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Abstract: Score-based diffusion models are a class of generative models whose dynamics is described
by stochastic differential equations that map noise into data. While recent works have started to
lay down a theoretical foundation for these models, a detailed understanding of the role of the
diffusion time T is still lacking. Current best practice advocates for a large T to ensure that the
forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution;
however, a smaller value of T should be preferred for a better approximation of the score-matching
objective and higher computational efficiency. Starting from a variational interpretation of diffusion
models, in this work we quantify this trade-off and suggest a new method to improve quality and
efficiency of both training and sampling, by adopting smaller diffusion times. Indeed, we show
how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward
dynamics, followed by a standard reverse diffusion process. Empirical results support our analysis;
for image data, our method is competitive with regard to the state of the art, according to standard
sample quality metrics and log-likelihood.

Keywords: generative modelling; diffusion models; variational inference; efficiency

1. Introduction

Diffusion-based generative models [1–7] have recently gained popularity due to their
ability to synthesize high-quality audio [8,9], image [10,11] and other data modalities [12],
outperforming known methods based on Generative Adversarial Networks (GANs) [13],
normalizing flows (NFs) [14] or Variational Autoencoders (VAEs) and Bayesian autoen-
coders (BAEs) [15,16].

Diffusion models learn to generate samples from an unknown density pdata by reversing
a diffusion process which transforms the distribution of interest into noise. The forward
dynamics injects noise into the data following a diffusion process that can be described by
a Stochastic Differential Equation (SDE) of the form

dxt = f (xt, t)dt + g(t)dwt with x0 ∼ pdata , (1)

where xt is a random variable at time t, f (·, t) is the drift term, g(·) is the diffusion term and
wt is a Wiener process (or Brownian motion). We also consider a special class of linear SDEs,
for which the drift term is decomposed as f (xt, t) = α(t)xt, where the function α(t) ≤ 0 for
all t, and the diffusion term is independent of xt. This class of parameterizations of SDEs is
known as affine and it admits analytic solutions. We denote the time-varying probability
density by p(x, t), where, by definition p(x, 0) = pdata (x), and the conditional on the initial
condition x0 by p(x, t | x0). The forward SDE is usually considered for a “sufficiently long”
diffusion time T, leading to the density p(x, T). In principle, when T → ∞, p(x, T) converges
to Gaussian noise, regardless of initial conditions.
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For generative modeling purposes, we are interested in the inverse dynamics of such
process, i.e., transforming samples of the noisy distribution p(x, T) into pdata (x). Such
dynamics can be obtained by considering the solutions of the inverse diffusion process [17],

dxt =
[
− f (xt, t′) + g2(t′)∇ log p(xt, t′)

]
dt + g(t′)dwt , (2)

where t′ def
= T− t, with the inverse dynamics involving a new Wiener process. Given p(x, T)

as the initial condition, the solution of Equation (2) after a reverse diffusion time T, will be
distributed as pdata (x). We refer to the density associated to the backward process as q(x, t′).
The simulation of the backward process is referred to as sampling and, differently from the
forward process, this process is not affine and a closed form solution is out of reach.

Practical considerations on diffusion times. In practice, diffusion models are challenging
to work with [3]. Indeed, a direct access to the true score function∇ log p(xt, t) required in
the dynamics of the reverse diffusion is unavailable. This can be solved by approximating
it with a parametric function sθ(xt, t), e.g., a neural network, which is trained using the
following loss function:

L(θ) =
∫ T

0
E∼(1)λ(t)‖sθ(xt, t)−∇ log p(xt, t | x0)‖2 (3)

where λ(t) is a positive weighting factor and the notation E∼(1) means that the expectation
is taken with respect to the random process xt in Equation (1): for a generic function h,
E∼(1)[h(xt, x0, t)] =

∫
h(x, z, t)p(x, t | z)pdata (z)dxdz. The loss in Equation (3), usually re-

ferred to as score matching loss, is the cost function considered in [18]
(Equation (4)). The condition λ(t) = g(t)2, which we use in this work, is referred to
a likelihood reweighting. Due to the affine property of the drift, the term p(xt, t | x0) is an-
alytically known and normally distributed for all t (expression available in Table 1, and
in Särkkä and Solin [19]). Intuitively, the estimation of the score is akin to a denoising
objective, which operates in a challenging regime. Later, we will quantify the difficulty of
learning the score, as a function of T.

While the forward and reverse diffusion processes are valid for all T, the noise dis-
tribution p(x, T) is analytically known only when the diffusion time is T → ∞. Then,
the common solution is to replace p(x, T) with a simple (i.e., easy to sample) distribu-
tion pnoise (x), which, for the classes of SDEs that we consider in this work, is a Gaussian
distribution.

In the literature, the discrepancy between p(x, T) and pnoise (x) has been neglected,
under the informal assumption of a sufficiently large diffusion time. Unfortunately, while
this approximation seems a valid approach to simulate and generate samples, the reverse
diffusion process starts from an initial condition q(x, 0) which is different from p(x, T)
and, as a consequence, it will converge to a solution q(x, T) that is different from the
true pdata (x). Later, we will expand on the error introduced by this approximation, but
for illustration purposes, Figure 1 shows quantitatively this behavior for a simple 1D toy
example where we set the data distribution equal to a mixture of normal (N ) distributions as
pdata (x) = πN (1, 0.12) + (1− π)N (3, 0.52), with π = 0.3. When T is small, the distribution
pnoise (x) is very different from p(x, T) and samples from q(x, T) exhibit very low likelihood
of being generated from pdata (x).

Crucially, Figure 1 (zoomed region) illustrates an unknown behavior of diffusion mod-
els, which we unveil in our analysis. The right balance between efficient score estimation
and sampling quality can be achieved by diffusion times that are smaller than common
best practices. Moreover, even excessively large diffusion times can be detrimental. This is
a key observation that we explore in our work.
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Figure 1. Effect of T on a toy model: low diffusion times are detrimental for sample quality (likelihood
of 1024 samples as median and 95 quantile, on 8 random seeds).

Contributions. An appropriate choice of the diffusion time T is a key factor that impacts
training convergence, sampling time and quality. On the one hand, the approximation
error introduced by considering initial conditions for the reverse diffusion process drawn
from a simple distribution pnoise (x) 6= p(x, T) increases when T is small. This is why the
current best practice is to choose a sufficiently long diffusion time. On the other hand,
training convergence of the score model sθ(xt, t) becomes more challenging to achieve with
a large T, which also imposes extremely high computational costs both for training and for
sampling. This would suggest to choose a smaller diffusion time. Given the importance of
this problem, in this work, we set off to study the existence of suitable operating regimes
to strike the right balance between computational efficiency and model quality. The main
contributions of this work are the following:

Contribution 1: We use an evidence lower bound (ELBO) decomposition which allows
us to study the impact of the diffusion time T. This ELBO decomposition emphasizes
the roles of (i) the discrepancy between the “ending” distribution of the diffusion
and the “starting” distribution of the reverse diffusion processes, and (ii) of the score
matching objective. Crucially, our analysis does not rely on assumptions on the quality
of the score models. We explicitly study the existence of a trade-off and explore
experimentally, for the first time, current approaches for selecting the diffusion time T.
Contribution 2: In Section 3, we propose a novel method to improve both the training
and sampling efficiency of diffusion-based models, while maintaining high sample
quality. Our method introduces an auxiliary distribution, allowing us to transform
the simple “starting” distribution of the reverse process used in the literature so as
to minimize the discrepancy to the “ending” distribution of the forward process.
Then, a standard reverse diffusion can be used to closely match the data distribution.
Intuitively, our method allows to build “bridges” across multiple distributions, and to
set T toward the advantageous regime of small diffusion times.

In addition to our methodological contributions, in Section 4, we provide experimental
evidence of the benefits of our method, in terms of sample quality and log likelihood.
Finally, we conclude this work in Section 5.

Related Work. A concurrent work by Zheng et al. [20] presents an empirical study of a
truncated diffusion process but lacks a rigorous analysis and a clear justification for the
proposed approach. Recent attempts by Lee et al. [9] to optimize pnoise , or the proposal to do
so [21], have been studied in different contexts. Related work focus primarily on improving
sampling efficiency (but not training efficiency), using a wide array of techniques. Sample
generation times can be drastically reduced considering adaptive step-size integrators [22].
Such methods are complementary to our approach, and can be used in combination with
the techniques we propose in this work. Other popular choices are based on merging
multiple steps of a pretrained model through distillation techniques [23] or by taking larger
sampling steps with GANs [24]. Approaches closer to ours modify the SDE, or the discrete
time processes, to obtain inference efficiency gains. In particular, Song et al. [7] considers
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implicit non-Markovian diffusion processes, while Watson et al. [25] changes the diffusion
processes by optimal scheduling selection, and Dockhorn et al. [26] considers overdamped
SDEs. Finally, hybrid techniques combining VAEs and diffusion models [4] or simple auto
encoders and diffusion models [27] have positive effects on training and sampling times.

Moreover, we remark that a simple modification of the noise schedule to steer the
diffusion process toward a small diffusion time [5,28] is not a viable solution. As we
discuss in Section 2.4, the optimal value of the ELBO, in the case of affine SDEs, is in-
variant to the choice of the noise schedule. Naively selecting a faster noise schedule
does not provide any practical benefit in terms of computational complexity, as it re-
quires smaller step sizes to keep the same accuracy of the original noise schedule sim-
ulation. However, the optimization of the noise schedule can have important practical
effects on the stability of training and variance of estimations [5]. Finally, few other
works in the literature attempt to study the convergence properties of diffusion models.
For instance, De Bortoli et al. [29] obtain a total variation bound between the generated
and data distribution under maximum error assumptions between true and approximated
score. De Bortoli [30] relaxes this requirement obtaining a bound in terms of Wasserstein
distance. Lee et al. [31] show how the total variation bound can be expressed as a function
of the maximum score error and find that the bound is optimized for a diffusion time
that depends on this error. Our work, on the other hand, does not make any assump-
tion and aims at selecting the smallest possible diffusion time to maximize training and
sampling efficiency.

2. A Tradeoff on Diffusion Time

The dynamics of a diffusion model can be studied through the lens of variational
inference, which allows us to bound the (log-)likelihood using an evidence lower bound
(ELBO) [32]. The interpretation we consider in this work (see also [18], Theorem 1) em-
phasizes the two main factors affecting the quality of sample generation: an imperfect
score and a mismatch, measured in terms of KL[log p(x, T) ‖ pnoise (x)], the Kullback-Leibler
(KL) divergence between the noise distribution p(x, T) of the forward process and the
distribution pnoise used to initialize the backward process.

2.1. Preliminaries: The ELBO Decomposition

Our goal is to study the quality of the generated data distribution as a function of
the diffusion time T. Instead of focusing on the log-likelihood bounds for single data-
points log q(x, T), we consider the average over the data distribution, i.e., the cross-entropy
Epdata (x) log q(x, T). By rewriting the LELBO derived in Huang et al. [32] [Equation (25)]
(details of the steps in Appendix B), we have that

Epdata (x) log q(x, T) ≥ LELBO(sθ, T) = E∼(1) log pnoise (xT)− I(sθ, T) + R(T) (4)

where R(T) = 1
2

T∫
t=0

E∼(1)

[
g2(t)‖∇ log p(xt, t | x0)‖2 − 2 f>(xt, t)∇ log p(xt, t | x0)

]
dt, and

I(sθ, T) = 1
2

T∫
t=0

g2(t)E∼(1)

[
‖sθ(xt, t)−∇ log p(xt, t | x0)‖2

]
dt is equal to the loss term

Equation (3) when λ(t) = g2(t).
Note that R(T) depends neither on sθ nor on pnoise , while I(sθ, T), or an equivalent

reparameterization [18,32] [Equation (1)], is used to learn the approximated score, by
optimization of the parameters θ. It is then possible to show that

I(sθ, T) ≥ I(∇ log p, T)︸ ︷︷ ︸
def
=K(T)

=
1
2

T∫

t=0

g2(t)E∼(1)[‖∇ log p(xt, t)−∇ log p(xt, t | x0)‖]2dt. (5)
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Note that the term K(T) = I(∇ log p, T) does not depend on θ. Consequently, we can
define G(sθ, T) = I(sθ, T)− K(T) (see Appendix C for details), where G(sθ, T) is a positive
term that we call the gap term, accounting for the practical case of an imperfect score, i.e.,
sθ(xt, t) 6= ∇ log p(xt, t). It also holds that

E∼(1) log pnoise (xT) =
∫
[log pnoise (x)− log p(x, T) + log p(x, T)]p(x, T)dx =

= E∼(1) log p(xT , T)− KL[log p(x, T) ‖ pnoise (x)]. (6)

Therefore, we can substitute the cross-entropy term E∼(1) log pnoise (xT) of the ELBO in
Equation (4) to obtain

Epdata (x) log q(x, T) ≥
− KL[p(x, T) ‖ pnoise (x)] +E∼(1) log p(xT , T)− K(T) + R(T)− G(sθ, T). (7)

Before concluding our derivation, we show how to combine different terms
of Equation (7) into the negative entropy term Epdata (x) log pdata (x). Given the stochastic dy-
namics defined in Equation (1), it holds that (see derivation and details
in Appendix D)

E∼(1) log p(xT , T)− K(T) + R(T) = Epdata (x) log pdata (x). (8)

Finally, we can now bound the value of Epdata (x) log q(x, T) as

Epdata (x) log q(x, T) ≥ Epdata (x) log pdata (x)− G(sθ, T)− KL[p(x, T) ‖ pnoise (x)]
︸ ︷︷ ︸

LELBO(sθ,T)

. (9)

Equation (9) clearly emphasizes the roles of an approximate score function, through the
gap term G(·), and the discrepancy between the noise distribution of the forward process
and the initial distribution of the reverse process through the KL term. The (negative)
entropy term Epdata (x) log pdata (x), which is constant with regard to T and θ, is the best value
achievable by the ELBO. Indeed, by rearranging Equation (9), KL[pdata (x) ‖ q(x, T)] ≤
G(sθ, T) + KL[p(x, T) ‖ pnoise (x)]. Optimality is achieved when (i) we have perfect score
matching and (ii) the initial conditions for the reverse process are ideal, i.e., q(x, 0) =
p(x, T).

Next, we show the existence of a tradeoff: the KL decreases with T, while the gap
increases with T.

2.2. The Tradeoff on Diffusion Time

We begin by showing that the KL term in Equation (9) decreases with the diffusion
time T, which induces to select large T to maximize the ELBO.

We consider the two main classes of SDEs for the forward diffusion process defined in
Equation (1): SDEs whose steady state distribution is the standard multivariate Gaussian,
referred to as Variance Preserving (VP), and SDEs without a stationary distribution, referred
to as Variance Exploding (VE), which we summarize in Table 1. The standard approach to
generate new samples relies on the backward process defined in Equation (2), and consists
in setting pnoise in agreement with the form of the forward process SDE. The following result
bounds the discrepancy between the noise distribution p(x, T) and pnoise .
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Table 1. Two main families of diffusion processes, where σ2(t) =
(

σ2
max

σ2
min

)t
and β(t) = β0 + (β1− β0)t.

Diffusion Process p(xt , t | x0) = N (m, sI) pnoise (x)

Variance Exploding α(t) = 0, g(t) =
√

dσ2(t)
dt

m = x0, s = σ2(t)− σ2(0) N (0, (σ2(T)− σ2(0))I)

Variance Preserving α(t) = − 1
2 β(t), g(t) =

√
β(t) m = e−

1
2

∫ t
0 β(dτ)x0, s = 1− e−

∫ t
0 β(dτ) N (0, I)

Lemma 1. For the classes of SDEs considered (Table 1), the discrepancy between p(x, T) and the
pnoise(x) can be bounded as follows.

For Variance Preserving SDEs, it holds that: KL[p(x, T) ‖ pnoise(x)] ≤ C1 exp
(
−
∫ T

0 β(t)dt
)

.

For Variance Exploding SDEs, it holds that: KL[p(x, T) ‖ pnoise(x)] ≤ C2
1

σ2(T)−σ2(0) .

Our proof uses results from Villani [33], the logarithmic Sobolev Inequality and Gron-
wall inequality (see Appendix E for details). The consequence of Lemma 1 is that to
maximize the ELBO, the diffusion time T should be as large as possible (ideally, T → ∞),
such that the KL term vanishes. This result is in line with current practices for training
score-based diffusion processes, which argue for sufficiently long diffusion times [29]. Our
analysis, on the other hand, highlights how this term is only one of the two contributions
to the ELBO.

Now, we focus our attention on studying the behavior of the second component, G(·).
Before that, we define a few quantities that allow us to write the next important result.

Definition 1. We define the optimal score ŝθ for any diffusion time T, as the score obtained using
parameters that minimize I(sθ, T). Similarly, we define the optimal score gap G(ŝθ, T) for any
diffusion time T, as the gap attained when using the optimal score.

The optimal score gap term G(ŝθ, T) is a non-decreasing function in T. That is, given
T2 > T1, and θ1 = arg minθ I(sθ, T1), θ2 = arg minθ I(sθ, T2), then G(sθ2 , T2) ≥ G(sθ1 , T1).
The proof (see Appendix F) is a direct consequence of the definition of G and the optimality
of the score.

Note that Section 2.2 does not imply that G(sθa , T2) ≥ G(sθb , T1) holds for generic
parameters θa, θb.

2.3. Is There an Optimal Diffusion Time?

While diffusion processes are generally studied for T → ∞, diffusion times in score-
based models have been arbitrarily set to be “sufficiently large” in the literature. Here we
formally argue about the existence of an optimal diffusion time, which strikes the right
balance between the gap G(·) and the KL terms of the ELBO in Equation (9).

Before proceeding any further, we clarify that our final objective in this work is not
to find and use an optimal diffusion time. Instead, our result on the existence of optimal
diffusion times (which can be smaller than the ones set by than popular heuristics) serves
the purpose of motivating the choice of small diffusion times, which, however, calls for a
method to overcome approximation errors. For completeness, in Appendix H, we show
that optimizing the ELBO to obtain an optimal diffusion time T? is technically feasible,
without resorting to exhaustive grid search.

Consider the ELBO decomposition in Equation (9). We study it as a function of time T,
and seek its optimal argument T? = arg maxT LELBO(ŝθ , T). Then, the optimal diffusion
time T? ∈ R+, and thus not necessarily T? = ∞. Additional assumptions on the gap term
G(·) can be used to guarantee strict finiteness of T?.

It is trivial to verify that, since the optimal gap term G(ŝθ, T) is a non decreasing
function in T (Section 2.2), we have ∂G

∂T ≥ 0.Then, we study the sign of the KL deriva-
tive, which is always negative as shown in Appendix G. Moreover, we know that that
lim

T→∞
∂KL
∂T = 0. Consequently, the function ∂LELBO

∂T = ∂G
∂T + ∂KL

∂T has at least one zero in its
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domain R+. To guarantee a stricter bounding of T?, we could study asymptotically the
growth rates of G and the KL terms for large T. The investigation is technically involved
and outside the scope of this paper. Nevertheless, as discussed hereafter, the numerical
investigation carried out in this work suggests finiteness of T?.

Empirically, we use Figure 2 to illustrate the tradeoff and the optimality arguments
through the lens of the same toy example we use in Section 1. On the first and third
columns, we show the ELBO decomposition. We can verify that G(sθ, T) is an increasing
function of T, whereas the KL term is a decreasing function of T. Even in the simple case
of a toy example, the tension between small and large values of T is clear. On the second
and fourth columns, we show the values of the ELBO and of the likelihood as a function of
T. We then verify the validity of our claims: the ELBO is neither maximized by an infinite
diffusion time, nor by a “sufficiently large” value. Instead, there exists an optimal diffusion
time which, for this example, is smaller than T = 1.0, which is typically used in practice.
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Figure 2. ELBO decomposition, ELBO and likelihood for a 1D toy model, as a function of diffusion
time T. Tradeoff and optimality numerical results confirm our theory.

In Section 3, we present a new method that admits much smaller diffusion times and
we show that the ELBO of our approach is at least as good as the one of a standard diffusion
model, configured to use its optimal diffusion time T?.

2.4. Relation with Diffusion Process Noise Schedule

We remark that a simple modification of the noise schedule to steer the the diffusion
process toward a small diffusion time [5,28] is not a viable solution. In Appendix J, we
discuss how the optimal value of the ELBO, in the case of affine SDEs, is invariant to the
choice of the noise schedule. Indeed, its value depends uniquely on the relative level of
corruption of the initial data at the considered final diffusion time T, that is, the Signal-
to-Noise Ratio. Naively, we could think that, by selecting a twice as fast noise schedule,
we would be able to obtain the same ELBO of the original schedule by diffusing only
for half the time. While true, this does not provide any practical benefit in terms of
computational complexity. If the noise schedule is faster, the drift terms involved in the
reverse process changes more rapidly. Consequently, to simulate the reverse SDE with a
numerical integration scheme, smaller step sizes are required to keep the same accuracy of
the original noise schedule simulation. The effect is that, while the diffusion time for the
continuous time dynamics is smaller, the number of integration steps is larger, inducing no
computational gains. The optimization of the noise schedule can, however, have important
practical effects in terms of stability of the training and variance of the estimations, which
we do not tackle in this work [5].
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2.5. Relation with Literature on Bounds and Goodness of Score Assumptions

Few other works in the literature attempt to study the convergence properties of Dif-
fusion models. In the work of De Bortoli et al. [29] (Theorem 1), a total variation (TV)
bound between the generated and data distribution is obtained in the form C1 exp(a1T) +
C2 exp(−a2T), where the constant C1 depends on the maximum error over [0, T] between the
true and approximated score, i.e., maxt∈[0,T] ‖sθ(x, t)−∇ log p(x, t)‖. In the work of De Bor-

toli [30], the requirement is relaxed by setting maxt∈[0,T]
σ2(t)

1+‖x‖‖sθ(x, t)−∇ log p(x, t)‖,
where the 1-Wasserstein distance between generated and true data is bounded as C1 +
C2 exp(−a2T) + C3 (Theorem 1). Other works consider the more realistic average square
norm instead of the infinity norm, which is consistent with standard training of diffusion
models. Moreover, Lee et al. [31] show how the TV bound can be expressed as a function
of maxt∈[0,T] E

[
‖sθ(xt, t)−∇ log p(xt, t)‖2

]
(Theorems 2.2, 3.1 and 3.2). Related to our

work, Lee et al. [31] find that the TV bound is optimized for a diffusion time that depends,
among others, on the maximum score error. Finally, the work by Chen et al. [34] (Theo-
rem 2), which is concurrent to ours, shows that if maxt∈[0,T] E

[
‖sθ(xt, t)−∇ log p(xt, t)‖2

]

is bounded, then the TV distance between true and generated data can be bound as
C1 exp(−a1T) +

√
εT, plus a discretization error.

All prior approaches require assumptions on the maximum score error, which im-
plicitly depends on: (i) the maximum diffusion time T and (ii) the class of parametric
score networks considered. Hence, such methods allow for the study of convergence
properties, but with the following limitations. It is not clear how the score error behaves
as the fitting domain ([0, T]) is increased, for generic class of parametric functions and
generic pdata . Moreover, it is difficult to link the error assumptions with the actual training
loss of diffusion models. In this work, instead, we follow a more agnostic path, as we make
no assumptions about the error behavior. We notice that the optimal gap term is always
a non decreasing function of T. First, we question whether the current best practice for
setting diffusion times is adequate: we find that, in realistic implementations, diffusion
times are larger than necessary. Second, we introduce a new approach, with provably the
same performance of standard diffusion models but lower computational complexity, as
highlighted in Section 3.

3. A New, Practical Method for Decreasing Diffusion Times

The ELBO decomposition in Equation (9) and the bounds in Lemma 1 and Section 2.2
highlight a dilemma. We thus propose a simple method that allows us to achieve both a
small gap G(sθ, T) and a small discrepancy KL[p(x, T) ‖ pnoise (x)]. Before that, let us use
Figure 3 to summarize all densities involved and the effects of the various approximations,
which will be useful to visualize our proposal.

The data distribution pdata (x) is transformed into the noise distribution p(x, T) through
the forward diffusion process. Ideally , starting from p(x, T), we can recover the data distri-
bution by simulating using the exact score∇ log p. Using the approximated score sθ and the
same initial conditions, the backward process ends up in q(1)(x, T), whose discrepancy 1 to
pdata (x) is G(sθ, T). However, the distribution p(x, T) is unknown and replaced with an easy
distribution pnoise (x), accounting for an error a measured as KL[p(x, T) ‖ pnoise (x)]. With
the score and initial distribution approximated, the backward process ends up in q(3)(x, T),
where the discrepancy 3 from pdata is the sum of the terms G(sθ, T) + KL[p(x, T) ‖ pnoise ].

Multiple bridges across densities. In a nutshell, our method allows us to reduce the
gap term by selecting smaller diffusion times and by using a learned auxiliary model to
transform the initial density pnoise (x) into a density νφ(x), which is as close as possible
to p(x, T), thus avoiding the penalty of a large KL term. To implement this, we first
transform the simple distribution pnoise into the distribution νφ(x), whose discrepancy b

KL
[
p(x, T) ‖ νφ(x)

]
is smaller than a . Then, starting from from the auxiliary model νφ(x),

we use the approximate score sθ to simulate the backward process reaching q(2)(x, T). This
solution has a discrepancy 2 from the data distribution of G(sθ, T) + KL

[
p(x, T) ‖ νφ(x)

]
,
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which we will quantify later in the section. Intuitively, we introduce two bridges. The
first bridge connects the noise distribution pnoise to an auxiliary distribution νφ(x) that
is as close as possible to that obtained by the forward diffusion process. The second
bridge—a standard reverse diffusion process—connects the smooth distribution νφ(x)
to the data distribution. Notably, our approach has important guarantees, which we
discuss next.

pdata (x) p(x, T)

pnoise (x)

ν(x)

q(1)(x, T)

q(2)(x, T)

q(3)(x, T)
sθ

sθ

sθ

∇ log p

1

2

3

b

a

Figure 3. Intuitive illustration of the forward and backward diffusion processes. Discrepancies
between distributions are illustrated as distances. Color coding is discussed in the text.

3.1. Auxiliary Model Fitting and Guarantees

We begin by stating the requirements we consider for the density νφ(x). First, as it
is the case for pnoise , it should be easy to generate samples from νφ(x) in order to initialize
the reverse diffusion process. Second, the auxiliary model should allow us to compute the
likelihood of the samples generated through the overall generative process, which begins
in pnoise , passes through νφ(x), and arrives in q(x, T).

The fitting procedure of the auxiliary model is straightforward. First, we recognize
that minimizing KL

[
p(x, T) ‖ νφ(x)

]
with respect to φ also minimizes Ep(x,T)

[
log νφ(x)

]
,

which we can use as loss function. To obtain the set of optimal parameters φ?, we require
samples from p(x, T), which can be easily obtained even if the density p(x, T) is not
available. Indeed, by sampling from pdata , and p(x, T | x0), we obtain an unbiased Monte
Carlo estimate of Ep(x,T)

[
log νφ(x)

]
, and optimization of the loss can be performed. Note

that, due to the affine nature of the drift, the conditional distribution p(x, T | x0) is easy
to sample from, as shown in Table 1. From a practical point of view, it is important to
notice that the fitting of νφ is independent from the training of the score-matching objective,
i.e., the result of I(sθ) does not depend on the shape of the auxiliary distribution νφ. This
implies that the two training procedures can be run in parallel, thus enabling considerable
time savings.

Next, we show that the first bridge in our model reduces the KL term, even for small
diffusion times.

Proposition 1. Let us assume that pnoise(x) is in the family spanned by νφ, i.e., there exists φ̃ such
that νφ̃ = pnoise. Then we have that

KL
[
p(x, T) ‖ νφ∗(x)

]
≤ KL

[
p(x, T) ‖ νφ̃(x)

]
= KL[p(x, T) ‖ pnoise(x)]. (10)
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Since we introduce the auxiliary distribution ν, we shall define a new ELBO for
our method:

Lφ
ELBO(sθ, T) = Epdata (x) log pdata (x)− G(sθ, T)− KL

[
p(x, T) ‖ νφ(x)

]
(11)

Recalling that ŝθ is the optimal score for a generic time T, Proposition 1 allows us to
claim that Lφ?

ELBO(ŝθ, T) ≥ LELBO(ŝθ, T).
Then, we can state the following important result:

Proposition 2. Given the existence of T?, defined as the diffusion time such that the ELBO is
maximized (Section 2.3), there exists at least one diffusion time τ ≤ T?, such that Lφ?

ELBO(ŝθ, τ) ≥
LELBO(ŝθ, T∗).

Proposition 2, which we prove in Appendix I, has two interpretations. On the one
hand, given two score models optimally trained for their respective diffusion times, our
approach guarantees an ELBO that is at least as good as that of a standard diffusion model
configured with its optimal time T?. Our method achieves this with a smaller diffusion
time τ, which offers sampling efficiency and generation quality. On the other hand, if we
settle for an equivalent ELBO for the standard diffusion model and our approach, with our
method we can afford a sub-optimal score model, which requires a smaller computational
budget to be trained, while guaranteeing shorter sampling times. We elaborate on this
interpretation in Section 4, where our approach obtains substantial savings in terms of
training iterations.

A final note is in order. The choice of the auxiliary model depends on the selected
diffusion time. The larger the T, the “simpler” the auxiliary model can be. Indeed,
the noise distribution p(x, T) approaches pnoise , so that a simple auxiliary model is suf-
ficient to transform pnoise into a distribution νφ. Instead, for a small T, the distribution
p(x, T) is closer to the data distribution. Then, the auxiliary model requires high flexibility
and capacity. In Section 4, we substantiate this discussion empirically on synthetic and
real data.

3.2. Comparison with Schrödinger Bridges

In this section, we briefly compare our method with the Schrödinger bridges
approach [29,35,36], which allows one to move from an arbitrary pnoise to pdata in any
finite amount of time T. This is achieved by simulating the SDE

dxt =
[
− f (xt, t′) + g2(t′)∇ log ψ̂(xt, t′)

]
dt + g(t′)dwt, x0 ∼ pnoise , (12)

where ψ̂, ψ solve the Partial Differential Equation (PDE) system

{
∂ψ(x,t)

∂t = −∇>( f (x, t))ψ(x, t)− g2(t)
2 ∆(ψ(x, t)),

∂ψ̂
∂t = −∇>

(
ψ̂(x, t) f (x, t)

)
+ g2(t)

2 ∆(ψ̂(x, t)),
(13)

with boundary conditions ψ(x, 0)ψ̂(x, 0) = pdata (x), ψ(x, T)ψ̂(x, T) = pnoise (x). In the above

equation,∇>( f (x, t)) = ∑N
i=1

∂ f i(x,t)
∂xi , being N the dimension of the vectors x, f and the no-

tation f i, xi indicating their ith component. This approach presents drawbacks compared to
classical Diffusion models. First, the functions ψ, ψ̂ are not known, and their parametric ap-
proximation is costly and complex. Second, it is much harder to obtain quantitative bounds
between true and generated data as a function of the quality of such approximations.

The ψ̂, ψ estimation procedure simplifies considerably in the particular case where
pnoise (x) = p(x, T), for arbitrary T. The solution of Equation (13) is indeed ψ(x, t) = 1,
ψ̂(x, t) = p(x, t). The first PDE of the system is satisfied when ψ is a constant. The second
PDE is the Fokker–Planck equation, satisfied by ψ̂(x, t) = p(x, t). Boundary conditions are
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also satisfied. In this scenario, a sensible objective is the score-matching, as getting∇ log ψ̂
equal to the true score∇ log p allows perfect generation.

Unfortunately, it is difficult to generate samples from p(x, T), the starting conditions
of Equation (12). A trivial solution is to select T → ∞ in order to have pnoise as the simple
and analytically known steady state distribution of Equation (1). This corresponds to the
classical diffusion models approach, which we discussed in the previous sections. An
alternative solution is to keep T finite and cover the first part of the bridge from pnoise to
p(x, T) with an auxiliary model. This provides a different interpretation of our method,
which allows for smaller diffusion times while keeping good generative quality.

3.3. An Extension for Density Estimation

Diffusion models can be also used for density estimation by transforming the diffusion
SDE into an equivalent Ordinary Differential Equation (ODE) whose marginal distribution
p(x, t) at each time instant coincide to that of the corresponding SDE [3]. The exact equiva-
lent ODE requires the score∇ log p(xt, t), which in practice is replaced by the score model
sθ, leading to the following ODE

dxt =

(
f (xt, t)− 1

2
g(t)2sθ(xt, t)

)
dt with x0 ∼ pdata , (14)

whose time varying probability density is indicated with p̃(x, t). Note that the density
p̃(x, t), is in general not equal to the density p(x, t) associated to Equation (1), with the
exception of perfect score matching [18]. The reverse time process is modeled as a Con-
tinuous Normalizing Flow (CNF) [37,38] initialized with distribution pnoise (x); then, the
likelihood of a given value x0 is

log p̃(x0) = log pnoise (xT) +

T∫

t=0

∇ ·
(

f (xt, t)− 1
2

g(t)2sθ(xt, t)
)

dt. (15)

To use our proposed model for density estimation, we also need to take into account the
ODE dynamics. We focus again on the term log pnoise (xT) to improve the expected log like-
lihood. For consistency, our auxiliary density νφ should now maximize E∼(14) log νφ(xT)
instead of E∼(1) log νφ(xT). However, the simulation of Equation (14) requires access to sθ

which, in the endeavor of density estimation, is available only once the score model has
been trained. Consequently, optimization with respect to φ can only be performed sequen-
tially, whereas, for generative purposes, it could be done concurrently. While the sequential
version is expected to perform better, experimental evidence indicates that improvements
are marginal, justifying the adoption of the more efficient concurrent version.

4. Experiments

We now present numerical results on the MNIST and CIFAR10 datasets, to support
our claims in Sections 2 and 3. We follow a standard experimental setup [5,7,18,32]: we use
a standard U-Net architecture with time embeddings [6] and we report the log-likelihood in
terms of bit per dimension (BPD) and the Fréchet Inception Distance (FID) scores (uniquely
for CIFAR10). Although the FID score is a standard metric for ranking generative models,
caution should be used against over-interpreting FID improvements [39]. Similarly, while
the theoretical properties of the models we consider are obtained through the lens of
ELBO maximization, the log-likelihood measured in terms of BPD should be considered
with care [40]. Finally, we also report the number of neural function evaluations (NFE)
for computing the relevant metrics. We compare our method to the standard score-based
model [3]. The full description on the experimental setup is presented in Appendix K.

On the existence of T?. We look for further empirical evidence of the existence of
a T? < ∞, as stated in Section 2.3. For the moment, we shall focus on the baseline
model [3], where no auxiliary models are introduced. Results are reported in Table 2. For
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MNIST, we observe how times T = 0.6 and T = 1.0 have comparable performance in
terms of BPD, implying that any T ≥ 1.0 is at best unnecessary and generally detrimental.
Similarly, for CIFAR10, it is possible to notice that the best value of BPD is achieved for
T = 0.6, outperforming all other values.

Table 2. Optimal T in [3].

Dataset Time T BPD (↓)

MNIST

1.0 1.16
0.6 1.16
0.4 1.25
0.2 1.75

CIFAR10

1.0 3.09
0.6 3.07
0.4 3.09
0.2 3.38

Our auxiliary models. In Section 3, we introduced an auxiliary model to minimize the
mismatch between initial distributions of the backward process. We now specify the family
of parametric distributions we have considered. Clearly, the choice of an auxiliary model
also depends on the data distribution, in addition to the choice of diffusion time T.

For our experiments, we consider two auxiliary models: (i) a Dirichlet process Gaus-
sian mixture model (DPGMM) [41,42] for MNIST and (ii) Glow [43], a flexible normalizing
flow for CIFAR10. Both of them satisfy our requirements: they allow exact likelihood
computation and they are equipped with a simple sampling procedure. As discussed in
Section 3, auxiliary model complexity should be adjusted as a function of T.

This is confirmed experimentally in Figure 4, where we use the number of mixture
components of the DPGMM as a proxy to measure the complexity of the auxiliary model.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Diffusion time

Complexity of the auxiliary model

0

10

20

30

D
P
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M
M

 C
om
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nt
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Figure 4. Complexity of the auxiliary model as function of diffusion time (reported median and 95
quantiles on 4 random seeds).

Reducing T with auxiliary models. We now show how it is possible to obtain a compara-
ble (or better) performance than the baseline model for a wide range of diffusion times T.
For MNIST, setting τ = 0.4 produces good performance both in terms
of BPD (Table 3) and visual sample quality (Figure 5). We also consider the sequential
extension (S) to compute the likelihood, but remark marginal improvements compared to
a concurrent implementation. Similarly for the CIFAR10 dataset, in Table 4 we observe
how our method achieves better BPD than the baseline diffusion for T = 1. Moreover,
our approach outperforms the baselines for the corresponding diffusion time in terms of
FID score (Figure 6 and additional non-curated samples in the Appendix K). In Figure A3
we provide a non curated subset of qualitative results, showing that our method for a
diffusion time equal to 0.4 still produces appealing images, while the vanilla approach
fails. We finally notice how the proposed method has comparable performance with regard
to several other competitors, while stressing that many orthogonal to our solutions (like
diffusion in latent space [4], or the selection of higher order schemes [22]) can actually be
combined with our methodology.
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Table 3. Experiment results on MNIST. For our method, (S) is for the extension in Section 3.3.

NFE(↓) BPD (↓)
Model (ODE)

ScoreSDE 300 1.16

ScoreSDE (T = 0.6) 258 1.16
Our (T = 0.6) 258 1.16 1.14 (S)

ScoreSDE (T = 0.4) 235 1.25
Our (T = 0.4) 235 1.17 1.16 (S)

ScoreSDE (T = 0.2) 191 1.75
Our (T = 0.2) 191 1.33 1.31 (S)

Table 4. Experimental results on CIFAR10, including other relevant baselines and sampling efficiency
enhancements from the literature.

FID(↓) BPD (↓) NFE (↓) NFE (↓)
Model (SDE) (ODE)

ScoreSDE [3] 3.64 3.09 1000 221
ScoreSDE (T = 0.6) 5.74 3.07 600 200
ScoreSDE (T = 0.4) 24.91 3.09 400 187
ScoreSDE (T = 0.2) 339.72 3.38 200 176

Our (T = 0.6) 3.72 3.07 600 200
Our (T = 0.4) 5.44 3.06 400 187
Our (T = 0.2) 14.38 3.06 200 176

ARDM [44] − 2.69 3072
VDM [5] 4.0 2.49 1000

D3PMs [21] 7.34 3.43 1000
DDPM [6] 3.21 3.75 1000

Gotta Go Fast [22] 2.44 − 180
LSGM [4] 2.10 2.87 120/138

ARDM-P [44] − 2.68/2.74 200/50

Training and sampling efficiency. In Figure 7, the horizontal line corresponds to the
best performance of a fully trained baseline model for T = 1.0 [3]. To achieve the same
performance of the baseline, variants of our method require fewer iterations, which translate
in training efficiency. For the sake of fairness, the total training cost of our method should
account for the auxiliary model training, which, however, can be done concurrently to
the diffusion process. As an illustration for CIFAR10, using four GPUs, the baseline
model requires ∼6.4 days of training. With our method we trained the auxiliary and
diffusion models for ∼2.3 and 2 days, respectively, leading to a total training time of
max{2.3, 2} = 2.3 days. Similar training curves can be obtained for the MNIST dataset,
where the training time for DPGMMs is negligible.

Sampling speed benefits are evident from Tables 3 and 4. When considering the SDE
version of the methods the number of sampling steps can decrease linearly with T, in
accordance with theory [45], while retaining good BPD and FID scores. Similarly, although
not in a linear fashion, the number of steps of the ODE samplers can be reduced by using a
smaller diffusion time T.

Finally, we test the proposed methodology on the more challenging CELEBA 64x64
dataset. In this case, we use a variance exploding diffusion and we consider again Glow as
the auxiliary model. The results, presented in Table 5, report the log-likelihood performance
of different methods (qualitative results are reported in Appendix K). On the two extremes
of the complexity we have the original diffusion (VE, T = 1.0) with the best BPD and
the highest complexity, and Glow which provides a much simpler scheme with worse
performance. In the table we report the BPD and the NFE metrics for smaller diffusion
times, in three different configurations: naively neglecting the mismatch (ScoreSDE) or
using the auxiliary model (Our). Interestingly, we found that the best results are obtained
by using a combination of diffusion models pretrained for T = 1.0. The summary of the
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content of this table is the following: by accepting a small degradation in terms of BPD, we
can reduce the computational cost by almost one order of magnitude. We think it would
be interesting to study more performing auxiliary models to improve performance of our
method on challenging datasets.

Table 5. Experimental results on CELEBA 64.

BPD (↓) NFE (↓)
Model (ODE)

ScoreSDE [3] 2.13 68
ScoreSDE (T = 0.5) 8.06 15
ScoreSDE (T = 0.2) 12.1 9

Our (T = 0.5) 2.48 16
Our (T = 0.2) 2.58 9

Our with pretrain diffusion (T = 0.5) 2.36 16
Our with pretrain diffusion (T = 0.2) 2.32 9

Glow [43] 3.74 1

Figure 5. Visualization of some samples. Top to Bottom: ScoreSDE [3] (T = 1, BPD = 1.16), ScoreSDE
(T = 0.4, BPD = 1.25), Our (T = 0.4, BPD = 1.17)

Real data ScoreSDE (T = 0.4) Our (T = 0.4)

Figure 6. Visualization of some samples on CIFAR10.
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Figure 7. Training curves of score models for different diffusion time T, recorded during the span
of 1.3 million iterations.
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5. Conclusions

Diffusion-based generative models emerged as an extremely competitive approach
for a wide range of application domains. In practice, however, these models are resource-
hungry, both for their training and for sampling new data points. In this work, we have
introduced the key idea of considering diffusion times T as a free variable which should be
chosen appropriately. We have shown that the choice of T introduces a trade-off, for which
a “sweet spot” exists. In standard diffusion-based models, smaller values of T are preferable
for efficiency reasons, but sufficiently large T are required to reduce approximation errors
of the forward dynamics. Thus, we devised a novel method that allows for an arbitrary
selection of diffusion times, where even small values are allowed. Our method closes
the gap between practical and ideal diffusion dynamics, using an auxiliary model. Our
empirical validation indicated that the performance of our approach was comparable and
often superior to standard diffusion models, while being efficient both in training and
in sampling.
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Appendix A. Generic Definitions and Assumptions

Our work builds upon the work in [18], which should be considered as a basis for the
developments hereafter. In this supplementary material, we use the following shortened
notation for a generic ω > 0:

Nω(x) def
= N (x; 0, ωI). (A1)

It is useful to notice that∇ log(Nω(x)) = − 1
ω x.

For an arbitrary probability density p(x), we define the convolution (∗ operator) with
Nω using notation

pω(x) = p(x) ∗ Nω(x). (A2)

Equivalently, pω(x) = exp
(

ω
2 ∆
)

p(x), and consequently dpω(x)
dω = 1

2 ∆p(x), where ∆ =

∇>∇. Notice that, by considering the Dirac delta function δ(x), we have the equality
δω(x) = Nω(x).

In the following derivations, we make use of the Stam–Gross logarithmic Sobolev
inequality result in [33] (p. 562 Example 21.3):

KL[p(x) ‖ Nω(x)] =
∫

p(x) log
(

p(x)
Nω(x)

)
dx ≤ ω

2

∫ ∥∥∥∥∇
(

log
p(x)
Nω(x)

)∥∥∥∥
2

p(x)dx. (A3)

Appendix B. Deriving Equation (4) from [32]

We start with Equation (25) of [32], which, in our notation, reads

log q(x, T) ≥ E[log pnoise (xT) | x0 = x]−
∫ T

0
E
[

1
2

g2(t)‖sθ(xt)‖2 +∇>
(

g2(t)sθ(xt)− f (xt, t)
)
| x0 = x

]
dt.
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The first step is to take the expected value with respect to x0 ∼ pdata on both sides of the
above inequality

Epdata [log q(x, T)] ≥ E[log pnoise (xT)]−
∫ T

0
E
[

1
2

g2(t)‖sθ(xt)‖2 +∇>
(

g2(t)sθ(xt)− f (xt, t)
)]

dt. (A4)

We focus on rewriting the term

∫ T

0
E
[
∇>

(
g2(t)sθ(xt)− f (xt, t)

)]
dt =

∫ T

0
p(x, t|x0)pdata (x0)∇>

(
g2(t)sθ(x)− f (x, t)

)
dxdx0dt =

−
∫ T

0
∇>(p(x, t|x0)pdata (x0))

(
g2(t)sθ(x)− f (x, t)

)
dxdx0dt =

−
∫ T

0
(p(x, t|x0)pdata (x0))

−1∇>(p(x, t|x0)pdata (x0))
(

g2(t)sθ(x)− f (x, t)
)

(p(x, t|x0)pdata (x0))dxdx0dt =

−
∫ T

0
∇>(log(p(x, t|x0)) + log(pdata (x0)))

(
g2(t)sθ(x)− f (x, t)

)

(p(x, t|x0)pdata (x0))dxdx0dt =

−
∫ T

0
∇>(log(p(x, t|x0)))

(
g2(t)sθ(x)− f (x, t)

)
(p(x, t|x0)pdata (x0))dxdx0dt =

−
∫ T

0
E
[
∇>(log(p(xt, t|x0)))

(
g2(t)sθ(xt)− f (xt, t)

)]
dt.

Consequently, we can rewrite the r.h.s of Equation (A4) as

E[log pnoise (xT)]−
∫ T

0
E
[

1
2

g2(t)‖sθ(xt)‖2 − g2(t)∇>(log(p(xt, t|x0)))sθ(x)
]
+

E
[
+g2(t)∇>(log(p(xt, t|x0))) f (x, t)

]
dt =

E[log pnoise (xT)]−
∫ T

0
E
[

1
2

g2(t)‖sθ(xt)−∇(log(p(xt, t|x0)))‖2
]

dt−

1
2

∫ T

0
E
[

g2(t)‖∇(log(p(xt, t|x0)))‖+ 2∇>(log(p(xt, t|x0))) f (x, t)
]
dt,

which is exactly Equation (4).

Appendix C. Proof of Equation (5)

We prove the following result

I(sθ, T) ≥ I(∇ log p, T)︸ ︷︷ ︸
def
=K(T)

=
1
2

T∫

t=0

g2(t)E∼(1)[‖∇ log p(xt, t)−∇ log p(xt, t | x0)‖]2dt.

Proof. We prove that for generic positive λ(·), and T2 > T1 the following holds:
T2∫

t=T1

λ(t)E∼(1)

[
||s(xt, t)−∇ log p(xt, t|x0)||2

]
dt ≥

T2∫

t=T1

λ(t)E∼(1)

[
||∇ log p(xt, t)−∇ log p(xt, t|x0)||2

]
dt. (A5)
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First, we compute the functional derivative (with regard to s)

δ

δs

T2∫

t=T1

λ(t)E∼(1)

[
||s(xt, t)−∇ log p(xt, t|x0)||2

]
dt =

2
T2∫

t=T1

λ(t)E∼(1)[(s(xt, t)−∇ log p(xt, t|x0))]dt =

2
T2∫

t=T1

λ(t)E∼(1)[(s(xt, t)−∇ log p(xt, t))]dt,

where we used

E∼(1)[∇ log p(xt, t|x0)] =
∫
∇ log p(x, t|x0)p(x, t|x0)pdata (x0)dxdx0 =

∫
∇p(x, t|x0)pdata (x0)dxdx0 =

∫
∇p(x, t)dx = E∼(1)[∇ log p(xt, t)].

Consequently, we can obtain the optimal s through

δ

δs

T2∫

t=T1

λ(t)E∼(1)

[
||s(xt, t)−∇ log p(xt, t|x0)||2

]
dt = 0→ s(x, t) = ∇ log p(x, t). (A6)

Substitution of this result into Equation (A5) directly proves the desired inequality.
As a byproduct, we prove the correctness of Equation (5), since it is a particular case of

Equation (A5), with λ = g2, T1 = 0, T2 = T. Since K(T) is a minimum, the decomposition
I(sθ, T) = K(T) + G(sθ, T) implies K(T) + G(sθ, T) ≥ K(T)→ G(sθ, T) ≥ 0.

Appendix D. Proof of Equation (8)

Proof. We consider the pair of equations

dxt =
[
− f (xt, t′) + g2(t′)∇ log q(xt, t)

]
dt + g(t′)dw(t),

dxt = f (xt, t)dt + g(t)dw(t), (A7)

where t′ = T − t, q is the density of the backward process and p is the density of the
forward process. These equations can be interpreted as a particular case of the following
pair of SDEs (corresponding to [32] Equations (4) and (17) (Notice that our notation for the
roles of p, q is swapped with respect to [32])).

dxt =
[
− f (xt, t′) + g2(t′)∇ log q(xt, t)

]

︸ ︷︷ ︸
µ(xt ,t)

dt + g(t′)︸︷︷︸
σ(t)

dw(t),

dxt =


 f (xt, t)− g2(t)∇ log q(xt, t′)︸ ︷︷ ︸

−µ(xt ,t′)

+ g(t)︸︷︷︸
σ(t′)

a(xt, t)


dt + g(t)dw(t), (A8)

where Equation (A7) is recovered considering a(x, t) = σ(t′)∇ log q(x, t′) = g(t)∇
log q(x, t′). Equation (A8) is associated to an ELBO ([32], Theorem 3) that is attained
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with equality if and only if a(x, t) = σ(t′)∇ log q(x, t′). Consequently, we can write the
following equality associated to the backward process of Equation (A7)

log q(x, T) = E


−1

2

T∫

0

||a(xt, t)||2 + 2∇>µ(xt, t′)ds + log q(xT , 0)
∣∣∣x0 = x


, (A9)

where the expected value is taken with respect to the dynamics of the associated for-
ward process.

By careful inspection of the couple of equations, we notice that, in the process xt,
the drift includes the∇ log q(xt, t) term, while in our main (1) we have∇ log p(xt, t′). In
general the two vector fields do not agree. However, if we select as starting distribution of
the generating process p(x, T), i.e., q(x, 0) = p(x, T), then ∀t, q(x, t) = p(x, t′).

Given the initial conditions, the time evolution of the density p is fully described by
the Fokker–Planck equation

d
dt

p(x, t) = −∇>( f (x, t)p(x, t)) +
g2(t)

2
∆(p(x, t)), p(x, 0) = pdata (x). (A10)

Similarly, for the density q,

d
dt

q(x, t) = −∇>
(
− f (x, t′)q(x, t) + g2(t′)∇ log q(x, t)q(x, t)

)
+

g2(t′)
2

∆(q(x, t)), (A11)

with q(x, 0) = p(x, T). By Taylor expansion we have

q(x, δt) = q(x, 0) + δt
(

d
dt

q(x, t)
)

t=0
+O(δt2) =

q(x, 0) + δt
(
−∇>

(
− f (x, T)q(x, 0) + g2(T)∇ log q(x, 0)q(x, 0)

)
+

g2(T)
2

∆(q(x, 0))
)
+O(δt2) =

q(x, 0) + δt
(
∇>( f (x, T)q(x, 0))− g2(T)

2
∆(q(x, 0))

)
+O(δt2),

and

p(x, T − δt) = p(x, T)− δt
(

d
dt

p(x, t)
)

t=T
+O(δt2) =

p(x, T)− δt
(
−∇>( f (x, T)p(x, T)) +

g2(T)
2

∆(p(x, T))
)
+O(δt2) =

p(x, T) + δt
(
∇>( f (x, T)p(x, T))− g2(T)

2
∆(p(x, T))

)
+O(δt2)

Since q(x, 0) = p(x, T), we finally have q(x, δt)− p(x, T − δt) = O(δt2). This holds for
arbitrarily small δt. By induction, with similar reasoning, we claim that q(x, t) = p(x, t′).

This last result allows us to rewrite Equation (A7) as the pair of SDEs

dxt =
[
− f (xt, t′) + g2(t′)∇ log p(xt, t′)

]
dt + g(t′)dw(t),

dxt = f (xt, t)dt + g(t)dw(t). (A12)

Moreover, since q(x, T) = p(x, 0) = pdata (x), together with the result Equation (A9), we
have the following equality

log pdata (x) = E


−1

2

T∫

0

||a(xt, t)||2 + 2∇>µ(xt, t′)dt + log p(xT , T) |x0 = x


. (A13)
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Consequently,

Ex∼pdata [log pdata (x)] = E[log p(xT , T)] +E


−1

2

T∫

0

||a(xt, t)||2 + 2∇>µ(xt, t′)dt


 =

E[log p(xT , T)] +E


−1

2

T∫

0

g(t)2||∇ log p(xt, t)||2 + 2∇>
(
− f (xt, t) + g2(t)∇ log p(xt, t)

)
dt


 =

E[log p(xT , T)] +E


−1

2

T∫

0

g(t)2||∇ log p(xt, t)||2 − 2g2(t)∇>x log p(xt, t)∇ log p(xt, t|x0)dt




+E


−1

2

T∫

0

2 f>(xt, t)∇ log p(xt, t|x0)dt


 =

E[log p(xT , T)] +E


−1

2

T∫

0

g(t)2||∇ log p(xt, t)−∇ log p(xt, t|x0)||2dt


+

E


−1

2

T∫

0

−g(t)2||∇ log p(xt, t|x0)||2 + 2 f>(xt, t)∇ log p(xt, t|x0)dt


.

Remembering the definitions

K(T) =
1
2

T∫

t=0

g2(t)E∼(1)[||∇ log p(xt, t)−∇ log p(xt, t|x0)||]2dt

R(T) =
1
2

T∫

t=0

E∼(1)

[
g2(t)‖∇ log p(x, t | x0)‖

]2
− 2 f>(x, t)∇ log p(x, t | x0)dt,

we finally conclude the proof that

E∼(1)[log p(xT , T)]− K(T) + R(T) = Ex∼pdata [log pdata (x)]. (A14)

Appendix E. Proof of Lemma 1

In this section, we prove the validity of Lemma 1 for the case of Variance Preserving
(VP) and Variance Exploding (VE) SDEs. Remember that, as reported also in Table 1, the
above mentioned classes correspond to α(t) = − 1

2 β(t), g(t) =
√

β(t), β(t) = β0 + (β1 −

β0)t and α(t) = 0, g(t) =
√

dσ2(t)
dt , σ2(t) =

(
σmax
σmin

)t
, respectively.

Appendix E.1. The Variance Preserving (VP) Convergence

We associate this class of SDEs to the Fokker Planck operator

L†(t) =
1
2

β(t)∇>(x ·+∇(·)), (A15)

and consequently dp(x,t)
dt = L†(t)p(x, t). Simple calculations show that

lim
T→∞

p(x, T) = N1(x).

We compute bound the time derivative of the KL term as
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d
dt

KL[p(x, T) ‖ N1(x)] =
∫ dp(x, t)

dt
log
(

p(x, t)
N1(x)

)
dx +

∫ p(x, t)
p(x, t)

dp(x, t)
dt

dx =

1
2

β(t)
∫
∇>(−∇ log(N1(x))p(x, t)) +∇p(x, t))) log

(
p(x, t)
N1(x)

)
dx =

− 1
2

β(t)
∫

p(x, t)(−∇ log(N1(x)) +∇ log p(x, t)))>∇
(

log
(

p(x, t)
N1(x)

))
dx =

− 1
2

β(t)
∫

p(x, t)∇
(

log
(

p(x, t)
N1(x)

))>
∇
(

log
(

p(x, t)
N1(x)

))
dx =

− 1
2

β(t)
∫

p(x, t)||∇
(

log
(

p(x, t)
N1(x)

))
||2dx

≤ −β(t)KL[p(x, T) ‖ N1(x)]. (A16)

We then apply Gronwall’s inequality [33] to d
dt KL[p(x, T) ‖ N1(x)]

≤ −β(t)KL[p(x, T) ‖ N1(x)] to claim

KL[p(x, T) ‖ N1(x)] ≤ KL[p(x, 0) ‖ N1(x)] exp
(
−
∫ T

0
β(s)ds

)
. (A17)

To claim validity of the result, we need to assume that p(x, t) has finite first and second
order derivatives, and that KL[p(x, 0) ‖ N1(x)] < ∞.

Appendix E.2. The Variance Exploding (VE) Convergence

The first step is to bound the derivative with respect to to ω of the divergence
KL[pω(x) ‖ Nω(x)], i.e.,

d
dω

KL[pω(x) ‖ Nω(x)] =
∫ dpω(x)

dω
log
(

pω(x)
Nω(x)

)
dx +

∫ pω(x)
pω(x)

dpω(x)
dω

dx−
∫ pω(x)
Nω(x)

dNω(x)
dω

dx =
1
2

∫
(∆pω(x)) log

(
pω(x)
Nω(x)

)
− (∆Nω(x))

pω(x)
Nω(x)

dx =

1
2

∫
∇>(pω(x)∇ log pω(x)) log

(
pω(x)
Nω(x)

)
−∇>(Nω(x)∇ logNω(x))

pω(x)
Nω(x)

dx =

− 1
2

∫
(pω(x)∇ log pω(x))>∇

(
log
(

pω(x)
Nω(x)

))
− (Nω(x)∇ logNω(x))>∇

(
pω(x)
Nω(x)

)
dx =

− 1
2

∫
(pω(x)∇ log pω(x))>∇

(
log
(

pω(x)
Nω(x)

))
− (pω(x)∇ logNω(x))>∇

(
log
(

pω(x)
Nω(x)

))
dx =

− 1
2

∫
pω(x)||∇

(
log
(

pω(x)
Nω(x)

))
||2dx ≤ − 1

ω
KL[pω(x) ‖ Nω(x)]. (A18)

Consequently, using again Gronwall inequality, for all ω1 > ω0 > 0 we have

KL[pω1(x) ‖ Nω1(x)] ≤ KL[pω0(x) ‖ Nω0(x)] exp(−(log(ω1)− log(ω0))) =

KL[pω0(x) ‖ Nω0(x)]ω0
1

ω1
.

This can be directly applied to obtain the bound for VE SDE. Consider ω1 = σ2(T)− σ2(0)
and ω0 = σ2(τ)− σ2(0) for an arbitrarily small τ < T. Then, since for the considered class
of variance exploding SDE we have p(x, T) = pσ2(T)−σ2(0)(x)

KL
[

p(x, T) ‖ Nσ2(T)−σ2(0)(x)
]
≤ C

1
σ2(T)− σ2(0)

(A19)

where C = KL
[

p(x, τ) ‖ Nσ2(τ)−σ2(0)(x)
]
(σ2(τ)− σ2(0)).
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Similarly to the previous case, we assume that p(x, t) has finite first and second order
derivatives, and that C < ∞.

Appendix F. Proof for the Optimal Score Gap Term, Section 2.2

The optimal score gap term G(ŝθ, T) is a non-decreasing function in T. That is, given
T2 > T1, and θ1 = arg minθ I(sθ, T1), θ2 = arg minθ I(sθ, T2), then G(sθ2 , T2) ≥ G(sθ1 , T1).

Proof. For θ1 defined as in the lemma, I(sθ1 , T1) = K(T1) +G(sθ1 , T1). Next, select T2 > T1.
Then, for a generic θ, including θ2,

I(sθ, T2) =

T1∫

t=0

g2(t)E∼(1)

[
||sθ(xt, t)−∇ log p(xt, t|x0)||2

]
dt

︸ ︷︷ ︸
=I(sθ,T1)≥K(T1)+G(sθ1 ,T1)=I(sθ1 ,T1)

+

T2∫

t=T1

g2(t)E∼(1)

[
||sθ(xt, t)−∇ log p(xt, t|x0)||2

]
dt

︸ ︷︷ ︸
≥

T2∫
t=T1

g2(t)E∼(1)[||∇ log p(xt ,t)−∇ log p(xt ,t|x0)||2]dt=K(T2)−K(T1)

≥ G(sθ1 , T1) + K(T2),

from which G(sθ, T2) = I(sθ, T2)− K(T2) ≥ G(sθ1 , T1).

Appendix G. Proof of Section 2.3

Consider the ELBO decomposition in Equation (9). We study it as a function of time T,
and seek its optimal argument T? = arg maxT LELBO(ŝθ , T). Then, the optimal diffusion
time T? ∈ R+, and thus not necessarily T? = ∞. Additional assumptions on the gap term
G(·) can be used to guarantee strict finiteness of T?.

Proof. It is trivial to verify that since the optimal gap term G(ŝθ, T) is an increasing function
in T Section 2.2, then ∂G

∂T ≥ 0.Then, we study the sign of the KL derivative, which is
always negative as shown by Equation (A16) and Equation (A18) (where we also notice
d
dt =

dω
dt

d
dω keep the sign). Moreover, we know that that lim

T→∞
∂KL
∂T = 0. Then, the function

∂LELBO
∂T = ∂G

∂T + ∂KL
∂T has at least one zero in [0, ∞].

Appendix H. Optimization of T?

It is possible to treat the diffusion time T as a hyper-parameter and perform gradient-
based optimization jointly with the score model parameters θ. Indeed, simple calculations
show that

∂LELBO(sθ, T)
∂T

= E
[(

f>(xT , T)∇+ g2(T)∆
)

log pnoise (xT)
]
+ (A20)

− 1
2
E
[
‖sθ(xT , T)−∇ log p(xT , T | x0)‖2

]
+ (A21)

1
2
E
[

g2(T)‖∇ log p(xT , T | x0)‖2 − 2 f>(xT , T)∇ log p(xT , T | x0)
]

(A22)

Appendix I. Proof of Proposition 2

Proof. Since ∀T we have Lφ
ELBO(sθ, T) ≥ LELBO(sθ, T), there exists a countable set of inter-

vals I contained in [0, T?] of variable supports, where Lφ
ELBO is greater than LELBO(sθ, T).

Assuming continuity of Lφ
ELBO, in these intervals it is possible to find at least one τ ≤ T?

where Lφ?

ELBO(ŝθ, τ) ≥ LELBO(ŝθ, T∗).
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We notice that the degenerate case I = T? is obtained only when ∀T ≤
T?, KL

[
p(x, T) ‖ νφ∗(x)

]
= KL[p(x, T) ‖ pnoise (x)]. We expect this condition to never occur

in practice.

Appendix J. Invariance to Noise Schedule

We here discuss about the claims made in Section 2.4 about the invariance of the
ELBO to the particular choice of noise schedule. First, in Appendix J.1, we explain how
different SDEs corresponding to different noise schedules can be translated one into the
other. We introduce the concept of the signal-to-noise ratio (SNR). We clarify the unified
score parametrization used in practice in the literature [5,46]. Then, in Appendix J.2, we
prove how the single elements of the ELBO depend only on the value of the SNR at the
final diffusion time T, as claimed in the main paper.

Appendix J.1. Preliminaries

We consider as reference SDE a pure Wiener process diffusion,

dxt = dwt with x0 ∼ pdata , (A23)

It is easily seen that the solution of the random process admits representation

xt = x0 +
√

tε, ε ∼ N (0, I) (A24)

In this case, the time varying probability density, which we indicate with ψ, satisfies

ψ(x, t) = exp
(

t
2

∆
)

pdata (x), ψ(x, t | x0) = exp
(

t
2

∆
)

δ(x− x0) (A25)

Simple calculations show that

∇ log ψ(x, σ2) =
E[x0 | x0 + σε = x]− x

σ2
def
=

d(x; σ2)− x
σ2 , (A26)

where again x0 ∼ pdata and the function d can be interpreted as a denoiser.
Our goal is to show the relationship between equations like Equation (1), and

Equation (A23). In particular, we focus on affine SDEs, as classically done with Diffu-
sion models. The class of considered affine SDEs is the following:

dxt = α(t)xtdt + g(t)dwt with x0 ∼ pdata , (A27)

In this simple linear case the process admits representation

xt = k(t)x0 + σ(t)ε, ε ∼ N (0, I) (A28)

where k(t) = exp

(
t∫

0
α(s)ds

)
, σ2(t) = k2(t)

t∫
0

g2(s)
k2(s) ds. We can rewrite Equation (A28)

as xt = k(t)(x0 + σ̃(t)ε), and define the SNR as σ̃(t) = σ(t)
k(t) . The density associated to

Equation (A27) can be expressed as a function of ψ as follows

p(x, t) = k(t)−D
[

exp
(

σ̃2(t)
2

∆
)

pdata (x)
]

x
k(t)

= k(t)−Dψ(
x

k(t)
, σ̃2(t)). (A29)

The score function associated to Equation (A28) has consequently expression

∇x log p(x, t) = ∇x log ψ(
x

k(t)
, σ̃2(t)) =

1
k(t)
∇ x

k(t)
log ψ(

x
k(t)

, σ̃2(t)) =
k(t)d( x

k(t) ; σ̃2(t))− x

σ2(t)
. (A30)



Entropy 2023, 25, 633 23 of 30

Appendix J.2. Different Noise Schedules

Consider a diffusion of the form of Equation (A23) and a score network s̄θ that approxi-
mate the true score. Inspecting Equation (A30), we parametrize the score network associated
to a generic diffusion Equation (A27) as a function of the score of the reference diffusion. The
score parametrization considered in [5] can be generalized to arbitrary SDEs [46]. In particular,
as suggested by Equation (A26), we select

s̄θ(x, t) =
k(t)dθ(

x
k(t) ; σ̃2(t))− x

σ2(t)
(A31)

We proceed by showing that the different components of the ELBO depends on the
diffusion time T only through σ̃(T), but not on k(t), σ(t) singularly for any time t < T.

Theorem A1. Consider a generic diffusion Equation (A27) and parametrize the score network as
s̄θ(

x
k(t) , σ̃(t)). Then, the gap term G(s̄θ, T) associated to Equation (A27) for a diffusion time T

depends only on σ̃(T) but not on k(t), σ(t) singularly for any time t < T.

Proof. We first rearrange the gap term

2G(s̄θ, T) =
T∫

t=0

g2(t)E∼(A27)

[
‖s̄θ(xt, t)−∇ log p(xt, t | x0)‖2

]
dt−

T∫

t=0

g2(t)E∼(A27)

[
‖∇ log p(xt, t)−∇ log p(xt, t | x0)‖2

]
dt =

T∫

t=0

g2(t)E∼(A27)

[
‖s̄θ(xt, t)−∇ log p(xt, t)‖2

]
dt

Then
T∫

t=0

g2(t)‖s̄θ(x, t)−∇ log p(x, t)‖2 p(x, t | x0)pdata (x0)dxdx0dt =

T∫

t=0

g2(t)

∥∥∥∥∥
k(t)dθ(

x
k(t) ; σ̃2(t))− x

σ2(t)
−

k(t)dθ(
x

k(t) ; σ̃2(t))− x

σ2(t)

∥∥∥∥∥

2

p(x, t | x0)pdata (x0)dxdx0dt =

T∫

t=0

g2(t)

∥∥∥∥∥
k(t)dθ(

x
k(t) ; σ̃2(t))− k(t)d( x

k(t) ; σ̃2(t))

σ2(t)

∥∥∥∥∥

2

p(x, t | x0)pdata (x0)dxdx0dt =

T∫

t=0

g2(t)
k2(t)

∥∥∥∥∥
dθ(

x
k(t) ; σ̃2(t))− d( x

k(t) ; σ̃2(t))

σ̃2(t)

∥∥∥∥∥

2

p(x, t | x0)pdata (x0)dxdx0dt =

T∫

t=0

g2(t)
k2(t)

∥∥∥∥∥
dθ(

x
k(t) ; σ̃2(t))− d( x

k(t) ; σ̃2(t))

σ̃2(t)

∥∥∥∥∥

2

ψ(
x

k(t)
, σ̃2(t) | x0)pdata (x0)k(t)−Ddxdx0dt =

subst. x̃ =
x

k(t)
, dx̃ = dxk−D(t)

T∫

t=0

g2(t)
k2(t)

∥∥∥∥
dθ(x̃; σ̃2(t))− d(x̃; σ̃2(t))

σ̃2(t)

∥∥∥∥
2

ψ(x̃, σ̃2(t) | x0)pdata (x0)dxdx0dt =

subst. r = σ̃2(t), dr =
g2(t)
k2(t)

dt
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σ̃2(T)∫

t=0

‖s̄θ(x̃, r)−∇ log ψ(x̃, r | x0)‖2ψ(x̃, r)pdata (x0)dx̃dx0dr

For any k(t), σ(t) such that σ̃(T) is the same, the score matching loss is the same.

Theorem A2. Suppose that for any φ of the auxiliary model νφ(x) it exists one φ
′

such that
ν

φ
′ (x) = k−Dνφ(

x
k ), for any k > 0. Notice that this condition is trivially satisfied if the considered

parametric model has the expressiveness to multiply its output by the scalar k. Then the minimum
Kullback–Leibler divergence betweeen p(x, T) associated to a generic diffusion Equation (A27) and
the density of an auxiliary model νφ(x) depends only on σ̃(T) and not on σ(T) alone.

Proof. We start with the equality

KL
[
p(x, T) ‖ νφ(x)

]
= KL

[
k(T)−Dψ(

x
k(T)

, σ̃(T)) ‖ νφ(x)
]
=

KL

[
k(T)−Dψ(

x
k(T)

, σ̃(T)) ‖ k(T)−Dν
φ
′ (

x
k(T)

)

]
=

∫
k(T)−Dψ(

x
k(T)

, σ̃(T)) log

(
ψ( x

k(T) , σ̃(T))

ν
φ
′ ( x

k(T) )

)
dx =

∫
ψ(x̃, σ̃(T)) log

(
ψ(x̃, σ̃(T))

ν
φ
′ (x̃)

)
dx̃ =

KL
[
ψ(x, σ̃(T)) ‖ ν

φ
′ (x)

]

Then the minimimum only depends on σ̃(T), as it is always possible to achieve the
same value independently on the SDE by rescaling the auxiliary model output.

Appendix K. Experimental Details

We here give some additional details concerning the experimental (Section 4) settings.

Appendix K.1. Toy Example Details

In the toy example, we use 8192 samples from a simple Gaussian mixture with two
components as target pdata (x). In detail, we have pdata (x) = πN (1, 0.12)+ (1−π)N (3, 0.52),
with π = 0.3. The choice of Gaussian mixture allows to write down explicitly the time-
varying density

p(xt, t) = πN (1, s2(t) + 0.12) + (1− π)N (3, s2(t) + 0.52), (A32)

where s2(t) is the marginal variance of the process at time t. We consider a variance
exploding SDE of the type dxt = σtdwt, which corresponds to s2(t) = σ2t−1

2 log σ .
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Figure A1. Visualization of few samples at different diffusion times T.

Appendix K.2. Section 4 Details

We considered Variance Preserving SDE with default β0, β1 parameter settings. When
experimenting on CIFAR10 we considered the NCSN++ architecture as implemented
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in [3]. Training of the score matching network has been carried out with the default set of
optimizers and schedulers of [3], independently of the selected T.

For the MNIST dataset we reduced the architecture by considering 64 features,
ch_mult = (1, 2) and attention resolutions equal to 8. The optimizer has been selected as
the one in the CIFAR10 experiment but the warmup has been reduced to 1000 and the total
number of iterations to 65,000.

Appendix K.3. Varying T

We clarify about the T truncation procedure during both training and testing. The
SDE parameters are kept unchanged irrespective of T. During training, as evident from
Equation (3), it is sufficient to sample randomly the diffusion time from distribution
U (0, T), where T can take any positive value. For testing (sampling), we simply modified
the algorithmic routines to begin the reverse diffusion processes from a generic T instead
of the default 1.0.

Appendix L. Non-Curated Samples

We provide for completeness collection of non-curated samples for the
CIFAR10 (Figures A2–A5), MNIST dataset (Figures A6–A9) and CELEBA dataset
(Figure A10 and Table 5).

Figure A2. CIFAR10: Our method (left) and the Vanilla method (right) at T = 0.2.

Figure A3. CIFAR10: Our method (left) and the Vanilla method (right) at T = 0.4.
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Figure A4. CIFAR10: Our method (left) and the Vanilla method (right) at T = 0.6.

Figure A5. Vanilla method at T = 1.0.

Figure A6. MNIST: Our method (left) and the Vanilla method (right) at T = 0.2.
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Figure A7. MNIST: Our method (left) and the Vanilla method (right) at T = 0.4.

Figure A8. MNIST: Our method (left) and the Vanilla method (right) at T = 0.6.

Figure A9. MNIST: Vanilla method at T = 1.0.
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1 
 

 
Figure A10. CELEBA images. Top Left: our method with pretrained score model and Glow (T = 0.2),
Top Right: our method with pretrained score model and Glow (T = 0.5) and Bottom Left: baseline
diffusion (T = 1.0). Bottom Right: FID scores for our method and baseline (T = 1.0).
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