

N (N1, N2; t) = (µe
t , Σe

t) with µe
t = Σ̄H

t (tΣ−1
1 µ1 +

(1− t)Σ−1
2 µ2) and Σe

t = Σ̄H
t where Σ̄H

t = (tΣ−1
1 + (1− t)Σ−1

2 )−1 is the matrix har-
monic mean,

• the curve cem(t) = 1
2
(
γe
N (N1, N2; t) + γm

N (N1, N2; t)
)

which is obtained by averaging
the mixture geodesic with the exponential geodesic.

Figure 6 visualizes the exponential and mixture geodesics between two bivariate
normal distributions.

Exponential geodesic Mixture geodesic

γepµ1,Σ1
,pµ2,Σ2

(α) =: pµeα,Σeα = p(1−α)θ1+αθ2 , θ =
(
Σ−1µ, 1

2Σ−1
)

µeα = Σeα
(
(1 − α)Σ−1

1 µ1 + αΣ−1
2 µ2

)
Σeα =

(
(1 − α)Σ−1

1 + αΣ−1
2

)−1

γmpµ1,Σ1
,pµ2,Σ2

(α) =: pµmα ,Σmα = p(1−α)η1+αη2
, η =

(
µ,−Σ − µµ>

)
µmα = (1 − α)µ1 + αµ2 =: µ̄α

Σmα = (1 − α)Σ1 + αΣ2 + (1 − α)µ1µ
>
1 + αµ2µ

>
2 − µ̄αµ̄

>
α

Figure 6. Visualizing the exponential and mixture geodesics between two bivariate normal distributions.

Let us denote by ρ̃λ
N = ρ̃

cλ
N , ρ̃m

N = ρ̃cm
N , ρ̃e

N = ρ̃ce
N and ρ̃em

N = ρ̃cem
N the approximations

obtained by these curves following from Equation (27). When T is sufficiently large,
the approximated distances ρ̃x are close to the length of curve x, and we may thus consider
a set of several curves {ci}i∈I and report the smallest Fisher–Rao distance approximations
obtained among these curves: ρN (N1, N2) ≈ mini∈I ρ̃

ci
N (N1, N2).

Please note that we consider the regular spacing for approximating a curve length
and do not optimize the position of the sample points on the curve. Indeed, as T → ∞,
the curve length approximation tends to the Riemannian curve length. In other words,
we can measure approximately finely the length of any curve available with closed-form
reparameterization by increasing T. Thus, the key question of our method is how to best
approximate the Fisher–Rao geodesic by a curve that can be parametrized by a closed-form
formula and is close enough to the Fisher–Rao geodesic.

Next, we introduce our approximation curve cCO(t) derived from Calvo and Oller
isometric mapping f which experimentally behaves better when normals are not too far
from each other.
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3.2. A Curve Derived from Calvo and Oller’s Embedding

This approximation consists of leveraging the closed-form expression of the SPD
geodesics [63,66]:

γP (P, Q; t) = P
1
2

(
P−

1
2 Q

1
2 P−

1
2

)t
P

1
2 , t ∈ [0, 1]

to approximate the Fisher–Rao normal geodesic γFisher
N (N1, N2; t) as follows: Let P̄1 =

f (N1), P̄2 = f (N2) ∈ N , and consider the smooth curve

c̄CO(P̄1, P̄2; t) = projN (γP (P̄1, P̄2; t)), (28)

where projN (P) denotes the orthogonal projection of P ∈ P(d+ 1) ontoN (Figure 7). Thus,
curve cCO(t) (t ∈ [0, 1]) is then defined by taking the inverse mapping f−1(c̄CO) (Figure 8):

cCO(t) = f−1(projN (γP (P̄1, P̄2; t))
)
. (29)

P

P

gFisher

P =

[
Σ + βµµ> βµ
βµ> β

]
N = f1(N )

ρP(P, P⊥) = 1√
2
| log β|

P⊥ =

[
Σ + µµ> µ>

µ 1

]
N β = fβ(N )

P⊥

Figure 7. Projecting an SPD matrix P ∈ P onto N = f (N ): γP (P, P̄⊥) is orthogonal to N with
respect to the trace metric.

µ

Σ

N1 = (µ1,Σ1)

N2 = (µ2,Σ2)

Symmetric positive-definite matrix coneSpace of multivariate proper normal distributions

dsFisher
N

P̄ = f(µ,Σ)

f−1(P̄ ) = (µP̄ ,ΣP̄ )

P̄1

P̄2

N

SDP cone P

N̄

ρN (Gt, Gt+1) ≈
√
DJ[Gt, Gt+1] =

√
DJ[S̄t, S̄t+1]

γP(P̄1, P̄2)

γN (P1, P2)

γN (N1, N2)

St
S̄t

non-totally geodesic
submanifold N̄

St+1 S̄t+1

Gt = f−1(S̄t)

Gt+1 = f−1(S̄t+1)

c̄CO = γP(P̄1, P̄2)

SPD geodesic projected onto N̄

cCO = f−1(c̄CO)

Figure 8. Illustration of the approximation of the Fisher–Rao distance between two multivariate
normals N1 and N2 (red geodesic length γN (N1, N2) by discretizing curve c̄CO ∈ N or equivalently
curve cCO ∈ N .

Please note that the matrix power Pt can be computed as Pt = U diag(λt
1, . . . , λt

d)V>

where P = U diag(λt
1, . . . , λt

d)V> is the eigenvalue decomposition of P.
Let us now explain how to project P = [Pi,j] ∈ P(d + 1) onto N based on the analysis

of the Appendix of [19] (p. 239):

Proposition 2 (Projection of an SPD matrix onto the embedded normal submanifold N ).

Let β = Pd+1,d+1 and write P =

[
Σ + βµµ> βµ

βµ> β

]
. Then the orthogonal projection at P ∈ P

onto N is:

P̄⊥ := projN (P) =
[

Σ + µµ> µ>

µ 1

]
, (30)

and the SPD distance between P and P̄⊥ is

ρP (P, P̄⊥) =
1√
2
| log β|. (31)



Entropy 2023, 25, 654 19 of 41

Notice that the projection of P is easily computed since β = Pd+1,d+1.

projN

([
Σ + βµµ> βµ

βµ> β

])
=

[
Σ + µµ> µ>

µ 1

]
Remark 4. In Diffusion Tensor Imaging [39] (DTI), the Fisher–Rao distance can be used to
evaluate the distance between three-dimensional normal distributions with means located at a 3D
grid position. We may consider 3× 3× 3− 1 = 26 neighbor graphs induced by the grid, and for
each normal N of the grid, calculate the approximations of the Fisher–Rao distance of N with its
neighbors N′ as depicted in Figure 9. Then the distance between two tensors N1 and N2 of the 3D
grid is calculated as the shortest path on the weighted graph using Dijkstra’s algorithm [39].

(a) (b)
Figure 9. Diffusion tensor imaging (DTI) on a 2D grid: (a) Ellipsoids shown at the 8 × 8 grid
locations with C&O curves in green, and (b) some interpolated ellipsoids are further shown along
the C&O curves.

Please note that the Fisher–Rao projection of N1 = (µ1, Σ1) onto a submanifoldMµ2

with fixed mean µ2 was recently reported in closed form in [72] (Equation (21)):

N∗ = N
(

µ2, Σ1 +
1
2
(µ2 − µ1)(µ2 − µ1)

>
)

,

with
ρN (N1, N∗) =

1√
2

arccosh
(

d + (µ2 − µ1)
>Σ−1

1 (µ2 − µ1)
)

,

and the Fisher–Rao projection of N1 = (µ1, Σ1) onto submanifold MΣ2 is the “vertical
projection” N∗ = (µ1, Σ2) (Figure 10) with

ρN (N1, N∗) = ρNµ
(Σ1, Σ2).

Figure 10. Examples of projection of N(µ, Σ) onto the submanifoldsMµ0 andMΣ0 . Tissot indicatri-

ces are rendered in green at the projected normal distributions
(

µ0, Σ + 1
2 (µ0 − µ)(µ0 − µ)>

)
and

(µ, Σ0), respectively.
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We can upper bound the Fisher–Rao distance ρN ((µ1, Σ1), (µ2, Σ2)) by projecting
Σ1 onto Mµ2 and projecting Σ2 onto Mµ1 . Let Σ12 ∈ Mµ2 and Σ21 ∈ Mµ1 denote
those Fisher–Rao orthogonal projections. Using the triangular inequality property of the
Fisher–Rao distance, we obtain the following upper bounds:

ρN ((µ1, Σ1), (µ2, Σ2)) ≤ ρN ((µ1, Σ1), (µ2, Σ12)) + ρN (µ2, Σ12, (µ2, Σ2)), (32)

≤ ρN ((µ2, Σ2), (µ1, Σ21)) + ρN ((µ1, Σ21), (µ1, Σ1)). (33)

See Figure 11 for an illustration.

Figure 11. Upper bounding the Fisher–Rao’s distance ρN ((µ1, Σ1), (µ2, Σ2)) (red points) using
projections (green points) onto submanifolds with fixed means.

Let c̄CO(t) = S̄t and cCO(t) = f−1(cCO(t)) =: Gt. The following proposition shows
that we have DJ [S̄t, S̄t+1] = DJ [Gt, Gt+1].

Proposition 3. The Kullback–Leibler divergence between pµ1,Σ1 and pµ2,Σ2 amounts to the KLD
between qP̄1

= p0, f (µ1,Σ1)
and qP̄2

= p0, f (µ2,Σ2)
where P̄i = f (µi, Σi):

DKL[pµ1,Σ1 : pµ2,Σ2 ] = DKL[qP̄1
: qP̄2

].

The KLD between two centered (d + 1)-variate normals qP1 = p0,P1 and qP2 = p0,P2 is

DKL[qP1 : qP2 ] =
1
2

(
tr(P−1

2 P1)− d− 1 + log
|P2|
|P1|

)
.

This divergence can be interpreted as the matrix version of the Itakura–Saito divergence [81].
The SPD cone equipped with 1

2 of the trace metric can be interpreted as Fisher–Rao centered
normal manifolds: (Nµ, gFisher

Nµ
) = (P , 1

2 gtrace).
Since the determinant of a block matrix is∣∣∣∣[ A B

C D

]∣∣∣∣ = ∣∣∣A− BD−1C
∣∣∣,

we obtain with D = 1: | f (µ, Σ)| = |Σ + µµ> − µµ>| = |Σ|.
Let P̄1 = f (µ1, Σ1) and P̄2 = f (µ2, Σ2). Checking DKL[pµ1,Σ1 : pµ2,Σ2 ] = DKL[qP̄1

: qP̄2
]

where qP̄ = p0,P̄ amounts to verify that

tr(P̄−1
2 P̄1) = 1 + tr(Σ−1

2 Σ1 + ∆>µ Σ−1
2 ∆µ).

Indeed, using the inverse matrix

f (µ, Σ)−1 =

[
Σ−1 −Σ−1µ

−µ>Σ−1 1 + µ>Σ−1µ

]
,



Entropy 2023, 25, 654 21 of 41

we have

tr(P̄−1
2 P̄1) = tr

([
Σ−1

2 −Σ−1
2 µ2

−µ>2 Σ−1
2 1 + µ>2 Σ−1

2 µ2

] [
Σ1 + µ1µ>1 µ1
µ>1 1

])
,

= 1 + tr(Σ−1
2 Σ1 + ∆>µ Σ−1

2 ∆µ).

Thus, even if the dimension of the sample spaces of pµ,Σ and qP̄= f (µ,Σ) differs by one, we
obtain the same KLD by Calvo and Oller’s isometric mapping f .

This property holds for the KLD/Jeffreys divergence DJ but not for all f -divergences [1]
I f in general (e.g., it fails for the Hellinger divergence).

Figure 12 shows the various geodesics and curves used to approximate the Fisher–Rao
distance with the Fisher metric shown using Tissot indicatrices.

Figure 12. Geodesics and curves used to approximate the Fisher–Rao distance with the Fisher
metric shown using Tissot’s indicatrices: exponential geodesic (red), mixture geodesic (blue), mid-
exponential-mixture curve (purple), projected CO curve (green), and target Fisher–Rao geodesic
(black). (Visualization in the parameter space of normal distributions).

Please note that the introduction of parameter β is related to the foliation of the SPD
cone P by { fβ(N ) : β > 0}: P(d + 1) = R>0 × fβ(N ). See Figure 7. Thus, we may define
how good the projected C&O curve is to the Fisher–Rao geodesic by measuring the average

distance between points on γP (P̄1, P̄2; t) and their projections γP (P̄1, P̄2; t)
⊥

onto N :

δCO(N1, N2) = δCO(P̄1, P̄2) =
∫ 1

0
ρP (γP (P̄1, P̄2; t), γP (P̄1, P̄2; t)

⊥
)dt.

In practice, we evaluate this integral at the sampling points St:

δCO(P1, P2) ≈ δCO
T (P1, P2) :=

1
T

T

∑
i=1

ρP (St, S̄t), (34)

where St = γP (P̄1, P̄2; t) and S̄t = γP (P̄1, P̄2; t)⊥. We checked experimentally (see Section 3.3)
that for close by normals N1 and N1, we have δCO(N̄1, N̄2) small, and that when N1 becomes
further separated from N2, the average projection error δCO(N̄1, N̄2) increases. Thus,
δCO

T (P1, P2) is a good measure of the precision of our Fisher–Rao distance approximation.

Lemma 1. We have ρN (S̄t, S̄t+1) ≤ ρP (S̄t, St) + ρP (St, St+1) + ρP (St+1, S̄t+1).

Proof. The proof consists of applying twice the triangle inequality of metric distance ρP :

ρN (S̄t, S̄t+1) ≤ ρP (S̄t, St+1) + ρP (St+1, S̄t+1),

≤ ρP (S̄t, St) + ρP (St, St+1) + ρP (St+1, S̄t+1).

See Figure 13 where the left-hand-side geodesic length is shown in blue and the right-hand-
side upper bound is visualized in red.
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P̄1

P̄2

St

St+1

S̄t+1
S̄t

γCO(P̄1, P̄2; t)

γCO(P̄1, P̄2; t)

Figure 13. Bounding ρN (S̄t, S̄t+1) using the triangular inequality of ρP in the SPD cone P(d + 1).

Property 5. We have ρN (N1, N2) ≤ ρCO
N (N1, N2) ≤ ρN (N1, N2) + 2 δCO

T (P̄1, P̄2).

Proof. At infinitesimal scale when St+1 ≈ St, using Lemma 1 and ρP (St+1, S̄t+1) ≈
ρP (S̄t, St) we have

dsN (S̄t) ≤ dsP (St) + 2ρP (St, S̄t).

Taking the integral along the curve cCO(t) = γCO(P̄1, P̄2; t), we obtain

ρCO
N (N1, N2) ≤ ρP (P̄1, P̄2) + 2δCO

T (P̄1, P̄2)

Since ρP (P̄1, P̄2) ≤ ρN (N1, N2), we have

ρN (N1, N2) ≤ ρCO
N (N1, N2) ≤ ρN (N1, N2) + 2δCO

T (P̄1, P̄2).

Notice that ∑T−1
i=0 ρP (St, St+1) = ρP (P̄1, P̄2).

Example 1. Let us consider Example 1 of [42] (p. 11):

N1 =

([
−1
0

]
, Σ
)

, N2 =

([
6
3

]
, Σ
)

, Σ =

[
1.1 0.9
0.9 1.1

]
.

The Fisher–Rao distance is evaluated numerically in [42] as 5.00648. We have the lower bound
ρCO
N (N1, N2) = 4.20447, and the Mahalanobis distance 8.06226 upper bounds the Fisher–Rao

distance (not totally geodesic submanifold NΣ). Our projected C&O curve discretized with T =
1000 yields an approximation ρ̃CO

N (N1, N2) = 5.31667. The average projection distance ρP (St, S̄t)
is δCO

T (N1, N2) = 0.61791, and the maximum projected distance is 1.00685. We check that

5.00648 ≈ ρN (N1, N2) ≤ ρ̃CO
N (N1, N2) ≈ 5.31667 ≤ ρN (N1, N2) + 2δCO

T (P̄1, P̄2) ≈ 5.44028.

The Killing distance [82] obtained for κKilling = 2 is ρKilling(N1, N2) ≈ 6.82028 (see Appendix C).
Notice that geodesic shooting is time-consuming compared to our approximation technique.

3.3. Some Experiments

The KLD DKL and Jeffreys divergence DJ , the Fisher–Rao distance ρN and the Calvo
and Oller distance ρCO are all invariant under the congruence action of the affine group
Aff(d) = Rd o GL(d) with the group operation

(a1, A1)(a2, A2) = (a1 + A1a2, A1 A2).

Let (A, a) ∈ Aff(d), and define the action on the normal space N as follows:

(A, a).N(µ, Σ) = N(A>µ + a, AΣA>).

Then we have:

ρN ((A, a).N1, (A, a).N2) = ρN (N1, N2),
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ρCO((A, a).N1, (A, a).N2) = ρCO(N1, N2),

DKL[(A, a).N1 : (A, a).N2] = DKL[N1 : N2].

This invariance extends to our approximations ρ̃c
N (see Equation (27)).

Since we have
ρ̃c
N (N1, N2) ≈ ρN (N1, N2) ≥ ρCO(N1, N2),

the ratio κc =
ρ̃c
N

ρCO
≥ κ =

ρ̃c
N

ρN
gives an upper bound on the approximation factor of ρ̃c

N
compared to the true Fisher–Rao distance ρN :

κcρN (N1, N2) ≥ κρN (N1, N2) ≥ ρ̃c
N (N1, N2) ≈ ρN (N1, N2) ≥ ρCO(N1, N2).

Let us now report some numerical experiments of our approximated Fisher–Rao
distances ρ̃x

N with x ∈ {l, m, e, em, CO}. Although that dissimilarity ρ̃N is positive–definite,
it does not satisfy the triangular inequality of metric distances (e.g., Riemannian distances
ρN and ρCO).

First, we draw multivariate normals by sampling means µ ∼ Unif(0, 1) and sample
covariance matrices Σ as follows: We draw a lower triangular matrix L with entries Lij

iid sampled from Unif(0, 1), and take Σ = LL>. We use T = 1000 samples on curves and
repeat the experiment 1000 times to gather average statistics on κc’s of curves. Results are
summarized in Table 1.

Table 1. First set of experiments demonstrates the advantage of the cCO(t) curve.

d κCO κl κe κm κem

1 1.0025 1.0414 1.1521 1.0236 1.0154
2 1.0167 1.0841 1.1923 1.0631 1.0416
3 1.0182 1.8997 2.6072 1.9965 1.07988
4 1.0207 2.0793 1.8080 2.1687 1.1873
5 1.0324 4.1207 12.3804 5.6170 4.2349

For that scenario that the C&O curve (either c̄CO ∈ N or cCO ∈ N ) performs best
compared to the linear interpolation curves with respect to source parameter (l), mixture
geodesic (m), exponential geodesic (e), or exponential-mixture mid-curve (em). Let us point
out that we sample γP (P̄1, P̄2; i

T ) for i ∈ {0, . . . , T}.
Strapasson, Porto, and Costa [38] (SPC)reported the following upper bound on the

Fisher–Rao distance between multivariate normals

ρCO(N1, N2) ≤ ρN (N1, N2) ≤ USPC(N1, N2),

with:

USPC(N1, N2) =

√√√√√2
d

∑
i=1

log2


√
(1 + Dii)2 + µ2

i +
√
(1− Dii)2 + µ2

i√
(1 + Dii)2 + µ2

i −
√
(1− Dii)2 + µ2

i

, (35)

where Σ = Σ−
1
2

1 Σ2Σ−
1
2

1 , Σ = ΩDΩ> is the eigen decomposition, and µ = Ω>Σ−
1
2

1 (µ2− µ1).
This upper bound performs better when the normals are well-separated and worse than
the

√
DJ-upper bound when the normals are close to each other.

Let us compare ρCO(N1, N2) with ρN (N1, N2) ≈ ρ̃cCO(N1, N2) and the upper bound
U(N1, N2) by averaging over 1000 trials with N1 and N2 chosen randomly as before and
T = 1000. We have ρCO(N1, N2) ≤ ρN (N1, N2) ≈ ρ̃cCO(N1, N2) ≤ U(N1, N2). Table 2
shows that our Fisher–Rao approximation is close to the lower bound (and hence to the
underlying true Fisher–Rao distance) and that the upper bound is about twice the lower
bound for that particular scenario.

Second, since the distances are invariant under the action of the affine group, we can
set wlog. N1 = (0, I) (standard normal distribution) and let N2 = diag(u1, . . . , ud) where
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ui ∼ Unif(0, a). As normals N1 and N2 separate from each other, we notice experimentally
that the performance of the cCO curve degrades in the second experiment with a = 5 (see
Table 3): Indeed, the mixture geodesic works experimentally better than the C&O curve
when d ≥ 11.

Table 2. Comparing our Fisher–Rao approximation with the Calvo and Oller lower bound and the
upper bound of [38].

d ρCO(N1, N2) ρ̃cCO(N1, N2) U(N1, N2)

1 1.7563 1.8020 3.1654
2 3.2213 3.3194 6.012
3 4.6022 4.7642 8.7204
4 5.9517 6.1927 11.3990
5 7.156 7.3866 13.8774

Table 3. Second set of experiments shows limitations of the cCO(t) curve.

d κCO κl κe κm

1 1.0569 1.1405 1.139 1.0734
5 1.1599 1.4696 1.5201 1.1819
10 1.2180 1.6963 1.7887 1.2184
11 1.2260 1.7333 1.8285 1.2235
12 1.2301 1.7568 1.8539 1.2282
15 1.2484 1.8403 1.9557 1.2367
20 1.2707 1.9519 2.0851 1.2466

Figure 14 display the various curves considered for approximating the Fisher–Rao
distance between bivariate normal distributions: For a curve c(t), we visualize its corre-
sponding bivariate normal distributions (µc(t), Σc(t)) at several increment steps t ∈ [0, 1] by
plotting the ellipsoid

Ec(t) = µc(t) +
{

L>x, x = (cos θ, sin θ), θ ∈ [0, 2π)
}

,

where Σc(t) = Lc(t)L>c(t).

(a) (b) (c)

(d) (e) (f)

Figure 14. Visualizing at discrete positions (10 increment steps between 0 and 1) some curves used to
approximate the Fisher–Rao distance between two bivariate normal distributions: (a) exponential
geodesic ce = γe

N (red), (b) mixture geodesic cm = γm
N (blue), (c) mid-mixture-exponential curve cem

(purple), (d) projected Calvo and Oller curve cCO (green), (e) cλ: ordinary linear interpolation in λ

(yellow), and (f) All superposed curves at once.
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Example 2. Let us report some numerical results for bivariate normals with T = 1000:

• We use the following example of Han and Park [39] (Equation (26)):

N1 =

([
0
0

]
,
[

1 0
0 0.1

])
, N2 =

([
1
1

]
,
[

0.1 0
0 1

])
.

Their geodesic shooting algorithm [39] evaluates the Fisher–Rao distance to ρN (N1, N2) ≈
3.1329 (precision 10−5).
We obtain:

– Calvo and Oller lower bound: ρCO(N1, N2) ≈ 3.0470,
– Upper bound using Equation (15): 7.92179,
– SPC upper bound (Equation (35)): USPC(N1, N2) ≈ 5.4302,
–

√
DJ upper bound: U√J(N1, N2) ≈ 4.3704,

– ρ̃λ
N (N1, N2) ≈ 3.4496,

– ρ̃m
N (N1, N2) ≈ 3.5775,

– ρ̃e
N (N1, N2) ≈ 3.7314,

– ρ̃em
N (N1, N2) ≈ 3.1672,

– ρ̃CO
N (N1, N2) ≈ 3.1391.

In that setting, the
√

DJ upper bound is better than the upper bound of Equation (35), and the
projected Calvo and Oller geodesic yields the best approximation of the Fisher–Rao distance
(Figure 15) with an absolute error of 0.0062 (about 0.2% relative error). When T = 10, we
have ρ̃CO

N (N1, N2) ≈ 3.1530, when T = 100, we obtain ρ̃CO
N (N1, N2) ≈ 3.1136, and when

T = 500 we obtain ρ̃CO
N (N1, N2) ≈ 3.1362 (which is better than the approximation obtained

for T = 1000). Figure 16 shows the fluctuations of the approximation of the Fisher–Rao
distance by the projected C&O curve when T ranges from 3 to 100.

• Bivariate normal N1 = (0, I) and bivariate normal N2 = (µ2, Σ2) with µ2 = [1 0]> and

Σ2 =

[
1 −1
−1 2

]
. We obtain

– Calvo and Oller lower bound: 1.4498
– Upper bound of Equation (35): 2.6072
–

√
DJ upper bound: 1.5811

– ρ̃λ: 1.5068
– ρ̃m: 1.5320
– ρ̃e: 1.5456
– ρ̃em: 1.4681
– ρ̃co: 1.4673

• Bivariate normal N1 = (0, I) and bivariate normal N2 = (µ2, Σ2) with µ2 = [5 0]> and

Σ2 =

[
1 −1
−1 2

]
. We get:

– Calvo and Oller lower bound: 3.6852
– Upper bound of Equation (35): 6.0392
–

√
DJ upper bound: 6.2048

– ρ̃λ: 5.7319
– ρ̃m: 4.4039
– ρ̃e: 5.9205
– ρ̃em: 4.2901
– ρ̃co: 4.3786

See Supplementary Materials for further experiments.
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(a) exponential geodesic (b) mixture geodesic

(c) mid-exp/mix curve (d) projected C&O curve

(e) geodesics/curves superposed (f) Fisher–Rao geodesic

Figure 15. Comparison of our approximation curves with the Fisher–Rao geodesic (f) obtained
by geodesic shooting (Figure 5 of [39]). Exponential (a) and mixture (b) geodesics with the mid-
exponential-mixture curve (c), and the projected C&O curve (d). Superposed curves (e) and compari-
son with geodesic shooting (Figure 5 of [39]). Beware that color coding is not related between (a) and
(f), and scale for depicting ellipsoids are different.

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 0  10  20  30  40  50  60  70  80  90  100

[Han&Park, 2014] example with T ranging from 3 to 100

Figure 16. Approximation of the Fisher–Rao distance obtained using the projected C&O curve when
T ranges from 3 to 100 [39].
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4. Approximating the Smallest Enclosing Fisher–Rao Ball of MVNs

We may use these closed-form distance ρCO(N, N′) between N and N′ to compute an
approximation (of the center) of the smallest enclosing Fisher–Rao ball B∗ = ball(C∗, r∗) of
a set G = {N1 = (µ1, Σ1), . . . , Nn = (µn, Σn)} of n d-variate normal distributions:

C∗ = arg min
C∈N

max
i∈{1,...,n}

ρN (C, Ni)

where ball(C, r) = {N ∈ N : ρN (C, N) ≤ r}.
The method proceeds as follows:

• First, we convert MVN set G into the equivalent set of (d + 1)-dimensional SPD
matrices Ḡ = {P̄i = f (Ni)} using the C&O embedding. We relax the problem of
approximating the circumcenter C∗ of the smallest enclosing Fisher–Rao ball by

P∗ = arg min
P∈P(d+1)

max
i∈{1,...,n}

ρCO(P, P̄i).

• Second, we approximate the center of the smallest enclosing Riemannian ball of Ḡ
using the iterative smallest enclosing Riemannian ball algorithm in [66] with say
T = 1000 iterations. Let P̃ ∈ P(d + 1) denote this approximation center: PT =
RieSEBSPD(Ḡ, T).

• Finally, we project back PT onto N : P̄T = projN (PT). We return P̄T as the approxima-
tion of C∗.

Algorithm [66] RieSEBSPD({P1, . . . , Pn}, T) is described for a set of SPD matrices
{P1, . . . , Pn} as follows:

• Let C1 ← P1
• For t = 1 to T

– Compute the index of the SPD matrix which is farthest from the current circum-
center Ct:

ft = arg max
i∈{1,...,n}

ρSPD(Ct, Pi)

– Update the circumcenter by walking along the geodesic linking Ct to Pft :

Ct+1 = γSPD

(
Ct, Pft ;

1
t + 1

)
= C

1
2
t (C

− 1
2

t Pft C
− 1

2
t )

1
t+1 C

1
2
t

• Return CT

The convergence of the algorithm RieSEBSPD follows from the fact that the SPD trace
manifold is a Hadamard manifold (with negative sectional curvatures). See [66] for proof
of convergence.

The SPD distance ρP (CT , C̄T) indicates the quality of the approximation. Figure 17
shows the result of implementing this heuristic.

Let us notice that when all MVNs share the same covariance matrix Σ, we have from
Equation (18) or Equation (23) that ρN (µ1, Σ), N(µ2, Σ) and ρCO(N(µ1, Σ), N(µ2, Σ)) are
strictly increasing function of their Mahalanobis distance. Using the Cholesky decompo-
sition Σ−1 = LL>, we deduce that the smallest Fisher–Rao enclosing ball coincides with
the smallest Calvo and Oller enclosing ball, and the circumcenter of that ball can be found
as an ordinary Euclidean circumcenter [83] (Figure 17b). Please note that in 1D, we can
find the exact smallest enclosing Fisher–Rao ball as an equivalent smallest enclosing ball in
hyperbolic geometry.

Furthermore, we may extend the computation of the approximated circumcenter to
k-center clustering [84] of n multivariate normal distributions. Since the circumcenter of
the clusters is approximated and not exact, we extend straightforwardly the variational
approach of k-means described in [85] to k-center clustering. An application of k-center
clustering of MVNs is to simplify a Gaussian mixture model [42] (GMM).
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Similarly, we can consider other Riemannian distances with closed-form formulas
between MVNs such as the Killing distance in the symmetric space [82] (see Appendix C)
or the Siegel-based distance proposed in Appendix D.

(a) (b) (c)

Figure 17. Approximation of the smallest enclosing Riemannian ball of a set of n bivariate normals
Ni = N(µi, Σi) with respect to C&O distance ρCO (the approximate circumcenter C̄T is depicted as a
red ellipse): (a) n = 8 with different covariance matrices, (b) n = 8 with identical covariance matrices
amount to the smallest enclosing ball of a set of n points {µi}, (c) n = 2 displays the midpoint of the
C&O geodesic visualized as an equivalent bivariate normal distribution in the sample space.

5. Some Information–Geometric Properties of the C&O Embedding

In information geometry [1], the manifold N admits a dual structure denoted by
the quadruple

(N , gFisher
N ,∇e

N ,∇m
N ),

when equipped with the exponential connection ∇e
N and the mixture connection ∇m

N .

The connections ∇e
N and ∇m

N are said to be dual since ∇
e
N+∇m

N
2 = ∇̄N , the Levi–Civita

connection induced by gFisher
N . Furthermore, by viewing N as an exponential family

{pθ} with natural parameter θ = (θv, θM) (using the sufficient statistics [80] (x,−xx>)),
and taking the convex log-normalizer function FN (θ) of the normals, we can build a dually
flat space [1] where the canonical divergence amounts to a Bregman divergence which
coincides with the reverse Kullback–Leibler divergence [30,86] (KLD). The Legendre duality

F∗(η) = 〈∇F(θ), η〉 − F(∇F(θ))

(with 〈(v1, M1), (v2, M2)〉 = tr(v1v>2 + M1M>2 ) = v1 · v2 + tr(M1M>2 )) yields: θ = (θv, θM)

=
(

Σ−1µ, 1
2 Σ−1

)
,

FN (θ) =
1
2

(
d log π − log |θM|+

1
2

θ>v θ−1
M θv

)
,

η = (ηv, ηM) = ∇FN (θ) =
(

1
2 θ−1

M θv, θ−1
M

)
,

F∗N (η) = −
1
2

(
log(1 + η>v η−1

M ηv) + log | − ηM|+ d(log 2πe)
)

,

and we have

BFN (θ1, θ2) = D∗KL(pλ1 : pλ2) = DKL(pλ2 : pλ1) = BF∗N
(η2 : η1),

where D∗KL[p : q] = DKL[q : p] is the reverse KLD.
In a dually flat space, we can express the canonical divergence as a Fenchel–Young

divergence using the mixed coordinate systems BFN (θ1 : θ2) = YFN (θ1 : η2) where ηi =
∇FN (θi) and

YFN (θ1 : η2) := FN (θ1) + F∗N (η2)− 〈θ1, η2〉.

The moment η-parameterization of a normal is (η = µ, H = −Σ− µµ>) with its reciprocal
function (λ = η, Λ = −H − ηη>).
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Let FP (P) = FN (0, P), θ̄ = 1
2 P̄−1, η̄ = ∇FP (θ̄). Then we have the following proposi-

tion which proves that the Fenchel–Young divergences in N and N (as a submanifold of
P) coincide:

Proposition 4. We have

DKL[pµ1,Σ1 : pµ2,Σ2 ] = BFN (θ2 : θ1) = YFN (θ2 : η1) = YFP (θ̄2 : η̄1)

= BFP (θ̄2 : θ̄1) = DKL[p0,P̄1= f (µ1,Σ2)
: p0,P̄2= f (µ2,Σ2)

].

Consider now the ∇e-geodesics and ∇m-geodesics on N (linear interpolation with
respect to natural and dual moment parameterizations, respectively): γe

N (N1, N2; t) =
(µe

t , Σe
t) and γm

N (N1, N2; t) = (µm
t , Σm

t ).

Proposition 5 (Mixture geodesics preserved). The mixture geodesics are preserved by the
embedding f : f (γm

N (N1, N2; t)) = γm
P ( f (N1), f (N2); t). The exponential geodesics are preserved

for the subspace of N with fixed mean µ: Nµ.

Proof. For the m-geodesics, let us check that

f (µm
t , Σm

t ) =

[
Σm

t + µm
t µm

t
> µm

t
(µm

t )
> 1

]
= t f (µ1, Σ1)︸ ︷︷ ︸

P̄1

+(1− t) f (µ2, Σ2)︸ ︷︷ ︸
P̄2

,

since Σm
t + µtµ

m
t
> = Σ̄t + tµ1µ>1 +(1− t)µ2µ>2 = t(Σ1 + µ1µ>1 )+ (1− t)(Σ2 + µ2µ>2 ). Thus,

we have f (γm
N (N1, N2; t)) = γm

P (P̄1, P̄2; t).

Therefore, all algorithms on N which only require m-geodesics or m-projections [1]
by minimizing the right-hand side of the KLD can be implemented by algorithms on P .
See, for example, the minimum enclosing ball approximation algorithm called BBC in [87].
Notice that N µ (fixed mean normal submanifolds) preserve both mixture and exponential
geodesics: The submanifolds N µ are said to be doubly autoparallel [88].

Remark 5. In [2] (p. 355), exercises 13.8 and 13.9 ask to prove the equivalence of the following
statements for S a submanifold ofM:

• S is an exponential family⇔ S is ∇1-autoparallel inM (exercise 13.8),
• S is a mixture family⇔ S is ∇−1-autoparallel inM (exercise 13.9).

Let P̄ =

[
Σ + µµ> µ

µ> 1

]
(with |P̄| = |Σ|), P̄−1 =

[
Σ−1 −Σ−1µ

−µ>Σ−1 1 + µ>Σ−1µ

]
, and

y = (x, 1). Then we have

qP̄(y) =
1

(2π)
d+1

2
√
|P̄|

exp
(
−1

2
y>P̄−1y

)
,

=
1

(2π)
d+1

2
√
|Σ|

exp
(
−1

2
y> P̄−1y

)
,

=
1

(2π)
d+1

2
√
|Σ|

exp
(
[x> 1]

[
Σ−1 −Σ−1µ

−µ>Σ−1 1 + µ>Σ−1µ

][
x
1

])
.

Thus, N = {qP̄(x, 1)} is an exponential family. Therefore, we deduce that P is ∇e-autoparallel in
P . However, N is not a mixture family and thus P is not ∇m-autoparallel in P .

6. Conclusions and Discussion

In general, the Fisher–Rao distance between multivariate normals (MVNs) is not
known in closed form. In practice, the Fisher–Rao distance is usually approximated by
costly geodesic shooting techniques [39–41] which requires time-consuming computations
of the Riemannian exponential map and are nevertheless limited to normals within a
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short range of each other. In this work, we consider a simple alternative approach for
approximating the Fisher–Rao distance by approximating the Riemannian lengths of curves,
which admits closed-form parameterizations. In particular, we considered the mixed
exponential-mixture curved and the projected symmetric positive–definite matrix geodesic
obtained from Calvo and Oller isometric submanifold embedding into the SPD cone [19].
We summarize our method to approximate ρN (N1, N2) between N1 = N(µ1, Σ1) and
N2 = N(µ2, Σ2) as follows:

ρ̃CO
T (N1, N2) :=

1
T

T−1

∑
i=1

√
DJ [S̄t, S̄t+1],

where

S̄t = projN (St)), projN

([
Σ + βµµ> βµ

βµ> β

])
=

[
Σ + µµ> µ>

µ 1

]
and

St = P̄
1
2

1

(
P̄−

1
2

1 P̄
1
2

2 P̄−
1
2

1

) t
T

P̄
1
2

1

with

P̄1 = f (N1) =

[
Σ1 + µ1µ>1 µ1
µ>1 1

]
, P̄2 = f (N2) =

[
Σ2 + µ2µ>2 µ2
µ>2 1

]
.

We proved the following sandwich bounds of our approximation

ρN (N1, N2) ≤ ρ̃CO
T (N1, N2) ≤ ρN (N1, N2) + 2δCO

T (P̄1, P̄2),

where

δCO
T (P1, P2) :=

1
T

T

∑
i=1

ρP (St, S̄t).

Notice that we may calculate equivalently DJ [S̄t, S̄t+1] as DJ [Gt, Gt+1] where Gi = f−1(S̄i) =
N(mi, Ci) for i ∈ {0, . . . , T} (see Proposition 3).

We also reported a fast way to upper bound the Fisher–Rao distance by the square root

of Jeffreys’ divergence: ρN (N1, N2) ≤
√

DJ [N1, N2] which is tight at infinitesimal scale. In
practice, this upper bound beats the upper bound of [38] when normal distributions are
not too far from each other. Finally, we show that not only is Calvo and Oller SPD submani-
fold embedding [19] isometric, but it also preserves the Kullback–Leibler divergence, the
Fenchel–Young divergence, and the mixture geodesics. Our approximation technique ex-
tends to elliptical distribution, which generalizes multivariate normal distributions [32,55].
Moreover, we obtained a closed form for the Fisher–Rao distance between normals sharing
the same covariance matrix using the technique of maximal invariance under the action
of the affine group in Section 1.5. We may also consider other distances different from the
Fisher–Rao distance, which admits a closed-form formula: For example, the Calvo and
Oller metric distance [19] (a lower bound on the Fisher–Rao distance) or the metric distance
proposed in [82] (see Appendix C) whose geodesics enjoys the asymptotic property of the
Fisher–Rao geodesics [89]). The C&O distance is very well-suited for short Fisher–Rao
distances while the symmetric space distance is well-tailored for large Fisher–Rao distances.
The calculations of these closed-form distances rely on generalized eigenvalues. We also
propose an embedding of normals into the Siegel upper space in Appendix D. To conclude,
let us propose yet another alternative distance, The Hilbert projective distance on the SPD
cone [90], which only needs to calculate the minimal and maximal eigenvalues (say, using
the power iteration method [91]):

ρHilbert(P1, P2) = log

(
λmax(P−1

1 P2)

λmin(P−1
1 P2)

)
. (36)
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The dissimilarity is said projective on the SPD cone because ρHilbert(P1, P2) = 0 if and only
if P1 = λP2 for some λ > 0. However, let us notice that it yields a proper metric distance
on N :

ρHilbert(N1, N2) := ρHilbert(P̄1, P̄2),

since P̄1 = λP̄2 if and only if λ = 1 because the array element (P1)d+1,d+1 = (P2)d+1,d+1 = 1,
i.e., P̄1 = P̄2 implying P1 = P2 by the isometric diffeomorphism f .

Notice that since λmax(P) = λmin(P−1), λmin(P) = λmax(P−1),
λmax(P1P2) ≤ λmax(P1)λmax(P2), and λmin(P1P2) ≥ λmin(P1)λmin(P2), we have the fol-
lowing upper bound on Hilbert distance: ρHilbert(P1, P2) ≤ log λmax(P1)

λmin(P1)
+ log λmax(P2)

λmin(P2)
.
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Abbreviations

Entities
N(µ, Σ) d-variate normal distribution (mean µ, covariance matrix Σ)
p(µ,Σ)(x) Probability density function of N(µ, Σ)
qΣ(y) = p(0,Σ)(y) Probability density function of N(0, Σ)
P = (Pij) Positive–definite matrix with matrix entries Pij
Mappings
P̄ = f1(N) Calvo and Oller mapping [19] (1990)
P̂ = f− 1

d+1 ,1(N) = f̂ (N) Calvo and Oller mapping [32] (2002) or [82]

Groups
GL(d) Group of linear transformations (invertible d× d matrices)
SL(d) Special linear group (d× d matrices with unit determinant)
Aff(d) Affine group of dimension d
Sets
N Set of multivariate normal distributions N(µ, Σ) (MVNs)
Sym(d) Set of symmetric d× d real matrices
P Symmetric positive–definite matrix cone (SPD matrix cone)
Pc Set of SPD matrices with fixed determinant c (P = R>0 × Pc)
SSPD, P1 Set of SPD matrices with unit determinant
Λ Parameter space of N(µ, Σ): Rd × P(d)
N0, P Set of zero-centered normal distributions N(0, Σ)
NΣ Set of normal distributions N(µ, Σ) with fixed Σ
Nµ Set of normal distributions N(µ, Σ) with fixed µ

N Set of SPD matrices f (N)

Riemannian length elements

MVN Fisher ds2
Fisher,N = dµ>Σ−1dµ + 1

2 tr
((

Σ−1dΣ
)2
)

0-MVN Fisher ds2
Fisher,N0

= 1
2 tr
((

Σ−1dΣ
)2
)

SPD trace ds2
β,trace = βtr((P dP)2) (when β = 1

2 , dstrace = dsFisher,N0 )

SPD Calvo and Oller metric ds2
CO = 1

2

(
dβ
β

)2
+ βdµ>Σ−1dµ + 1

2 tr
((

Σ−1dΣ
)2
)

(with dsCO = dsP ( f (µ, Σ)))
when β = 1, dsCO = dsFisher,N in N

SPD symmetric space ds2
SS = 1

2 dµ>Σ−1dµ + tr
((

Σ−1dΣ
)2
)
− 1

2 tr2(Σ−1dΣ
)

Siegel upper space ds2
SH(Z) = 2tr

(
Y−1dZ Y−1dZ̄

)
(dsSH(iY) = 2dsFisher,N0 )

https://franknielsen.github.io/FisherRaoMVN
https://franknielsen.github.io/FisherRaoMVN
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Manifolds and submanifolds
M (=MN ) Manifold of multivariate normal distributions
TpM Tangent space at p ∈ M
Sµ ⊂M Submanifold of MVNs with µ prescribed
SΣ ⊂M Submanifold of MVNs with Σ prescribed
MΣ manifold of NΣ (non-embedded inM)
Mµ manifold of Nµ (non-embedded inM)
S[v],Σ Submanifold of MVN set {N(λv, Σ) : λ > 0}

where v is an eigenvector of Σ
P manifold of symmetric positive–definite matrices
Distances
ρN(N1, N2) Fisher–Rao distance between normal distributions N1 and N2
ρSPD(P1, P2) Riemannian SPD distance between P1 and P2
ρCO(N1, N2) Calvo and Oller distance from embedding N to P̄ = f (N)

ρSS(N1, N2) Symmetric space distance from embedding N to P̂ = f̂ (N)

ρHilbert(N1, N2) Hilbert distance ρHilbert(P̄1, P̄2)

DKL(N1, N2) Kullback–Leibler divergence between MVNs N1 and N2
DJ(N1, N2) Jeffreys divergence between MVNs N1 and N2
DCO(N1, N2) Calvo and Oller dissimilarity measure of Equation (26)
Geodesics and curves
γFR
N (N1, N2; t) Fisher–Rao geodesic between MVNs N1 and N2

γFR
P (P1, P2; t) Fisher–Rao geodesic between SPD P1 and P2

γe
N (N1, N2; t) exponential geodesic between MVNs N1 and N2

γm
N (N1, N2; t) mixture geodesic between MVNs N1 and N2

γCO
N (N1, N2; t) projection curve (not geodesic) of γP (P̄1, P̄2; t) onto N

Metrics and connections
gFisher
N Fisher information metric of MVNs

gP trace metric
gP Fisher information metric of centered MVNs
gKilling Killing metric studied in [82]
∇Fisher
N Levi–Civita metric connection
∇e
N exponential connection
∇m
N mixture connection

Appendix A. Geodesics on the Fisher–Rao Normal Manifold

Appendix A.1. Parametric Equations of the Fisher–Rao Geodesics between Univariate
Normal Distributions

The Fisher–Rao geodesics γFR
N (N1, N2) on the Fisher–Rao univariate normal manifolds

are either vertical line segments when µ1 = µ2, or semi-circle with origin on the x-axis and
x-axis stretched by

√
2 [92] (Figure A1):

γFR
N (µ1, σ1; µ2, σ2) =

{
(µ, (1− t)σ1 + tσ2), µ1 = µ2 = µ

(
√

2(c + r cos t, r sin t), t ∈ [min{θ1, θ2}, max{θ1, θ2}], µ1 6= µ2,
,

where

c =
1
2 (µ

2
2 − µ2

1) + σ2
2 − σ2

1√
2(µ1 − µ2)

, r =

√(
µi√

2
− c
)2

+ σ2
i , i ∈ {1, 2},

and

θi = arctan

(
σi

µi√
2
− c

)
, i ∈ {1, 2},

provided that θi ≥ 0 for i ∈ {1, 2} (otherwise, we let θi ← θi + π).
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Figure A1. Visualizing some Fisher–Rao geodesics of univariate normal distributions on the stretched
Poincaré upper plane (semi-circles with origin on the x-axis and stretched by

√
2 on the x-axis). Full

geodesics are plotted with a thin gray style and geodesic arcs are plotted with a thick black style.

Notice that it is remarkable that the Fisher–Rao distance between normal distributions
is available in closed form: Indeed, the Euclidean length (with respect to the Euclidean
metric) of semi-ellipse curves (perimeters) is not known in closed form but can be expressed
using the so-called complete elliptic integral of the second kind [93].

Appendix A.2. Geodesics with Initial Values on the Multivariate Fisher–Rao Normal Manifold

The geodesic equation is given by{
µ̈− Σ̇Σ−1µ̇ = 0,
Σ̈ + µ̇µ̇> − Σ̇Σ−1Σ̇ = 0.

We concisely report the parametric geodesics using another variant of the natural
parameters of the normal distributions (slightly differing from the θ-coordinate system
since natural parameters can be chosen up to a fixed affine transformation by changing
accordingly the sufficient statistics by the inverse affine transformation) viewed as an
exponential family: (

ξ = Σ−1µ, Ξ = Σ−1
)

.

In general, the geodesics with boundary values γFisher
N (N1, N2; t) are not known in closed

form. However, Calvo and Oller [48] (Theorem 3.1 and Corollary 1) reported the explicit
equations of the geodesics when the initial values are given, i.e., γFisher

N (N0, v0; t) where
v0 = γ̇Fisher

N (N0, v0; 0) = (ξ̇(0), Ξ̇(0)) is in TN0M and γFisher
N (N0, v0; 0) = N0.

Let

B = −Ξ(0)−
1
2 Ξ̇(0)Ξ(0)−

1
2 ,

a = Ξ(0)−
1
2 ξ̇(0) + BΞ−

1
2

0 ξ(0),

G = (B2 + 2aa>)
1
2 ,

and G† be the Moore–Penrose generalized inverse matrix of G: G† = (G>G)−1G> or
G† = G>(GG>)−1. The Moore–Penrose pseudo-inverse matrix can be replaced by any
other pseudo-inverse matrix G− [48].

Then we have (ξ(t), Ξ(t)) = γFisher
N (N0, v0; t) with

R(t) = Cosh
(

1
2

Gt
)
− BG†Sinh

(
1
2

Gt
)

,

Ξ(t) = Ξ(0)
1
2 R(t)R(t)> Ξ(0)

1
2 ,

ξ(t) = 2Ξ(0)
1
2 R(t)Sinh

(
1
2

Gt
)

G†a + Ξ(t)Ξ−1(0)ξ(0),
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where the Cosh and Sinh functions of a matrix M are defined by the following absolutely
convergent series [48] (Equation (9), p. 122):

Sinh(M) = M +
∞

∑
i=1

M2i+1

(2i + 1)!
,

Cosh(M) = I +
∞

∑
i=1

M2i

(2i)!
,

and satisfies the identity Sinh2(M) + Cosh2(M) = I. The matrix Cosh and Sinh functions
can be calculated from the eigendecomposition of M = O diag(λ1, . . . , λd)O> as follows:

Sinh(M) = O diag(sinh(λ1), . . . , sinh(λd))O>, sinh(u) =
eu − e−u

2
=

∞

∑
i=0

u2i+1

(2i + 1)!
,

Cosh(M) = O diag(cosh(λ1), . . . , cosh(λd))O>, cosh(u) =
eu + e−u

2
=

∞

∑
i=0

u2i

(2i)!
.

When we restrict the manifold to a totally geodesic submanifoldMµ = {P � 0}, the
geodesic equation becomes P̈− ṖP−1Ṗ = 0, and the geodesic with initial values P(0) = P
and Ṗ(0) = S ∈ Sym is:

P(t) = P
1
2 exp

(
tP−

1
2 SP−

1
2

)
P

1
2 .

The geodesic with boundary values P(0) = P1 and P(1) = P2 is

P(t) = P
1
2

1 exp
(

tLog(P−
1
2

1 P2P−
1
2

1 )

)
P

1
2

1 .

Furthermore, we can convert a geodesic with boundary values γP(P1, P2; t) to an equivalent
geodesic with initial values γP(P, S; t) by letting

S = P
1
2

1 Log(P−
1
2

1 P2P−
1
2

1 )P
1
2

1 .

Appendix B. Fisher–Rao Distance between Normal Distributions Sharing the Same
Covariance Matrix

The Rao distance between N1 = N(µ1, Σ) and N2 = N(µ2, Σ) has been reported in
closed form [42] (Proposition 3). We shall explain the geometric method in full as follows:
Let (e1, . . . , ed) be the standard frame of Rd (ordered basis): The ei’s are the unit vectors
of the axis xi’s. Let P be an orthogonal matrix such that P (µ2 − µ1) = ‖µ2 − µ1‖2 e1
(i.e., matrix P aligns vector µ2 − µ1 to the first axis x1). Let ∆12 = ‖µ2 − µ1‖2 be the
Euclidean distance between µ1 and µ2. Furthermore, factorize matrix PΣP> using the LDL
decomposition (a variant of the Cholesky decomposition) as PΣP> = LDL> where L is a
lower triangular matrix with all diagonal entries equal to one (lower unitriangular matrix
of unit determinant) and D a diagonal matrix. Let σ12 =

√
D11. Then we have [42]:

ρΣ(µ1, µ2) = ρN (N(µ1, Σ), N(µ2, Σ)) = ρN (N(0, σ), N(∆12e1, σ12)). (A1)

Please note that the right-hand side term is the Fisher–Rao distance between univariate
normal distributions of Equation (7).

To find matrix P, we proceed as follows: Let u = µ2−µ1
‖µ2−µ1‖2

be the normalized vector
to align on axis x1. Let v = u − e1. Consider the Householder reflection matrix [94]
M = I− 2vv>

‖v‖2
2

, where vv> is an outer product matrix. Since Householder reflection matrices

have determinant −1, we let P be a copy of M with the last row multiplied by −1 so that
we obtain det(P) = 1. By construction, we have Pu = ‖µ2 − µ1‖2 e1. We then use the
affine-invariance property of the Fisher–Rao distance as follows:
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ρN (N(µ1, Σ), N(µ2, Σ)) = ρN (N(0, Σ), N(µ2 − µ1, Σ)),

= ρN (N(0, PΣP>), N(P(µ2 − µ1), PΣP>)),

= ρN (N(0, PΣP>), N(∆12 e1, PΣP>)),

= ρN (N(0, LDL>), N(∆12 e1, LDL>)),

= ρN (N(0, D), N(∆12 e1, D)).

The last row follows from the fact that L−1e1 = e1 since L−1 is an upper unitriangular
matrix, and L>(L−1)> = (L−1L)> = I. The right-hand side Fisher–Rao distance is
computed from Equation (7).

Appendix C. Embedding the Set of Multivariate Normal Distributions in a
Riemannian Symmetric Space

The multivariate Gaussian manifold N (d) can also be embedded into the SPD cone
P(d + 1) as a Riemannian symmetric space [82,89] by fSSPD: P̂ = { fSSPD(N) ⊂ P(d + 1) :
N ∈ N (d)}. We have P̂ ∼= SL(d + 1)/SO(d + 1) [82,95,96] (and textbook [97], Part II
Chapter 10), and the symmetric space SL(d + 1)/SO(d + 1) can be embedded with the
Killing Riemannian metric instead of the Fisher information metric:

gKilling(N1, N2) = κKilling

(
µ>1 Σ−1µ2 +

1
2

tr
(

Σ−1Σ1Σ−1Σ2

)
− 1

2(d + 1)
tr
(

Σ−1Σ1

)
tr
(

Σ−1Σ2

))
,

where κKilling > 0 is a predetermined constant (e.g., 1). The length element of the Killing
metric is

ds2
SS = κKilling

(
1
2

dµ>Σ−1dµ + tr
((

Σ−1dΣ
)2
)
− 1

2
tr2
(

Σ−1dΣ
))

.

When we consider NΣ, we may choose κKilling = 2 so that the Killing metric coincides with
the Fisher information metric. The induced Killing distance [82] is available in closed form:

ρKilling(N1, N2) =

√√√√κKilling

d+1

∑
i=1

log2 λi

(
L̂−1

1 P̂2

(
L̂−1

1

)>)
, (A2)

where L̂1 is the unique lower triangular matrix obtained from the Cholesky decomposition

of P̂1 = fSSPD(N1) = L̂1 L̂>1 . Please note that L̂−1
1 P̂2

(
L̂−1

1

)>
∈ P(d + 1) and |L̂1|, i.e., L̂1 ∈

SL(d + 1).
When N1 = (µ1, Σ) and N2 = (µ2, Σ) (N1, N2 ∈ NΣ), we have [82]

ρKilling(N1, N2) =
√

2κKillingarccosh
(

1 +
1
2

∆2
Σ(µ1, µ2)

)
,

where ∆2
Σ is the squared Mahalanobis distance. Thus, ρKilling(N1, N2) = hKilling(∆Σ(µ1, µ2))

where hKilling(u) =
√

2κKillingarccosh
(

1 + 1
2 u2
)

.
When N1 = (µ, Σ1) and N2 = (µ, Σ2) (N1, N2 ∈ Nµ), we have [82]:

ρKilling(N1, N2) =√√√√κKilling

(
d

∑
i=1

log2 λi

(
L−1

1 P2

(
L−1

1

)>)
− 1

(d + 1)2

(
d

∑
i=1

log λi

(
L−1

1 P2

(
L−1

1

)>)))
.

See Example 1. Let us emphasize that the Killing distance is not the Fisher–Rao
distance but is available in closed form as an alternative metric distance between MVNs.
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A Fisher geodesic defect measure of a curve c is defined in [89] by

δ(c) = lim
s→∞

1
s

∫ s

0
‖∇gFisher

ċ ċ‖Fisher
c(t) dt,

where ∇gFisher
denotes the Levi–Civita connection induced by the Fisher metric. When

δ(c) = 0 the curve is said to be an asymptotic geodesic of the Fisher geodesic. It is proven
that Killing geodesics at (µ, Σ) are asymptotic Fisher geodesics when the initial condition
c′(0) is orthogonal to Nµ.

Appendix D. Embedding the Set of Multivariate Normal Distributions in the Siegel
Upper Space

The Siegel upper space is the space of symmetric complex matrices Z = X + iY = Z>

with imaginary positive–definite matrices Y � 0 [45,65] (so-called Riemann matrices [98]):

SH(d) := {Z = X + iY : X ∈ Sym(d), Y ∈ P(d)}, (A3)

where Sym(d) is the space of symmetric real d × d matrices. SH(1) corresponds to the
Poincaré upper plane. See Figure A2 for an illustration.

The Siegel infinitesimal square line element is

ds2
SH(Z) = 2tr

(
Y−1dZ Y−1dZ̄

)
. (A4)

When X = 0 and Z = iY, we have dZ = idY, dZ̄ = −idY, and it follows that

ds2
SH(iY) = 2tr

(
(Y−1dY)2

)
.

That is, four times the square length of the Fisher matrix of centered normal distributions
ds2
N0

= 1
2 tr
(
(P−1dP)2).

The Siegel distance [45] between Z1 and Z2 ∈ SH(d) is

ρSH(Z1, Z2) =

√√√√ d

∑
i=1

log2
(

1 +
√

ri

1−√ri

)
, (A5)

where
ri = λi(R(Z1, Z2)), (A6)

with R(Z1, Z2) denoting the matrix generalization of the cross-ratio

R(Z1, Z2) := (Z1 − Z2)(Z1 − Z̄2)
−1(Z̄1 − Z̄2)(Z̄1 − Z2)

−1, (A7)

and λi(M) denoting the i-th largest (real) eigenvalue of (complex) matrix M. (In practice,
we numerically must round off the tiny imaginary parts to obtain proper real eigenval-
ues [65].) The Siegel upper half space is a homogeneous space where the Lie Group
SU(d, d)/S(U(d)×U(d)) acts transitively on it.

We can embed a multivariate normal distribution N = (µ, Σ) into SH(d) as follows:

N(µ, Σ)→ Z(N) :=
(

µµ> + iΣ
)

,

and consider the Siegel distance on the embedded normal distributions as another potential
metric distance between multivariate normal distributions:

ρSH(N1, N2) = ρSH(Z(N1), Z(N2)). (A8)

Notice that the real matrix part of the Z(N)’s are all of rank one by construction.
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iI

Sym(d,R)

P(d)

ds2SH(Z) = 2 tr
(
Y −1dZ Y −1dZ̄

)
ρSH(Z1, Z2) =

√∑d
i=1 log2

(
1+
√
ri

1−√ri

)
ri = λi (R(Z1, Z2))

R(Z1, Z2) := (Z1 − Z2)(Z1 − Z̄2)−1(Z̄1 − Z̄2)(Z̄1 − Z̄2)−1

dsSH

Z1 Z2

Figure A2. Siegel upper space generalizes the Poincaré hyperbolic upper plane.

Appendix E. The Symmetrized Bregman Divergence Expressed as Integral Energies on
Dual Geodesics

Let SF(θ1; θ2) = BF(θ1 : θ2) + BF(θ2 : θ1) be a symmetrized Bregman divergence. Let
ds2 = dθ>∇2F(θ)dθ denote the squared length element on the Bregman manifold and
denote by γ(t) and γ∗(t) the dual geodesics connecting θ1 to θ2. We can express SF(θ1; θ2)
as integral energies on dual geodesics:

Property A1. We have SF(θ1; θ2) =
∫ 1

0 ds2(γ(t))dt =
∫ 1

0 ds2(γ∗(t))dt.

Proof. The proof that the symmetrized Bregman divergence amount to these energy inte-
grals is based on the first-order and second-order directional derivatives. The first-order
directional derivative ∇uF(θ) with respect to vector u is defined by

∇uF(θ) = lim
t→0

F(θ + tv)− F(θ)
t

= v>∇F(θ).

The second-order directional derivatives ∇2
u,vF(θ) is

∇2
u,vF(θ) = ∇u∇vF(θ),

= lim
t→0

v>∇F(θ + tu)− v>∇F(θ)
t

,

= u>∇2F(θ)v.

Now consider the squared length element ds2(γ(t)) on the primal geodesic γ(t)
expressed using the primal coordinate system θ: ds2(γ(t)) = dθ(t)>∇2F(θ(t))dθ(t) with
θ(γ(t)) = θ1 + t(θ2 − θ1) and dθ(t) = θ2 − θ1. Let us express the ds2(γ(t)) using the
second-order directional derivative:

ds2(γ(t)) = ∇2
θ2−θ1

F(θ(t)).

Thus, we have
∫ 1

0 ds2(γ(t))dt = [∇θ2−θ1 F(θ(t))]10, where the first-order directional deriva-

tive is ∇θ2−θ1 F(θ(t)) = (θ2 − θ1)
>∇F(θ(t)). Therefore we obtain

∫ 1
0 ds2(γ(t))dt = (θ2 −

θ1)
>(∇F(θ2)−∇F(θ1)) = SF(θ1; θ2).

Similarly, we express the squared length element ds2(γ∗(t)) using the dual coordinate
system η as the second-order directional derivative of F∗(η(t)) with η(γ∗(t)) = η1 + t(η2− η1):

ds2(γ∗(t)) = ∇2
η2−η1

F∗(η(t)).
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Therefore, we have
∫ 1

0 ds2(γ∗(t))dt = [∇η2−η1 F∗(η(t))]10 = SF∗(η1; η2). Since SF∗(η1; η2) =
SF(θ1; θ2), we conclude that

SF(θ1; θ2) =
∫ 1

0
ds2(γ(t))dt =

∫ 1

0
ds2(γ∗(t))dt

Please note that in 1D, both pregeodesics γ(t) and γ∗(t) coincide. We have ds2(t) =
(θ2− θ1)

2 f ′′(θ(t)) = (η2− η1) f ∗′′(η(t)) so that we check that SF(θ1; θ2) =
∫ 1

0 ds2(γ(t))dt =
(θ2 − θ1)[ f ′(θ(t))]10 = (η2 − η1)[ f ∗′(η(t))]10 = (η2 − η1)(θ2 − θ2).
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2. Calin, O.; Udrişte, C. Geometric Modeling in Probability and Statistics; Springer: Berlin/Heidelberg, Germany, 2014; Volume 121.
3. Lin, Z. Riemannian geometry of symmetric positive definite matrices via Cholesky decomposition. SIAM J. Matrix Anal. Appl.

2019, 40, 1353–1370. [CrossRef]
4. Soen, A.; Sun, K. On the variance of the Fisher information for deep learning. Adv. Neural Inf. Process. Syst. 2021, 34, 5708–5719.
5. Barachant, A.; Bonnet, S.; Congedo, M.; Jutten, C. Classification of covariance matrices using a Riemannian-based kernel for BCI

applications. Neurocomputing 2013, 112, 172–178. [CrossRef]
6. Skovgaard, L.T. A Riemannian Geometry of the Multivariate Normal Model; Technical Report 81/3; Statistical Research Unit, Danish

Medical Research Council, Danish Social Science Research Council: Copenhagen, Denmark, 1981.
7. Skovgaard, L.T. A Riemannian geometry of the multivariate normal model. Scand. J. Stat. 1984, 11 , 211–223.
8. Malagò, L.; Pistone, G. Information geometry of the Gaussian distribution in view of stochastic optimization. In Proceedings of

the ACM Conference on Foundations of Genetic Algorithms XIII, Aberystwyth, UK, 17–22 January 2015; pp. 150–162.
9. Herntier, T.; Peter, A.M. Transversality Conditions for Geodesics on the Statistical Manifold of Multivariate Gaussian Distributions.

Entropy 2022, 24, 1698. [CrossRef] [PubMed]
10. Atkinson, C.; Mitchell, A.F. Rao’s distance measure. SankhyĀ Indian J. Stat. Ser. 1981, 43, 345–365.
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