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Abstract: Generative design is a system that automates part of the design process, but it cannot
evaluate psychological issues related to shapes, such as “beauty” and “liking”. Designers therefore
evaluate and choose the generated shapes based on their experience. Among the design features,
“complexity” is considered to influence “aesthetic preference”. Although feature descriptors calcu-
lated from curvature can be used to quantify “complexity”, the selection guidelines for curvature
and feature descriptors have not been adequately discussed. Therefore, this study aimed to con-
duct a systematic classification of curvature and a feature descriptor of 3D shapes and to apply
the results to the “complexity” quantification. First, we surveyed the literature on curvature and
feature descriptors and conducted a systematic classification. To quantify “complexity”, we used
five curvatures (Gaussian curvature, mean curvature, Casorati curvature, shape index, and curvature
index) and a feature descriptor (entropy of occurrence probability) obtained from the classification
and compared them with the sensory evaluation values of “complexity”. The results showed that the
determination coefficient between the quantified and sensory evaluation values of “complexity” was
highest when the mean curvature was used. In addition, the Casorati curvature tended to show the
highest signal-to-noise ratio (i.e., a high determination coefficient irrespective of the parameters set in
the entropy calculation). These results will foster the development of generative design of 3D shapes
using psychological evaluation.

Keywords: complexity; entropy; curvature; feature descriptor; generative design

1. Introduction

In recent years, computer-aided automatic design technology, referred to as “gener-
ative design”, has been put into practical use and applied to product design. Generative
design is defined as a design system that automates part of the design process [1] or utilizes
computing and manufacturing abilities to create novel and efficient designs [2]. Com-
bined with processing technologies such as three-dimensional (3D) printers and additive
manufacturing, generative design has enabled greater freedom in product design [3].

The advantage of generative design is that it enables the generation of shapes that
satisfy physical characteristics such as stiffness and mass. However, its shortcoming is that
psychological characteristics such as “beauty” and “preference” of the shape, which are
important in the early process of a product design, are not evaluated. Therefore, design-
ers need to evaluate and select shapes on the basis of their experience and intuition [4].
Solving this problem requires quantifying the shape features that designers focus on when
evaluating a design.

When evaluating a design, designers tend to focus on macroscopic shape features,
which are defined as those that appear in the entire shape as a result of combining points,
lines, surfaces, and other modeling elements [5]. The main macroscopic shape features
include “complexity”, “symmetry”, “order”, “proportion”, and “novelty” [6–11]. Among
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them, complexity and order are considered to influence “aesthetic preference” [12,13]. For
example, in product design, high complexity is considered to be a factor that leads people
to perceive a product as having high quality [14]. Moreover, complexity is considered a
determinant of shape preference [15]. Thus, complexity is assumed to play an important
role in the cognitive characteristics of shapes. Quantifying complexity will enable designers
to design shapes that humans prefer.

Recent studies have indicated that a relationship exists between curvature and com-
plexity [16–18]. Therefore, complexity can be quantified using a shape-feature value
(hereafter referred to as a feature descriptor [19]) calculated from curvature. However,
guidelines for selecting a curvature and feature descriptor to evaluate the cognition of a
product shape’s complexity have not been adequately discussed. Accurately quantifying
complexity requires studies on curvatures and feature descriptors of 3D shapes so that their
characteristics can be understood and selection guidelines can be considered.

This study aims to perform a systematic classification of curvature and feature descrip-
tors of 3D shapes and to apply the results to a method for quantifying complexity. This
paper is organized as follows. Section 2 describes a systematic classification of curvature
and feature descriptors of 3D shapes. Section 3 explains the quantification of complexity
using the curvature and feature descriptor obtained from their classification. Section 4
illustrates sensory evaluation experiments that verify the applicability of the quantification.
Section 5 summarizes the results and challenges of the study.

2. Systematic Classification of Curvature and Feature Descriptors

This section describes the systematic classification of curvature and feature descriptors
of 3D shapes. We conducted a systematic classification according to a protocol known
as preferred reporting items for systematic reviews and meta-analysis (PRISMA) [20].
One feature of this protocol, which is also used in the field of engineering, is that the selected
references can be represented by flowcharts and tree diagrams [21,22]. The classification
was conducted by three researchers from October 2021 to May 2022. The last access date to
the database was 21 March 2022.

2.1. Classification Method
2.1.1. Keyword Setting

A paper search was conducted using the “Web of Science” database. Specifically, the
search criteria were set to include all keywords related to “curvature”, “3D”, “shape”,
and “shape features”, which were relevant to our study. Table 1 shows the keywords and
search criteria.

Table 1. Keywords and search criteria.

Curvature AND/OR 3D AND/OR Shape AND/OR Feature

“Curvature”

AND

“3d”

AND

“Shape”

AND

“Preference”
OR OR OR

“Three-dimensions” “Form” “Aesthetic”
OR OR

“Appearance” “Likeness”
OR OR

“Outline” “Liking”
OR OR

“Silhouette” “Complex”
OR

“Complexity”
OR

“Novelty”
OR

“Similarity”
OR

“Order”
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2.1.2. Paper Selection Based on Title and Abstract

To narrow the papers obtained in the previous subsubsection to the literature highly
relevant to the present study, we carried out a paper selection process based on titles
and abstracts.

1. Papers evaluating 3D shapes were extracted. That is, we excluded both papers
based on two-dimensional (2D) shapes and papers based on silhouettes or images of
3D shapes.

2. Among the references extracted in procedure 1, we selected those that evaluate
shapes via, for example, classification, retrieval, and recognition based on the features
extracted from the shapes. Our reasoning is that these references are highly relevant
to the objective of the present study, which is to evaluate the complexity of shapes.
Other references involving the generation/deformation of shapes, such as by meshing,
rendering, or noise detection, were eliminated.

3. Among papers extracted in procedure 2, we selected those that evaluate macroscopic
features by calculating a feature descriptor for each shape, such as similarity or
complexity, because these references are highly related to evaluations of the degree
of complexity.

2.1.3. Paper Selection Based on Content

From the papers selected as described in Section 2.1.1, we selected those based on
textual content. Specifically, we selected papers that satisfy both of the following conditions:

• Curvature is calculated from a 3D shape;
• A feature descriptor is calculated on the basis of the curvature.

Papers that did not satisfy both criteria, such as those involving calculations of a
curvature or feature descriptor, were excluded from our survey.

2.2. Classification Results
2.2.1. Paper Selection

We obtained 1310 papers as a result of keyword settings. Figure 1 shows an overview
of the paper selection procedure and the number of references obtained in each procedure.
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The details of the paper selection procedure are described below. First, 46 papers
were selected on the basis of titles and abstracts. Figure 2 shows a tree diagram of papers
classified on the basis of their titles and abstracts. The classification results are summarized
as follows.

1. The shapes to be evaluated were classified into 3D and 2D shapes (generated from
silhouettes or images of 3D shapes).

2. The objectives of the studies on 3D shapes were divided into three main categories:
(1) shape evaluation, (2) shape generation, and (3) shape deformation. Shape evalua-
tion is the process of extracting features from shapes and evaluating their characteris-
tics (i.e., similarity evaluation classification, retrieval, recognition, posture estimation,
registration, abnormal detection, simulation, and segmentation). Shape generation
refers to the generation of 3D shapes by rendering or mesh segmentation of data
such as 2D images or point clouds. Shape deformation denotes the process of remov-
ing points that deviate from the actual shape by detecting noise in the point cloud
acquired by 3D scanning.

3. The tasks for shape evaluation were further classified into multiple shape evaluations
(e.g., similarity calculations, classification, retrieval, and recognition) and single shape
evaluations (e.g., posture estimation, registration, abnormal detection, simulation,
and segmentation).
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In the present study, following the criteria described in Section 2.1.2, we selected
papers that targeted 3D shapes and aimed to evaluate shapes, especially by comparing
them among numerous shapes. The criteria of selected papers are indicated by the bold
lines in Figure 2. Finally, 46 papers were checked on the basis of the content of their text,
and those without curvatures or feature descriptors were excluded, resulting in 18 papers.
Table 2 lists the reference numbers, curvatures, feature descriptors, authors, and publication
years of the papers.

In these papers, polygon models were used to represent 3D shapes. A polygon
model is a method of representing 3D shapes using a set of minute polygons, such as
triangles and quadrilaterals. Because polygon models contain information about the shape
surface necessary for calculating curvature and are commonly used in the field of industrial
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design [23,24], polygon models are considered a useful representation method in the present
study. We therefore employed polygon models.

Table 2. Target papers.

Reference Curvature Type of Feature Descriptor
(Information Considered) Author Year

[25] Cone curvature Curvatures of vertices and their surroundings Adán, M 2003

[26] Cone curvature Curvatures of vertices and their surroundings Adán, M 2008

[27] Cone curvature Occurrence probabilities of curvatures Adán, M 2014

[28] Casorati curvature Occurrence probabilities of curvatures Wang, J 2020

[29] Gaussian curvature
Mean curvature Clusters of curvatures Biasotti, S 2015

[30] Shape index
Curvature index Occurrence probabilities of curvatures Li, B 2014

[31] Gaussian curvature Curvatures of vertices and their surroundings Fu, J 2008

[32] Shape index Occurrence probabilities of curvatures Jeong-Jun, S 2003

[33] Shape index Curvatures of vertices Junli, Z 2014

[34] Shape index Curvatures of vertices and their surroundings Li, B 2011

[35] Curvature tensor Curvatures of vertices Muzahid, M 2021

[36] Cone curvature Transition probability YuJie, L 2013

[37] Mean curvature Clusters of curvatures Zou, K 2015

[38] Gaussian curvature Transition probabilities of curvatures Guo, K 2010

[39] Gaussian curvature Occurrence probabilities of curvatures Sukumar, S 2006

[40] Gaussian curvature
Mean curvature Transition probabilities of curvatures Guo, K 2014

[41] Gaussian curvature Occurrence probabilities of curvatures Sukumar, S 2006

[42] Gaussian curvature Transition probabilities of curvatures Matsumoto, T 2018

2.2.2. Systematic Classification and Overview of Curvature

In the 18 extracted papers, seven types of curvature (i.e., mean curvature, Gaussian
curvature, shape index, curvature index, Casorati curvature, curvature tensor, and cone
curvature) were used. Table 3 shows the calculation method and characteristics of each
curvature. Most curvatures can be calculated using two curvatures: the maximum principal
curvature k1 and the minimum principal curvature k2 (k1 > k2) of the normal curvature
created when the surface is cut at an arbitrary point (Figure 3).
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Table 3. Classification of curvatures.

Curvature Calculation Method Properties References

Mean curvature H = k1+k2
2 • Identify convex and concave surfaces [29,37,40]

Gaussian curvature K = k1k2
• Identify saddle surface as negative values
• Calculate 0 even on cylindrical surfaces [29,31,38–42]

Casorati curvature C =
√

k1
2+k2

2

2
• Identify saddle and uneven surfaces
• Cannot be calculated on a flat surface [28]

Shape index SI = 1
2 −

1
π arctan

(
k1+k2
k1−k2

) • Expressed in absolute value
• Cannot be calculated on a flat surface [30,32–34]

Curvature index CI = 2
π log

(√
k1

2+k2
2

2

) • Identify flat and curved surface
• Expressed in absolute value [30]

Curvature tensor τv = 1
GA

∑
Ne

θ·LGB ·e·et • Identify flat and curved surface
• Appropriate area setting is necessary [35]

Cone curvature αj = sign
(

Fj
)∣∣∣∣∣π

2 −
1
tj

tj

∑
i=1

rj
i

∣∣∣∣∣ • Identify flat and curved surface
• Smoothly calculated [25–27,36]

GB: circular region around a vertex; GA : area of GB; Ne: number of edges; θ: angle between two triangles; LGB :
length of the part of the edge inside GB; e: edge of triangles; e: unit vector of e; et: transpose vector of e; Fj: jth
modeling wave sign

(
Fj): sign function depends on convex–concave at Fj; tj: number of vertices at Fj; rj

i : angle
of ∠Ni NCj.

2.2.3. Systematic Classification and Overview of Feature Descriptor

In the 18 extracted papers, five types of feature descriptor were used. Table 4 shows
the advantages and disadvantages of each feature descriptor.

• A feature descriptor that uses the curvature of each vertex of a polygonized shape is
a vector whose elements are the curvatures at all vertices [33]. Compared with the
other feature descriptors, a feature descriptor that uses the curvature of each vertex of
a polygonized shape has the advantage of being computationally efficient but has the
disadvantage of being unable to compare shapes with different numbers of vertices
unless calculating statistic values (e.g., average and probability) [35].

• A feature descriptor that uses the curvature of each vertex and its surrounding vertices
is a vector whose elements are calculated from the curvature of each vertex and
its surrounding vertices, or it is a scalar obtained by their calculation (integration,
weighted addition, etc.) [31]. Compared with other feature descriptors without the
surrounding vertices, a feature descriptor that uses the curvature of each vertex
and its surrounding vertices has the advantage of enabling an accurate evaluation
of imperceptible surface changes but has the disadvantage of low computational
efficiency [25].

• A feature descriptor that uses occurrence probabilities is a vector whose elements
are the occurrence probabilities of curvature within a set range of curvatures, or
entropy calculated from the vector [39]. Compared with other feature descriptors that
use curvature values, a feature descriptor that uses occurrence probabilities has the
advantage of allowing the user to set the range of curvatures of interest; however,
it has the disadvantage that judging the validity of the curvature range setting and
setting it appropriately are difficult [28].

• A feature descriptor that uses transition probability is a vector of transition probabili-
ties (probabilities of changing from one curvature to another) between two adjacent
vertices within a set curvature range, or the entropy calculated from this vector, sim-
ilar to occurrence probability [39]. Compared with feature descriptors that use the
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occurrence probabilities, a feature descriptor that uses transition probability has the ad-
vantage of being able to accurately evaluate surfaces within a localized range because
it can take into account the proportion of changes from the curvature at surrounding
vertices; however, it has the disadvantage of being computationally inefficient [42].

• A feature descriptor that uses clustering methods (e.g., K-means and C-means meth-
ods) can reduce the information amount by clustering vector-type curvatures such as
the cone curvature and curvature tensor to clarify the remarkable vertices of the shape.
This descriptor cannot be used for scalar curvatures.

Table 4. Classification of curvatures.

Information Considered Advantages/Disadvantages References

Curvatures of vertices

• Feature descriptors can be calculated from curvatures with a
small amount of computation.

• Comparisons between shapes require matching the number of
vertices and the order in which curvatures are stored in
the array.

[33,35]

Curvatures of vertices and
their surroundings

• Using the curvature of a vertex and its surrounding vertices,
this feature descriptor takes the surface features of adjacent
vertices into account.

• This consideration of surface features increases the
computational complexity because the curvature must be
calculated for multiple vertices.

[24–26,31,34,36]

Occurrence probabilities
of curvatures

• Using the distribution of curvatures that appear, the diversity of
curvatures is considered.

• The curvature must be discretized by setting appropriate
parameters in advance.

[27,28,30,32,34,37–41]

Transition probabilities
of curvatures

• Using the curvature of two vertices that are adjacent or
arbitrarily far apart, surface features between the vertices
are considered.

• The curvature must be discretized by setting appropriate
parameters in advance.

[42]

Clusters
of curvatures

• By classifying curvatures based on the similarity of values and
using only some groups of curvatures as feature descriptors,
shape features are expressed in a short array.

• Because only some vertices and curvatures are used, detailed
features of the surface might not be represented.

[29,30,34,36,37]

3. Application to a Method for Quantifying Complexity of 3D Shapes

This section describes a method for quantifying the complexity of 3D shapes. Section 3.1
describes how to calculate the five curvature indices: Gaussian curvature, mean curvature,
Casorati curvature, shape index, and curvature index. Section 3.2 describes how to calculate
feature descriptors using occurrence probability.

3.1. Methods for Calculating Curvature

This subsection describes the calculation methods of the curvatures in Table 3 from the
polygon model. This study extracted five curvatures: Gaussian curvature, mean curvature,
Casorati curvature, shape index, and curvature index. The curvature tensor (Figure 4a) and
cone curvature (Figure 4b) were excluded for the following reasons:

• They have a large computational load to calculate the curvature. Both curvatures are
expressed as an array of curvatures for a single vertex. Therefore, they are computa-
tionally more expensive than other curvatures where a single value is calculated for a
single vertex. In addition, the computation required to compute feature descriptors
from curvatures can also be substantial.
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• They are difficult to use to evaluate curvatures of different sizes. A region (surrounding
the vertex for which the curvature is calculated) must be set as a parameter. However,
in actual design situations, many scenarios arise where shapes of different sizes are
evaluated, and setting a common region is difficult.
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The following illustration of the curvature calculation is in accordance with the poly-
gon mesh in Figure 5. In this figure, vi is the vertex whose curvature is to be calculated,
vik(k = 1, 2, . . . , ni) are vertices adjacent to vertex vi, fik(k = 1, 2, . . . , ni) are polygons with
vi as a vertex, and aik = ∠ (vik, vi, vi(k+1)) is the angle of fik at vertex vi.

Entropy 2023, 25, x FOR PEER REVIEW 8 of 24 
 

 

However, in actual design situations, many scenarios arise where shapes of different 

sizes are evaluated, and setting a common region is difficult. 

The following illustration of the curvature calculation is in accordance with the pol-

ygon mesh in Figure 5. In this figure, 𝑣𝑖 is the vertex whose curvature is to be calculated, 

𝑣𝑖𝑘(𝑘 =  1, 2, . . . , 𝑛𝑖) are vertices adjacent to vertex 𝑣𝑖, 𝑓𝑖𝑘(𝑘 =  1, 2, . . . , 𝑛𝑖) are polygons 

with 𝑣𝑖 as a vertex, and 𝑎𝑖𝑘=∠ (𝑣𝑖𝑘, 𝑣𝑖, 𝑣𝑖(𝑘+1)) is the angle of 𝑓𝑖𝑘 at vertex 𝑣𝑖.  

 

Figure 4. Calculation of curvatures. 

 

Figure 5. Polygons around vertex 𝑣𝑖. 

3.1.1. Gaussian Curvature 

Using Gauss–Bonnet’s law and paraboloid fitting, Gaussian curvature 𝐾𝑖 at the 𝑖th 

vertex 𝑣𝑖 is calculated via the following equation [43]: 

𝐾𝑖 =
2𝜋 − ∑ 𝛼𝑖𝑘

𝑛𝑖
𝑘=1

1
3
𝐴

 (1) 

where 𝐴 is the sum of the polygon area surrounding vertex 𝑣𝑖. 

3.1.2. Mean Curvature 

Using Gauss–Bonnet’s law and paraboloid fitting, mean curvature 𝐻𝑖 at the 𝑖th ver-

tex 𝑣𝑖 is calculated as follows [43]: 

𝐻𝑖 =

1
4
∑ ‖𝑒𝑖𝑘‖𝛽𝑖𝑘
𝑛
𝑘=1

1
3
𝐴

 (2) 

where 𝑒𝑖𝑘  is the distance between vertex 𝑣𝑖  and its neighboring vertices 𝑣𝑖𝑘(𝑘 =

 1, 2, . . . , 𝑛𝑖) and 𝛽𝑖𝑘 is the angle between adjacent polygons. 

 

Figure 5. Polygons around vertex vi.

3.1.1. Gaussian Curvature

Using Gauss–Bonnet’s law and paraboloid fitting, Gaussian curvature Ki at the ith
vertex vi is calculated via the following equation [43]:

Ki =
2π −∑ni

k=1 αik
1
3 A

(1)

where A is the sum of the polygon area surrounding vertex vi.
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3.1.2. Mean Curvature

Using Gauss–Bonnet’s law and paraboloid fitting, mean curvature Hi at the ith vertex
vi is calculated as follows [43]:

Hi =
1
4 ∑n

k=1 ‖eik‖βik
1
3 A

(2)

where eik is the distance between vertex vi and its neighboring vertices vik(k = 1, 2, . . . , ni)
and βik is the angle between adjacent polygons.

3.1.3. Casorati Curvature

The mean curvature is the curvature defined by the average of the principal curvatures,
whereas the Gaussian curvature is the curvature defined by the product of the principal
curvatures. Therefore, principal curvatures k1 and k2 can be calculated by combining
Equations (1) and (2). When the maximum principal curvature is k1 and the minimum
principal curvature is k2, both are expressed by the following equations:

k1 = H +
√

H2 − K (3)

k2 = H −
√

H2 − K (4)

The Casorati curvature C can be calculated using the principal curvatures obtained
from Equations (3) and (4):

C =

√
k1

2 + k22

2
(5)

3.1.4. Shape Index

The shape index can be calculated using the principal curvatures obtained from
Equations (3) and (4). However, such an equation cannot be used to calculate the shape
index in the plane (k1 = k2 = 0). Therefore, in the present study, the shape index SI can be
calculated even for a flat surface by dividing the cases according to whether k1 = k2 = 0 or
not (Equation (6)):

SI =

{
1
2 −

1
π arctan

(
k1+k2
k1−k2

)
(k1 6= 0, k2 6= 0)

1
2 (k1 = k2 = 0)

(6)

3.1.5. Curvature Index

The curvature index can be calculated by using the principal curvatures obtained in
Equations (3) and (4). However, the resultant equation cannot be used to calculate the
curvature index in the plane (k1 = k2 = 0). Therefore, in the present study, the curvature
index CI can be calculated even for a flat surface by dividing the cases according to whether
k1 = k2 = 0 or not (Equation (7)):

CI =


2
π log

(√
k1

2+k2
2

2

)
(k1 6= 0, k2 6= 0)

2
π log

(√
1e−15

2

)
(k1 = k2 = 0)

(7)

3.2. Method for Calculating Feature Descriptor

Sukumar et al. [41], who investigated systematic classification, suggested that the
complexity of a shape could be quantified by considering its occurrence probability. In
this approach, the Gaussian curvature at each vertex of a 3D shape is first calculated and
the curvature is subsequently discretized by setting the number of states and deviation
to express the continuous Gaussian curvature as discrete values. Finally, the information
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(occurrence probability) entropy of the discretized curvature is calculated as a feature
descriptor to quantify complexity. Such discretization can be performed according to
the curvature changes that can be discriminated by humans and the magnitude of the
curvature that attracts their attention. Therefore, it is considered useful for evaluating
human cognition. However, feature descriptors that use curvature values might be strongly
affected when outliers (especially large or small curvatures) occur in a small area or
when minute curvature changes that cannot be discriminated by humans occur in a wide
area. Therefore, we decided to adopt a feature descriptor based on discretized occurr-
ence probability.

Feature descriptors that consider surrounding curvature information, those that con-
sider transition probabilities, and those that consider clustering were excluded from our
calculation. Our reasoning is described below.

• The feature descriptors that consider the surrounding information are excluded be-
cause the computational load to integrate the curvature of each vertex and its neighbor-
ing vertices into a single value by calculation is larger than that of the other descriptors.
In addition, the purpose of considering surrounding information is to evaluate the
similarity of shapes accurately, not to evaluate human cognition.

• Feature descriptors that consider transition probabilities are excluded because evaluat-
ing the surface features of the entire shape is difficult. Although the feature descriptor
can evaluate the transition of the curvature from one vertex to another, people are
unlikely to focus only on local changes between vertices when evaluating complexity.
In addition, checking and considering the results based on graphs such as contour
plots are difficult when using transition probabilities.

• Feature descriptors that consider clustering are excluded because evaluating the
curved surface features of the entire shape is difficult. The feature descriptor extracts
salient points (vertices with characteristic curvature) from the entire shape as local
features to evaluate the similarity among shapes deformed in only one part. How-
ever, curvatures not considered salient (not complex) are not reflected in the feature
descriptors. In addition, as mentioned in the previous section, clustering can only
be applied to a vector curvature (e.g., cone curvature and curvature tensors), where
multiple values are calculated from a single vertex.

In this subsection, we first provide an overview of information entropy and its calcula-
tion method. We then outline the method used to calculate feature descriptors using the
probability of occurrence in the present study.

3.2.1. Information Entropy

Information entropy E expresses information clutter by the following equation [44]:

E = −
n

∑
i=1

pi log pi (8)

where n is the number of events and pi is the probability that event i is likely to oc-
cur. The information entropy increases as the probability of occurrence of each event is
equally certain.

3.2.2. Calculation Methods

1. The curvature at each vertex of the 3D shape to be evaluated is calculated as described
in Section 3.1.

2. The curvature at each vertex is discretized. Specifically, the minimum area value Emin,
the maximum area value Emax, and the number of states V are first set as parameters.
The range from the minimum to the maximum area is then equally divided by the
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number of states to create V states si (i = 1, 2, . . . , V). Finally, the curvature of each
vertex is assigned to a state.

s1 (Emin 5 K′ < Emin +∆E), s2 (Emin +∆E 5 K′ < Emin + 2∆E),
. . . , sV (Emax − ∆E 5 K′ < Emax)(

∆E = (Emax−Emin)
V

) (9)

3. After discretization, occurrence probability pi is calculated using the following equation:

pi =
Ni
N

(10)

where N is the total number of vertices in the 3D shape to be evaluated and Ni is the
number of vertices assigned to state si.

4. The entropy of the probability of occurrence is calculated using Equation (8).

4. Sensory Evaluation Experiment

This section describes the sensory evaluation experiments conducted to analyze the
relationship between the feature descriptors calculated from five curvatures and sensory
evaluation values of complexity. We first describe the experimental method, then present
the results and discuss the sensory evaluation experiments conducted on three types
of shapes.

4.1. Experimental Methods
4.1.1. Sample Shapes

In this experiment, extruded and rotated shapes, which are typical CAD shape defor-
mation methods, were used, along with the shapes of an actual product as the “complexity”
evaluation sample. The details of the shapes are described below.

• Extruded shape

Extruded geometry is a 3D curved surface created from closed planar curves using
extrusion, which is a 3D CAD geometry creation method. The extruded geometry was
chosen for evaluation in this study because it enables the curvature characteristics of the
planes, contours, and sides of an extruded surface to be compared. In this experiment,
50 2D closed curves used by Ujiie et al. [16] were edited in 3D CAD and the 3D shapes to
be evaluated were created by extruding the surfaces in the vertical direction of the same
shape (Figure 6a). The size of the closed planar curves was adjusted so that their maximum
radius vector was equal, and the length of the extrusion was set to twice the maximum
radius vector of the closed planar curves.

• Rotated shape

A rotated shape is a three-dimensional curved surface created from closed planar
curves using rotation, which is a shape creation method of 3D CAD. Rotational geometry
was chosen as the target of evaluation in the present study because it enables the differences
in curvature among planar, convex, and concave surfaces to be considered.

The rotated shape used in this experiment was created by editing 50 closed planar
curves similar to the extruded shape in 3D CAD and rotating the right side of the shape
360 degrees using the vertical direction passing through the center of gravity of the 2D
shape as the rotation axis (Figure 6b). The size of the closed planar curves was adjusted so
that the maximum radius vectors of the curves were equal.
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• Vase shape

A vase is a product with a high degree of freedom in its shape, and various types
of curved surfaces can appear. Therefore, using the vase shape as the evaluation target,
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we can consider the influence of various curved surfaces on the perception of complexity.
In addition to its functional role of holding cut flowers, a vase also plays a role as an
interior decoration; thus, it is important to take aesthetic preferences into account when
modeling [45]. A vase is therefore considered an appropriate target for evaluation in the
present study, which aims at aesthetic preferences in product shape.

A total of 50 vase shapes were used in this experiment: 25 vase shapes provided by
Free3D [46] and 25 vase shapes provided by CGTrader [47]; the top of each vase was closed
with a flat surface to prevent curvature from occurring inside the vase, which is not visible
(Figure 6c).

4.1.2. Experimental Conditions

• Evaluation method: A 5-point Likert scale was used for complexity: “low complexity:
1”, “somewhat low complexity: 2”, “undecided: 3”, “somewhat high complexity: 4”,
and “high complexity: 5”.

• Presentation method: An online questionnaire was used, with the sample shape
colored gray and displayed on a white background. In addition, 10 of each sample
shape were randomly selected and presented in duplicate to check the accuracy of
the participants’ evaluation. Each shape was rotated at a constant speed (z-axis: 9.0 s
per rotation).

• Participants: 110 male and 110 female participants. To exclude participants with
inaccurate evaluations, we calculated the absolute value of the difference in sensory
evaluation values among the 10 shapes presented in duplicate and excluded partic-
ipants whose sum was 11 or more. As a result, data from 81 participants for the
extruded shape, 89 participants for the rotated shape, and 61 participants for the vase
shape were used.

To calculate the curvature and feature descriptors from the geometry under evaluation,
we performed the following additional procedures in the present study.

1. Equal division of polygons

The shapes created by the method described in Section 4.1.1 had polygons with nonuni-
form shapes and sizes. Because participants were expected to evaluate complexity from the
entire shape, each polygon vertex should be uniformly distributed. In addition, because
the area of polygons was involved in the formulas for calculating Gaussian curvature and
mean curvature, the curvature value might be affected by the size of the area.

Therefore, in the present study, polygons were equally divided by applying the
advancing-front method to the created geometry. An advantage of the advancing-front
method is that the polygons are closer to equilateral triangles than those used in other
methods of polygon division, such as the Delaunay division and bubble mesh [48]. In
the present study, equal division was performed using software [49] that implements the
method, and the results were analyzed for 50 extruded shapes, 46 rotated shapes, and
38 vase shapes for which equal division was possible.

2. Determination of discretization parameters

When calculating the entropy of occurrence probability, discretization is required to
divide the continuous curvature into multiple states. In the present study, suitable ranges
were set for each shape and curvature by the following methods:

1. The curvature was calculated at all vertices of the shape to be evaluated.
2. A percentile range [E0.003%, E99.997%] that included curvatures between 0.003% and

99.997% of the calculated curvatures was calculated. This range was determined with
reference to the range of (mean) ± 4 (standard deviation) for the normal distribution.

3. The curvatures included in the determined percentile range [E0.003%, E99.997%] were
divided by V, as in the conventional method [39]. The curvatures above the maximum
and below the minimum in the same range were assigned to the state with the largest
and smallest curvatures, respectively, as in the method of Matsumoto et al. [42].
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4. Integers from 2 to 20 were used as candidates for the number of states.

4.2. Experimental Results
4.2.1. Extruded Shape

Table 5 shows the results obtained when calculating the entropy of occurrence proba-
bility using five different curvatures for extruded shapes. The table lists as discretization
parameters the maximum range Emax, the minimum range Emin, and the number of states V
when the determination coefficient of the logarithmic approximation between the sensory
evaluation values and the entropy is maximal. Note that the logarithmic approximation is
applied based on Fechner’s law, which indicates the relationship between human sensitivity
and stimuli using the logarithmic function and used in shape cognition studies [17,18,42,50].
In addition, to evaluate the stability of the discretization, the table lists the average, stan-
dard deviation, and the larger-the-better signal-to-noise (SN) ratio of the determination
coefficients for the range of 5 to 20 states. Figure 7 shows the relationship of the deter-
mination coefficients with complexity versus the number of states. Table 5 and Figure 7
indicate that the highest correlation is obtained when the mean curvature is used, with a
determination coefficient of 0.704. However, the determination coefficient is stable with
respect to the number of states (the SN ratio is highest) when the Casorati curvature is used.

Table 5. Experimental results for extruded shapes.

Curvature
Parameter Determination Coefficient

V Emax Emin Maximum Average Standard Deviation SN Ratio

Gaussian curvature 18 1.943 −0.949 0.666 0.588 0.068 −0.804

Mean curvature 7 1.734 −0.894 0.704 0.591 0.079 −4.826

Casorati curvature 10 1.477 0.000 0.652 0.610 0.041 −4.350

Shape index 8 1.000 0.000 0.0.129 0.076 0.030 −26.167

Curvature index 5 0.737 −11.785 0.022 0.013 0.016 −90.085
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4.2.2. Rotated Shape

Table 6 shows the results of calculations of the entropy of occurrence probability using
five different curvatures for rotated shapes. Figure 8 shows the determination coefficient
between complexity and the number of states. Table 6 and Figure 8 indicate that the highest
correlation is obtained when the mean curvature is used, with a determination coefficient
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of 0.551. However, the determination coefficient is stable with respect to the number of
states (the SN ratio is highest) when the Casorati curvature is used.

Table 6. Experimental results for rotated shapes.

Curvature
Parameter Determination Coefficient

V Emax Emin Maximum Average Standard Deviation SN Ratio

Gaussian curvature 19 0.959 −0.428 0.503 0.387 0.086 −9.144

Mean curvature 7 1.245 −1.188 0.551 0.354 0.144 −14.918

Casorati curvature 9 1.200 0.000 0.501 0.421 0.078 −8.297

Shape index 7 1.000 0.000 0.005 0.001 0.002 −82.639

Curvature index 9 0.340 −11.215 0.088 0.042 0.030 −61.944
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4.2.3. Vase Shape

Table 7 shows the results of calculations of the entropy of occurrence probability
using five types of curvature for vase shapes. Figure 9 shows the determination coefficient
between the number of states and complexity. Table 7 and Figure 9 indicate that the highest
correlation is obtained when the mean curvature is used, with a determination coefficient
of 0.471. However, the determination coefficient is stable with respect to the number of
states (the SN ratio is highest) when the Casorati curvature is used.

Table 7. Experimental results for vase shapes.

Curvature
Parameter Determination Coefficient

V Emax Emin Maximum Average Standard Deviation SN Ratio

Gaussian curvature 14 17.652 −4.935 0.351 0.170 0.087 −18.629

Mean curvature 19 6.364 −3.791 0.471 0.321 0.070 −10.731

Casorati curvature 6 6.799 0.000 0.398 0.355 0.024 −9.054

Shape index 7 1.000 0.000 0.356 0.290 0.038 −11.093

Curvature index 13 1.441 −11.214 0.066 0.036 0.020 −67.962
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4.3. Experimental Discussion
4.3.1. Variation in Determination Coefficients with Different Numbers of States

When the Gaussian curvature and mean curvature were used, the determination
coefficient with complexity tended to vary with the number of states V. This variation was
observed in all three sample shapes, suggesting that the characteristics of the two curvatures
affect the result. In the following, we focus on the number of states with large and small
determination coefficients for the Gaussian curvature and mean curvature and discuss the
reasons for the variation.

1. Gaussian curvature

As an example, we compare the number of states 6 with 5, where the change in the
determination coefficient is large in rotated shapes. In the rotated shape, where the entropy
variation is particularly large, the surface is discretized for each number of states as follows
(Figure 10):

• For V = 6 with a high determination coefficient, flat surfaces and surfaces with a
principal curvature of 0 at one side are discretized into gray states, whereas convex
surfaces are discretized into red states (Figure 10a).

• For V = 5 with a low determination coefficient, most of the surfaces are in the gray
states (Figure 10b).

In rotational shapes, steep convex surfaces tend to influence the evaluation of com-
plexity. Therefore, the number of states 6 that can discriminate complex surfaces (convex
surface) from uncomplex surfaces (i.e., the surfaces whose maximum and/or minimum
principal curvature is almost 0) is consistent with the human perception of complexity and
is considered to have a high determination coefficient. Similarly, in the extruded and vase
shapes, the number of states that discriminate complex and uncomplex surfaces tends to
have a high determination coefficient (Figure 10c,d).

2. Mean curvature

As an example, we compare the number of states 7 with 6, where the change in the
determination coefficient is large in the extruded shapes. In the extruded shapes, where the
entropy variation is particularly large, the surface is discretized for each number of states
as follows (Figure 11):
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Figure 10. Shapes with large entropy changes between the number of states: (a) contour diagram
of the Gaussian curvature with scatter plots of the principal curvatures of a rotated shape (V = 6);
(b) ditto (V = 5); (c) an extruded shape example whose entropy variation is large between the number
of states; (d) a vase shape example whose entropy variation is large between the number of states.

• For V = 7 with a high determination coefficient, flat surfaces and moderate surfaces
with a principal curvature of 0 at one side are discretized into gray states. However,
steep surfaces with a principal curvature of 0 at one side are discretized into red areas
(Figure 11a).

• For V = 7 with a high determination coefficient, flat surfaces and steep surfaces with a
principal curvature of 0 at one side are discretized into gray states. However, moderate
surfaces with a principal curvature of 0 at one side are discretized into blue areas
(Figure 11b).
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Figure 11. Shape with large entropy changes between the number of states: (a) contour diagram
of the mean curvature with scatter plots of the principal curvatures of an extruded shape (V = 7);
(b) ditto (V = 6); (c) a rotated shape example whose entropy variation is large between the number of
states; (d) a vase shape example whose entropy variation is large between the number of states.

4.3.2. Variation in Determination Coefficients with Different Curvatures

The experimental results show that the Casorati curvatures are stable and highly
correlated for all the investigated shapes. However, depending on the number of states, the
determination coefficients of the Gaussian curvature and mean curvature can exceed the
determination coefficient of the Casorati curvature. Therefore, we discuss the factors by
comparing the determination coefficients of the Gaussian curvature and mean curvature
with those of the Casorati curvature at the number of states where the determination
coefficients of the Gaussian curvature and mean curvature are maximal.

1. Gaussian curvature

As an example, in the extruded geometry, the highest determination coefficient when
using the Gaussian curvature is found for a number of states 18. We focus on the extruded
shape, where the entropy change between the two curvatures is large. At each curvature,
the surfaces of extruded shape are discretized as follows (Figure 12).
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Figure 12. Shape with large entropy changes between curvatures: (a) contour diagram of the
Gaussian curvature with scatter plots of the principal curvatures of an extruded shape; (b) contour
diagram of the Casorati curvature with scatter plots of the principal curvatures of an extruded shape;
(c) an extruded shape example whose curvature variation is large between the Gaussian and Casorati
curvatures; (d) a vase shape example whose curvature variation is large between the Gaussian and
Casorati curvature.

• For the Gaussian curvature, moderate surfaces with a principal curvature of 0 at
one side and flat surfaces are discretized into gray states.

• For the Casorati curvature, moderate surfaces with a principal curvature of 0 at
one side are discretized into different states: blue, gray, and red.

Unlike the Gaussian curvature, the Casorati curvature can take positive values in
the column plane. In addition, compared with the Gaussian curvature, the Casorati
curvature tends to be larger for small (near zero) changes in principal curvature. Therefore,
for extruded shapes, the Gaussian curvature is expected to quantify complexity more
accurately than the Casorati curvature.

2. Mean curvature

As an example, for the vase shape, the highest determination coefficient when using
the mean curvature is found when the number of states is 19. We focus on the vase shape,
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where the entropy change between the two curvatures is large. For each curvature, the
surfaces of the vase shape are discretized as follows (Figure 13):

• For the mean curvature, flat and principal curvatures of 0 at one side are discretized
into gray states, whereas convex edges are assigned to the red area and concave edges
to the blue area.

• For the Casorati curvature, flat surfaces and concave surfaces are discretized into the
same blue area. Convex surfaces as edges are assigned to gray or red states.
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Figure 13. Shape with large entropy changes between curvatures: (a) contour diagram of the mean
curvature with scatter plots of the principal curvatures of a vase shape; (b) contour diagram of
the Casorati curvature with scatter plots of the principal curvatures of an extruded shape; (c) an
extruded shape example whose curvature variation is large between the Gaussian and Casorati
curvatures; (d) a rotated shape example whose curvature variation is large between the Gaussian and
Casorati curvature.

Vase shapes tend to have a higher complexity evaluation when both convex and
concave surfaces are included. Therefore, mean curvatures with different states for convex
and concave surfaces are considered appropriate.

4.3.3. Variation in Determination Coefficients with Different Feature Descriptors

In the present study, the entropy of occurrence probability was calculated as a feature
descriptor because it can be used to evaluate the diversity of curvature and because the
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discretization parameters can be set according to human cognition. To verify the validity of
this feature descriptor, we calculated the curvature moment as a comparison target.

The curvature moment is a characteristic value calculated by considering the curvature
group calculated from the shape as a probability distribution. Because some studies have
evaluated the similarity of shapes using moments of curvature [51], it is applicable to the
quantification of complexity in the present study. Here, the average, standard deviation,
coefficient of variation, kurtosis, and skewness were calculated as moments.

Table 8 shows the determination coefficients when the entropy of occurrence prob-
ability is used and when the curvature moments are used. The table shows the average,
standard deviation, and desired characteristic SN ratio of the 15 determination coefficients
(3 shapes × 5 curvatures) calculated for each feature descriptor. The results in this ta-
ble show that the occurrence probability has large and stable determination coefficients
with complexity.

Table 8. Comparison between entropy of occurrence probability and curvature moment.

Feature Descriptor Average Standard Deviation SN Ratio

Moment

Mean 0.142 0.307 −44.786

Standard deviation 0.307 0.247 −38.357

Coefficient of variation 0.210 0.183 −43.974

Kurtosis 0.165 0.241 −50.722

Skewness 0.153 0.211 −58.771

Entropy of occurrence probability 0.393 0.222 −34.310

The lower determination coefficient when using the curvature moment is attributed
to the effect of mesh irregularities. In this subsection, we focus on the standard deviation
that exhibits the highest desirability characteristic SN ratio among the curvature moments.
The shape shown in Figure 14 is evaluated to be of medium complexity; however, the
standard deviation is large. This shape is uneven in the blue area in Figure 14, and the
standard deviation is considered to have been increased because of the effect of this area.
Because the occurrence probability entropy is discretized, the curvature value does not
affect the entropy value. Therefore, we speculate that the high determination coefficient is
attributable to the fact that the effect of the curvature of such outliers can be reduced.
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One limitation of this study is that only the determination coefficient of the loga-
rithmic approximation between the quantified and sensory evaluation values of com-
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plexity was used to evaluate their correlation. Although we confirmed some scatter dia-
grams (Appendix A) and this procedure is assumed to be valid, other procedures can be
more suitable.

5. Conclusions

We conducted a systematic classification of curvature and feature descriptors in 3D
shapes. The results showed that Gaussian curvature, mean curvature, Casorati curva-
ture, curvature index, shape index, curvature tensor, and cone curvature can be used as
curvatures calculated for 3D shapes. In addition, we confirmed that “feature descriptors
considering surrounding information”, “feature descriptors considering occurrence proba-
bility”, “feature descriptors considering transition probability”, and “feature descriptors
considering clustering” could be used as feature descriptors calculated for the 3D shapes.

We applied the results of the systematic classification to a method for quantifying the
“complexity” of 3D shapes. Specifically, Gaussian curvature, mean curvature, Casorati
curvature, curvature index, and shape index were calculated for the polygon model. In ad-
dition, the probability of occurrence (information) entropy of these five types of curvatures
was calculated as a feature descriptor.

Finally, we conducted sensory evaluation experiments to verify the validity of the
quantification method; the results showed that the highest determination coefficient for
all three shapes was obtained when the mean curvature was used. To investigate the
effect of discretization when calculating entropy, we calculated the mean value, standard
deviation, and the SN ratio of the determination coefficient when the number of states
was varied. The results showed that the Casorati curvature was stable for almost all of the
investigated shapes.

Our future work will include (1) conducting sensory evaluation experiments using
other sample shapes to verify whether the same trend can be confirmed and (2) constructing
a comparative criterion to enable a comparison that includes other types of curvatures and
feature descriptors excluded in the present study.
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Appendix A

Figure A1 shows the relationship between the entropy using mean curvature and
sensory evaluation values.
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