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Abstract: We performed a theoretical study of the dephasing dynamics of a quantum two-state
system under the influences of a non-equilibrium fluctuating environment. The effect of the en-
vironmental non-equilibrium fluctuations on the quantum system is described by a generalized
random telegraph noise (RTN) process, of which the statistical properties are both non-stationary and
non-Markovian. Due to the time-homogeneous property in the master equations for the multi-time
probability distribution, the decoherence factor induced by the generalized RTN with a modulatable-
type memory kernel can be exactly derived by means of a closed fourth-order differential equation
with respect to time. In some special limit cases, the decoherence factor recovers to the expression
of the previous ones. We analyzed in detail the environmental effect of memory modulation in the
dynamical dephasing in four types of dynamics regimes. The results showed that the dynamical
dephasing of the quantum system and the conversion between the Markovian and non-Markovian
characters in the dephasing dynamics under the influence of the generalized RTN can be effectively
modulated via the environmental memory kernel.

Keywords: open quantum systems; decoherence; non-equilibrium environmental fluctuations

1. Introduction

Quantum coherence is an important phenomenon in the microcosmic world, which
has been attracting continuous attention with the advance of experimental technologies.
In a wide variety of applications related to quantum physics, the destruction of coherence
is inevitable owing to the reason that any quantum system keeps interacting with the
surrounding environments. The unavoidable interactions of an open quantum system
with its surroundings bring about its correlations with environmental states and make the
system lose coherence in dynamical evolution [1–6]. The loss of the quantum coherence of
open systems induced by the environments is usually called decoherence, which is widely
used to describe the quantum–classical transition and is regarded as a great obstacle to
the design and realization of experimental devices for quantum information processing.
Recently, the investigations of the decoherence process of open quantum systems have
received more and more considerable attention, which plays a significant role in a series of
essential issues in quantum information science, such as quantum computation, quantum
measurement, quantum control, and so on [7–21].

Over the past several decades, the quantum decoherence dynamics of open systems
has been investigated by making the assumption that system–environment coupling is
weak and by ignoring the memory effect of the actual dynamical evolution. These treat-
ments are usually called Markovian approximations, and the quantum dynamics of open
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systems is generally described in the Lindblad-type master equations. However, the cou-
plings with the environment are not weak, and the quantum evolution of the open system
displays a memory effect in the vast majority of realistic cases. In these situations, the
Markovian approximations are no longer valid, and the non-Markovian character exhibited
in the decoherence dynamics plays a non-negligible role [22–25]. Under the influence of
environments exhibiting equilibrium fluctuations, the study of non-Markovian quantum
dynamics has drawn increasing attention by treating the environmental noise with a sta-
tionary statistical property [13,20,26–46]. Recently, it was shown that the non-equilibrium
environmental fluctuations become dominant in some transient and ultra-fast physical
or biological processes. The instantaneous environmental state influenced by the initial
couplings to the system cannot return to equilibrium rapidly, corresponding to the statistics
of the environmental noise no longer being stationary [47,48]. Thus, to study quantum
dynamics in these situations, the effects of non-equilibrium environmental fluctuations
should be taken into full consideration.

Random telegraph noise (RTN) as the widely used classical noise with non-Gaussianity
has been the subject of the theoretical simulation of the influences of environmental fluctu-
ations on open quantum systems [49–59]. In some previous research, the environmental
fluctuations governed by the RTN were usually assumed to have stationary and Markovian
statistical properties. Actually, this assumption is just an idealization of the environmental
fluctuations in statistics. In some realistic situations, the statistical properties of the fluctu-
ating environments may be non-stationary and non-Markovian. On the basis of this fact,
the non-Markovian RTN governed by an exponential-type memory kernel with stationary
and non-stationary statistics was proposed and discussed in succession. The generalized
RTN with non-stationary and non-Markovian statistics has been employed extensively
to investigate the related questions concerning the quantum decoherence dynamics of
open systems in the presence of non-equilibrium environmental fluctuations [60–67]. In
recent research, the stationary RTN with non-Markovian statistics governed by a mem-
ory kernel of a modulatable-type has also been put forward. It has been demonstrated
that the dynamical dephasing of the quantum two-state system can be modulated by the
environmental memory kernel in an equilibrium environment [68]. The exact expression
for the decoherence factor for open quantum systems in the presence of generalized RTN
with non-stationary and non-Markovian statistics is rather difficult to obtain. It is shown
that the decoherence factor satisfies a time differential equation of third-order under the
influence of the generalized RTN with an exponential-type memory kernel [61]. However,
in a non-equilibrium environment governed by the generalized RTN with a modulatable-
type memory kernel, the decoherence factor of a quantum two-state system has not been
derived. The environmental effect of memory modulation in the dynamical dephasing in
a non-equilibrium environment has not been investigated yet. Therefore, there are some
important physical issues arising naturally and that we should further address. Under
the influence of the generalized RTN with a modulatable memory kernel, is it possible to
derive the decoherence factor exactly by establishing a closed differential equation with
respect to time? How do the memory effects of the generalized RTN modulate the quantum
dynamical dephasing of the system in a non-equilibrium fluctuating environment? Can
we convert the Markovian and non-Markovian characters in the dephasing dynamics by
changing the modulation frequency in the memory kernel of the generalized RTN?

In the present paper, we theoretically investigated the dephasing dynamics of a
quantum two-state system under the influence of a fluctuating environment displaying
non-equilibrium fluctuations described by the generalized RTN with non-stationary and
non-Markovian statistics. The decoherence factor satisfies a closed fourth-order time dif-
ferential equation under the generalized RTN with a modulatable-type memory kernel.
The expression of the decoherence factor can be exactly simplified as the previous ones
in some special limit cases of the environmental memory kernel. We analyzed the envi-
ronmental effect of the memory modulation in the dynamical dephasing in four types of
dynamics regimes: weak coupling weak memory regime, weak coupling strong memory
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regime, strong coupling weak memory regime, and strong coupling strong memory regime,
respectively. The results display that the quantum dephasing dynamics of the system and
the conversion between the Markovian and non-Markovian characters in the dynamical
dephasing can be effectively modulated via the environmental memory kernel. In addition,
the boundary in the dephasing dynamics between the Markovian and non-Markovian
characters is determined by the combined effects of the system–environment coupling, the
environmental memory, and the environmental modulation.

The organization of the paper is as follows. We first present the theoretical framework,
in Section 2, of the quantum dephasing dynamics under the influence of non-equilibrium
environmental fluctuations. We derived the decoherence factor of the quantum system
exactly under the generalized RTN with a modulatable-type memory kernel by establishing
a closed differential equation with respect to time. In Section 3, we give the results of
the quantum dynamical dephasing in four types of dynamics regimes and the dynamical
conversion between the Markovian and non-Markovian characters. Finally, we give the
concluding remarks in Section 4.

2. Quantum Dephasing under the Influence of Non-Equilibrium
Environmental Fluctuations

The physical model we considered here is a quantum two-state system in interaction
with a classical fluctuating environment, which displays non-equilibrium fluctuations. We
assumed the environmental effects do not lead to population transfer and the quantum
system undergoes pure dephasing during its dynamical evolution. The influences of
the environment on the system cause the energy gap between the two states in the type
E1(t)− E2(t) = h̄ω(t), where Ek(t) (k = 1, 2) denotes the instantaneous energy of the state
k and ω(t) is the transition frequency between the two states |1〉 and |2〉, which fluctuates
stochastically due to the coupling between the system and environment [47,48,69,70].

In terms of the spectral diffusion framework of Kubo–Anderson, the instantaneous
frequency difference of the quantum system can be rewritten as ω(t) = ω0 + ζ(t), with
ω0 denoting the standard frequency difference and ζ(t) the fluctuation part arising from
the environmental effects generally governed by a classical stochastic process. Stochastic
processes with a stationary statistical property have been widely used to describe the equi-
librium environmental fluctuations [71]. Under the influence of the environments exhibiting
non-equilibrium fluctuations, the fluctuation part ζ(t) in the instantaneous frequency dif-
ference is generally governed by a stochastic process with non-stationary statistics, which
corresponds, in the physical description, to environmentally excited phonons with sharply
defined phases initially [47,48].

For the quantum system prepared in an initial coherent state with the superposition of
|2〉 and |1〉, the non-diagonal element in the density matrix quantifies the time-dependent
coherence of the system:

ρ21(t) = D(t)eiω0tρ21(0), (1)

where D(t) represents the decoherence factor, which can be written in terms of the moments
of the fluctuation part ζ(t) in the Dyson series expansion:

D(t) =
〈

exp
[

i
∫ t

0
dt′ζ(t′)

]〉
= 1 +

∞

∑
n=1

in
∫ t

0
dt1 · · ·

∫ tn−1

0
dtn〈ζ(t1) · · · ζ(tn)〉, (2)

where 〈· · · 〉 represents a statistical average taken over ζ(t). The decoherence factor D(t)
closely depends on the statistical properties of the stochastic fluctuations induced by
the environment. Under the influence of non-equilibrium fluctuating environments, the
decoherence factor D(t) is no longer real, but complex in time, resulting from the non-
stationary statistics of the fluctuation part ζ(t).
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For the dynamical dephasing process of the system in a non-equilibrium fluctuating
environment, there are two important physical qualities, namely the frequency shift s(t)
and the dephasing rate γ(t), linked to the decoherence factor D(t), with the definitions as

s(t) = −Im
[

dD(t)/dt
D(t)

]
, γ(t) = −Re

[
dD(t)/dt

D(t)

]
. (3)

The frequency shift s(t) expressed in Equation (3) can be used to distinguish the stationary
and non-stationary statistics of the environmental noise between equilibrium and non-
equilibrium fluctuating environments. In general, there will not appear a frequency shift
for the environments exhibiting equilibrium fluctuations, whereas under the influence of
non-equilibrium environmental fluctuations, the frequency shift is time-dependent. The
decoherence rate γ(t) of the dephasing dynamics in Equation (3) is linked to the information
exchange that takes place between the system and the environment. There is a one-way
continuous information flow to the environment out of the system without environmental
coherence back-action for the case that the decoherence rate γ(t) is positive at all times.
For the case that γ(t) sometimes takes negative values, the information flows back into the
system from the environment with the emergence of the environmental coherence back-
action. According to the definition of Breuer–Laine–Piilo, the non-Markovianity, namely
the total of the maximum flow of the environmental information backward to the quantum
system, is written as [72]:

N = −
∫

γ(t)<0

γ(t)|D(t)|dt =
∞

∑
j=1
|D(t2j)| − |D(t1j)|, (4)

where [t1j, t2j] are the jth time intervals in which |D(t)| increases.
Combined with the expansion in the Dyson series on the basis of the moments of

Equation (2), it is also possible to expand the decoherence factor D(t) by means of the
cumulants of the fluctuation part ζ(t) [71]. Because both expansions involve environ-
mental correlations of order tending to infinity, therefore, it is difficult to obtain the exact
expression for the decoherence factor based on them. For the general case, we need to
truncate the environmental correlations to some finite order to derive the decoherence
factor approximately. Some approaches have been developed to derive the decoherence
factor of a quantum two-state system under the influence of environmental noise exactly.
The exact expression of the decoherence factor governed by environmental fluctuations
with stationary and Markovian statistical properties can be obtained, for example, by
means of the stochastic Liouville equation [73]. There are, however, very few physical
models for which the decoherence factor can be exactly achieved under the influence
of non-equilibrium environmental fluctuations with non-stationary and non-Markovian
statistics. In the following, we derive the exact expression of the decoherence factor of
the quantum two-state system under the influence of the generalized RTN by means of
establishing a closed time differential equation of the decoherence factor.

2.1. Non-Equilibrium Environmental Fluctuations Described by Generalized RTN

It should be noted that the standard RTN is a classical stochastic process with time-
homogeneity and non-Gaussianity. The standard RTN transits stochastically between the
values ±1 with a mean transition rate λ and the amplitude ν in stationary and Markovian
statistics [74–76]. The ratio of the amplitude ν to the rate λ of the transition is used to identify
the weak-coupling (ν/λ < 1) and strong-coupling (ν/λ > 1) regimes, respectively [75,76].

It is possible to extract the characteristics of the generalized RTN with non-Markovian
and non-stationary statistics from that of the standard RTN according to the classical theory
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of probability. The non-Markovian statistics of the generalized RTN is characterized by the
master equations for the multi-time probability distributions [60]:

∂

∂t
P(ζ, t; ζ1, t1; · · · ; ζn, tn) =

∫ t

t1

K(t− τ)λTP(ζ, t; ζ1, t1; · · · ; ζn, tn)dτ, (5)

with K(t− τ) being the memory kernel of the generalized RTN and the multi-time proba-
bility P(ζ, t; ζ1, t1; · · · ; ζn, tn) and the matrix T for transition respectively written as

P(ζ, t; ζ1, t1; · · · ; ζn, tn) =

(
P(+ν, t; ζ1, t1; · · · ; ζn, tn)
P(−ν, t; ζ1, t1; · · · ; ζn, tn)

)
, T =

(
−1 1
1 −1

)
. (6)

The statistical property of the environmental noise depends on its prior history because
of the fact that the memory effect has been taken into consideration. The non-stationary
environmental statistical property of the generalized RTN arises from the single-point
probability distribution [77]:

P(ζ, t) =
1
2
[1 + aP(t)]δζ,ν +

1
2
[1− aP(t)]δζ,−ν. (7)

where a is the non-stationary parameter with |a| ≤ 1 and P(t − t′) = L −1[e−zt′P(z)]
denotes the auxiliary function with P(z) = 1/[z + 2λK(z)] and L −1 representing the
inverse Laplace transform. For the memoryless case, namely K(t− τ) = δ(t− τ), then the
generalized RTN returns to the Markovian one. For the special case a = 0, the generalized
RTN recovers to the stationary one, which corresponds to the environmental fluctuations
displaying the equilibrium feature [61,62].

Based on the statistical properties given above and on the basis of Bayes’ rule in
classical probability theory, the statistical features of the generalized RTN are represented
in terms of the moments of first- and second-orders:

M1(t) = 〈ζ(t)〉 = aνP(t),

M2(t, t′) = 〈ζ(t)ζ(t′)〉 = ν2P(t− t′),
(8)

and the factorization for the higher-order moments [61,62]:

Mn(t1, t2, · · · , tn) = P(t1 − t2)Mn−2(t3, t4 · · · , tn), (9)

for the ordered time instants t1 > t2 > · · · > tn (n ≥ 3). Obviously, the statistical features
of the generalized RTN are closely linked to the auxiliary probability function P(t− t′).
Thus, we can gain all the information of the generalized RTN once we obtain the expression
of the auxiliary probability function in theory.

2.2. Closed Dynamical Equation for the Decoherence Factor under Generalized RTN with a
Modulatable Memory Kernel

In general, the type of environmental memory kernel in Equation (5) can be arbitrary.
There are many types of environmental memory kernels, the exponential type, the mod-
ulatable type, the power law type, and so on [78–82]. The generalized RTN governed
by the non-Markovian non-stationary statistical properties with an exponential memory
kernel has been proposed [60,62]. It has been shown that the decoherence factor obeys a
closed time differential equation of third-order in a non-equilibrium environment under
the influence of the generalized RTN governed by an exponential-type memory kernel by
means of the differential relations of the moments with respect to time [61,62].

We considered here the case that the type of the memory kernel in Equation (5) of the
generalized RTN is a modulatable one:

K(t− τ) = κ cos[Ω(t− τ)]e−κ(t−τ), (10)
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where κ is the environmental memory decay rate and Ω denotes the memory modulation
frequency [80,81]. Physically, this corresponds to a model with the environmental modula-
tion of the memory effect. In the case with the modulation frequency Ω = 0, the type of
environmental memory kernel becomes an exponential one. The smaller κ is, the stronger
the memory effect of the generalized RTN is. In the case with the decay rate κ → +∞, the
generalized RTN becomes memoryless, namely K(t− τ) = δ(t− τ), and it only displays
Markovian statistics.

According to the previous work in [61,62], the dynamical equation for the decoher-
ence factor is closely linked to the time differential relationships of the moments of the
generalized RTN. Because of the fact that the ancillary probability function is related to
the statistical features of the generalized RTN as in Equation (9), a closed time differential
equation for the decoherence factor of the quantum system can be derived in terms of the
differential relation of the auxiliary probability functional P(t). The type of memory kernel
implies that the auxiliary probability function P(t) of environmental noise satisfies a closed
time differential equation of third-order as follows:

d3

dt3 P(t) + c2
d2

dt2 P(t) + c1
d
dt

P(t) + c0P(t) = 0, (11)

with the coefficients c2 = 2κ, c1 = κ2 + Ω2 + 2κλ, and c0 = 2κ2λ and the initial conditions
P(0) = 1, (d/dt)P(0) = 0, and (d2/dt2)P(0) = −2κλ. As a consequence, a fourth-order
closed differential equation with respect to time for the decoherence factor can be obtained:

d4

dt4 D(t) + C3
d3

dt3 D(t) + C2
d2

dt2 D(t) + C1
d
dt

D(t) + C0D(t) = 0, (12)

where the coefficients can be written as

C3 = 2κ, C2 = κ2 + Ω2 + 2κλ + ν2, C1 = 2κ2λ + 2κν2, C0 = ν2(κ2 + Ω2), (13)

and the initial conditions satisfy

D(0) = 1,
d
dt

D(0) = −iaν,
d2

dt2 D(0) = −ν2,
d3

dt3 D(0) = −ν2 − iaν. (14)

With the help of Laplace transformation taken over Equation (12), the decoherence factor
D(t) can be analytically solved, in terms of the initial conditions in Equation (14), as

D(t) = L −1[D(z)],

D(z) = z3 + 2κz2 + (κ2 + Ω2 + 2κλ)z + 2κ2λ + iaν(z2 + 2κz + κ2 + Ω2)

z4 + 2κz3 + (κ2 + Ω2 + 2κλ + ν2)z2 + 2κ(κλ + ν2)z + (κ2 + Ω2)ν2 .
(15)

By means of the approach established in [68], the decoherence factor of the quantum system
in time domain can be written as

D(t) =
nr

∑
j=1

[ rj1tej−1

(ej − 1)!
+ · · ·+ rje1

]
eajt

+
nc

∑
j=1

{[ cj1tεj−1

(εj − 1)!
+ · · ·+ cjε1

]
ebjt +

[ c∗j1tεj−1

(εj − 1)!
+ · · ·+ c∗jε1

]
eb∗j t
}

,

(16)



Entropy 2023, 25, 634 7 of 14

where rjk and cjk are the real and complex coefficients, which are respectively expressed as

rjk =
1

(k− 1)!

{ dk−1

dzk−1 [D(z)(z− aj)
ej ]
}

z=aj
,

cjk =
1

(k− 1)!

{ dk−1

dzk−1 [D(z)(z− bj)
εj ]
}

z=bj
.

(17)

with aj and bj denoting the real and non-real roots of the denominator of D(z) in
Equation (15) and the relation ∑nr

j ej + 2 ∑nc
j εj = 4.

2.3. Comparisons with Previous Work

To compare this study in the present paper with that in previous work, we derived
the expression of the decoherence factor in some special cases of the generalized RTN in
the following.

We first considered the limit case that κ → +∞, namely the memoryless generalized
RTN. Then, the expression of the decoherence factor under the influence of the generalized
RTN in Equation (15) can be simplified as

D(t) = L −1[D(z)], D(z) = z + 2λ + iaν

z2 + 2λz + ν2 . (18)

Consequently, the time domain decoherence factor D(t) can be expressed as

D(t) = e−λt


[

cosh(χt) + λ
χ sinh(χt)

]
+ i aν

χ sinh(χt), ν < λ,(
1 + λt

)
+ iaλt, ν = λ,[

cos(χt) + λ
χ sin(χt)

]
+ i aν

χ sin(χt), ν > λ,

(19)

with χ =
√
|λ2 − ν2|. This expression of the decoherence factor of the quantum system in

Equation (19) recovers to that in [62]. Under the influence of the RTN only exhibiting the
Markovian statistical property, two important regimes of dynamics have been distinguished:
the weak-coupling (ν < λ) and the strong-coupling (ν > λ) regimes, and the dephasing
dynamics displays the Markovian and non-Markovian characters in the two coupling
regimes, respectively.

We now consider the case in which there is no environmental modulation of the
memory effect with Ω = 0, corresponding to an exponential-type memory kernel of
the generalized RTN, namely K(t − τ) = κe−κ(t−τ). In this case, the expression of the
decoherence factor of the system in Equation (15) can be simplified as

D(t) = L −1[D(z)], D(z) = z2 + κz + 2κλ + iaν(z + κ)

z3 + κz2 + (2κλ + ν2)z + κν2 . (20)

This expression of the decoherence factor under the influence of the generalized RTN with
an exponential-type memory kernel in Equation (20) recovers to that in [61]. In this case of
the RTN exhibiting the non-Markovian statistical property, the dephasing dynamics can
also display a non-Markovian character even though the system–environment coupling is
weak, and the boundary of the Markovian and non-Markovian dynamics regimes is deter-
mined by both the system–environment coupling and the memory effect of the generalized
RTN [61,62].

3. Results and Discussion

In the following, we display the results of the dephasing dynamics of the quantum
two-state system induced by nonequilibrium fluctuations in the environment exhibiting
the generalized RTN statistical properties with a memory kernel of the modulatable-type.
Our main focus is on the environmental effect of memory modulation on the quantum
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dynamical dephasing of the system under the influence of the generalized RTN in four types
of regimes of the dephasing dynamics relying on the coupling ν of the environment and
the decay rate of the environmental memory κ. In addition, we discuss the environmental
effect of memory modulation on the conversion between Markovian dynamics and non-
Markovian dynamics.

3.1. Dynamical Dephasing in Weak-Coupling Weak-Memory Regime

We first show the results of the dynamical dephasing in the weak-coupling weak-
memory regime with the transition amplitude ν = 0.2λ and memory decay rate κ = 3λ.
As shown in Figure 1a, the dephasing dynamics displays a Markovian character when
there is no environmental effect of memory modulation, namely Ω = 0. As the modulation
frequency Ω increases, the dephasing dynamics is first enhanced and then suppressed, and
the dynamical dephasing undergoes a conversion from a Markovian to a non-Markovian
character related to a critical value Ωth. When Ω > Ωth, the non-Markovian character
begins to appear in the quantum dephasing dynamics of the system, and it becomes
obvious with the increase of the modulation frequency. As depicted in Figure 1b, the
decoherence rate γ(t) displays a monotonic increase to a constant value in a long time
limit for small values of the modulation frequency, whereas it displays periodic oscillations
for the modulation frequency greater than the critical value Ωth. The decoherence rate
γ(t) first increases with positive values and then begins to be negative in some time
intervals as the modulation frequency Ω increases. When Ω > Ωth, the time intervals
in which the decoherence rate is negative increase with the increase of the modulation
frequency. The changes in the decoherence rate are in accordance with the character in the
dynamical dephasing. Figure 1c displays the environmental effect of memory modulation
on the energy re-normalization of the quantum system. Obviously, the frequency shift s(t)
also shows a conversion from monotonic decay to disappearance in a long time limit to
non-monotonically periodic oscillations with the increase of the modulation frequency.

0 50 100 150
0

0.5

1

0 20 40 60
-0.15

0

0.25

0 20 40 60

-0.4

-0.2

0(a) (c)(b)

Figure 1. (Color online) The (a) decoherence factor |D(t)|, (b) decoherence rate γ(t), and (c) frequency
shift s(t) as functions of time for different modulation frequencies Ω in the memory kernel in the
weak-coupling weak-memory regime with the transition amplitude ν = 0.2λ and memory decay rate
κ = 3λ. The initial non-stationary parameter of the environmental noise was set as a = 0.5.

3.2. Dynamical Dephasing in Weak-Coupling Strong-Memory Regime

We now discuss the case of the dynamical dephasing in the weak-coupling strong-
memory regime with transition amplitude ν = 0.2λ and memory decay rate κ = 0.1λ. As
displayed in Figure 2a, the dephasing dynamics always displays a non-Markovian character
even though the system–environment coupling is weak, which is mainly a result of the
strong memory effect of the generalized RTN. As the modulation frequency Ω increases,
the dephasing dynamics of the system is first increased and then reduced. Meanwhile, the
non-Markovian character in the dephasing dynamics becomes prominent. As depicted in
Figure 2b, the decoherence rate γ(t) decays monotonically for small modulation frequencies,
whereas it displays non-monotonic periodic oscillations for large modulation frequencies.
With the increase of the modulation frequency, the time intervals for which the decoherence
rate takes positive values first increase and then decrease, whereas the time intervals in
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which the decoherence rate is negative increase. The character in the decoherence rate is
consistent with that in the dephasing dynamics of the quantum system. As depicted in
Figure 2c, the frequency shift s(t) shows a non-monotonic decay and vanishes in a long
time limit for small modulation frequencies, whereas it shows non-monotonically periodic
oscillations when the modulation frequency is greater than some values.
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-0.15

0
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-0.4

0

0.15(c)(b)(a)

Figure 2. (Color online) The time-dependent (a) decoherence factor |D(t)|, (b) decoherence rate γ(t),
and (c) frequency shift s(t) for different environmental modulation frequencies Ω in the memory
kernel in the weak-coupling strong-memory regime with the transition amplitude ν = 0.2λ and
memory decay rate κ = 0.1λ. The initial non-stationary parameter of the environmental noise was
chosen as a = 0.5.

3.3. Dynamical Dephasing in Strong-Coupling Weak-Memory Regime

In this subsection, we discuss the case of the dynamical dephasing in the strong-
coupling weak-memory regime with transition amplitude ν = 3λ and memory decay rate
κ = 4λ. As depicted in Figure 3a, the dephasing dynamics of the system always shows a
non-Markovian character arising from the strong coupling with the environment. As the
modulation frequency Ω increases, the dynamical dephasing is suppressed and the non-
Markovian character in the dephasing dynamics of the quantum system becomes obvious.
As depicted in Figure 3b, the decoherence rate γ(t) always shows periodic oscillations with
discrete zeros. The time intervals in which the decoherence rate is negative increase as
the modulation frequency increases. As displayed in Figure 3c, the frequency shift s(t)
displays non-monotonic periodic oscillations.
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-2.5
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3.5
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-4

-1.5(c)(a) (b)

Figure 3. (Color online) The (a) decoherence factor |D(t)|, (b) decoherence rate γ(t), and (c) frequency
shift s(t) as functions of time for different modulation frequencies Ω in the memory kernel in the
strong-coupling weak-memory regime with the transition amplitude ν = 3λ and memory decay rate
κ = 4λ. The initial non-stationary parameter of the environmental noise was set as a = 0.5.

3.4. Dynamical Dephasing in Strong-Coupling Strong-Memory Regime

Finally, we show the results of the dynamical dephasing in the strong-coupling strong-
memory regime with ν = 3λ and κ = λ. As displayed in Figure 4a, the dephasing dynamics
always show a non-Markovian character owing to both the strong interaction with the
environment and the strong memory effect of the generalized RTN. With the increase of
the modulation frequency Ω, the dynamical dephasing of the quantum system and the
non-Markovian character in the dephasing dynamics is first suppressed and then enhanced.
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As depicted in Figure 4b, the decoherence rate γ(t) always shows periodic oscillations with
discrete zeros. The time intervals that the decoherence rate is negative first decrease and
then increase as the modulation frequency increases. As shown in Figure 4c, the frequency
shift s(t) displays non-monotonic periodic oscillations, which is similar to the case in the
strong-coupling weak-memory regime.
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-2.5

0

2.5
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-6

-4

-1.5(a) (b) (c)

Figure 4. (Color online) The time-dependent (a) decoherence factor |D(t)|, (b) decoherence rate
γ(t), and (c) frequency shift s(t) for different modulation frequencies Ω in the memory kernel in the
strong-coupling strong-memory regime with the transition amplitude ν = 3λ and memory decay
rate κ = 1λ. The initial non-stationary parameter of the environmental noise was chosen as a = 0.5.

3.5. Conversion between Markovian and Non-Markovian Characters in Dephasing Dynamics

According to the above results discussed in four types of dynamics regimes, we
can see that the dynamical dephasing of the quantum system and the non-Markovian
character exhibited in the dephasing dynamics under the influence of the generalized
RTN can be effectively modulated via the environmental memory kernel. It is worth
noting that we can encounter a non-Markovian character in the dephasing dynamics
by controlling the modulation frequency of the environmental memory kernel in the
weak-coupling weak-memory regime. Under the influence of the environmental effect of
memory modulation, the boundary of the Markovian and non-Markovian characters in
the dynamical dephasing closely depends on the modulation frequency of the generalized
RTN. In the following, we show the conversion from the Markovian to the non-Markovian
character in the quantum dephasing dynamics of the system in the parameter space of
ν ∼ κ for different environmental modulation frequencies Ω.

Figure 5 shows the phase diagram of Markovian and non-Markovian dynamical
conversion in the ν ∼ κ space in terms of the non-Markovianity defined in Equation (4) in
the presence of different environmental modulation effects. In the strong-coupling regime
(ν > λ), the dephasing dynamics of the quantum system always displays a non-Markovian
character (N > 0), whereas it undergoes a conversion from a Markovian (N = 0) to
a non-Markovian (N > 0) character with the increase of the transition amplitude ν in
the weak-coupling regime (ν < λ). Furthermore, for a given coupling strength ν, the
larger the modulation frequency Ω is, the larger the critical value of the memory decay
rate κth of the conversion for the dynamical boundary is. For example, for ν = 0.8λ, the
critical values are κth = 1.227λ for Ω = 0, κth = 3.263λ for Ω = 2λ, and κth = 5.106λ
for Ω = 3λ, respectively. That is, the non-Markovian region of dynamical dephasing
increases as the modulation frequency Ω increases. It is worth mentioning that we can
realize the conversion of the Markovian and non-Markovian characters in the dephasing
dynamics by changing the environmental modulation frequency in the weak-coupling
weak-memory regime. However, in the other three dynamics regimes, we cannot realize
the conversion from the non-Markovian character (N > 0) in the dephasing dynamics
with no environmental modulation, namely Ω = 0, to the Markovian character (N = 0)
in the dynamical dephasing by changing the modulation frequency in the environmental
memory kernel.
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Figure 5. (Color online) Phase diagram of the conversion from the Markovian to the non-Markovian
character in the dephasing dynamics of the quantum system for different environmental modula-
tion frequencies Ω. The upper-left and lower-right regions of the curves are the Markovian and
non-Markovian dynamical regions, respectively. The black dotted line stands for the dynamical
boundary of the conversion induced by the standard RTN, namely the boundary between weak and
strong couplings.

4. Conclusions

We performed a theoretical study of the quantum dynamical dephasing of a two-state
system that interacts with a classical environment, which displays non-equilibrium fluctua-
tions. Under the influence of the environmental fluctuations governed by a generalized
RTN process with a modulatable-type memory kernel, we derived a closed time differential
equation of fourth-order for the decoherence factor of the system and obtained the analytical
solution of the decoherence factor exactly. For some special limit cases of the environmental
memory kernel, the expression of the decoherence factor of the system can be simplified as
the ones that have been derived in previous work. We analyzed the environmental effect
of memory modulation in the dephasing dynamics in four types of regimes, respectively.
The results showed that the dynamical dephasing of the system and the non-Markovian
character exhibited in the dephasing dynamics can be effectively modulated via the envi-
ronmental memory kernel. It is worth mentioning that we can encounter non-Markovian
characters by changing the modulation frequency of the environmental memory kernel in
the weak-coupling weak-memory regime, which have rarely been reported in previous
studies. We also plotted the phase diagram to investigate the environmental influence
of the memory modulation on the Markovian and non-Markovian dynamical transition
in the parameter space in terms of the system–environment coupling and the memory
effect of the generalized RTN. The results showed that, in the strong-coupling regime, the
dynamical dephasing of the quantum system always displays a non-Markovian character,
whereas in the weak-coupling regime, it suffers from a conversion from a Markovian to a
non-Markovian character, for which the boundary is determined by the combined effects
of the system–environment coupling, the decay rate in the environmental memory kernel,
and the environmental modulation frequency of the memory kernel.
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