
Citation: Han, H.; Liang, Y.; Bella, G.;

Giunchiglia, F.; Li, D. LFDNN: A

Novel Hybrid Recommendation

Model Based on DeepFM and

LightGBM. Entropy 2023, 25, 638.

https://doi.org/10.3390/e25040638

Academic Editor: Deniz Gençağa

Received: 3 March 2023

Revised: 26 March 2023

Accepted: 4 April 2023

Published: 10 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

LFDNN: A Novel Hybrid Recommendation Model Based on
DeepFM and LightGBM
Houchou Han 1,2, Yanchun Liang 1,2,*, Gábor Bella 3, Fausto Giunchiglia 3 and Dalin Li 1,*

1 School of Computer Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
2 College of Computer Science and Technology, Jilin University, Changchun 130012, China
3 Department of Information Engineering and Science, University of Trento, 38100 Trento, Italy
* Correspondence: ycliang@jlu.edu.cn (Y.L.); lidalin@zcst.edu.cn (D.L.)

Abstract: Hybrid recommendation algorithms perform well in improving the accuracy of recommen-
dation systems. However, in specific applications, they still cannot reach the requirements of the
recommendation target due to the gap between the design of the algorithms and data characteristics.
In this paper, in order to learn higher-order feature interactions more efficiently and to distinguish
the importance of different feature interactions better on the prediction results of recommendation
algorithms, we propose a light and FM deep neural network (LFDNN), a hybrid recommendation
model including four modules. The LightGBM module applies gradient boosting decision trees
for feature processing, which improves LFDNN’s ability to handle dense numerical features; the
shallow model introduces the FM model for explicitly modeling the finite-order feature crosses,
which strengthens the expressive ability of the model; the deep neural network module uses a
fully connected feedforward neural network to allow the model to obtain more high-order feature
crosses information and mine more data patterns in the features; finally, the Fusion module allows
the shallow model and the deep model to obtain a better fusion effect. The results of comparison,
parameter influence and ablation experiments on two real advertisement datasets shows that the
LFDNN reaches better performance than the representative recommendation models.

Keywords: hybrid recommendation algorithm; deep learning; gradient boosted decision

1. Introduction

With the rapid development of the Internet, recommendation systems are being used
in various business scenarios [1]. Since the development of recommendation system
algorithms in the 1990s, they can be summarized into the following three stages [2].

The first stage is the early stage of development (before 2010). Recommendation
systems used the method of “artificial features + linear models”, i.e., the expert systems,
which are the typical representative of this period [3]. The main characteristics of this stage
are as follows. First, the magnitude of the original input characteristics is between one
hundred and ten thousand, which is relatively small compared to the subsequent data
volume. The second point is that the processed feature magnitude can be anywhere from
ten thousand to one hundred thousand to one million levels. Thirdly, although the model
is relatively simple, the parameter space is relatively small, and the actual application
performance is high, with good prediction results. Fourth, improving the effectiveness of
recommendation systems requires relying on business experts to conduct artificial feature
engineering, based on their understanding of the business, and mining effective feature
combinations through a large amount of manual experience and data analysis.

The second stage is the accelerated development period (2010–2015). The recommen-
dation systems adopted the method of “automatic feature engineering + linear model” [4].
Typical representative methods include: the FM model proposed in 2010 [5]; the Field-
Aware Factorization Machines (FFMs) model proposed in 2014 [6]; the GBDT+LR model

Entropy 2023, 25, 638. https://doi.org/10.3390/e25040638 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25040638
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-5903-6150
https://doi.org/10.3390/e25040638
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25040638?type=check_update&version=2

Entropy 2023, 25, 638 2 of 15

proposed in 2014 [7]; Personality Computing in 2014 [8]; and XGBoost and others proposed
in 2016 [9].The main features of this stage are as follows. Firstly, a supervised automatic
cross-over of second-order and higher-order features allows you to remember various
effective feature combinations, that is, learn which feature combinations can be used to
better distinguish labels. Secondly, the parameter space where features intersect can be
controlled by modifying hyperparameters, such as the length of hidden vectors in the FM
model, the number and depth of tree models, and so on. The third point is to conduct
joint training and learning by combining low order, second order, and high order, with the
main purpose of strengthening the memory of each feature or feature combination in the
same space to influence the weight of the prediction results. Fourth, the effectiveness of the
recommendation system at this stage has been significantly improved [10]. The training
stage requires fewer hyperparameters to be adjusted, making it simpler and more efficient.

The third stage is the deep development period (2016 to present). At this stage,
features are mapped into multi-dimensional space and then learned through a multi-layer
perceptron. Typical representative methods include: the FNN [11] and the Wide&Deep
proposed in 2016 [12]; the DIN proposed in 2018 [13]; and DeepFM proposed in 2017 [14].
The main characteristics of this stage are as follows. First, discrete feature processing has
begun to use a large amount of Embedding technology, which can more reasonably express
features by reducing the dimensions of data from high to low dimensional spaces, allowing
for both compression of the feature space and reasonable representation of discrete features.
Secondly, in each stage, in order to reduce the magnitude of the parameter space, use as
few parameters as possible to mine out the underlying laws of the data under limited
sample conditions. Thirdly, mining the relationship between the context and target, such as
designing sequence features to mine the rules of correlation between them and the target.
Fourth, using a DNN to mine high-order feature information [15]. The fifth point is to
combine low-order features, second-order feature combinations, and high-order feature
combinations for joint learning. Low-order feature combinations and second-order feature
combinations mainly enhance memory ability, while high-order feature combinations
mainly enhance generalization ability [16].

In recent years, more and more researchers are focusing on hybrid recommendation
systems. Ensemble learning is used in many models which mainly integrate multiple
algorithms and combine the advantages of each algorithm for better classification or
prediction results. Ensemble learning achieves better results since the system can combine
multiple algorithms to substantially reduce the variance [17]. The core idea of a hybrid
recommendation system is the same as that of ensemble learning, combining multiple
recommendation algorithms to improve the overall performance. The winning team in the
2016 Netflix Prize competition used the GBDT model to combine more than 500 models
in order to integrate the strengths of each algorithm, making it one of the most famous
cases of using hybrid recommendations to improve model performance in the history
of recommendation systems [18,19]. Wide&Deep learning proposed by Cheng H Tet
al. is a hybrid model consisting of wide linear models and deep neural networks [12].
The wide part uses the LR model for strong memory capability, and the deep part is in
charge of generalization ability. By fusing the two parts, the Wide&Deep model performs
excellent in both logistic regression and deep neural networks and is able to process and
memorize a large number of historical behavioral features quickly with strong expressive
power. However, the wide part requires artificial feature engineering, which causes a long
configuration period.

Guo H, Tang R, Ye Y, et al. proposed the DeepFM model, which can be considered
as an upgraded version of Wide&Deep [14]. Similar to Wide&Deep, the DeepFM model
also consists of shallow models and deep models, with the following two main differences:
the wide linear models replace the LR model with the FM model and share original input
features. Compared with the LR model used in Wide&Deep, the FM model has the ability
to automatically learn feature intersection, avoiding the artificial feature engineering work
in the shallow part of the original Wide&Deep model. The original features of the DeepFM

Entropy 2023, 25, 638 3 of 15

model will be used as common inputs for the FM and deep model parts to ensure the
accuracy and consistency of the model features. The disadvantage of this model is that the
categorical features with large dimensionality will have many problems in FM second-order
feature intersections.

Xu J, Hu Z, and Zou J proposed a personalized product recommendation method
based on analyzing user behavior using DeepFM [20]. Firstly, the K-means clustering
algorithm is used to cluster the original log data from the perspective of similarity to
reduce the data dimension. Then, through the DeepFM parameter-sharing strategy, the
relationship between low- and high-order feature combinations is learned from the log
data, and the click rate prediction model is constructed. Finally, based on the predicted
click-through rate, products are recommended to users in a sequence and fed back. The
proposed method achieved a better recommendation effect compared with other newer
recommendation methods.

Ma M, Wang G, and Fan T proposed the fDeepFM incorporating deep feature extraction [21].
Firstly, the word features are transformed into low-dimensional dense vectors through the
Embedding layer. Then, Doc2Vec is combined to mine item features with contexts, and the
two are stitched together as the input to the FM model and DNN model. Subsequently,
user features are input to the GRU (Gated Cyclic Unit) model according to different cycles
to mine user features. Finally, the results of the FM model, DNN model, and GRU model
are combined by linear stitching as the overall output of the fDeepFM model. Experiments
were carried out on Movielens-20M and Amazon data sets and reached better performance
than the DeepFM.

Wang R, Fu B, Fu G, et al. proposed a DCN model that uses a Cross network to
replace the wide part of the Wide&Deep model [22]. The Cross network is an efficient
way to apply explicit feature crossover. The DCN model is a deep model that can learn
both low-dimensional feature crossing and high-dimensional nonlinear features efficiently
without manual feature engineering, requiring very low computational resources. However,
the Cross network is bit-wise when doing feature intersection and does not consider the
concept of the feature field.

T Lian J, Zhou X, Zhang F, et al. proposed the xDeepFM model; the main idea is to
add a CIN layer to the Wide&Deep model [23]. The CIN layer is vector-wise, and the
elements belonging to a feature field are considered as a whole during feature crossing. The
disadvantage is that the complexity of the CIN layer is usually large, which puts pressure
on the model to come online.

Ke GL, Qi M, Finley T, et al. proposed the LightGBM model to resolve the time-
consuming problem of the conventional GBDT model with two novel techniques: Gradient-
based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) [24]. GOSS can
obtain a quite accurate estimation of the information gain with a much smaller data size,
and EFB bundles mutually exclusive features to reduce the number of features. LightGBM
speeds up the training process of the conventional GBDT model by over 20 times while
achieving almost the same accuracy. In this paper, based on the better performance of Light-
GBM, in order to learn higher-order feature interactions more efficiently, to improve the
interpretability of the recommendation algorithm model, and to distinguish the importance
of different feature interactions better on the prediction results of the recommendation
algorithm, we design a hybrid recommendation model LFDNN based on the FM model,
LightGBM, and deep neural network. First, LightGBM is used to perform feature selection
and feature cross. It converts some of the numerical features into a new sparse categorial
feature vector, which is then added inside the feature vector. This part of the feature
engineering is learned in an explicit way, using LightGBM to distinguish the importance of
different features. The model we proposed consists of shallow networks and deep neural
networks in parallel. The two networks work independently. Finally, a Fusion layer is
passed through.

In summary, our work makes the following contributions:

Entropy 2023, 25, 638 4 of 15

(1) We introduce the deep neural networks to recommendation algorithms to learn higher-
order feature interactions more efficiently.

(2) The LFDNN proposes a novel method for distinguishing the importance of different
feature interactions.

This paper is organized as follows: Section 2 describes the proposed light and FM
deep neural network (LFDNN) model. Section 3 provides experimental results. We draw
some discussions and conclusions in Section 4.

2. Light and FM Deep Neural Networks (LFDNN) Model

The network structure diagram of the proposed LFDNN model is shown in Figure 1.

Entropy 2023, 25, x FOR PEER REVIEW 4 of 15

deep neural networks in parallel. The two networks work independently. Finally, a Fusion

layer is passed through.

In summary, our work makes the following contributions:

(1) We introduce the deep neural networks to recommendation algorithms to learn

higher-order feature interactions more efficiently.

(2) The LFDNN proposes a novel method for distinguishing the importance of different

feature interactions.

This paper is organized as follows: Section 2 describes the proposed light and FM

deep neural network (LFDNN) model. Section 3 provides experimental results. We draw

some discussions and conclusions in Section 4.

2. Light and FM Deep Neural Networks (LFDNN) Model

The network structure diagram of the proposed LFDNN model is shown in Figure 1.

Figure 1. LFDNN model structure diagram.

2.1. LightGBM Module

Deep neural networks are partially good at handling sparse category features but not

dense numerical features, and gradient boosting decision trees are good at handling dense

numerical features but not sparse category features [25], so the feature enhancement hy-

brid principle can be applied to use the gradient boosting decision tree model to handle

numerical features and provide new feature inputs for the LFDNN model. After the nu-

merical features are input into the gradient boosting decision tree, the gain is calculated

for splitting and finally goes into the underlying leaf nodes to obtain the classification

results. The leaf node vectors of all the subtrees are stitched together to form a sparse

category feature vector, which is stitched into the feature data of the LFDNN model, such

as the GBDT features in Figure 1. The process of generating a new feature vector from the

gradient boosting decision tree is shown in Figure 2.

Numerical Features Numerical Features GBDT Features Categorial Features

Embedding Embedding Embedding Embedding Embedding Embedding Embedding Embedding

FM

Out1 Out2

Out3

Final Out

……

……

……

Fusion Layer

Shallow Model

Embeddings

Features

Deep Model

LightGBM

Figure 1. LFDNN model structure diagram.

2.1. LightGBM Module

Deep neural networks are partially good at handling sparse category features but
not dense numerical features, and gradient boosting decision trees are good at handling
dense numerical features but not sparse category features [25], so the feature enhancement
hybrid principle can be applied to use the gradient boosting decision tree model to handle
numerical features and provide new feature inputs for the LFDNN model. After the
numerical features are input into the gradient boosting decision tree, the gain is calculated
for splitting and finally goes into the underlying leaf nodes to obtain the classification
results. The leaf node vectors of all the subtrees are stitched together to form a sparse
category feature vector, which is stitched into the feature data of the LFDNN model, such
as the GBDT features in Figure 1. The process of generating a new feature vector from the
gradient boosting decision tree is shown in Figure 2.

Common algorithms such as neural networks and logistic regression can be trained
in small batches, and the size of the training data is not limited by hardware such as the
computer’s CPU and RAM [26]. However, gradient boosting decision trees require the
data to be traversed multiple times in a single iteration, and if the entire data is fed into the
computer system, hardware such as processors and memory can greatly limit the size of the
training data if it is not powerful enough. In real business scenarios, the size of the dataset
is extremely large. The engineering requirements cannot be met using ordinary gradient
boosting decision trees. To solve this problem and make gradient boosting decision trees
applicable to industrial practice, Microsoft has proposed the LightGBM framework [24],
which is used by the LFDNN model to design the LightGBM module.

Entropy 2023, 25, 638 5 of 15
Entropy 2023, 25, x FOR PEER REVIEW 5 of 15

Figure 2. New feature vector-generating process.

Common algorithms such as neural networks and logistic regression can be trained

in small batches, and the size of the training data is not limited by hardware such as the

computer’s CPU and RAM [26]. However, gradient boosting decision trees require the

data to be traversed multiple times in a single iteration, and if the entire data is fed into

the computer system, hardware such as processors and memory can greatly limit the size

of the training data if it is not powerful enough. In real business scenarios, the size of the

dataset is extremely large. The engineering requirements cannot be met using ordinary

gradient boosting decision trees. To solve this problem and make gradient boosting deci-

sion trees applicable to industrial practice, Microsoft has proposed the LightGBM frame-

work [24], which is used by the LFDNN model to design the LightGBM module.

2.2. Embeddings Layer Design

In various business scenarios, category features and ID-type features are mostly en-

coded using the one-hot encoding method, which is simple to implement. The coded re-

sults are saved in an extremely sparse vector which cannot be taken as the input of a deep

neural network directly, as the sparse vector will degrade the performance of the network.

The major recommendation algorithms with deep neural networks use dimensionality re-

duction to avoid this problem. Embedding is one of the most common techniques used.

Embedding is a very important feature vector. It is more efficient in transferring infor-

mation than traditional methods such as matrix decomposition. Therefore, Embedding

can be stitched together with the input features of the recommendation system and fed

into the deep neural network.

The LFDNN model uses the embedding_lookup() function in the Tensorflow frame-

work to implement Embedding. First, the sparse category features are one-hot processed.

Then, they are multiplied via a correlation matrix for Embedding. Finally, a dense matrix

is generated. The Embedding operation of multiplying a correlation matrix can be seen as

a table look-up operation. The Embedding layer used in this model has two features: de-

spite the different lengths of the inputs, the mapped lengths are the same, both being k.

There is an empirical formula for the initial determination of the k-value of the Embed-

dings layer, as shown in Equation (1).

𝑘 = √𝑥
4
, (1)

where x in the above equation is the initial number of dimensions, and the k-values are

adjusted in multiples of 2, e.g., 2, 4, 8, 16. In particular, it is important to note that although

the numerical features have been converted into sparse category features by LightGBM,

the numerical features are still discretized as ID Features. After Embedding, they partici-

pate in the crossing of the FM part of the shallow model together with the Embedding of

the other sparse category features.

2.3. Design of Shallow and Deep Neural Network Modules

Numerical Features

[0 0 1 0 1 0 0 0 0 0 0 1]

GBDT Features

Figure 2. New feature vector-generating process.

2.2. Embeddings Layer Design

In various business scenarios, category features and ID-type features are mostly
encoded using the one-hot encoding method, which is simple to implement. The coded
results are saved in an extremely sparse vector which cannot be taken as the input of a deep
neural network directly, as the sparse vector will degrade the performance of the network.
The major recommendation algorithms with deep neural networks use dimensionality
reduction to avoid this problem. Embedding is one of the most common techniques used.
Embedding is a very important feature vector. It is more efficient in transferring information
than traditional methods such as matrix decomposition. Therefore, Embedding can be
stitched together with the input features of the recommendation system and fed into the
deep neural network.

The LFDNN model uses the embedding_lookup() function in the Tensorflow frame-
work to implement Embedding. First, the sparse category features are one-hot processed.
Then, they are multiplied via a correlation matrix for Embedding. Finally, a dense matrix is
generated. The Embedding operation of multiplying a correlation matrix can be seen as a
table look-up operation. The Embedding layer used in this model has two features: despite
the different lengths of the inputs, the mapped lengths are the same, both being k. There is
an empirical formula for the initial determination of the k-value of the Embeddings layer,
as shown in Equation (1).

k = 4
√

x, (1)

where x in the above equation is the initial number of dimensions, and the k-values are
adjusted in multiples of 2, e.g., 2, 4, 8, 16. In particular, it is important to note that although
the numerical features have been converted into sparse category features by LightGBM, the
numerical features are still discretized as ID Features. After Embedding, they participate in
the crossing of the FM part of the shallow model together with the Embedding of the other
sparse category features.

2.3. Design of Shallow and Deep Neural Network Modules

Recommendation models can be broadly classified into two types: shallow models
and deep models. The common logistic regression and FM models are both shallow models.
Logistic regression models can only capture first-order feature information [23], while
FM models can learn second-order feature combinations [5]. With the development of
deep learning techniques, recommendation algorithm researchers are applying deep neural
networks to improve the accuracy of recommendation systems [27].

The shallow module uses the FM model, which implements feature combination, and
the output consists of two parts: an Addition Unit and multiple inner product units. In
the FM part of the Network line in Figure 1, the plus sign indicates the Addition Unit part,
and the output is Out1 in Figure 1. The Addition Unit reflects the first-order information

Entropy 2023, 25, 638 6 of 15

of the features, and the inner product unit reflects the effect of the second-order feature
combination on the prediction result. The output of the shallow model part is shown in
Equation (2).

yFM = ∑m
i=1 wixi + ∑n

i=1 ∑n
j=i+1

〈
vi, vj

〉
xixj (2)

where yFM is the output of the FM model, wi is the weight parameter, xi is the input, and〈
vi, vj

〉
is the inner product unit.

The deep neural network module uses a fully connected feedforward neural network
with full connectivity between the individual hidden layers [28]. The output of the Em-
beddings layer is used as the input to the deep neural network part, and ReLU is used as
the activation function between the individual hidden layer nodes. The weight parameter
matrix of the first layer of the deep neural network is represented using W0 and the bias
term is represented using b0 to obtain the output of the first layer of the deep neural
network, as shown in Equation (3).

h1 = f (W0x0 + b0), (3)

where h1 is the output of the first layer, f () is ReLU, and x0 is the output of the Embeddings layer.
With the output of the first layer, following the fully connected model, the output of

the second layer of the network is shown in Equation (4).

h2 = f (W1x1 + b1) (4)

The output of the subsequent networks follows this recurrence, with the final output
being Out3 in Figure 1.

2.4. Fusion Layer Design

The common recommendation methods used in industry have their own advantages
and disadvantages, and in order to build on their strengths and avoid their weaknesses,
hybrid recommendation systems are often used in practice. One of the most important
principles is that the weaknesses of each recommendation algorithm can be avoided by
combining multiple recommendation algorithms.

In the parallel hybrid recommendation paradigm, multiple recommendation algo-
rithms exist in parallel in a recommendation system, where the inputs are separated and
the results are output independently; finally, these results are fused according to a certain
rule-based strategy to return the recommendation results. The specific implementation
flow is shown in Figure 3 [29].

Entropy 2023, 25, x FOR PEER REVIEW 6 of 15

Recommendation models can be broadly classified into two types: shallow models

and deep models. The common logistic regression and FM models are both shallow mod-

els. Logistic regression models can only capture first-order feature information [23], while

FM models can learn second-order feature combinations [5]. With the development of

deep learning techniques, recommendation algorithm researchers are applying deep neu-

ral networks to improve the accuracy of recommendation systems [27].

The shallow module uses the FM model, which implements feature combination, and

the output consists of two parts: an Addition Unit and multiple inner product units. In

the FM part of the Network line in Figure 1, the plus sign indicates the Addition Unit part,

and the output is Out1 in Figure 1. The Addition Unit reflects the first-order information

of the features, and the inner product unit reflects the effect of the second-order feature

combination on the prediction result. The output of the shallow model part is shown in

Equation (2).

𝑦𝐹𝑀 = ∑ 𝑤𝑖𝑥𝑖 +∑ ∑ 〈𝑣𝑖 , 𝑣𝑗〉𝑥𝑖𝑥𝑗
𝑛
𝑗=𝑖+1

𝑛
𝑖=1

𝑚
𝑖=1 (2)

where 𝑦𝐹𝑀 is the output of the FM model, 𝑤𝑖 is the weight parameter, 𝑥𝑖 is the input,

and 〈𝑣𝑖 , 𝑣𝑗〉 is the inner product unit.

The deep neural network module uses a fully connected feedforward neural network

with full connectivity between the individual hidden layers [28]. The output of the Em-

beddings layer is used as the input to the deep neural network part, and ReLU is used as

the activation function between the individual hidden layer nodes. The weight parameter

matrix of the first layer of the deep neural network is represented using W0 and the bias

term is represented using b0 to obtain the output of the first layer of the deep neural net-

work, as shown in Equation (3).

𝒉1 = 𝑓(𝑾0𝒙0 + 𝒃0), (3)

where h1 is the output of the first layer, f() is ReLU, and x0 is the output of the Embeddings

layer.

With the output of the first layer, following the fully connected model, the output of

the second layer of the network is shown in Equation (4).

𝒉2 = 𝑓(𝑾1𝒙1 + 𝒃1) (4)

The output of the subsequent networks follows this recurrence, with the final output

being Out3 in Figure 1.

2.4. Fusion Layer Design

The common recommendation methods used in industry have their own advantages

and disadvantages, and in order to build on their strengths and avoid their weaknesses,

hybrid recommendation systems are often used in practice. One of the most important

principles is that the weaknesses of each recommendation algorithm can be avoided by

combining multiple recommendation algorithms.

In the parallel hybrid recommendation paradigm, multiple recommendation algo-

rithms exist in parallel in a recommendation system, where the inputs are separated and

the results are output independently; finally, these results are fused according to a certain

rule-based strategy to return the recommendation results. The specific implementation

flow is shown in Figure 3 [29].

Input Output

Recommender_1

Recommender_i

Recommender_N

……

……

Hybridization

Step

Figure 3. Parallel hybrid recommendation paradigm diagram.

There are three specific implementation options. The first is the covariance method.
The outputs of multiple recommendation algorithms are placed in a list and returned as
one result. The second is a weighting method. This method uses the recommendation
results of multiple recommendation algorithms, weighted to obtain a weighted score for
each recommendation candidate, and ultimately to rank them. The third method is the
branching method. This method develops a recommendation strategy that determines

Entropy 2023, 25, 638 7 of 15

which recommendation algorithm should be used under certain conditions. The develop-
ment of a recommendation strategy needs to be discussed in the context of the company’s
business scenario.

The Fusion layer in the LFDNN model is designed according to the weighting method
in the parallel recommendation paradigm. The role of this part is to allow the shallow
module and the deep neural network module to obtain a better fusion effect. The specific
design is shown in Figure 4.

Entropy 2023, 25, x FOR PEER REVIEW 7 of 15

Figure 3. Parallel hybrid recommendation paradigm diagram.

There are three specific implementation options. The first is the covariance method.

The outputs of multiple recommendation algorithms are placed in a list and returned as

one result. The second is a weighting method. This method uses the recommendation re-

sults of multiple recommendation algorithms, weighted to obtain a weighted score for

each recommendation candidate, and ultimately to rank them. The third method is the

branching method. This method develops a recommendation strategy that determines

which recommendation algorithm should be used under certain conditions. The develop-

ment of a recommendation strategy needs to be discussed in the context of the company’s

business scenario.

The Fusion layer in the LFDNN model is designed according to the weighting

method in the parallel recommendation paradigm. The role of this part is to allow the

shallow module and the deep neural network module to obtain a better fusion effect. The

specific design is shown in Figure 4.

Figure 4. Fusion layer structure diagram.

Out1 in Figure 5 is the output of the Addition Unit part of the FM model in the shal-

low module, Out2 is the output of multiple inner product units of the FM in the shallow

model, and Out3 is the output of the deep neural network part. Adding a layer of logistic

regression to the above three outputs to change the output into a one-dimensional proba-

bility can effectively improve the fusion effect. This is shown in Equation (5).

𝑦 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤1 × 𝑂𝑢𝑡1 + 𝑤2 × 𝑂𝑢𝑡2 + 𝑤3 × 𝑂𝑢𝑡3) (5)

In Figure 5 Loss1 and Loss2 are the losses in the shallow model FM, Loss3 is the

partial loss of the deep neural network, and Loss4 is the loss of the final output. The four

weight parameters are set as follows: B1 is 0.15, B2 is 0.85, B3 is 0.2, and B4 is 0.2. The

calculation of the losses for the whole model of the LFDNN is shown in Equation (6).

𝐿𝑜𝑠𝑠 = 𝐵1 × 𝐿1 + 𝐵2 × 𝐿2 + 𝐵3 × 𝐿3 + 𝐵4 × 𝐿4 (6)

Figure 5. Comparative experimental AUC results graph.

Embeddings Layer

Out1 Out2 Out3

Loss1 Loss2 Loss3 Final Out

Loss4

Final Loss

Figure 4. Fusion layer structure diagram.

Out1 in Figure 5 is the output of the Addition Unit part of the FM model in the shallow
module, Out2 is the output of multiple inner product units of the FM in the shallow model,
and Out3 is the output of the deep neural network part. Adding a layer of logistic regression
to the above three outputs to change the output into a one-dimensional probability can
effectively improve the fusion effect. This is shown in Equation (5).

y = sigmoid(w1×Out1 + w2×Out2 + w3×Out3) (5)

Entropy 2023, 25, x FOR PEER REVIEW 7 of 15

Figure 3. Parallel hybrid recommendation paradigm diagram.

There are three specific implementation options. The first is the covariance method.
The outputs of multiple recommendation algorithms are placed in a list and returned as
one result. The second is a weighting method. This method uses the recommendation re-
sults of multiple recommendation algorithms, weighted to obtain a weighted score for
each recommendation candidate, and ultimately to rank them. The third method is the
branching method. This method develops a recommendation strategy that determines
which recommendation algorithm should be used under certain conditions. The develop-
ment of a recommendation strategy needs to be discussed in the context of the company’s
business scenario.

The Fusion layer in the LFDNN model is designed according to the weighting
method in the parallel recommendation paradigm. The role of this part is to allow the
shallow module and the deep neural network module to obtain a better fusion effect. The
specific design is shown in Figure 4.

Figure 4. Fusion layer structure diagram.

Out1 in Figure 5 is the output of the Addition Unit part of the FM model in the shal-
low module, Out2 is the output of multiple inner product units of the FM in the shallow
model, and Out3 is the output of the deep neural network part. Adding a layer of logistic
regression to the above three outputs to change the output into a one-dimensional proba-
bility can effectively improve the fusion effect. This is shown in Equation (5). 𝑦 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑤1 𝑂𝑢𝑡1 𝑤2 𝑂𝑢𝑡2 𝑤3 𝑂𝑢𝑡3 (5)

In Figure 5 Loss1 and Loss2 are the losses in the shallow model FM, Loss3 is the
partial loss of the deep neural network, and Loss4 is the loss of the final output. The four
weight parameters are set as follows: B1 is 0.15, B2 is 0.85, B3 is 0.2, and B4 is 0.2. The
calculation of the losses for the whole model of the LFDNN is shown in Equation (6). 𝐿𝑜𝑠𝑠 𝐵1 𝐿1 𝐵2 𝐿2 𝐵3 𝐿3 𝐵4 𝐿4 (6)

Figure 5. Comparative experimental AUC results graph.
Figure 5. Comparative experimental AUC results graph.

Entropy 2023, 25, 638 8 of 15

In Figure 5 Loss1 and Loss2 are the losses in the shallow model FM, Loss3 is the partial
loss of the deep neural network, and Loss4 is the loss of the final output. The four weight
parameters are set as follows: B1 is 0.15, B2 is 0.85, B3 is 0.2, and B4 is 0.2. The calculation
of the losses for the whole model of the LFDNN is shown in Equation (6).

Loss = B1× L1 + B2× L2 + B3× L3 + B4× L4 (6)

3. Experiment Results

In this section we compare the LFNDD with typical commonly used recommendation
algorithm models on the datasets, such as Criteo and Avazu, and the better performance of
LFDNN is verified.

3.1. Experimental Datasets

The recommendation algorithm datasets used in this experiment are: Criteo and Avazu,
which are commonly used in evaluating the predictive effectiveness of recommendation models.

Criteo is sourced from Criteo Advertising, and samples are divided into feature
information and click information. The feature information is divided into 13 numerical
features and 26 categorical features. We divided the 453,798 Criteo samples into a training
set and a test set according to a ratio of 5:1.

The Avazu dataset is derived from AD click data from Avazu users’ mobile phones,
using information about users’ AD interactions on their mobile devices. The samples
are divided into nine numeric and thirteen categorical features. Considering the timing
sequence, we treat the earlier samples as the training dataset, and the later samples as the
test dataset. In this experiment, 393,288 Avazu samples were divided into training and test
sets according to a ratio of 5:1.

To avoid the problem of sample imbalance, the proportion of positive samples in the
dataset was allowed to reach about a quarter. Special attention needs to be paid to the fact
that some of the samples will have missing data. This situation can cause some difficulty
for training. Missing data can be divided into missing categorical features and missing
numerical features. For the categorical features, a new category is usually populated, which
can be 0, −1, negative infinity, etc. For numerical features, the median is chosen for this
experiment to be filled, and this method is insensitive to outliers [22].

3.2. Experimental Algorithms and Settings

In order to evaluate the performance of the LFDNN, six classical recommendation
models were used for comparison experiments: (1) logistic regression models [23], (2) FM
models [1], (3) the neural network FNN model based on the support of factorization
machines [29], (4) Wide&Deep [12], (5) DCN, and (6) xDeepFM [30]. (1) and (2) were
popular recommendation models before the deep learning era; they can only be trained
to learn for the low-order feature combination information in the training data. The
LR model can only obtain first-order feature information in application, while the FM
model can learn second-order feature combinations. (3) belongs to deep neural network
recommendation models from the deep learning era. (4), (5), and (6) are commonly used
hybrid recommendation models that combine shallow structures and deep neural networks.

With the LFDNN, the deep neural network module is set to a three-layer network
with 300–300–300 neurons per layer, and the dropout rate is set to 0.5, using the Adam
optimizer [31].

We took Tensorflow as the testing platform with reasonable parameters set to allow the
comparison models to achieve the desired performance. All experiments were conducted
on a PC equipped with an Intel Core i5-11400 CPU @ 3.20GHz with 16 GB of RAM and an
RTX 3070 Laptop GPU.

Entropy 2023, 25, 638 9 of 15

3.3. Comparison Experiments

The performance of the LFDNN model is compared with that of common recom-
mendation algorithm models, and the experimental results are shown in Table 1. In
the experiments, we take the AUC (Area Under Curve) [32] and LogLoss [33] as the
evaluation criteria.

Table 1. Comparison experimental results.

Model
Criteo Avazu

AUC LogLoss AUC LogLoss

LR 0.7785 0.4667 0.7464 0.4286
FM 0.7982 0.4513 0.7513 0.4015

FNN 0.7996 0.4473 0.7659 0.3977
Wide&Deep 0.8019 0.4379 0.7695 0.3925

DCN 0.7988 0.4381 0.7678 0.3902
xDeepFM 0.8034 0.4393 0.7636 0.3987
LFDNN 0.8166 0.4372 0.7705 0.3868

The AUC evaluates the sorting ability of samples as a whole. The larger the AUC value,
the higher the accuracy of model prediction. The LFDNN reaches the highest accuracy on
both of the two datasets.

The loss function is a non-negative real value function, which is applied in the training
phase for measuring the operation of the algorithm. In this paper, we use the cross-entropy
loss function, which measures the difference between the probability distribution and the
real distribution of the training results. The closer the two are, the smaller the cross-entropy
is. In the experiments, the cross-entropy loss function is first used to evaluate the effect
of each sub module in the LFDNN and then the total loss function evaluation value is
calculated through the Fusion layer. The LFDNN achieves the best results for both of the
two datasets, too.

In order to observe the analysis more visually, the comparison results are plotted
according to the experimental data, as shown in Figures 5 and 6. As shown in Figure 5,
the effect of the FM in the shallow model is significantly better than that of LR, indicating
that the FM with second-order feature combination information is effective in improving
the recommendation effect of the model. Secondly, comparing the shallow model (LR,
FM) and the deep model (FNN), the performance of the deep model with the acquisition
of higher-order feature information is better than that of the shallow model. Thirdly, the
hybrid recommendation model (DCN, xDeepFM) combines the shallow model and the
deep model, and then complements some defects of the deep model, thus making the
hybrid recommendation model perform better. Finally, it can be found that the LFDNN
performs better on two datasets, with 5.34% and 3.23% AUC improvements compared
to the experimental results of the worst performing LR model, and a relatively small
improvement compared to the three fusion models with the next best performance. Al-
though the performance improvement of the model is only a little, the small improvement
can bring great benefits to the service provider in the case of AD recommendation or
E-commerce recommendation.

As shown in Figure 6, we can observe the comparison results of each model in terms
of LogLoss metric. LogLoss can more intuitively portray the prediction error of the model
on the dataset, and the smaller the value, the better the performance of the model. From
the figure, we can see that the LFDNN model achieves the best results for both datasets,
reflecting that the designed model can indeed bring better performance results. The
comparison shows that the performance of the shallow model is not as good as the deep
model and the hybrid recommendation model, which is consistent with the results obtained
from the AUC metric analysis. This illustrates the importance of higher-order feature
interaction information for the recommendation algorithm task.

Entropy 2023, 25, 638 10 of 15

Entropy 2023, 25, x FOR PEER REVIEW 10 of 15

Figure 6. Comparative Experimental LogLoss Results Graph.

3.4. Parameter Influence Experiments

Normally, in neural networks training experiments, the network shape, number of

network layers, and number of neurons in each layer are determined via trial and error

for the best parameter settings. Since the deep neural network part of the LFDNN model

is responsible for mining the data patterns hidden behind the features, it is necessary to

explore a better parameter configuration for it. In these experiments, we explore how to

set the parameters of the LFDNN and how the parameters affect the operation of the over-

all model.

We first test the influence of the network shape on the model by limiting the config-

uration to three layers and one thousand two hundred neurons. We then test three differ-

ent network structures: constant, increasing, and decreasing. The constant type of the neu-

ral node parameter is set to 400-400-400, the increasing type is set to 200-400-800, the de-

creasing type is set to 800-400-200, and the dropout rate is uniformly set to 0.5. The exper-

iment results are shown in Figures 7 and 8. As shown in the figures, the constant shape

network is superior to the other two shapes in performance in the depth neural network

part of the LFDNN.

Figure 7. AUC results of network shape experiments.

Figure 6. Comparative Experimental LogLoss Results Graph.

3.4. Parameter Influence Experiments

Normally, in neural networks training experiments, the network shape, number of
network layers, and number of neurons in each layer are determined via trial and error
for the best parameter settings. Since the deep neural network part of the LFDNN model
is responsible for mining the data patterns hidden behind the features, it is necessary to
explore a better parameter configuration for it. In these experiments, we explore how
to set the parameters of the LFDNN and how the parameters affect the operation of the
overall model.

We first test the influence of the network shape on the model by limiting the con-
figuration to three layers and one thousand two hundred neurons. We then test three
different network structures: constant, increasing, and decreasing. The constant type of
the neural node parameter is set to 400-400-400, the increasing type is set to 200-400-800,
the decreasing type is set to 800-400-200, and the dropout rate is uniformly set to 0.5. The
experiment results are shown in Figures 7 and 8. As shown in the figures, the constant
shape network is superior to the other two shapes in performance in the depth neural
network part of the LFDNN.

Entropy 2023, 25, x FOR PEER REVIEW 10 of 15

Figure 6. Comparative Experimental LogLoss Results Graph.

3.4. Parameter Influence Experiments

Normally, in neural networks training experiments, the network shape, number of

network layers, and number of neurons in each layer are determined via trial and error

for the best parameter settings. Since the deep neural network part of the LFDNN model

is responsible for mining the data patterns hidden behind the features, it is necessary to

explore a better parameter configuration for it. In these experiments, we explore how to

set the parameters of the LFDNN and how the parameters affect the operation of the over-

all model.

We first test the influence of the network shape on the model by limiting the config-

uration to three layers and one thousand two hundred neurons. We then test three differ-

ent network structures: constant, increasing, and decreasing. The constant type of the neu-

ral node parameter is set to 400-400-400, the increasing type is set to 200-400-800, the de-

creasing type is set to 800-400-200, and the dropout rate is uniformly set to 0.5. The exper-

iment results are shown in Figures 7 and 8. As shown in the figures, the constant shape

network is superior to the other two shapes in performance in the depth neural network

part of the LFDNN.

Figure 7. AUC results of network shape experiments.

Figure 7. AUC results of network shape experiments.

Entropy 2023, 25, 638 11 of 15

Entropy 2023, 25, x FOR PEER REVIEW 10 of 15

Figure 6. Comparative Experimental LogLoss Results Graph.

3.4. Parameter Influence Experiments

Normally, in neural networks training experiments, the network shape, number of

network layers, and number of neurons in each layer are determined via trial and error

for the best parameter settings. Since the deep neural network part of the LFDNN model

is responsible for mining the data patterns hidden behind the features, it is necessary to

explore a better parameter configuration for it. In these experiments, we explore how to

set the parameters of the LFDNN and how the parameters affect the operation of the over-

all model.

We first test the influence of the network shape on the model by limiting the config-

uration to three layers and one thousand two hundred neurons. We then test three differ-

ent network structures: constant, increasing, and decreasing. The constant type of the neu-

ral node parameter is set to 400-400-400, the increasing type is set to 200-400-800, the de-

creasing type is set to 800-400-200, and the dropout rate is uniformly set to 0.5. The exper-

iment results are shown in Figures 7 and 8. As shown in the figures, the constant shape

network is superior to the other two shapes in performance in the depth neural network

part of the LFDNN.

Figure 7. AUC results of network shape experiments.

Figure 8. LogLoss results of network shape experiments.

Then, we test the influence of the number of layers of the network on the model. The
number of neurons in each hidden layer is set to 400, and then the number of hidden layers
in the neural network is set from 1 to 5. The test results of the LFDNN model on the number
of network layers are shown in Figures 9 and 10. From the figures, it can be seen that the
performance of the LFDNN model improves with the increase in the number of network
layers. However, if the number of hidden layers increases, the performance of the model
will also decline. This shows that the increase in the number of hidden layers in the deep
neural network can enhance the learning ability of the model at an appropriate time, but
beyond a certain range, the model will become complex, and the training cost will increase;
the model will also become prone to overfitting, and this will limit the ability of the model.
The above experiment explored the influence of the number of partial hidden layers of the
deep neural network on the performance of the LFDNN model and determined that the
optimal hidden layer number is three.

Entropy 2023, 25, x FOR PEER REVIEW 11 of 15

Figure 8. LogLoss results of network shape experiments.

Then, we test the influence of the number of layers of the network on the model. The

number of neurons in each hidden layer is set to 400, and then the number of hidden layers

in the neural network is set from 1 to 5. The test results of the LFDNN model on the num-

ber of network layers are shown in Figures 9 and 10. From the figures, it can be seen that

the performance of the LFDNN model improves with the increase in the number of net-

work layers. However, if the number of hidden layers increases, the performance of the

model will also decline. This shows that the increase in the number of hidden layers in the

deep neural network can enhance the learning ability of the model at an appropriate time,

but beyond a certain range, the model will become complex, and the training cost will

increase; the model will also become prone to overfitting, and this will limit the ability of

the model. The above experiment explored the influence of the number of partial hidden

layers of the deep neural network on the performance of the LFDNN model and deter-

mined that the optimal hidden layer number is three.

Figure 9. AUC results of network layer experiments (the numbers of 1-5 represent the number of

hidden layers in the neural network).

Figure 10. LogLoss results of network layers experiments.(the numbers of 1-5 represent the num-

ber of hidden layers in the neural network.)

Finally, we explore the appropriate number of nodes in each layer of the network.

The number of layers is set as three according to the results of the network layers experi-

ments, and the network shape is constant. The nodes of each layer are set from 100 to 600

in steps of 100, respectively. The experimental results of the LFDNN model on the number

of hidden layer nodes are shown in Figures 11 and 12. It can be seen that the AUC and

LogLoss obtain better performance at first as the number of nodes increases. However,

Figure 9. AUC results of network layer experiments (the numbers of 1–5 represent the number of
hidden layers in the neural network).

Entropy 2023, 25, 638 12 of 15

Entropy 2023, 25, x FOR PEER REVIEW 11 of 15

Figure 8. LogLoss results of network shape experiments.

Then, we test the influence of the number of layers of the network on the model. The

number of neurons in each hidden layer is set to 400, and then the number of hidden layers

in the neural network is set from 1 to 5. The test results of the LFDNN model on the num-

ber of network layers are shown in Figures 9 and 10. From the figures, it can be seen that

the performance of the LFDNN model improves with the increase in the number of net-

work layers. However, if the number of hidden layers increases, the performance of the

model will also decline. This shows that the increase in the number of hidden layers in the

deep neural network can enhance the learning ability of the model at an appropriate time,

but beyond a certain range, the model will become complex, and the training cost will

increase; the model will also become prone to overfitting, and this will limit the ability of

the model. The above experiment explored the influence of the number of partial hidden

layers of the deep neural network on the performance of the LFDNN model and deter-

mined that the optimal hidden layer number is three.

Figure 9. AUC results of network layer experiments (the numbers of 1-5 represent the number of

hidden layers in the neural network).

Figure 10. LogLoss results of network layers experiments.(the numbers of 1-5 represent the num-

ber of hidden layers in the neural network.)

Finally, we explore the appropriate number of nodes in each layer of the network.

The number of layers is set as three according to the results of the network layers experi-

ments, and the network shape is constant. The nodes of each layer are set from 100 to 600

in steps of 100, respectively. The experimental results of the LFDNN model on the number

of hidden layer nodes are shown in Figures 11 and 12. It can be seen that the AUC and

LogLoss obtain better performance at first as the number of nodes increases. However,

Figure 10. LogLoss results of network layers experiments. (The numbers of 1–5 represent the number
of hidden layers in the neural network).

Finally, we explore the appropriate number of nodes in each layer of the network. The
number of layers is set as three according to the results of the network layers experiments,
and the network shape is constant. The nodes of each layer are set from 100 to 600 in
steps of 100, respectively. The experimental results of the LFDNN model on the number
of hidden layer nodes are shown in Figures 11 and 12. It can be seen that the AUC and
LogLoss obtain better performance at first as the number of nodes increases. However, they
begin to decline to a certain extent when the number of nodes exceeds 400. This is because
the increase in the number of nodes makes the model more complex, and this make it easy
to cause overfitting. Therefore, it is a reasonable choice to set each hidden layer of the
LFDNN to between 200–400 neurons.

Entropy 2023, 25, x FOR PEER REVIEW 12 of 15

they begin to decline to a certain extent when the number of nodes exceeds 400. This is

because the increase in the number of nodes makes the model more complex, and this

make it easy to cause overfitting. Therefore, it is a reasonable choice to set each hidden

layer of the LFDNN to between 200–400 neurons.

Figure 11. AUC results of network nodes experiments. (the numbers of 100-600 represent the

number in each layer of the network.)

Figure 12. LogLoss results of network nodes experiments. (the numbers of 100-600 represent the

number in each layer of the network.)

3.5. Ablation Experiments

We further investigated the effects of the Fusion layer and LightGBM module in the

LFDNN. The experimental results are shown in Table 2. A is the Fusion layer and B is the

LightGBM module. The “√” indicates that the corresponding network is involved.

Table 2. Ablation experimental results.

A B
Criteo Avazu

AUC LogLoss AUC LogLoss

√ 0.7954 0.4452 0.7534 0.4025

 √ 0.8010 0.4557 0.7586 0.3961

√ √ 0.8166 0.4372 0.7705 0.3868

According to Table 2, first, we can find that the AUC metrics improved by 1.9% and

1.6%, and the LogLoss decreased by 4% and 2.3% while the Fusion layer was involved.

This is because a pipelined hybrid recommendation paradigm is applied, where the shal-

low part and the deep neural network part of the LFDNN are viewed as a whole, and then

Figure 11. AUC results of network nodes experiments. (The numbers of 100–600 represent the
number in each layer of the network).

Entropy 2023, 25, 638 13 of 15

Entropy 2023, 25, x FOR PEER REVIEW 12 of 15

they begin to decline to a certain extent when the number of nodes exceeds 400. This is

because the increase in the number of nodes makes the model more complex, and this

make it easy to cause overfitting. Therefore, it is a reasonable choice to set each hidden

layer of the LFDNN to between 200–400 neurons.

Figure 11. AUC results of network nodes experiments. (the numbers of 100-600 represent the

number in each layer of the network.)

Figure 12. LogLoss results of network nodes experiments. (the numbers of 100-600 represent the

number in each layer of the network.)

3.5. Ablation Experiments

We further investigated the effects of the Fusion layer and LightGBM module in the

LFDNN. The experimental results are shown in Table 2. A is the Fusion layer and B is the

LightGBM module. The “√” indicates that the corresponding network is involved.

Table 2. Ablation experimental results.

A B
Criteo Avazu

AUC LogLoss AUC LogLoss

√ 0.7954 0.4452 0.7534 0.4025

 √ 0.8010 0.4557 0.7586 0.3961

√ √ 0.8166 0.4372 0.7705 0.3868

According to Table 2, first, we can find that the AUC metrics improved by 1.9% and

1.6%, and the LogLoss decreased by 4% and 2.3% while the Fusion layer was involved.

This is because a pipelined hybrid recommendation paradigm is applied, where the shal-

low part and the deep neural network part of the LFDNN are viewed as a whole, and then

Figure 12. LogLoss results of network nodes experiments. (The numbers of 100–600 represent the
number in each layer of the network).

3.5. Ablation Experiments

We further investigated the effects of the Fusion layer and LightGBM module in the
LFDNN. The experimental results are shown in Table 2. A is the Fusion layer and B is the
LightGBM module. The “

√
” indicates that the corresponding network is involved.

Table 2. Ablation experimental results.

A B
Criteo Avazu

AUC LogLoss AUC LogLoss
√

0.7954 0.4452 0.7534 0.4025√
0.8010 0.4557 0.7586 0.3961√ √
0.8166 0.4372 0.7705 0.3868

According to Table 2, first, we can find that the AUC metrics improved by 1.9% and
1.6%, and the LogLoss decreased by 4% and 2.3% while the Fusion layer was involved. This
is because a pipelined hybrid recommendation paradigm is applied, where the shallow
part and the deep neural network part of the LFDNN are viewed as a whole, and then the
output of this part is used as the input of the logistic regression in the Fusion layer; finally,
the recommendation results are obtained. It is observed that the outputs of the shallow and
deep models can be better fused. Secondly, it can be seen that after using the LightGBM
module, the AUC metrics improve by 2.6% and 2.2%, and the LogLoss decreases by 1.8%
and 3.9%. This is due to the fact that the module extracts more information from the dense
numerical features and adds them to the subsequent inputs. The design improves the
ability of the hybrid model to utilize dense numerical features.

4. Discussion and Conclusions

Our work proposes the LFDNN, an improved hybrid recommendation model. Firstly,
the model uses LightGBM for feature engineering, which can more effectively collect feature
combination information, thereby improving the interpretability of the recommendation
algorithm model. Then, the model is divided into a shallow network part and a deep
neural network part. The shallow network uses an FM model, and the deep part uses a
fully connected feedforward neural network. Finally, a Fusion layer is designed to allow
the two parts to learn jointly, thereby modeling a hybrid recommendation algorithm model
with better overall performance. Compared with classic recommendation models on the

Entropy 2023, 25, 638 14 of 15

two real advertising datasets, the LFDNN achieves better performance, which improves
its effectiveness.

The LFDNN also has certain inadequacies. Limited by the features of the composed
algorithms, in business scenarios where category features [34] account for the majority, the
LFDNN may not be as good as other existing models, and we are continuously working on
new technologies, i.e., reinforcement learning, which can be applied to the field of recom-
mendation algorithms if the recommendation system is treated as an agent and the training
and updating process of the recommendation system is treated as a cycle of the agent. We
will conduct further research on category feature data based on reinforcement learning.

Author Contributions: Conceptualization, H.H.; methodology, H.H. and Y.L.; software, H.H.; valida-
tion, D.L., G.B. and F.G.; formal analysis, D.L.; investigation, H.H.; resources, H.H.; data curation,
D.L. and G.B.; writing—original draft preparation, H.H.; writing—review and editing, D.L., F.G. and
Y.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by NSFC grant number 61972174, Guangdong Universities’
Innovation Team Project grant number 2021KCXTD015, Guangdong Universities’ key scientific
research platforms and projects grant number 2021ZDZX1083, and Guangdong Key Disciplines
Project grant number 2021ZDJS138, 2022ZDJS139.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to further research plan.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, Y.J.; Dong, Z.; Meng, X.W. Research on personalized advertising recommendation system and its application. J. Comput.

Sci. 2021, 44, 33.
2. Ko, H.; Lee, S.; Park, Y.; Choi, A. A survey of recommendation systems: Recommendation models, techniques, and application

fields. Electronics 2022, 11, 141. [CrossRef]
3. Liao, S.H. Expert system methodologies and applications—A decade review from 1995 to 2004. Expert Syst. Appl. 2005, 28, 93–103.

[CrossRef]
4. Anwar, K.; Siddiqui, J.; Sohail, S.S. Machine learning-based book recommender system: A survey and new perspectives. Int. J.

Intell. Inf. Database Syst. 2020, 13, 231. [CrossRef]
5. Rendle, S. Factorization machines. In Proceedings of the 2010 IEEE International Conference on Data Mining, Sydney, Australia,

13–17 December 2010; pp. 995–1000.
6. Yan, P.; Zhou, X.; Duan, Y. E-commerce item recommendation based on field-aware factorization machine. In Proceedings of the

2015 International ACM Recommender Systems Challenge, Vienna, Austria, 16–20 September 2015; pp. 1–4.
7. Xu, H. GBDT-LR: A Willingness Data Analysis and Prediction Model Based on Machine Learning. In Proceedings of the 2022

IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian, China, 20–21
August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 396–401.

8. Dhelim, S.; Aung, N.; Bouras, M.A.; Ning, H.; Cambria, E. A survey on personality-aware recommendation systems. Artif. Intell.
Rev. 2021, 55, 2409–2454. [CrossRef]

9. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

10. He, X.; Pan, J.; Jin, O.; Xu, T.; Liu, B.; Xu, T.; Shi, Y.; Atallah, A.; Herbrich, R.; Bowers, S. Practical lessons from predicting clicks on
ads at facebook. In Proceedings of the Eighth International Workshop on Data Mining for Online Advertising, New York, NY,
USA, 24 August 2014; pp. 1–9.

11. Mu, R. A Survey of Recommender Systems Based on Deep Learning. IEEE Access 2019, 6, 69009–69022. [CrossRef]
12. Cheng, H.T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.; Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M.; et al. Wide

& deep learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems,
Boston, MA, USA, 15 September 2016; pp. 7–10.

13. Covington, P.; Adams, J.; Sargin, E. Deep neural networks for youtube recommendations. In Proceedings of the 10th ACM
Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016; pp. 191–198.

14. Guo, H.; Tang, R.; Ye, Y.; Li, Z.; He, X.; Dong, Z. DeepFM: An End-to-End Wide & Deep Learning Framework for CTR Prediction.
arXiv 2018, arXiv:1804.04950.

15. Gui, Y.; Li, D.; Fang, R. A fast adaptive algorithm for training deep neural networks. Appl. Intell. 2022, 53, 4099–4108. [CrossRef]

https://doi.org/10.3390/electronics11010141
https://doi.org/10.1016/j.eswa.2004.08.003
https://doi.org/10.1504/IJIIDS.2020.109457
https://doi.org/10.1007/s10462-021-10063-7
https://doi.org/10.1109/ACCESS.2018.2880197
https://doi.org/10.1007/s10489-022-03629-7

Entropy 2023, 25, 638 15 of 15

16. Zhang, S.; Yao, L.; Sun, A.; Tay, Y. Deep learning based recommender system: A survey and new perspectives. ACM Comput.
Surv. (CSUR) 2019, 52, 1–38. [CrossRef]

17. Chen, J.; Wang, X.; Feng, F.; He, X. Bias Issues and Solutions in Recommender System: Tutorial on the RecSys 2021. In Proceedings
of the Fifteenth ACM Conference on Recommender Systems, Amsterdam, The Netherlands, 27 September–1 October 2021; pp.
825–827.

18. Liang, W.; Luo, S.; Zhao, G.; Wu, H. Predicting hard rock pillar stability using GBDT, XGBoost, and LightGBM algorithms.
Mathematics 2020, 8, 765. [CrossRef]

19. Sun, Z.; Guo, Q.; Yang, J.; Fang, H.; Guo, G.; Zhang, J.; Burke, R. Research commentary on recommendations with side information:
A survey and research directions. Electron. Commer. Res. Appl. 2019, 37, 100879. [CrossRef]

20. Xu, J.; Hu, Z.; Zou, J. Personalized product recommendation method for analyzing user behavior using DeepFM. J. Inf. Process.
Syst. 2021, 17, 369–384.

21. Ma, M.; Wang, G.; Fan, T. Improved DeepFM Recommendation Algorithm Incorporating Deep Feature Extraction. Appl. Sci.
2022, 12, 11992. [CrossRef]

22. Chen, J.; Sun, B.; Li, H.; Lu, H.; Hua, X.-S. Deep ctr prediction in display advertising. In Proceedings of the 24th ACM International
Conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016; pp. 811–820.

23. Wright, R.E. Logistic regression. Read. Underst. Multivar. Stat. 1995, 68, 497–507.
24. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision

tree. Adv. Neural Inf. Process. Syst. 2017, 30, 52.
25. Wang, Y.; Feng, D.; Li, D.; Chen, X.; Zhao, Y.; Niu, X. A mobile recommendation system based on logistic regression and gradient

boosting decision trees. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC,
Canada, 24–29 July 2016; pp. 1896–1902.

26. Sharchilev, B.; Ustinovskiy, Y.; Serdyukov, P.; Rijke, M. Finding influential training samples for gradient boosted decision trees. In
Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 4577–4585.

27. Lian, J.; Zhou, X.; Zhang, F.; Chen, Z.; Xie, X.; Sun, G. xdeepfm: Combining explicit and implicit feature interactions for
recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, London, UK, 19–23 August 2018; pp. 1754–1763.

28. Zhang, W.; Du, T.; Wang, J. Deep learning over multi-field categorical data. In Proceedings of the European Conference on
Information Retrieval, Padua, Italy, 20–23 March 2016; pp. 45–57.

29. Çano, E.; Morisio, M. Hybrid recommender systems: A systematic literature review. Intell. Data Anal. 2017, 21, 1487–1524.
[CrossRef]

30. An, H.; Ren, J. XGBDeepFM for CTR Predictions in Mobile Advertising Benefits from Ad Context. Math. Probl. Eng. 2020,
2020, 1747315. [CrossRef]

31. Zou, F.; Shen, L.; Jie, Z.; Zhang, W.; Liu, W. A sufficient condition for convergences of adam and rmsprop. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11127–11135.

32. Huang, J.; Ling, C.X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17, 299–310.
[CrossRef]

33. De Boer, P.-T.; Kroese, D.P.; Mannor, S.; Rubinstein, R.Y. A tutorial on the cross-entropy method. Ann. Oper. Res. 2005, 134, 19–67.
[CrossRef]

34. Khan, C.; Lee, J.; Blanco, R.; Chang, Y. Predicting primary categories of business listings for local search ranking. Neurocomputing
2015, 168, 961–969. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/3158369
https://doi.org/10.3390/math8050765
https://doi.org/10.1016/j.elerap.2019.100879
https://doi.org/10.3390/app122311992
https://doi.org/10.3233/IDA-163209
https://doi.org/10.1155/2020/1747315
https://doi.org/10.1109/TKDE.2005.50
https://doi.org/10.1007/s10479-005-5724-z
https://doi.org/10.1016/j.neucom.2015.05.029

	Introduction
	Light and FM Deep Neural Networks (LFDNN) Model
	LightGBM Module
	Embeddings Layer Design
	Design of Shallow and Deep Neural Network Modules
	Fusion Layer Design

	Experiment Results
	Experimental Datasets
	Experimental Algorithms and Settings
	Comparison Experiments
	Parameter Influence Experiments
	Ablation Experiments

	Discussion and Conclusions
	References

