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Abstract: Information-theoretic quantities reveal dependencies among variables in the structure of
joint, marginal, and conditional entropies while leaving certain fundamentally different systems
indistinguishable. Furthermore, there is no consensus on the correct higher-order generalisation of
mutual information (MI). In this manuscript, we show that a recently proposed model-free definition
of higher-order interactions among binary variables (MFIs), such as mutual information, is a Möbius
inversion on a Boolean algebra, except of surprisal instead of entropy. This provides an information-
theoretic interpretation to the MFIs, and by extension to Ising interactions. We study the objects dual
to mutual information and the MFIs on the order-reversed lattices. We find that dual MI is related
to the previously studied differential mutual information, while dual interactions are interactions
with respect to a different background state. Unlike (dual) mutual information, interactions and their
duals uniquely identify all six 2-input logic gates, the dy- and triadic distributions, and different
causal dynamics that are identical in terms of their Shannon information content.

Keywords: higher-order; information; entropy; synergy; triadic; Möbius inversions; Ising model; lattices

1. Introduction
1.1. Higher-Order Interactions

All non-trivial structures in data or probability distributions correspond to depen-
dencies among the different features, or variables. These dependencies can be present
among pairs of variables, i.e., pairwise, or can be higher-order. A dependency, or interaction,
is called higher-order if it is inherently a property of more than two variables and if it
cannot be decomposed into pairwise quantities. The term has been used more generally
to refer simply to complex interactions, as for example in [1] to refer to changes in gene
co-expression over time; in this article, however, it is used only in the stricter sense defined
in Section 2.

The reason such higher-order structures are interesting is twofold. First, higher-order
dependence corresponds to a fundamentally different kind of communication and inter-
action among the components of a system. If a system contains higher-order interactions,
then its dependency structure cannot be represented by a graph and requires a hypergraph,
where a single ‘hyperedge’ can connect more than two nodes. It is desirable to be able
to detect and describe such systems accurately, which requires a good understanding of
higher-order interactions. Second, higher-order interactions might play an important role
in nature, and have been identified in various interaction networks, including genetic [2–5],
neuronal [6–10], ecological [11–13], drug interaction [14], social [15–17], and physical [18,19]
networks. Furthermore, there is evidence that higher-order interactions are responsible
for the rich dynamics [20] or bistability [21] in biological networks; for example, synthetic
lethality experiments have shown that the trigenic interactions in yeast form a larger
network than the pairwise interactions [4].
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Despite this, purely pairwise descriptions of nature have been remarkably successful,
which the authors of [22,23] attribute to the fact that there are regimes in terms of the
strength and density of coupling among the variables within which pairwise descriptions
are sufficient. Alternatively, it may be attributed to the fact that higher-order interactions
have been understudied and their effects underestimated. Currently, perhaps the most
promising method of quantifying higher-order interactions is information theory. The two
most commonly used quantities are mutual information and its higher-order generalisation
(used in, e.g., [24,25]) and the total correlation (introduced in [26] and recently used in [27]).
However, one particular problem of interest that total correlation and mutual information
do not address is that of synergy and redundancy. Given a set of variables with an nth-
order dependency, what part of that is exclusively nth-order (called the synergistic part),
and what part can be found in a subset of m < n variables as well (the redundant part)?
Quantifying the exact extent to which shared information is synergistic is an open problem,
and is most commonly addressed using partial information decomposition [28], which has
been applied mainly in the context of theoretical neuroscience [29]. In this article, a different
more statistical approach to identifying synergy is taken, which is ultimately shown to
be intimately related to information theory while offering significant advantages beyond
classical entropy-based quantities.

1.2. Model-Free Interactions and the Inverse Ising Problem

In 1957, E.T. Jaynes famously showed that statistical equilibrium mechanics can be
seen as a maximum entropy solution to the inverse problem of constructing a probability
distribution that best reproduces a sample distribution [30]. More precisely, the equilibrium
dynamics of the (inhomogeneous, or glass-like) generalised Ising model with interactions
up to the nth order arise naturally as the maximum entropy distribution compatible with
a dataset after observing the first n moments among binary variables. This means that
in order to reproduce the moments in the data in a maximally non-committal way, it is
necessary to introduce higher-order interactions, i.e., terms that involve more than two
variables, in the description of the system. Fitting such a generalised Ising model to data
is nontrivial; while the log-likelihood of the Ising model is concave in the the coupling
parameters, the cost of evaluating it is exponential in the total number of variables N, which
is often intractable in practice [31]. In [32], the authors introduced an estimator of model-
free interactions (MFIs) that exactly coincides with the solution to the inverse generalised
Ising problem. Moreover, the cost of estimating all nth-order model-free interactions among
N variables from M observations scales as O

(
M · (N

n )
)
= O(MNn) (i.e., polynomially)

in the total system size N. However, this is true only when sufficient data is available.
With limited data, certain interactions might require inferring the conditional dependencies
from the data, which in the worst case scales exponentially in N again. The definition of
MFIs offered in [32] seems to be a general one; in addition to offering a solution to the
inverse generalised Ising problem, MFIs are expressible in terms of average treatment
effects (ATEs) or regression coefficients. Throughout this article, the general term ‘MFI’ is
used, and may be read simply as referring to the maximum entropy or Ising interaction.

1.3. Outline

In Section 2.1, the definition of the MFIs is stated along with a number of their
properties. To explicitly link the MFIs to information theory, a redefinition of mutual
information in terms of Möbius inversions is provided in Section 2.2, which is then linked
to a similar redefinition of the MFIs in Sections 3.1 and 3.2. A definition in terms of Möbius
inversions naturally leads to dual definitions of all objects, which are subsequently explored
in Section 3.3. Then, in Section 4, simple fundamental examples are used to demonstrate
that MFIs can differentiate distributions that entropy-based quantities cannot. Finally,
the results are summarised and reflected upon in Section 5.
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2. Background
2.1. Model-Free Interactions

We start by re-defining the interactions introduced in [32]. We define the isolated effect
(or 1-point interaction) I(Y)i of a variable Xi ∈ X on an observable Y as

I(Y)i =
∂Y
∂Xi

∣∣∣
X=0

, X = X \ {Xi} (1)

where the effect of Xi on Y is isolated by conditioning on all other variables being zero.
This expression is well-defined, as the restriction of a derivative is the derivative of the
restriction. A pair of variables Xi and Xj has a 2-point interaction I(Y)ij when the value of Xj

changes the 1-point interaction of Xi on Y:

I(Y)ij =
∂I(Y)i
∂Xj

∣∣∣
X=0

=
∂2Y

∂Xj∂Xi

∣∣∣
X=0

, X = X \ {Xi, Xj} (2)

A third variable Xk can modulate this 2-point interaction through what we call a 3-point
interaction, I(Y)ijk :

I(Y)ijk =
∂I(Y)ij

∂Xk

∣∣∣
X=0

=
∂3Y

∂Xk∂Xj∂Xi

∣∣∣
X=0

, X = X \ {Xi, Xj, Xk} (3)

This process of taking derivatives with respect to an increasing number of variables can be
repeated to define n-point interactions.

Definition 1 (n-point interaction with respect to outcome Y). Let p be a probability distribution
over a set X of random variables Xi and let Y be a function Y : X → R. Then, the n-point interaction
IX1 ...Xn between variables {X1, . . . , Xn} ⊆ X is provided by

I(Y)X1 ...Xn
=

∂nY(X)

∂X1 . . . ∂Xn

∣∣∣
X=0

(4)

where X = X \ {X1, . . . Xn}.

This definition of interaction makes explicit the fact that interactions are defined with
respect to some outcome. The authors of [32] refer to the interactions from Definition 1
as additive, which they distinguish from multiplicative interactions. However, when the
outcome is chosen to be the log of the joint distribution p(X) over all variables X, then
the additive and multiplicative interactions are equivalent and simply related through a
logarithm [32]. Setting the outcome to be log p(X) has other nice properties as well. First,
while probabilities are restricted to the non-negative reals, a log-transformation removes
this restriction and makes the outcome and subsequent interactions take both positive
and negative values, which can have different interpretations. Second, it is this outcome
that makes the interactions interpretable as maximum entropy interactions, as they exactly
coincide with Ising interactions. Finally, this can be considered the most general outcome
possible, as all marginal and conditional probabilities are encoded in this joint distribution.
This leads to the following definition of a model-free interaction.

Definition 2 (model-free n-point interaction between binary variables). A model-free n-point
interaction (MFI) is an n-point interaction between binary random variables with respect to the
logarithm of their joint probability

IX1 ...Xn := I(log p(X))
X1 ...Xn

=
∂n log p(X)

∂X1 . . . ∂Xn

∣∣∣
X=0

(5)



Entropy 2023, 25, 648 4 of 27

where X = X \ {X1, . . . Xn}.

If the variables Xi ∈ X are binary, then a definition for a derivative with respect to a
binary variable is needed.

Definition 3 (derivative of a function with respect to a binary variable). Let f : Bn → R be a
real-valued function of a set X of n binary variables, labelled as Xi, 1 ≤ i ≤ n. Then, the derivative
operator with respect to Xi acts on f (X) as follows:

∂

∂Xi
f (X) = f (Xi = 1, X \ Xi)− f (Xi = 0, X \ Xi) (6)

The linearity of the derivative operator then immediately and uniquely defines the higher-order derivatives.

Using this definition, the n-point interactions become model-free in the sense that they
are ratios of probabilities that do not involve the functional form of the joint probability
distribution. For example, writing Xijk = (a, b, c) for (Xi = a, Xj = b, Xk = c), the first
three orders can be written out as follows (recall that the notation ∂

∂Xi
here refers to the

derivative operator from Definition 3):

Ii =
∂ log p(X)

∂Xi

∣∣∣
X=0

= log
p
(

Xi = 1 | X = 0
)

p
(

Xi = 0 | X = 0
) (7)

Iij =
∂2 log p(X)

∂Xj∂Xi

∣∣∣
X=0

= log
p
(

Xij = (1, 1) | X = 0
)

p
(

Xij = (0, 1) | X = 0
)

p
(

Xij = (0, 0) | X = 0
)

p
(

Xij = (1, 0) | X = 0
) (8)

Iijk =
∂3 log p(X)

∂Xk∂Xj∂Xi

∣∣∣
X=0

=

log
p
(

Xijk = (1, 1, 1) | X = 0
)

p
(

Xijk = (0, 0, 0) | X = 0
)

p
(

Xijk = (1, 0, 0) | X = 0
)

p
(

Xijk = (0, 1, 1) | X = 0
) (9)

×
p
(

Xijk = (0, 1, 0) | X = 0
)

p
(

Xijk = (1, 0, 1) | X = 0
)

p
(

Xijk = (0, 0, 1) | X = 0
)

p
(

Xijk = (1, 1, 0) | X = 0
)

where Bayes’ rule is used to replace joint probabilities with conditional probabilities. This
definition of interaction has the following properties:

• It is symmetric in terms of the variables, as IS = Iπ(S) for any set of variables S and any
permutation π.

• Conditionally independent variables do not interact: Xi⊥⊥ Xj | X =⇒ Iij = 0.
• If X = ∅, the definition coincides with that of a log-odds ratio, which has already

been considered as a measure of interaction in, e.g., [33,34].
• The interactions are model-free; no knowledge of the functional form of p(X) is

required, and the probabilities can be directly estimated from i.i.d. samples.
• The MFIs are exactly the Ising interactions in the maximum entropy model after

observing moments of the data. This can be readily verified by setting

p(s) = Z−1 exp(∑
n

∑
i1,...,in

Ji1 ...in si1 . . . sin)

and using Definition 2.

Furthermore, in Appendix A.2 the following two useful properties are introduced
and proved:
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• An n-point interaction can only be non-zero if all n variables are in each other’s
minimal Markov blanket.

• If X does not include the full complement of the interacting variables, the bias this
induces in the estimate of the interaction is proportional to the pointwise mutual
information of states where the omitted variables are 0.

2.2. Mutual Information as a Möbius Inversion

The definition of an n-point interaction as a derivative of a derivative is reminiscent
of Gregory Bateson’s view of information as a difference which makes a difference [35]; how-
ever, the relationship between information theory and model-free interactions rests on more
than a linguistic coincidence. It turns out that interactions and information are generalised
derivatives of similar functions on Boolean algebras. To see this, consider the definition of
pairwise mutual information and its third-order generalisation:

MI(X, Y) = H(X)− H(X | Y) (10)

= H(X) + H(Y)− H(X, Y) (11)

MI(X, Y, Z) = MI(X, Y)−MI(X, Y | Z) (12)

= H(X) + H(Y) + H(Z)

− H(X, Y)− H(X, Z)− H(Y, Z) + H(X, Y, Z)

Note that all MI-based quantities can be written thusly as sums of marginal entropies
of subsets of the set of variables. Given a finite set of variables S, its powerset P(S) can be
assigned a partial ordering as follows:

a ≤ b ⇐⇒ a ⊆ b ∀ a, b ∈ P(S) (13)

This poset P = (P(S),⊆) is called a Boolean algebra, and because each pair of sets has
a unique supremum (their union) and infimum (their intersection), it is a lattice. This lattice
structure is visualised for two and three variables in Figure 1. In general, the lattice of an
n-variable Boolean algebra forms an n-cube. Furthermore, for any finite n, the n-variable
Boolean algebra forms a bounded lattice, which means that it has a greatest element, denoted
as 1̂, and a least element, denoted as 0̂.

{X, Y} = 1̂

{X} {Y}

∅ = 0̂

{X, Y, Z} = 1̂

{X, Y} {X, Z} {Y, Z}

{X} {Y} {Z}

∅ = 0̂

Figure 1. The lattices associated with P({X, Y}) (left) and P({X, Y, Z}) (right) ordered by inclusion.
An arrow b→ a indicates a < b.

On a poset P, we define the Möbius function µP : P× P→ R as
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µP(x, y) =





1 if x = y
− ∑

z:x≤z<y
µP(x, z) if x < y

0 otherwise

(14)

This function type makes µP an element of the incidence algebra of P. In fact, µ is
the inverse of the zeta function ζ : ζ(x, y) = 1 iff x ≤ y, and 0 otherwise. On a Boolean
algebra, such as a powerset ordered by inclusion, the Möbius function takes the simple
form µ(x, y) = (−1)|x|−|y| [36,37]. This definition allows the mutual information among a
set of variables τ to be written as follows [38,39]:

MI(τ) = (−1)|τ|−1 ∑
η≤τ

µP(η, τ)H(η) (15)

= ∑
η≤τ

(−1)|η|+1H(η) (16)

where P is the Boolean algebra with τ = 1̂ and H(η) is the marginal entropy of the set of
variables η. Indeed, this coincides with Equation (11) for τ = {X, Y} and with Equation (13)
for τ = {X, Y, Z}. Equation (15) is a convolution known as a Möbius inversion.

Definition 4 (Möbius inversion over a poset, Rota (1964) [37]). Let P be a poset (S,≤), let
µ : P× P→ R be the Möbius function from Equation (14), and let g : P→ R be a function on P.
Then, the function

f (y) = ∑
x≤y

µP(x, y)g(x) (17)

is called the Möbius inversion of g on P. Furthermore, this equation can be inverted to yield

f (y) = ∑
x≤y

µP(x, y)g(x) ⇐⇒ g(y) = ∑
x≤y

f (x) (18)

The Möbius inversion is a generalisation of the derivative to posets. If P = (N,≤),
Equation (18) is just a discrete version of the fundamental theorem of calculus [36].
Equation (18) additionally implies that we can express joint entropy as a sum over mutual
information:

H(τ) = (−1)|τ|−1 ∑
η≤τ

MI(η) (19)

For example, in the case of three variables,

H(X, Y, Z) = MI(X, Y, Z) + MI(X, Y) + MI(X, Z) + MI(Y, Z) + H(X) + H(Y) + H(Z) (20)

Instead of starting with entropy, we could start with a quantity known as surprisal,
or self-information, defined as the negative log probability of a certain state or realisation:

S(X = x) =− log p(X = x) (21)

Surprisal plays an important role in information theory; indeed, the expected surprisal
across all possible realisations X = x is the entropy of the variable X:

EX [S(X = x)] = H(X) (22)
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As we are often interested in the marginal surprisal of a realisation X = x summed over Y,
we can write this explicitly as

log p(x; Y) := ∑
y

log p(x, y) (23)

With this, consider the Möbius inversion of the marginal surprisal over the lattice P:

pmi(T = τ) := (−1)|τ| ∑
η≤τ

µP(η, τ) log p(η; τ \ η) (24)

This is a generalised version of the pointwise mutual information, which is usually defined
on just two variables:

pmi(X = x, Y = y) = log(x, y; ∅)− log(x; Y)− log(y; X) + log(∅; X, Y) (25)

= log
p(x, y)

p(x)p(y)
(26)

Summary

• Mutual information is the Möbius inversion of marginal entropy.
• Pointwise mutual information is the Möbius inversion of marginal surprisal.

3. Interactions and Their Duals
3.1. MFIs as Möbius Inversions

With mutual information defined in terms of Möbius inversions, the same can be
done for the model-free interactions. Again, we start with (negative) surprisal. However,
on Boolean variables a state is just a partition of the variables into two sets: one in which the
variables are set to 1, and another in which they are set to 0. That means that the surprisal
of observing a particular state is completely specified by which variables X ⊆ Z are set to 1
while keeping all other variables Z \ X at 0, which can be written as

SX;Z := log p(X = 1, Z \ X = 0) (27)

Definition 5 (interactions as Möbius inversions). Let p be a probability distribution over a set
T of random variables and let P = (P(τ),⊆), the powerset of a set τ ⊆ T ordered by inclusion.
Then, the interaction I(τ; T) among variables τ is provided by

I(τ; T) := ∑
η≤τ

µP(η, τ)Sη;T (28)

= ∑
η≤τ

(−1)|η|−|τ| log p(η = 1, T \ η = 0) (29)

For example, when τ contains a single variable X ⊆ T, then

I({X}; T) = µP({X}, {X})S{X};T + µP(∅, {X})S∅;T (30)

= log
p(X = 1, T \ X = 0)
p(X = 0, T \ X = 0)

(31)

which coincides with the 1-point interaction in Equation (7). Similarly, when τ contains
two variables τ = {X, Y} ⊆ T, then

I({X, Y}; T) = µP({X, Y}, {X, Y})S{X,Y};T + µP({X}, {X, Y})S{X};T (32)

+µP({Y}, {X, Y})S{Y};T + µP(∅, {X, Y})S∅;T

= log
p(X = 1, Y = 1, T \ {X, Y} = 0)p(X = 0, Y = 0, T \ {X, Y} = 0)
p(X = 1, Y = 0, T \ {X, Y} = 0)p(X = 0, Y = 1, T \ {X, Y} = 0)

(33)
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which coincides with the 2-point interaction in Equation (8). In fact, this pattern holds
in general.

Theorem 1 (equivalence of interactions). The interaction I(τ, T) from Definition 5 is the same
as the model-free interaction Iτ from Definition 2, that is, for any set of variables τ ⊆ T it is the
case that

I(τ, T) = Iτ (34)

Proof. We have to show that

∑
η≤τ

(−1)|η|−|τ| log p(η = 1, T \ η = 0) =
∂n log p(T)
∂τ1 . . . ∂τn

∣∣∣
T=0

(35)

Both sides of this equation are sums of ±log p(s), where s is some binary string; thus,
we have to show that the same strings appear with the same sign.

First, note that the Boolean algebra of sets ordered by inclusion (as in Figure 1) is
equivalent to the poset of binary strings where for any two strings a and b, a ≤ b ⇐⇒
a ∧ b = a. The equivalence follows immediately upon setting each element a ∈ P(S) to
the string where a = 1 and S \ a = 0. This map is one-to-one and monotonic with respect
to the partial order, as A ⊆ B ⇐⇒ A ∩ B = A. This means that Definition 5 can be
rewritten as a Möbius inversion on the lattice of Boolean strings S = (B|τ|,≤) (shown for
the three-variable case on the left side of Figure 2):

I(τ; T) = ∑
s≤1̂S

µS(s, 1̂S) log p(τ = s, T \ τ = 0) (36)

Note that for any pair (α, τ) where α ⊆ τ with respective string representations (s, t) ∈
B|τ| ×B|τ|, we have the following:

|τ| − |α| = ∑
i
(t ∧ ¬s)i (37)

Thus, we can write

I(τ; T) = ∑
s≤1̂S

(−1)∑¬s log p(τ = s, T \ τ = 0) (38)

To see that this exactly coincides with Definition 2, we can define a map

e(n)i,s : FBn → FBn−1 (39)

where FBn is the set of functions from n Boolean variables to R. This map is defined as

e(n)i,s : f (X1, . . . Xi, . . . Xn) 7→ f (X1, . . . Xi = s, . . . Xn) (40)

With this map, the Boolean derivative of a function f (X1, . . . , Xn) (see Definition 3) can be
written as

∂

∂Xi
f (X) = (e(n)i,1 − e(n)i,0 ) f (X) (41)

= f (X1, . . . , Xi = 1, . . . , Xn)− f (X1, . . . , Xi = 0, . . . , Xn) (42)

In this way, the derivative with respect to a set S of m variables becomes function composition:
(

m

∏
i=0

∂

∂XSi

)
f (X) =

(
©m

i=0(e
(n−i)
Si ,1

− e(n−i)
Si ,0

)
)

f (X) (43)
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From this, it is clear that a term f (s) appears with a minus sign iff e(n)i,0 has been applied
an odd number of times. Therefore, terms for which s contains an odd number of 0s receive
a minus sign. This can be summarised as

(
m

∏
i=0

∂

∂XSi

)
f (X) = ∑

s∈Bn
(−1)∑¬s f (XS = s, X \ XS) (44)

Therefore, we can write

Iτ = ∑
s∈Bn

(−1)∑¬s log(τ = s, T \ τ = 0) (45)

The sums ∑s≤1̂S
and ∑s∈Bn contain exactly the same terms, meaning that Equations (38)

and (45) are equal. This completes the proof.

Note that the structure of the lattice reveals structure in the interactions, as previously
noted in [32]. On the right-hand side of Figure 2, two faces of the three-variable lattice
are shaded. The green region corresponds to the 2-point interaction between the first two
variables. The red region contains a similar interaction between the first two variables,
except this time in the context of the third variable fixed to 1 instead of 0. This illustrates
the interpretation of a 3-point interaction as the difference in two 2-point interactions
(IXYZ = IXY|Z=1 − IXY|Z=0; note that IXY|Z=0 is usually written as just IXY). The symmetry
of the cube reveals the three different (though equivalent) choices as to which variable to
set to 1. Treating the Boolean algebra as a die, where the sides facing up are , , and ,
we have

IXYZ = − = − = − (46)

As before, we can invert Definition 5 and express the surprise of observing a state with
all ones in terms of interactions, as follows:

log p(τ = 1, T \ τ = 0) = ∑
η≤τ

I(η, T) (47)

For example, in the case where T = {X, Y, Z} and τ = {X, Y}

S(1, 1, 0) = − log p(1, 1, 0) = −IXY − IX − IY − I∅ (48)

which illustrates that when X and Y tend to be off (IX < 0 and IY < 0) and X and Y tend to
be different (IXY < 0), observing the state (1, 1, 0) is very surprising.

3.2. Categorical Interactions

Taking seriously the definition of interactions as the Möbius inversion of surprisal,
one might ask what happens when surprisal is inverted over a different lattice instead of
using a Boolean algebra. One example is shown in Figure 3; it corresponds to variables
that can take three values—0, 1, or 2—where states are ordered by a ≤ b ⇐⇒ ∀i : ai ≤ bi.
To calculate interactions on this lattice, we need to know the value of Möbius functions of
type µ(s, 22). It can be readily verified that most Möbius functions of this type are zero,
with the exceptions of µ(22, 22) = µ(11, 22) = 1 and µ(21, 22) = µ(12, 22) = −1, which
provide the exact terms in the interactions between two categorical variables changing
from 1 → 2 (as defined in [32]). Calculating interactions on different sublattices with
1̂ = (21), (12) or (11) provides us with the other categorical interactions. The transitivity
property of the interactions, i.e., I(X : 0→ 2, Y : 0→ 1) = I(X : 0→ 1, Y : 0→ 1) + I(X :
1→ 2, Y : 0→ 1), follows immediately from the structure of the lattice in Figure 3 and the
alternating signs of the Möbius functions on a Boolean algebra.
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(1 1 1) = 1̂

(1 1 0) (1 0 1) (0 1 1)

(1 0 0) (0 1 0) (0 0 1)

(0 0 0) = 0̂

(1 1 1) = 1̂

(1 1 0) (1 0 1) (0 1 1)

(1 0 0) (0 1 0) (0 0 1)

(0 0 0) = 0̂

Figure 2. (Left ) The lattice associated with P({X, Y, Z}) ordered by inclusion as binary strings.
Equivalently, the lattice of binary strings where for any two strings a and b, a ≤ b ⇐⇒ a ∧ b = a.
(Right): The two shaded regions correspond to the decomposition of the 3-point interaction into two
2-point interactions.

(2 2)

(2 1) (1 2)

(2 0) (1 1) (0 2)

(1 0) (0 1)

(0 0)

Figure 3. The lattice of two variables that can take three values, ordered by a ≤ b ⇐⇒ ∀i: ai ≤ bi.

3.3. Information and Interactions on Dual Lattices

Lattices have the property that a set with the reverse order remains a lattice; that is,
if L = (S,≤) is a lattice, then Lop = (S,�) (where ∀a, b ∈ S : a � b ⇐⇒ a ≥ b) is a lattice.
This raises the question of what corresponds to mutual information and interaction on
such dual lattices. Recognising that a poset L = (S,≤L) is a category C with objects S and
a morphism f : A → B iff B ≤L A, these become definitions in the opposite category Cop,
meaning that they define dual objects.

Let us start with mutual information. We can calculate the dual mutual information,
denoted MI∗, by first noting that the dual to a Boolean algebra is another Boolean algebra,
meaning that we have µ(x, y) = (−1)|x|−|y|. Simply replacing P with Pop in Equation (15)
yields

MI∗(τ) = ∑
η�τ

(−1)|η|+1H(η) (49)
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The dual mutual information of τ = 1̂Pop is simply MI∗(∅) = MI(1̂P), that is, the mutual
information among all variables. However, the dual mutual information of a singleton set
X is

MI∗(X) = MI(1̂P)−MI(1̂P \ X) (50)

= ∆(X; 1̂P \ X) (51)

where ∆ is known as the differential mutual information and describes the change in mutual
information when leaving out X [40], i.e., when marginalising over the variable X. Note
that a similar construction was already anticipated in [41] and that the differential mutual
information has previously been used to describe information structures in genetics [39].
On the Boolean algebra of three variables {X, Y, Z}, the dual mutual information of X can
be written out as follows:

MI∗(X) = µ({X}, {X})H(X) + µ({X, Y}, {X})H(X, Y)+

µ({X, Z}, {X})H(X, Z) + µ({X, Y, Z}, {X})H(X, Y, Z) (52)

= H(X)− H(X, Y)− H(X, Z) + H(X, Y, Z) (53)

Because ∆ is the dual of mutual information, it should arguably be called the mutual
co-information; however, the term co-information is unfortunately already in use to refer
to normal higher-order mutual information.

To find the dual to the interactions, we start from Equation (36) and construct Sop =
(B|τ|,�), the dual to the lattice of binary strings S = (B|τ|,≤). A dual interaction of
variables τ ⊆ T is denoted as I∗(τ; T), and is defined as follows:

I∗(τ; T) := ∑
s�1̂Sop

µSop(s, 1̂Sop) log p(τ = s, T \ τ = 0) (54)

Again, when τ = 1̂Sop = 0̂S = ∅, this is simply (−1)|τ| I(1̂S), while the dual interaction of a
singleton set X is

I∗(X; T) = (−1)|1̂S |−1
(

I(1̂S; T) + I(1̂S \ X; T)
)

(55)

For example, on the three variable lattice in Figure 2, the dual interaction of X is

I∗(X; T) = I(X, Y, Z; T) + I(Y, Z; T) (56)

Writing pijk for p(X = i, Y = j, Z = k | T \ {X, Y, Z} = 0), it can be seen that this is equal to

I∗(X; T) = log
p111 p100

p101 p110
(57)

which is similar to the 2-point interaction IYZ defined in Equation (8), now conditioned
on X = 1 instead of 0. Note the difference between dual mutual information and dual
interactions here; the dual mutual information of X describes the effect on the mutual
information from marginalising over X, whereas the dual interaction of X describes the
effect on an interaction when fixing X = 1. This reflects a fundamental difference between
mutual information and the interactions, in that the former is an averaged quantity and
the latter a pointwise quantity.

Dual interactions should probably be called co-interactions; however, to avoid confu-
sion with the term co-information, we instead refer to them simply as dual interactions.
Dual interactions are interactions that are conditioned on certain variables being 1 instead
of 0. This makes them no longer equal to the Ising interactions between Boolean variables;
however, there are situations in which an interaction is more interesting in the context of
Z = 1 instead of Z = 0, for example, if Z is always 1 in the data under consideration.
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Summary

• Mutual information is the Möbius inversion of marginal entropy on the lattice of subsets
ordered by inclusion.

• Differential (or conditional) mutual information is the Möbius inversion of marginal entropy
on the dual lattice.

• Model-free interactions are the Möbius inversion of surprisal on the lattice of subsets ordered
by inclusion.

• Model-free dual interactions are the Möbius inversion of surprisal on the dual lattice.
• Dual interactions of a variable X are interactions between the other variables where X is set to

1 instead of 0.

To summarise these relationships diagrammatically, note that surprisals form a vector
space as follows. Let P(T) be the powerset of a set of variables T and let |P(T)| = n. This
forms a lattice P = (P(T),⊆) ordered by inclusion, meaning that P(T) can be assigned a
topological ordering indexed by i as P(T) = ∪n

i=0ti. Let S be the set of linear combinations
of surprisals of subsets of T:

S =

{
n

∑
i=0

ai log p(ti) | ai ∈ R
}

(58)

This set is assigned a vector space structure over R by the usual scalar multiplication and
addition. Note that the set

B = {log p(t) | t ∈ P(T)} (59)

forms a basis for this vector space, because ∑i αi log p(ti) = 0 has no non-trivial solutions
and a span(B) = S . Only when two variables a and b are independent do we have linear
dependencies in B, as it is then the case that log p(a, b) = log p(a) + log p(b). To define a
map from S → R, we only need to specify its action on B and extend the definition linearly.
This means that we can fully define the map evalT : S → R by specifying

evalT : log p(R = r) 7→ log p(R = 1, T \ R = 0) (60)

Similarly, we can define the expectation map E : S → R as

E : log p(R = r) 7→∑
r

p(R = r) log p(R = r) (61)

which outputs the expected surprise over all realisations R = r. Finally, note that the
Möbius inversion over a poset P is an endomorphism of the set FP of functions over P,
defined as

MP : FP → FP (62)

MP : f (y) 7→ ∑
x≤y

µ(x, y) f (x) (63)

Together, these three maps ensure that the following diagram commutes:



Entropy 2023, 25, 648 13 of 27

MI∗(R) = ∆(R; 1̂P) H(R) MI(R)

pmi∗(R = r) S(R = r; T) pmi(R = r)

I∗(R; T) SR;T I(R; T)

MP

E E

MP

MP

evalT evalT

MPop

MPop

MPop

E

evalT

For the case where T = {X, Y, Z} and R = {X, Y}, this explicitly amounts to

∑(x,y,z)∈X×Y×Z p(x,y,z) log p(x,y,z)
−∑(x,y)∈X×Y p(x,y) ∑(x,y)∈X×Y p(x, y) log p(x, y)

∑(x,y)∈X×Y p(x,y) log p(x,y)
−∑x∈X p(x) log p(x)
−∑y∈Y p(y) log p(y)

log p(x,y,z)
p(x,y) log p(x, y) log p(x,y)p(∅)

p(x)p(y)

log p(1,1,1)
p(1,1,0) log p(1, 1, 0) log p(1,1,0)p(0,0,0)

p(1,0,0)p(0,1,0)

MP

E E

MP

MP

evalT evalT

MPop

MPop

MPop

E

evalT

4. Results and Examples

While mutual information and model-free interactions are related, there are several
important differences in terms of how they capture dependencies. Note, for example, that
higher-order information quantities are not independent of the lower-order quantities.
The mutual information of three variables is bounded by the pairwise quantities as follows:

−min{MI(X, Y | Z), MI(Y, Z | X), MI(X, Z | Y)} ≤ MI(X, Y, Z) ≤ min{MI(X, Y), MI(Y, Z), MI(X, Z)} (64)

This means that there are no systems with zero pairwise mutual information and positive
higher-order information. This is not true for the interactions. For example, a distribu-
tion with 3-point interactions and no pairwise interactions can trivially be constructed as
p(X) = Z−1 exp

(
∑ijk JijkXiXjXk

)
. While this distribution has 3-point interactions with

strength Jijk for triplets {Xi, Xj, Xk}, all pairwise interactions among {Xi, Xj} vanish when
conditioning on Xk = 0. In fact, any positive discrete distribution can be written as a
Boltzmann distribution with an energy function that is unique up to a constant, and as such
is uniquely defined by its interactions; in other words, each interaction, at any order, can be
freely varied to define a unique and valid probability distribution, namely, the Boltzmann
distribution of the corresponding generalised Ising model. Note that this is closely related
to the fact that a class of neural networks known as restricted Boltzmann machines are
universal approximators [42–44] and exactly (though not uniquely) encode the Boltzmann
distribution of a generalised Ising model in one of their layers [31,45]. Therefore, each
distribution is uniquely determined by its set of interactions, and should be distinguishable
by them. This is famously not true for entropy-based information quantities, as illustrated
below through several examples.
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4.1. Interactions and Their Duals Quantify and Distinguish Synergy in Logic Gates

Under the assumption of a causal collider structure A → C ← B, nonzero 3-point
interactions IABC can be interpreted as logic gates. A positive 3-point interaction means
that the numerator in Equation (10) is larger than the denominator. Under the sufficient
(though not necessary) assumption that each term in the numerator is larger than each term
in the denominator, we obtain the following truth table as IABC → +∞:

A B C
0 0 1
0 1 0
1 0 0
1 1 1

which describes an XNOR gate. Let pG be the probability of each of the four states in the
truth table for a gate G, and let εG be the probability of all other states. Then, the 3-point
interaction of an XNOR gate can be written as

IXNOR
ABC = log

p4
XNOR

ε4
XNOR

(65)

Similarly, the truth tables of AND and OR gates imply that

IAND
ABC = log

εAND p3
AND

ε3
AND pAND

(66)

IOR
ABC = log

ε3
OR pOR

εOR p3
OR

(67)

If we consider equally noisy gates such that pG = p and εG = ε, the gates can be directly
compared. Note that when a gate has a 3-point interaction I, its logical negation will have
a 3-point interaction −I. This determines the 3-point interactions of all six non-trivial
logic gates on two inputs, as summarised in Table 1. The two gates with the strongest
absolute interactions, XNOR and XOR, are the only two gates that are purely synergistic,
i.e., knowing only one of the two inputs provides no information about the output. This
relationship to synergy holds for three-input gates as well. The three-input gate with the
strongest 4-point interaction has the following truth table:

A B C D
0 0 0 0
0 0 1 1
0 1 0 1
1 0 0 1
0 1 1 0
1 0 1 0
1 1 0 0
1 1 1 1

This is a three-input XOR gate, i.e., D = (A + B + C) mod 2, and is again maximally
synergistic, as observing only two of the three inputs provides zero bits of information on
the output. Setting this maximum 4-point interaction to I, the three-input OR and AND
gates receive a 4-point interaction I/4; thus, the hierarchies of interaction and synergy
continue to match.
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Table 1. The 3-point interactions for all two-input logic gates at equal noise level are related through
I = 4 log p

ε and degenerate in AND∼NOR and OR∼NAND.

G IGABC

XNOR I
XOR −I
AND 1

2 I
OR − 1

2 I
NAND − 1

2 I
NOR 1

2 I

The 3-point interactions are able to separate most two-input logic gates by sign or
value, leaving only AND∼NOR and OR∼NAND. Mutual information has less resolving
power. Assuming a uniform distribution over all four allowed states from a gate’s truth
table, a brief calculation yields

MIOR(A, B, C) = MIAND(A, B, C) = MINOR(A, B, C) = MINAND(A, B, C) (68)

= − log

(
33/4

4

)
− 1 ≈ −0.189

MIXOR(A, B, C) = MIXNOR(A, B, C) = −1 (69)

That is, higher-order mutual information resolves strictly fewer logical gates by value
and none by sign. In fact, the higher-order mutual information of a logic gate can never be
positive, because it is bounded from above by the minimum of the pairwise mutual infor-
mation, which is always zero for the pair of inputs. Because all entropy-based quantities
inherit the degeneracy summarised in Table 2, neither the mutual information nor its dual
can increase the resolving power (see Table 3).

Table 2. The marginal entropies of variables in a logic gate are degenerate in XOR∼XNOR and
AND∼OR∼NAND∼NOR.

G H(A)
=H(B) H(C) H(A,B) H(A,C)

=H(B, C) H(A,B,C)

XNOR 1 1 2 2 2

XOR 1 1 2 2 2

AND 1 log 33/4

4 2 3
2 2

OR 1 log 33/4

4 2 3
2 2

NAND 1 log 33/4

4 2 3
2 2

NOR 1 log 33/4

4 2 3
2 2

The logic gate interactions and their duals are summarised in Table 3, where it can
be seen that neither I∗GC = IGABC + IGAB nor I∗GA improve the resolution beyond that of the
3-point interaction. However, the 3-point interaction requires 23 = 8 probabilities to achieve
this resolving power, whereas I∗GC = p111 p001

p101 p011
achieves the same resolving power with just

four probabilities.
However, note that because of a difference in sign convention dual mutual information

is a difference between two mutual information quantities, while dual interactions are a
sum of two interactions. Based on this, we can consider the difference of two interactions
and define a new quantity J∗GA = IGABC − IGBC. We refer to this as a J-interaction. When the
MFIs are interpreted in the context of an energy-based model, such as an Ising model or a
restricted Boltzmann machine, then the interactions have dimensions of energy, meaning
that the J-interactions correspond to the difference in the energy contribution between a
triplet and a pair. These J-interactions of the input nodes A and B assign a different value
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to each logic gate G, and the symmetric J-interaction J∗G = J∗GA J∗GB J∗GC , analogous to the
symmetric deltas from [40], inherits the perfect resolution from J∗GA .

Note that while J∗GA = J∗GB both have perfect resolution, J∗GC = IGABC − IGAB does not
improve the resolution beyond that of the 3-point interaction. This results from the fact
that in logic gates we have IGABC = −2IGAB, meaning that IGABC and IGAB contain the same
information. To see this, note that

IGABC + 2IGAB = log
p111 p001 p110 p000

p101 p011 p010 p100
(70)

Because the logic gates are symmetric in their inputs, i.e., ∀i, j pijk = pjik, this can be
rewritten as

IGABC + 2IGAB = log
(p111 p110)(p001 p000)

(p101 p100)(p101 p100)
(71)

Each of these terms in brackets has the form (pij1 pij0). Because these are two contradicting
states, this product reduces to εp regardless of the truth table of G:

IGABC + 2IGAB= log
ε2 p2

ε2 p2 = 0 (72)

Note that this pattern could already be observed in Table 3, though it was not yet explained.
Thus, the J-interactions of the input nodes uniquely assign a value to each gate

proportional to the synergy of its logic. The hierarchy is J∗XNOR
A > J∗NOR

A > J∗AND
A , which

is mirrored for the respective logical complements. XNOR is indeed the most synergistic,
while NOR is more synergistic than AND with respect to observing a 0 in one of the inputs;
in a NOR gate, a 0 in the input provides no information on the output, while it completely
fixes the output of an AND gate. Because the interactions are defined in a context of 0s,
they order the synergy accordingly.

Table 3. While the interactions leave certain gates indistinguishable, the dual J-interactions of the
inputs are unique to each gate. The reported decimal values are rounded to three digits; as before,
I = 4 log p

ε .

G MIABC MIBC MI∗A IGABC IGAB IGBC I∗GA I∗GC J∗GA J∗GC J∗G

XNOR −1 0 −1 I − 1
2 I − 1

2 I 1
2 I 1

2 I 3
2 I 3

2 I 27
8 I3

XOR −1 0 −1 −I 1
2 I 1

2 I − 1
2 I − 1

2 I − 3
2 I − 3

2 I − 27
8 I3

AND −0.189 0.311 − 1
2

1
2 I − 1

4 I 0 1
2 I 1

4 I 1
2 I 3

4 I 3
16 I3

OR −0.189 0.311 − 1
2 − 1

2 I 1
4 I 1

2 I 0 − 1
4 I −I − 3

4 I − 3
4 I3

NAND −0.189 0.311 − 1
2 − 1

2 I 1
4 I 0 − 1

2 I − 1
4 I − 1

2 I − 3
4 I − 3

16 I3

NOR −0.189 0.311 − 1
2

1
2 I − 1

4 I − 1
2 I 0 1

4 I I 3
4 I 3

4 I3

4.2. Interactions Distinguish Dynamics and Causal Structures

To illustrate how different association metrics reflect the underlying causal dynamics,
consider data generated from a selection of three-node causal DAGs as follows. On a given
DAG G, first denote the set of nodes without parents, the orphan nodes, by S0. Each orphan
node in S0 receives a random value drawn from a Bernoulli distribution, i.e., P(X = 1) = p
and P(X = 0) = 1− p. Next, denote the set of children of orphan nodes as S1. Each node
in S1 is then set to either the product of its parent nodes (for multiplicative dynamics) or the
mean of its parent nodes (for additive dynamics), plus some zero-mean Gaussian noise with
variance σ2. Note that for the fork and the chain this simply amounts to a noisy copying
operation. All nodes are then rounded to a 0 or 1. A set S2 is then defined as the set of
all children of nodes in S1, and these receive values using the same dynamics as before.
As long as the causal structure is acyclic, this algorithm terminates on a set of nodes Si
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that has no children. For example, the chain graph A→ B→ C has S0 = {A}, S1 = {B},
S2 = {C}, and S3 = ∅, at which point the updating terminates.

Figure 4 shows the results for four different DAGs with multiplicative and additive
dynamics (though these are the same for forks and chains). The six different dynamics
are represented in four different DAGs, two different (Pearson) correlations, four different
partial correlations, and two different mutual information structures, which means that
each of these descriptions is degenerate in some of the dynamics. The shown pairwise
partial correlations are the correlations among the residuals after a linear regression against
the third variable. Because this is similar to conditioning on the third variable, it is some-
what analogous to the MFIs; in fact, when the variables are multivariate normal the partial
correlations are encoded in the inverse covariance matrix and are equivalent to pairwise
Ising interactions [31]. Indeed, it can be seen that the partial correlations are somewhat able
to disentangle direct effects from indirect effects, although they fail to distinguish additive
from multiplicative dynamics. Note that only the sign of the association and its significance
are represented, as the precise value depends on the noise level σ2. The rightmost column
shows that the MFIs assign a unique association structure to each of the dynamics, distin-
guish between direct and indirect effects, and reveal multiplicative dynamics as a 3-point
interaction while identifying additive dynamics as a purely pairwise process. Finally,
note that both the partial correlation and the MFIs assign a negative association to the
parent nodes in a collider structure. This reflects that two nodes become dependent when
conditioned on a common effect (cf. Berkson’s paradox), a phenomenon already found
in partial correlations of metabolomic data in [46]. The mutual information is affected by
Berkson’s paradox as well, revealed through the negative three-point mutual information.
This negative three-point is a direct effect from conditioning on the common effect C, as on
colliders MI(A, B, C) = MI(A, B)−MI(A, B | C) = −MI(A, B | C), because the mutual
information among the independent inputs A and B vanishes by definition.

4.3. Higher-Order Categorical Interactions Distinguish Dyadic and Triadic Distributions

That the interactions have such resolving power over distributions of binary variables
is perhaps not very surprising in light of the universality of RBMs with respect to this class
of distributions. More surprisingly, their resolving power extends to the case of categorical
variables. In [47], the authors introduced two distributions, the dyadic and triadic distri-
butions, which are indistinguishable by almost all commonly used information measures
(i.e., Shannon, Renyi(2), residual, and Tsallis entropy, co-information, total correlation,
CAEKL mutual information, interaction information, Wyner, exact, functional, and MSS
common information, perplexity, disequilibrium, and LMRP and TSE complexities).

The two distributions are defined on three variables, each taking a value in a four-letter
alphabet {0, 1, 2, 3}. The joint probabilities are summarised in Table 4. To construct the
distributions, each category is represented as a binary string ({0, 1, 2, 3} → {00, 01, 10, 11}),
leading to new variables {X0, X1, Y0, Y1, Z0, Z1}. The dyadic distribution is constructed by
linking these new variables with pairwise rules X0 = Y1, Y0 = Z1, Z0 = X1, while the triadic
distribution is constructed with triplet rules X0 + Y0 + Z0 = 0 mod 2 and X1 = Y1 = Z1.
The resulting binary strings are then reinterpreted as categorical variables to produce
Table 4.

The authors of [47] found that no Shannon-like measure can distinguish between
the two distributions, and argued that the partial information decomposition, which is
different for the two distributions, is not a natural information measure, as it has to single
out one of the variables as an output. To calculate model-free categorical interactions
between the variables, we can set the probabilities of the states in Table 4 uniformly
to p = (1− (64− 8)ε)/8 and those of the other states to ε (i.e., a normalised uniform
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distribution over legal states). There are a total of 63 = 216 interactions such that x1 >
x0, y1 > y0, z1 > z0. Each of these can be written as

IXYZ(x0 → x1; y0 → y1; z0 → z1) =

log
p
(

X = x1, Y = y1, Z = z1 | X = 0
)

p
(

X = x0, Y = y0, , Z = z0 | X = 0
)

p
(

X = x1, Y = y0, Z = z0 | X = 0
)

p
(

X = x0, Y = y1, , Z = z1 | X = 0
) (73)

×
p
(

X = x0, Y = y1, Z = z0 | X = 0
)

p
(

X = x1, Y = y0, , Z = z1 | X = 0
)

p
(

X = x0, Y = y0, Z = z1 | X = 0
)

p
(

X = x1, Y = y1, , Z = z0 | X = 0
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Figure 4. Different causal dynamics lead to different association metrics. Green edges denote positive
values, red edges denote negative values, circles denote a 3-point quantity, and dashed lines show
edges that show marginal significance, depending on σ2. Correlations and mutual information
cannot distinguish between most dynamics, and while partial correlation can, for certain noise levels,
identify the correct pairwise relationships, it falls short of distinguishing additive from multiplicative
dynamics. Only MFIs distinguish between all 6 scenarios, and reveal the combinatorial effect of the
multiplicative dynamics as a 3-point interaction. See appendix A.3 for the simulation parameters and
raw numbers. This figure is reproduced with permission from the author of [47].
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triadic distribution is constructed with rules involving triplets: X0 + Y0 + Z0 = 0 mod 2, 338

and X1 = Y1 = Z1. The resulting binary strings are then reinterpreted as categorical 339

variables to produce Table 4. 340

Figure 4. Different causal dynamics lead to different association metrics. Green edges denote positive
values, red edges denote negative values, circles denote a three-point quantity, and dashed lines show
edges with marginal significance (depending on σ2). Correlations and mutual information cannot
distinguish between most dynamics, and while partial correlation can identify the correct pairwise
relationships for certain noise levels, it falls short of distinguishing additive from multiplicative
dynamics. Only MFIs can distinguish between all six scenarios and reveal the combinatorial effect of
the multiplicative dynamics as a 3-point interaction. See Appendix A.3 for the simulation parameters
and raw numbers. This figure is reproduced with permission from the author of [48].

Of particular interest here are the two quantities IXYZ(0→ 3; 0→ 3; 0→ 3) and IXYZ =

∑x0,x1,y0,y1,z0,z1
IXYZ(x0 → x1; y0 → y1; z0 → z1), where the sum is over all values such

that x1 > x0, y1 > y0, z1 > z0, as all possible pairs necessarily sum to zero because
IXYZ(x0 → x1; y0 → y1; z0 → z1) = −IXYZ(x1 → x0; y0 → y1; z0 → z1). For the dyadic
distribution, we have

IDy
XYZ(0→ 3; 0→ 3; 0→ 3) = log

pε3

pε3 = 0, (74)
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while for the triadic distribution we have

ITri
XYZ(0→ 3; 0→ 3; 0→ 3) = log

ε4

pε3 = log
ε

p
(75)

Thus, this particular 3-point interaction is zero for the dyadic distribution and negative
for the triadic distribution. The sum over all three points (see Appendix A.4 for details) is
provided by

IDy
XYZ = log 1 = 0 (76)

ITri
XYZ = 64 log

ε

p
(77)

That is, the additively symmetrised 3-point interaction is zero for the dyadic distribution
and strongly negative for the triadic distribution. These two distributions, which are indis-
tinguishable in terms of their information structure, are distinguishable by their model-free
interactions, which accurately reflect the higher-order nature of the triadic distribution.

Table 4. The joint probability of the dyadic and triadic distributions [47]. All other states have a
probability of zero.

Dyadic

X Y Z P

0 0 0 1 / 8
0 2 1 1 / 8
1 0 2 1 / 8
1 2 3 1 / 8
2 1 0 1 / 8
2 3 1 1 / 8
3 1 2 1 / 8
3 3 3 1 / 8

Triadic

X Y Z P

0 0 0 1 / 8
1 1 1 1 / 8
0 2 2 1 / 8
1 3 3 1 / 8
2 0 2 1 / 8
3 1 3 1 / 8
2 2 0 1 / 8
3 3 1 1 / 8

5. Discussion

In this paper, we have related the model-free interactions introduced in [32] to infor-
mation theory by defining them as Möbius inversions of surprisal on the same lattice that
relates mutual information to entropy. We then invert the order of the lattice and compute
the order-dual to the mutual information, which turns out to be a generalisation of differen-
tial mutual information. Similarly, the order-dual of interaction turns out to be interaction
in a different context. Both the interactions and the dual interactions are able to distinguish
all six logic gates by value and sign. Moreover, their absolute strength reflects the synergy
within the logic gate. In simulations, the interactions were able to perfectly distinguish six
kinds of causal dynamics that are partially indistinguishable to Pearson/partial correla-
tions, causal graphs, and mutual information. Finally, we considered dyadic and triadic
distributions constructed using pairwise and higher-order rules, respectively. While these
two distributions are indistinguishable in terms of their Shannon information, they have
different categorical MFIs that reflect the order of the construction rules.
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One might wonder why the interactions enjoy this advantage over entropy-based
quantities. The most obvious difference is that the interactions are defined in a pointwise
way, i.e., in terms of the surprisal of particular states, whereas entropy is the expected
surprisal across an ensemble of states. Furthermore, the MFIs can be interpreted as inter-
actions in an Ising model and as effective couplings in a restricted Boltzmann machine.
As both these models are known to be universal approximators with respect to positive
discrete probability distributions, the MFIs should be able to characterise all such distribu-
tions. What is not immediately obvious is that the kinds of interactions that characterise a
distribution should reflect properties of that distribution, such as the difference between
direct and indirect effects and the presence of higher-order structure. However, in the
various examples covered in this manuscript the interactions turn out to intuitively align
with properties of the process used to generate the data. While the stringent conditioning
on variables not considered in the interaction might make it tempting to interpret an MFI
as a causal or interventional quantity, it is important to be very careful when doing this.
Assigning a causal interpretation to statistical inferences, whether in Pearl’s graphical
do-calculus [49] or in Rubin’s potential outcomes framework [50], requires further (often
untestable) assumptions and analysis of the system in order to determine whether a causal
effect is identifiable and which variables to control for. In contrast, an MFI is simply de-
fined by conditioning on all observed variables, makes no reference to interventions or
counterfactuals, and does not specify a direction of the effect. While in a controlled and
simple setting the MFIs can be expressed in terms of causal average treatment effects [32],
a causal interpretation is not justifiable in general.

Moreover, the stringency in the conditioning might worry the attentive reader. Es-
timating log p(X = 1, Y = 1, T = 0) directly from data means counting states such as
(X, Y, T1, T2, . . . , TN) = (1, 1, 0, 0, . . . 0), which for sufficiently large N are rare in most
datasets. Appendix A.1 shows how to use the causal graph to construct Markov blankets,
making such estimation tractable when full conditioning is too stringent. In an upcoming
paper, we address this issue by estimating the graph of conditional dependencies, allowing
for successful calculation of MFIs up to the fifth order in gene expression data.

One major limitation of MFIs is that they are only defined on binary or categorical
variables, whereas many other association metrics are defined for ordinal and continuous
variables as well. As states of continuous variables no longer form a lattice, it is hard to see
how the definition of MFIs could be extended to include these cases.

Finally, it is worth noting that the structure of different lattices has guided much of
this research. That Boolean algebras are important in defining higher-order structure is
not surprising, as they are the stage on which the inclusion–exclusion principle can be
generalised [36]. However, it is not only their order-reversed duals that lead to mean-
ingful definitions; completely unrelated lattices do as well. For example, the Möbius
inversion on the lattice of ordinal variables from Figure 3 and the redundancy lattices in
the partial information decomposition [28] both lead to new and sensible definitions of
information-theoretic quantities. Furthermore, the notion of Möbius inversion has been
generalised to a more general class of categories [51], of which posets are a special case.
A systematic investigation of information-theoretic quantities in this richer context would
be most interesting.
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Appendix A

Appendix A.1. Markov Blankets

Estimating the interaction in Definition 2 from data involves estimating the proba-
bilities of certain states occurring. While we do not have access to the true probabilities,
we can rewrite the interactions in terms of expectation values. Note that all interactions
involve factors of the type

p(X = 1, Y = y | Z = 0)
p(X = 0, Y = y | Z = 0)

=
p(X = 1 | Y = y, Z = 0)
p(X = 0 | Y = y, Z = 0)

(A1)

=
p(X = 1 | Y = y, Z = 0)

1− p(X = 1 | Y = y, Z = 0)
(A2)

=
E[X | Y = y, Z = 0]

1−E[X | Y = y, Z = 0]
(A3)

because
E[X | Z = z] = ∑

x∈{0,1}
p(X = x | Z = z) x = p(X = 1 | Z = z) (A4)

This allows us to write the 2-point interaction, e.g., as follows:

Iij = log
E
(
Xi|Xj = 1, X = 0

)

E
(
Xi|Xj = 0, X = 0

)
(
1−E

(
Xi|Xj = 0, X = 0

))
(
1−E

(
Xi|Xj = 1, X = 0

)) (A5)

Although expectation values are theoretical quantities, not empirical ones, sample
means can be used as unbiased estimators to estimate each term in (A5). The stringent
conditioning in this estimator can make the number of samples that satisfy the conditioning
very small, which results in the estimates having large variance on different finite samples.
Note that if we can find a subset of variables MBXi such that Xi⊥⊥ Xk | MBXi ∀Xk /∈ MBXi
and i 6= k (in causal language, a set of variables MBXi that d-separates Xi from the rest),
then we only have to condition on MBXi in (A5), reducing the variance of our estimator.
Such a set MBXi is called a Markov Blanket of the node Xi. There has recently been a certain
degree of confusion around the notion of Markov blankets in biology, specifically with
respect to their use in the free energy principle in neuroscience contexts. Here, a Markov
blanket refers to the notion of a Pearl blanket in the language of [52]. Because conditioning
on fewer variables should reduce the variance of the estimate by increasing the number
of samples that can be used for the estimation, we are generally interested in finding the
smallest Markov blanket. This minimal Markov blanket is called the Markov boundary.

Finding such minimal Markov blankets is hard; in fact, because it requires testing each
possible conditional dependency between the variables, we claim here (without proof) that
it is causal discovery-hard, i.e., if such a graph exists it is at least as computationally complex
as constructing a causal DAG consistent with the joint probability distribution.
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Appendix A.2. Proofs

Markov blankets are not only a computational trick; in theory, only variables that are
in each other’s Markov blanket can share a nonzero interaction. To illustrate this, first note
that the property of being in a variable’s Markov blanket is symmetric:

Proposition A1 (symmetry of Markov blankets). Let X be a set of variables with joint distribu-
tion p(X) and let A ∈ X and B ∈ X such that A 6= B. We denote the minimal Markov blanket of X
by MBX . Then, A ∈ MBB ⇐⇒ B ∈ MBA, and we can say that A and B are Markov-connected.

Proof. Let Y = X \ {A, B}. Then,

A 6∈ MBB =⇒ p(B | A, Y) = p(B | Y) (A6)

Consider that

p(A | B, Y) =
p(A, B | Y)

p(B | Y) (A7)

=
p(B | A, Y)p(A, | Y)

p(B | Y) (A8)

= p(A | Y) (A9)

which means that B 6∈ MBA. Because A 6∈ MBB ⇐⇒ B 6∈ MBA holds, its negation holds
as well, which completes the proof.

This definition of Markov connectedness allows us to state the following.

Theorem A1 (only Markov-connected variables can interact). A model-free n-point interaction
I1...n can only be nonzero when all variables S = {X1, . . . , Xn} are mutually Markov-connected.

Proof. Let X be a set of variables with joint distribution p(X), let S = {X1, . . . , Xn}, and let
X = X \ S. Consider the definition of an n-point interaction among S:

I1...n =
n

∏
i=1

∂

∂Xi
log p(X1, . . . , Xn | X = 0) (A10)

=

(
n−1

∏
i=1

∂

∂Xi

)
∂

∂Xn
log p(X1, . . . , Xn | X = 0) (A11)

=

(
n−1

∏
i=1

∂

∂Xi

)
log

p(Xn = 1 | X1, . . . , Xn−1, X = 0)
p(Xn = 0 | X1, . . . , Xn−1, X = 0)

(A12)

=

(
n−1

∏
i=1

∂

∂Xi

)
log

p(Xn = 1 | S \ Xn, X = 0)
p(Xn = 0 | S \ Xn, X = 0)

(A13)

Now, if ∃Xj ∈ S such that Xj 6∈ MBXn , we do not need to condition on Xj and can write
this as

I1...n =

(
n−1

∏
i=1

∂

∂Xi

)
log

p(Xn = 1 | S \ {Xj, Xn}, X = 0)
p(Xn = 0 | S \ {Xj, Xn}, X = 0)

(A14)

=




n−1

∏
i=1
i 6=j

∂

∂Xi



(

∂

∂Xj
log

p(Xn = 1 | S \ {Xj, Xn}, X = 0)
p(Xn = 0 | S \ {Xj, Xn}, X = 0)

)
(A15)

= 0 (A16)
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as the probabilities no longer involve Xj. Because Xj was chosen arbitrarily, this must hold
for all variables in S, which means that if any variable in S is not in the Markov blanket of
Xn then the interaction IS vanishes:

S \ Xn 6⊂ MBXn =⇒ IS = 0 (A17)

Furthermore, as the indexing we chose for our variables was arbitrary, this must hold for
any re-indexing, which means that

∀Xi ∈ S : S \ Xi 6⊂ MBXi =⇒ IS = 0 (A18)

This in turn means that all variables in S must be Markov-connected in order for the
interaction IS to be nonzero.

Thus, knowledge of the causal graph aids estimation in two ways: it shrinks the
variance of the estimates by relaxing the conditioning, and it identifies the interactions that
could be nonzero.

When knowledge of the causal graph is imperfect, it is possible to accidentally exclude
a variable from a Markov blanket and thereby undercondition the relevant probabilities.
The resulting error can be expressed in terms of the mutual information between the
variables, as follows.

Proposition A2 (underconditioning bias). Let S be a set of random variables with probability
distribution p(S), let X, Y, and let Z be three disjoint subsets of S. Then, omitting Y from the
conditioning set results in a bias determined by (and linear in) the pointwise mutual information
that Y = 0 provides about the states of X:

IX|YZ − IX|Z =

( |X|
∏
i=1

∂

∂xi

)
pmi(X = x, Y = 0 | Z = 0) (A19)

Proof. The pointwise mutual information (pmi) is defined as

pmi(X = x, Y = y) = log
p(X = x, Y = y)

p(X = x)p(Y = y)
(A20)

Note that

p(X = x1 | Y = y, Z = z) =
p(X = x1, Y = y | Z = z)

p(Y = y | Z = z)
(A21)

meaning that we can write

p(X = x1 | Y = y, Z = z) = epmi(X=x1,Y=y|Z=z)p(X = x1 | Z = z) (A22)

That is, not conditioning on Y = y results in an error in the estimate of p(X = x1 | Y = y,
Z = z) that is exponential in the Z-conditional pmi of X and Y. However, consider the
interaction among X,

IX = IX|YZ =

( |X|
∏
i=1

∂

∂xi

)
log p(X = x | Y = 0, Z = 0) (A23)

=

( |X|
∏
i=1

∂

∂xi

)
(log p(X = x | Z = 0) + pmi(X = x, Y = 0 | Z = 0)) (A24)

= IX|Z +

( |X|
∏
i=1

∂

∂xi

)
pmi(X = x, Y = 0 | Z = 0) (A25)

That is, the error in the interaction as a result of not conditioning on the right variables
is linear in terms of the difference between the pmi values of different states.
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Appendix A.3. Numerics of Causal Structures

Tables A1–A6 are taken from [48] with permission from the author, and list the precise
values leading to Figure 4. From each graph, 100k samples were generated using p = 0.5
and σ = 0.4. To quantify the significance value of the interactions, the data were bootstrap
resampled 1k times, resulting in the definition of F as the fraction of resampled interactions
having a different sign from the original interaction. The smaller F is, the more significant
the interaction.

Table A1. Chain.
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Causal graph

0 1

2

Genes Interaction F Pearson cor. Pearson cor. p Partial cor. Partial cor. p MI

0 [0, 1] 4.281 0.000 0.790 0.0 0.635 0.000e+00 0.515
1 [0, 2] 0.056 0.117 0.622 0.0 0.031 2.261e-23 0.301
2 [1, 2] 4.249 0.000 0.786 0.0 0.628 0.000e+00 0.510
3 [0, 1, 2] -0.052 0.217 NaN NaN NaN NaN 0.300

Table A1. ChainGenes Interaction F Pearson cor. Pearson cor. p Partial cor. Partial cor. p MI

0 [0, 1] 4.281 0.000 0.790 0.0 0.635 0.000 × 10+0 0.515
1 [0, 2] 0.056 0.117 0.622 0.0 0.031 2.261 × 10−23 0.301
2 [1, 2] 4.249 0.000 0.786 0.0 0.628 0.000 × 10+0 0.510
3 [0, 1, 2] −0.052 0.217 NaN NaN NaN NaN 0.300

Table A2. Fork.
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0 1

2

Genes Interaction F Pearson cor. Pearson cor. p Partial cor. Partial cor. p MI

0 [0, 1] 4.268 0.000 0.789 0.0 0.634 0.000e+00 0.514
1 [0, 2] 4.257 0.000 0.788 0.0 0.632 0.000e+00 0.512
2 [1, 2] -0.014 0.376 0.622 0.0 0.028 6.518e-19 0.300
3 [0, 1, 2] 0.020 0.376 NaN NaN NaN NaN 0.300

Table A2. ForkCausal graph

0 1

2

Genes Interaction F Pearson cor. Pearson cor. p Partial cor. Partial cor. p MI

0 [0, 1] 2.144 0.000 0.395 0.000 0.505 0.000e+00 1.154e-01
1 [0, 2] -0.989 0.000 -0.002 0.593 -0.070 5.172e-109 2.059e-06
2 [1, 2] 2.144 0.000 0.395 0.000 0.505 0.000e+00 1.154e-01
3 [0, 1, 2] 0.003 0.438 NaN NaN NaN NaN -2.678e-02

Table A3. Additive colliderCausal graph

0 1

2

Genes Interaction F Pearson cor. Pearson cor. p Partial cor. Partial cor. p MI

0 [0, 1] 0.032 0.140 0.427 0.000 0.478 0.000e+00 1.403e-01
1 [0, 2] -2.156 0.000 -0.005 0.145 -0.087 1.463e-166 1.529e-05
2 [1, 2] 0.036 0.109 0.429 0.000 0.480 0.000e+00 1.415e-01
3 [0, 1, 2] 4.237 0.000 NaN NaN NaN NaN -1.150e-01

Table A4. Multiplicative colliderCausal graph

0 1

2

Genes Interaction F Pearson cor. Pearson cor. p Partial cor. Partial cor. p MI

0 [0, 1] 2.103 0.000 0.705 0.0 0.362 0.0 0.396
1 [0, 2] 3.288 0.000 0.790 0.0 0.599 0.0 0.515
2 [1, 2] 2.113 0.000 0.706 0.0 0.364 0.0 0.397
3 [0, 1, 2] 0.050 0.162 NaN NaN NaN NaN 0.335

Table A5. Additive collider + chainCausal graph

0 1

2

Genes Interaction F Pearson cor. Pearson cor. p Partial cor. Partial cor. p MI

0 [0, 1] -0.017 0.342 0.709 0.0 0.365 0.0 0.403
1 [0, 2] 2.094 0.000 0.786 0.0 0.596 0.0 0.510
2 [1, 2] -0.057 0.092 0.707 0.0 0.361 0.0 0.401
3 [0, 1, 2] 4.359 0.000 NaN NaN NaN NaN 0.293

Table A6. Multiplicative collider + chain

Appendix A.4. Python code to calculate categorical dy- and triadic interactions 466

dyadicS ta tes = [ [ ’ a ’ , ’ a ’ , ’ a ’ ] , [ ’ a ’ , ’ c ’ , ’ b ’ ] , [ ’ b ’ , ’ a ’ , ’ c ’ ] , [ ’ b ’ , ’ c ’ , ’d ’ ] , 467
[ ’ c ’ , ’ b ’ , ’ a ’ ] , [ ’ c ’ , ’d ’ , ’ b ’ ] , [ ’d ’ , ’ b ’ , ’ c ’ ] , [ ’d ’ , ’d ’ , ’d ’ ] ] 468

469
t r i a d i c S t a t e s = [ [ ’ a ’ , ’ a ’ , ’ a ’ ] , [ ’ a ’ , ’ c ’ , ’ c ’ ] , [ ’ b ’ , ’ b ’ , ’ b ’ ] , [ ’ b ’ , ’d ’ , ’d ’ ] , 470
[ ’ c ’ , ’ a ’ , ’ c ’ ] , [ ’ c ’ , ’ c ’ , ’ a ’ ] , [ ’d ’ , ’ b ’ , ’d ’ ] , [ ’d ’ , ’d ’ , ’ b ’ ] ] 471

472
s t a t e D i c t = { 0 : ’ a ’ , 1 : ’ b ’ , 2 : ’ c ’ , 3 : ’d ’ } 473

474
def catIntSymb ( x0 , x1 , y0 , y1 , z0 , z1 , s t a t e s ) : 475

prob = lambda x , y , z : ’p ’ i f [ x , y , z ] in s t a t e s e lse ’ e ’ 476
477

num = prob ( x1 , y1 , z1 ) + prob ( x1 , y0 , z0 ) + prob ( x0 , y1 , z0 ) + prob ( x0 , y0 , z1 ) 478
denom = prob ( x1 , y1 , z0 ) + prob ( x1 , y0 , z1 ) + prob ( x0 , y1 , z1 ) + prob ( x0 , y0 , z0 ) 479
return (num, denom) 480

481
numDy = ’ ’ 482
denomDy = ’ ’ 483
numTri = ’ ’ 484
denomTri = ’ ’ 485

486
for x0 in range ( 4 ) : 487

for x1 in range ( x0 +1 , 4 ) : 488
for y0 in range ( 4 ) : 489

for y1 in range ( y0 +1 , 4 ) : 490
for z0 in range ( 4 ) : 491

for z1 in range ( z0 +1 , 4 ) : 492
493

nDy , dDy = catIntSymb ( * [ s t a t e D i c t [ x ] for x in [ x0 , x1 , y0 , y1 , z0 , z1 ] ] , dyadicS ta tes ) 494
numDy += nDy 495
denomDy += dDy 496

497
nTri , dTri = catIntSymb ( * [ s t a t e D i c t [ x ] for x in [ x0 , x1 , y0 , y1 , z0 , z1 ] ] , t r i a d i c S t a t e s ) 498
numTri += nTri 499

Genes Interaction F Pearson cor. Pearson cor. p Partial cor. Partial cor. p MI

0 [0, 1] 4.268 0.000 0.789 0.0 0.634 0.000 × 10+0 0.514
1 [0, 2] 4.257 0.000 0.788 0.0 0.632 0.000 × 10+0 0.512
2 [1, 2] −0.014 0.376 0.622 0.0 0.028 6.518 × 10−19 0.300
3 [0, 1, 2] 0.020 0.376 NaN NaN NaN NaN 0.300

Table A3. Additive collider.

Version April 6, 2023 submitted to Entropy 25 of 27Causal graph

0 1

2

Genes Interaction F Pearson cor. Pearson cor. p Partial cor. Partial cor. p MI

0 [0, 1] 4.268 0.000 0.789 0.0 0.634 0.000e+00 0.514
1 [0, 2] 4.257 0.000 0.788 0.0 0.632 0.000e+00 0.512
2 [1, 2] -0.014 0.376 0.622 0.0 0.028 6.518e-19 0.300
3 [0, 1, 2] 0.020 0.376 NaN NaN NaN NaN 0.300

Table A2. ForkCausal graph

0 1

2

Genes Interaction F Pearson cor. Pearson cor. p Partial cor. Partial cor. p MI

0 [0, 1] 2.144 0.000 0.395 0.000 0.505 0.000e+00 1.154e-01
1 [0, 2] -0.989 0.000 -0.002 0.593 -0.070 5.172e-109 2.059e-06
2 [1, 2] 2.144 0.000 0.395 0.000 0.505 0.000e+00 1.154e-01
3 [0, 1, 2] 0.003 0.438 NaN NaN NaN NaN -2.678e-02

Table A3. Additive colliderCausal graph

0 1

2

Genes Interaction F Pearson cor. Pearson cor. p Partial cor. Partial cor. p MI

0 [0, 1] 0.032 0.140 0.427 0.000 0.478 0.000e+00 1.403e-01
1 [0, 2] -2.156 0.000 -0.005 0.145 -0.087 1.463e-166 1.529e-05
2 [1, 2] 0.036 0.109 0.429 0.000 0.480 0.000e+00 1.415e-01
3 [0, 1, 2] 4.237 0.000 NaN NaN NaN NaN -1.150e-01

Table A4. Multiplicative colliderCausal graph

0 1

2

Genes Interaction F Pearson cor. Pearson cor. p Partial cor. Partial cor. p MI

0 [0, 1] 2.103 0.000 0.705 0.0 0.362 0.0 0.396
1 [0, 2] 3.288 0.000 0.790 0.0 0.599 0.0 0.515
2 [1, 2] 2.113 0.000 0.706 0.0 0.364 0.0 0.397
3 [0, 1, 2] 0.050 0.162 NaN NaN NaN NaN 0.335

Table A5. Additive collider + chainCausal graph

0 1

2

Genes Interaction F Pearson cor. Pearson cor. p Partial cor. Partial cor. p MI

0 [0, 1] -0.017 0.342 0.709 0.0 0.365 0.0 0.403
1 [0, 2] 2.094 0.000 0.786 0.0 0.596 0.0 0.510
2 [1, 2] -0.057 0.092 0.707 0.0 0.361 0.0 0.401
3 [0, 1, 2] 4.359 0.000 NaN NaN NaN NaN 0.293

Table A6. Multiplicative collider + chain

Appendix A.4. Python code to calculate categorical dy- and triadic interactions 466

dyadicS ta tes = [ [ ’ a ’ , ’ a ’ , ’ a ’ ] , [ ’ a ’ , ’ c ’ , ’ b ’ ] , [ ’ b ’ , ’ a ’ , ’ c ’ ] , [ ’ b ’ , ’ c ’ , ’d ’ ] , 467
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[ ’ c ’ , ’ a ’ , ’ c ’ ] , [ ’ c ’ , ’ c ’ , ’ a ’ ] , [ ’d ’ , ’ b ’ , ’d ’ ] , [ ’d ’ , ’d ’ , ’ b ’ ] ] 471

472
s t a t e D i c t = { 0 : ’ a ’ , 1 : ’ b ’ , 2 : ’ c ’ , 3 : ’d ’ } 473

474
def catIntSymb ( x0 , x1 , y0 , y1 , z0 , z1 , s t a t e s ) : 475

prob = lambda x , y , z : ’p ’ i f [ x , y , z ] in s t a t e s e lse ’ e ’ 476
477
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469
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[ ’ c ’ , ’ a ’ , ’ c ’ ] , [ ’ c ’ , ’ c ’ , ’ a ’ ] , [ ’d ’ , ’ b ’ , ’d ’ ] , [ ’d ’ , ’d ’ , ’ b ’ ] ] 471

472
s t a t e D i c t = { 0 : ’ a ’ , 1 : ’ b ’ , 2 : ’ c ’ , 3 : ’d ’ } 473

474
def catIntSymb ( x0 , x1 , y0 , y1 , z0 , z1 , s t a t e s ) : 475

prob = lambda x , y , z : ’p ’ i f [ x , y , z ] in s t a t e s e lse ’ e ’ 476
477

num = prob ( x1 , y1 , z1 ) + prob ( x1 , y0 , z0 ) + prob ( x0 , y1 , z0 ) + prob ( x0 , y0 , z1 ) 478
denom = prob ( x1 , y1 , z0 ) + prob ( x1 , y0 , z1 ) + prob ( x0 , y1 , z1 ) + prob ( x0 , y0 , z0 ) 479
return (num, denom) 480

481
numDy = ’ ’ 482
denomDy = ’ ’ 483
numTri = ’ ’ 484
denomTri = ’ ’ 485

486
for x0 in range ( 4 ) : 487

for x1 in range ( x0 +1 , 4 ) : 488
for y0 in range ( 4 ) : 489

for y1 in range ( y0 +1 , 4 ) : 490
for z0 in range ( 4 ) : 491

for z1 in range ( z0 +1 , 4 ) : 492
493

nDy , dDy = catIntSymb ( * [ s t a t e D i c t [ x ] for x in [ x0 , x1 , y0 , y1 , z0 , z1 ] ] , dyadicS ta tes ) 494
numDy += nDy 495
denomDy += dDy 496

497
nTri , dTri = catIntSymb ( * [ s t a t e D i c t [ x ] for x in [ x0 , x1 , y0 , y1 , z0 , z1 ] ] , t r i a d i c S t a t e s ) 498
numTri += nTri 499

Genes Interaction F Pearson cor. Pearson cor. p Partial cor. Partial cor. p MI

0 [0, 1] 0.032 0.140 0.427 0.000 0.478 0.000 × 10+0 1.403 × 10−1

1 [0, 2] −2.156 0.000 −0.005 0.145 −40.087 1.463 × 10−166 1.529 × 10−5

2 [1, 2] 0.036 0.109 0.429 0.000 0.480 0.000 × 10+0 1.415 × 10−1

3 [0, 1, 2] 4.237 0.000 NaN NaN NaN NaN −1.150 × 10−1
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dyadicS ta tes = [ [ ’ a ’ , ’ a ’ , ’ a ’ ] , [ ’ a ’ , ’ c ’ , ’ b ’ ] , [ ’ b ’ , ’ a ’ , ’ c ’ ] , [ ’ b ’ , ’ c ’ , ’d ’ ] , 467
[ ’ c ’ , ’ b ’ , ’ a ’ ] , [ ’ c ’ , ’d ’ , ’ b ’ ] , [ ’d ’ , ’ b ’ , ’ c ’ ] , [ ’d ’ , ’d ’ , ’d ’ ] ] 468

469
t r i a d i c S t a t e s = [ [ ’ a ’ , ’ a ’ , ’ a ’ ] , [ ’ a ’ , ’ c ’ , ’ c ’ ] , [ ’ b ’ , ’ b ’ , ’ b ’ ] , [ ’ b ’ , ’d ’ , ’d ’ ] , 470
[ ’ c ’ , ’ a ’ , ’ c ’ ] , [ ’ c ’ , ’ c ’ , ’ a ’ ] , [ ’d ’ , ’ b ’ , ’d ’ ] , [ ’d ’ , ’d ’ , ’ b ’ ] ] 471

472
s t a t e D i c t = { 0 : ’ a ’ , 1 : ’ b ’ , 2 : ’ c ’ , 3 : ’d ’ } 473

474
def catIntSymb ( x0 , x1 , y0 , y1 , z0 , z1 , s t a t e s ) : 475

prob = lambda x , y , z : ’p ’ i f [ x , y , z ] in s t a t e s e lse ’ e ’ 476
477

num = prob ( x1 , y1 , z1 ) + prob ( x1 , y0 , z0 ) + prob ( x0 , y1 , z0 ) + prob ( x0 , y0 , z1 ) 478
denom = prob ( x1 , y1 , z0 ) + prob ( x1 , y0 , z1 ) + prob ( x0 , y1 , z1 ) + prob ( x0 , y0 , z0 ) 479
return (num, denom) 480
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numDy += nDy 495
denomDy += dDy 496
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dyadicS ta tes = [ [ ’ a ’ , ’ a ’ , ’ a ’ ] , [ ’ a ’ , ’ c ’ , ’ b ’ ] , [ ’ b ’ , ’ a ’ , ’ c ’ ] , [ ’ b ’ , ’ c ’ , ’d ’ ] , 467
[ ’ c ’ , ’ b ’ , ’ a ’ ] , [ ’ c ’ , ’d ’ , ’ b ’ ] , [ ’d ’ , ’ b ’ , ’ c ’ ] , [ ’d ’ , ’d ’ , ’d ’ ] ] 468

469
t r i a d i c S t a t e s = [ [ ’ a ’ , ’ a ’ , ’ a ’ ] , [ ’ a ’ , ’ c ’ , ’ c ’ ] , [ ’ b ’ , ’ b ’ , ’ b ’ ] , [ ’ b ’ , ’d ’ , ’d ’ ] , 470
[ ’ c ’ , ’ a ’ , ’ c ’ ] , [ ’ c ’ , ’ c ’ , ’ a ’ ] , [ ’d ’ , ’ b ’ , ’d ’ ] , [ ’d ’ , ’d ’ , ’ b ’ ] ] 471

472
s t a t e D i c t = { 0 : ’ a ’ , 1 : ’ b ’ , 2 : ’ c ’ , 3 : ’d ’ } 473

474
def catIntSymb ( x0 , x1 , y0 , y1 , z0 , z1 , s t a t e s ) : 475

prob = lambda x , y , z : ’p ’ i f [ x , y , z ] in s t a t e s e lse ’ e ’ 476
477

num = prob ( x1 , y1 , z1 ) + prob ( x1 , y0 , z0 ) + prob ( x0 , y1 , z0 ) + prob ( x0 , y0 , z1 ) 478
denom = prob ( x1 , y1 , z0 ) + prob ( x1 , y0 , z1 ) + prob ( x0 , y1 , z1 ) + prob ( x0 , y0 , z0 ) 479
return (num, denom) 480

481
numDy = ’ ’ 482
denomDy = ’ ’ 483
numTri = ’ ’ 484
denomTri = ’ ’ 485

486
for x0 in range ( 4 ) : 487

for x1 in range ( x0 +1 , 4 ) : 488
for y0 in range ( 4 ) : 489

for y1 in range ( y0 +1 , 4 ) : 490
for z0 in range ( 4 ) : 491

for z1 in range ( z0 +1 , 4 ) : 492
493

nDy , dDy = catIntSymb ( * [ s t a t e D i c t [ x ] for x in [ x0 , x1 , y0 , y1 , z0 , z1 ] ] , dyadicS ta tes ) 494
numDy += nDy 495
denomDy += dDy 496

497
nTri , dTri = catIntSymb ( * [ s t a t e D i c t [ x ] for x in [ x0 , x1 , y0 , y1 , z0 , z1 ] ] , t r i a d i c S t a t e s ) 498
numTri += nTri 499

Genes Interaction F Pearson cor. Pearson cor. p Partial cor. Partial cor. p MI

0 [0, 1] −0.017 0.342 0.709 0.0 0.365 0.0 0.403
1 [0, 2] 2.094 0.000 0.786 0.0 0.596 0.0 0.510
2 [1, 2] −0.057 0.092 0.707 0.0 0.361 0.0 0.401
3 [0, 1, 2] 4.359 0.000 NaN NaN NaN NaN 0.293

Appendix A.4. Python Code for Calculating Categorical Dyadic and Triadic Interactions

dyadicS ta tes = [ [ ’ a ’ , ’ a ’ , ’ a ’ ] , [ ’ a ’ , ’ c ’ , ’ b ’ ] , [ ’ b ’ , ’ a ’ , ’ c ’ ] , [ ’ b ’ , ’ c ’ , ’d ’ ] ,
[ ’ c ’ , ’ b ’ , ’ a ’ ] , [ ’ c ’ , ’d ’ , ’ b ’ ] , [ ’d ’ , ’ b ’ , ’ c ’ ] , [ ’d ’ , ’d ’ , ’d ’ ] ]

t r i a d i c S t a t e s = [ [ ’ a ’ , ’ a ’ , ’ a ’ ] , [ ’ a ’ , ’ c ’ , ’ c ’ ] , [ ’ b ’ , ’ b ’ , ’ b ’ ] , [ ’ b ’ , ’d ’ , ’d ’ ] ,
[ ’ c ’ , ’ a ’ , ’ c ’ ] , [ ’ c ’ , ’ c ’ , ’ a ’ ] , [ ’d ’ , ’ b ’ , ’d ’ ] , [ ’d ’ , ’d ’ , ’ b ’ ] ]

s t a t e D i c t = { 0 : ’ a ’ , 1 : ’ b ’ , 2 : ’ c ’ , 3 : ’d ’ }

def catIntSymb ( x0 , x1 , y0 , y1 , z0 , z1 , s t a t e s ) :
prob = lambda x , y , z : ’p ’ i f [ x , y , z ] in s t a t e s e lse~ ’ e ’

num = prob ( x1 , y1 , z1 ) + prob ( x1 , y0 , z0 ) + prob ( x0 , y1 , z0 ) + prob ( x0 , y0 , z1 )
denom = prob ( x1 , y1 , z0 ) + prob ( x1 , y0 , z1 ) + prob ( x0 , y1 , z1 ) + prob ( x0 , y0 , z0 )
return (num, denom)

numDy = ’ ’
denomDy = ’ ’
numTri = ’ ’
denomTri = ’ ’

for x0 in range ( 4 ) :
for x1 in range ( x0 +1 , 4 ) :

for y0 in range ( 4 ) :
for y1 in range ( y0 +1 , 4 ) :

for z0 in range ( 4 ) :
for z1 in range ( z0 +1 , 4 ) :

nDy , dDy = catIntSymb ( * [ s t a t e D i c t [ x ] for x in [ x0 , x1 , y0 , y1 , z0 , z1 ] ] , dyadicS ta tes )
numDy += nDy
denomDy += dDy

nTri , dTri = catIntSymb ( * [ s t a t e D i c t [ x ] for x in [ x0 , x1 , y0 , y1 , z0 , z1 ] ] , t r i a d i c S t a t e s )
numTri += nTri
denomTri += dTri

print ( f ’ Dyadic i n t e r a c t i o n : log ( p^{numDy. count ( " p " ) − denomDy . count ( " p " ) } e ^{numDy. count ( " e " ) − denomDy . count ( " e " ) } ) ’ )
print ( f ’ T r i a d i c i n t e r a c t i o n : log ( p^{numTri . count ( " p " ) − denomTri . count ( " p " ) } e ^{numTri . count ( " e " ) − denomTri . count ( " e " ) } ) ’ )

// Output :

>> Dyadic i n t e r a c t i o n : log ( p^0 e ^0)
>> T r i a d i c i n t e r a c t i o n : log ( p^−64 e ^64)
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