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Abstract: Exploring the risk spillover between Chinese and mature stock markets is a promising
topic. In this study, we propose a Markov-switching mixed-Clayton (Ms-M-Clayton) copula model
that combines a state transition mechanism with a weighted mixed-Clayton copula. It is applied to
investigate the dynamic risk dependence between Chinese and mature stock markets in the Americas,
Europe, and Asia–Oceania regions. Additionally, the conditional value at risk (CoVaR) is applied to
analyze the risk spillovers between these markets. The empirical results demonstrate that there is
mainly a time-varying but stable positive risk dependence structure between Chinese and mature
stock markets, where the upside and downside risk correlations are asymmetric. Moreover, the risk
contagion primarily spills over from mature stock markets to the Chinese stock market, and the
downside effect is stronger. Finally, the risk contagion from Asia–Oceania to China is weaker than
that from Europe and the Americas. The study provides insights into the risk association between
emerging markets, represented by China, and mature stock markets in major regions. It is significant
for investors and risk managers, enabling them to avoid investment risks and prevent risk contagion.

Keywords: risk contagion; Chinese stock market; mature stock markets; Markov-switching;
Clayton copula

1. Introduction

As global stock markets become increasingly interconnected, the risk of contagion
is becoming more prominent [1,2]. Measuring this contagion effectively is crucial for
China and other emerging economies, which may be more vulnerable to international risk
contagion, to improve their risk supervision [3,4]. Numerous scholars have studied the
risk contagion between markets [5–7]. With the rapid development of the Chinese stock
market, the largest emerging market in the world, there is growing interest in investigating
the risk contagion between it and more mature markets, and several models have been
developed for empirical analysis [8,9]. Traditional models have limitations in depicting
the dynamic and asymmetric structures and are constrained by their ability to only show
linear correlations. Consequently, scholars have turned to copula-based models to enrich
research in this field, and the advantages of copula-based models over traditional models
have been confirmed [10–13].

The motivation behind this work is twofold. Firstly, most existing copula-based
models that evaluate risk contagion tend to focus on measuring individual tail correlations
or positive dependence, which limits the analysis of the contagion mechanism from a
comprehensive perspective [14,15]. While it is important to examine positive dependence,
which occurs when two stock markets rise or fall in tandem, it is also crucial to consider
negative dependence structures, where one market rises while the other falls, which may
offer opportunities for hedging investment risks or realizing arbitrage. Overemphasizing
risk contagion under one dimension may lead to a distorted perception of international
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markets. Therefore, it is necessary to develop a tool that provides a more comprehensive
assessment of the dependence structure between markets. Secondly, the Chinese stock
market has a unique profile with its late start, rapid development, and high volatility, and
most existing conclusions and guidelines drawn from mature markets may not provide
reliable references for its development. As emerging countries are often in a passive position
in international risk contagion, investigating the risk contagion mechanism between the
Chinese market and different mature markets has important reference significance [16–18].

Thus, to comprehensively investigate the risk contagion between Chinese and mature
markets in three representative regions on a global scale (Asia–Oceania, Europe, and the
Americas [19]), we attempt to construct a novel Markov-switching mixed-Clayton (Ms-M-
Clayton) copula model. This model considers four types of tail correlations simultaneously
and calculates the conditional value-at-risk (CoVaR) in different routes [20,21].

We start with a Clayton copula model that describes the upside correlation of two
random variables under a positive dependence structure. We first rotate it by 90◦, 180◦, and
270◦ and weight the four individual models as a mixed-Clayton (M-Clayton) copula. The
M-Clayton model can capture both upside and downside correlations between two markets
under both positive and negative dependence structures. Then, to capture correlations in a
time-varying manner, we introduce a two-state switching mechanism following the Markov
chain. Using the estimated results of the Ms-M-Clayton copula model, we calculate the
CoVaRs under the four dimensions to measure the markets’ risk spillover. The empirical
results indicate that there is dynamic and generally stable positive dependence between the
Chinese and mature markets, with the downside risk correlation being stronger than the
upside correlation in most cases. Additionally, the risk contagion is primarily manifested
in a spillover from mature markets to the Chinese market. Furthermore, the risk spillover
from Asia-Oceania to China is weaker than that from Europe and the Americas, implying
that Japanese and Australian markets may be potential choices for Chinese market investors
to diversify investment risks. Overall, this study reveals the risk contagion effects between
emerging markets, represented by China, and major mature markets. Our findings have
practical and policy implications for investors and supervisors to mitigate the adverse
effects of risk contagion.

This study makes several contributions to the literature on risk contagion between
Chinese and mature markets. Firstly, a novel Ms-M-Clayton copula model is formulated
and applied to dynamically measure the asymmetrical dependence structure between
Chinese and mature markets in three global risk regions, providing a more comprehensive
perspective on the risk contagion patterns between economies. Secondly, by calculating
the CoVaR in four relevant scenarios based on the results of the Ms-M-Clayton copula, we
quantify and compare the risk dependence and contagion between Chinese and different
mature markets, respectively. Thirdly, we provide detailed explanations for the time-
varying risk dependence structure and contagion. Based on the empirical results, we
provide targeted insights for both emerging and mature economies on how they can defuse
risk contagion and stay safe by monitoring objects with high-risk dependence.

The remainder of this paper is arranged as follows: Section 2 sorts out the existing
research on the risk contagion and the related measurement methods. Section 3 intro-
duces the construction of marginal distribution model and Ms-M-Clayton copula model.
Section 4 summarizes the datasets. Section 5 reports the empirical experiments and results.
Finally, this work is concluded in Section 6.

2. Literature Review

Despite numerous studies exploring risk contagion, the definition is still controver-
sial [22,23]. It is commonly believed that the risk contagion is driven by heterogeneous
factors such as the investors’ behaviors and expectations [24], the information bias [25], the
market supervision [26], and the completeness of financial system [27].

As one of the most representative emerging economies, the Chinese market is grad-
ually becoming international, especially since its accession to the WTO. Thus, based on
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different but not mutually independent definitions of risk contagion, plenty of scholars
have discussed the risk contagion between Chinese and various markets by using the
traditional econometric methods, such as the granger causality, generalized autoregressive
conditional heteroskedasticity (GARCH), vector autoregressive model, etc. [28–30], but
most of the methods fail to depict nonlinear dependence and capture the asymmetric
relationships dynamically. Moreover, they have poor ability to measure the tail correlation
reflecting the extreme risk contagion.

To overcome these shortcomings, various copula-based methods [31] are proposed to
capture the dynamic and asymmetric dependencies between series. Chang [32] constructed
a mixed copula of Gumbel and Clayton copula to investigate the asymmetry between the
upside and downside risk correlations of crude oil spot and futures. Huang et al. [33]
proposed the rotated Gumbel and Clayton copulas, which provide a flexible perspective
to measure the asymmetric risk correlation. Hussain and Li [34] found that the Chinese
market has stronger dependence with Asia and Europe than the US by employing stochastic
copulas. Luo et al. [35] measured the multiscale financial risk association among nine stock
markets by introducing empirical mode decomposition into copulas, revealing that the
high-frequency fluctuation is the major contributor of contagion. Although scholars have
extended copula models on the measurement of asymmetric tail correlations, most of them
are still time-invariant and only suitable for depicting static relationships.

More recently, time-varying mechanisms, such as parameter autocorrelation equations
and state transition probabilities, are introduced to the invariant copulas, allowing dynamic
and periodic dependence analyses [32,36–38]. Huang et al. [39] verified the superiority of
the time-varying parameter (TVP) copulas compared to traditional methods in constructing
the minimum-risk portfolios from G7 countries’ markets. Chang [32] documented the
non-fixed dependence between inflation rate and REIT return by constructing a Markov-
switching GRG copula, while Wang et al. [40] highlighted that the negative dependence
reflects the reversal effect, which is crucial to revisit the dependence structure between
markets. Thus, they constructed a dependence-switching copula based on multiple Clay-
ton copulas to examine the risk relevance between stock and foreign exchange markets.
Ji et al. [41] identified the conditional dependence between energy and agricultural com-
modity markets and confirmed the significance of negative dependence. However, on
one hand, most of the dynamic dependence-switching copulas methods are still limited to
capture the positive dependence; on the other hand, the literature utilizing TVP copulas to
investigate the risk contagion between Chinese and mature markets remains to be enriched.

Several studies further quantify the degree of directional risk contagion by calculating
VaR and CoVaR based on the risk association captured by copula-based models, proving
the function of copula-CoVaR paradigm in measuring risk contagion. Reboredo and
Ugolini [42] used the CoVaR-copula method to investigate the systemic risk contagion
level in European sovereign debt markets as well as the asymmetric downside and upside
spillover between precious metals [43]. Xiao [44] developed a MSGARCH-EVT-copula
model and computed the CoVaR to investigate the risk spillovers of Chinese market to
major East Asian markets, reporting that the downside and upside spillovers are generally
different between the turbulent and calm periods. Jiang et al. [19] constructed a vine-copula-
GARCH-MIDAS model and computed the CoVaR to estimate the risk spillovers among
multiple stock markets. Sun et al. [45] verified that the GARCH-Copula-CoVaR method is
suitable for evaluating the risk contagion of international commodity markets. Therefore, it
is essential to assess the risk spillovers in different routes, which can help to understand
the risk contagion mechanism between markets.

In summary, although copula models provide a more flexible perspective for depict-
ing the non-linear risk dependence between markets, most of them focus on single tail
correlation or in the positive dependence structure. Positive and negative risk dependency
structures provide novel insights into financial risk contagion [40,41]. In particular, tail
correlations in negative dependency structures are helpful to identify risk-hedging oppor-
tunities, so it is essential to enrich research in this field. As one of the most representative
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emerging markets that are vulnerable in global risk contagion, the risk contagion between
Chinese and global mature markets is still controversial [44]. Therefore, we formulate a
Ms-M-Clayton copula model and compute the CoVaR to analyze the risk spillovers, which
not only enriches the application of dependence-switching copula models but also helps to
revisit the risk contagion between Chinese and mature markets around the world.

3. Methodology
3.1. Marginal Distribution Modeling

Prior to the Copula modeling that is used to capture risk dependence between markets,
a marginal distribution modeling is necessary to be applied to the original financial return
time series, i.e., extracting the components that can be described by econometric models
and treating the residuals as risks that cannot be depicted by models. Then, the residuals
are used as the input of copula model to describe the risk dependence between markets.
Considering the autocorrelation, volatility clustering and leptokurtosis of financial return
series, the AR-GARCH is one of the most commonly used models to describe the financial
time series [46]. Moreover, compared with the normal distribution, the generalized error
distribution (GED) fits the financial time series better as it captures the thick-tailed prop-
erties well. Therefore, the AR(m)-GARCH(p,q) model with GED process is employed for
marginal distribution modeling, which is written as:

rt = φ0 +
m
∑

i=1
φirt−i + εt

εt = σtet, εt|It−1 ∼ GED
(
0, σ2

t , v
)

σ2
t = ω +

p
∑

h=1
αhe2

t−h +
q
∑

k=1
βkσ2

t−k

(1)

where φ0 is the unconditional mean of the return series, and φi is and autoregressive
parameter, m denotes the lag order, and error item εt follows the GED process with freedom
v and conditional variance σ2

t . σ2
t is expressed by the GARCH model, in which e2

t−h
denotes the ARCH component, and σ2

t−k denotes the GARCH component. The following
restrictions: (1) ω > 0, αh ≥ 0, βh ≥ 0 and (2) ∑

p
h=1 αh + ∑

q
k=1 βk < 1 need to be met

to ensure a stationary GARCH process. Following the GED, the conditional probability
density function of εt is given as:

f (x, v) =
ve−

1
2 |

x
λ |

v

2−
2
v λΓ

(
1
v

) (2)

in which λ is the tail-thickness parameter defined as:

λ =

[
2−

2
v Γ
(

1
v

)
Γ
(

3
v

)] 1
2

(3)

where Γ(·) is the Gamma function. The freedom parameter v > 2 when GED follows a
thick-tailed distribution; the v > 2 when GED follows a thin-tailed distribution; and v = 2
when GED follows a normal distribution. In general, the volatility clustering in financial
returns series can be effectively described by the GARCH family models with the lag order
of 1 [47].

3.2. Markov-Switching Mixed-Clayton Copula Function

The copula model is a connecting function for multivariate marginal distributions
defined in [0, 1]n. For example, a bivariate joint distribution function with the marginal
distributions of FX(x) and FY(y) can be defined as:

FXY(x, y) = C(FX(x), FY(y)) (4)
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If the marginal distributions FX(x) and FY(y) are continuous and their joint distribution
function is given, the corresponding copula model C(u, v) with u = FX(x) and v = FY(y)
is uniquely determined as:

C(u, v) = H
(

F−1(u), F−1(v)
)

(5)

Moreover, the joint density function can be obtained by

fXY(x, y) = c(u, v) fX(x) fY(y) (6)

where c(u, v) = ∂2C(u,v)
∂u∂v is the copula density function, and fX(x) and fY(y) are the marginal

densities of variables x and y. Therefore, a distribution function with N variables is
composed of N univariate marginal distributions and a copula function capturing the
dependence structure between the distributions.

The copula theory and method provide a flexible perspective to measure the tail
dependence. To further analyze the asymmetric risk correlations, we build a mixed-Clayton
(M-Clayton) copula by combining four basic Clayton copulas with 0◦, 90◦, 180◦, and
270◦ rotation, respectively, under non-fixed weights. Among the rotated Clayton copulas,
the Clayton copula and 180◦ rotated Clayton copula are used to measure the positive
dependence reflected by the lower–lower tail and higher–higher tail correlation, while
the 90◦ and 270◦ rotated Clayton copulas are used to measure the negative dependence
reflected by the lower–upper tail and upper–lower tail correlation. The two copulas are
defined as:

C1(u, v, α1, α3) = 0.5Cc0(u, v; α1) + 0.5Cc180(u, v; α3) (7)

C2(u, v; α2, α4) = 0.5Cc90(u, v; α2) + 0.5Cc270(u, v; α4) (8)

where 
Cc0(u, v; α1) = (u−α1 + v−α1 − 1)−

1
α1

Cc90(u, v; α2) = u−
[
u−α2 + (1− v)−α2 − 1

]− 1
α2

Cc180(u, v; α3) = u + v− 1 +
[
(1− u)−α3 + (1− v)−α3 − 1

]− 1
α3

Cc270(u, v; α4) = v−
[
(1− u)−α4 + v−α4 − 1

]− 1
α4

(9)

Thus, a M-Clayton copula can be obtained by weighting C1 and C2 copulas as:

CM(u, v, θ) = ωC1(u, v; α1, α3) + (1−ω)C2(u, v; α2, α4) (10)

where the θ = (α1, α2, α3, α4) ∈ (0,+∞), denoting the parameters of the four separate
copulas, the greater the α1, α2, α3, α4, the stronger the correlation. ω ∈ [0, 1] is used to
determine the weights of the C1 and C2.

Affected by time-varying fundamental information, the correlation and possible struc-
tural changes between financial markets is usually not static. Therefore, a state-switching
mechanism assumed to be subject to Markov chain is introduced to further capture the
dynamic correlation and potential dependence structural changes. We assume that there
are two dependence states between financial markets [48], and the Ms-M-Clayton copula
can be expressed as:

CMs−M
(
u, v; θSt

)
= ωSt C1

(
u, v; αSt

1 , αSt
3
)
+
(
1−ωSt

)
C2
(
u, v; αSt

2 , αSt
4
)

(11)
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where St denotes the state variable and is assumed as the following Markov transition
probability [48]: 

P11 = P(St = 1|St−1 = 1) = exp(π1)
1+exp(π1)

P12 = P(St = 2|St−1 = 1) = 1
1+exp(π1)

P21 = P(St = 1|St−1 = 2) = 1
1+exp(π2)

P22 = P(St = 2|St−1 = 2) = exp(π2)
1+exp(π2)

(12)

3.3. Markov-Switching Mixed-Clayton Copula Function

In the Ms-M-Clayton copula, the correlations of lower–lower tail, lower–higher tail,
higher–higher tail, and higher–lower tail are provided as follows [49]:

λLL
MS−M = lim

α→0
P(V ≤ α|U ≤ α) = 0.5ωst 2−

1
α1

λLU
MS−M = lim

α→0
P(V ≥ 1− α|U ≤ α) = 0.5(1−ωst)2−

1
α2

λUU
MS−M = lim

α→1
P(V ≥ α|U ≥ α) = 0.5ωst 2−

1
α3

λUL
MS−M = lim

α→1
P(V ≤ 1− α|U ≥ α) = 0.5(1−ωst)2−

1
α4

(13)

3.4. Parameter Estimation Method

We employ the maximum-likelihood (ML) function [50] as the basis for estimating
parameters. Given that there are 12 parameters to be estimated, and a traditional approach,
such as the interior-point method, easily falls into local optimum, we apply the genetic
algorithm (GA) that performs well in global optimization of high-dimensional parameters
to exact the solution of the model [51].

Referring to Equation (6), the joint probability density function of the Ms-M-Clayton
copula model with variables x and y is given as:

fXY(x, y) =
2

∑
St=1

fX(x) fY(y)c
(
u, v, θSt

)
P(St) (14)

where P(St) is the prediction probability of St at time t− 1. P(St = 1) and P(St = 2) are
defined as [52]:

P(St = 1) = P11 ∗
[

c1
t−1P(St−1 = 1)

c1
t−1P(St−1 = 1) + c2

t−1P(St−1 = 2)

]
+ P21 ∗

[
c2

t−1P(St−1 = 2)
c1

t−1P(St−1 = 1) + c2
t−1P(St−1 = 2)

]
(15)

P(St = 2) = 1− P(St = 1) (16)

where c1
t−1 and c2

t−1 represent the conditional probability density functions of the copula
function in state 1 and state 2, respectively, at time t− 1. Then the logarithmic likelihood
function of the copula model is expressed as:

lnL = ∑T
t=1 lnc

(
u, v; θSt

)
P(St) + ∑T

t=1 ln fX(x) + ∑T
t=1 ln fY(y) (17)

3.5. VaR and CoVaR

This work employs the value-at-risk (VaR) to measure the downside and upside risks,
which indicates the maximum loss that an investor may suffer within a certain time horizon
and significant level by holding a long or a short position. For return series rt, we calculate
the VaR based on its marginal distribution. With a given tail probability α, the VaRα,t

D
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and VaRα,t
U at time t is calculated by P

(
rt ≤ VaRα,t

D

)
= α and P

(
rt ≥ VaRα,t

U

)
= 1− α

respectively, which is formulated as:{
VaRα,t

D = µt + σt · F−1
v (α)

VaRα,t
U = µt + σt · F−1

v (1− α)
(18)

where µt and σt represent the conditional mean and standard deviation determined by the
marginal distribution model, and F−1

v (α) is the α-quantile of GED.
The conditional VaR (CoVaR) is used to capture the risk spillover between markets [42].

The CoVaR is calculated based on the measurement of copula model, reflecting the VaR
of a market conditional on the extreme volatility in another market. Let ri

t and rj
t denote

the return series of market i and j, and the CoVaR in four different market statuses can be
expressed as follows: 

P
(

ri
t ≤ CoVaRβ,t

iD|jD

∣∣∣rj
t ≤ VaRα,t

jD

)
= β

P
(

ri
t ≥ CoVaRβ,t

iU|jD

∣∣∣rj
t ≤ VaRα,t

jD

)
= β

P
(

ri
t ≤ CoVaRβ,t

iD|jU

∣∣∣rj
t ≥ VaRα,t

jU

)
= β

P
(

ri
t ≥ CoVaRβ,t

iU|jU

∣∣∣rj
t ≥ VaRα,t

jU

)
= β

(19)

where CoVaRβ,t
iD|jD and CoVaRβ,t

iU|jD represent the downside and upside VaRs of market i
conditional on the extreme downside movement of market j given a confidence level β,
while CoVaRβ,t

iD|jU and CoVaRβ,t
iU|jU , respectively, represent downside and upside VaR of

market i conditional on the extreme upside movement of market j given a confidence level
β.

For example, the first row in Equation (19) can be written as:

F
ri

tr
j
t

(
CoVaRβ,t

iD|jD, VaRα,t
jD

)
F

rj
t

(
VaRα,t

jD

) = β (20)

Therefore, the CoVaR requires the joint distribution function of ri
t and rj

t, and it can be
represented by a copula function as Equation (4). Thus, Equation (19) can be written as:

C
(

Fri
t

(
CoVaRβ,t

iD|jD

)
, α
)
= αβ

C
(

Fri
t

(
CoVaRβ,t

iU|jD

)
, α
)
= α− αβ

Fri
t

(
CoVaRβ,t

iD|jU

)
− C

(
Fri

t

(
CoVaRβ,t

iD|jU

)
, 1− α

)
= αβ

Fri
t

(
CoVaRβ,t

iU|jU

)
− C

(
Fri

t

(
CoVaRβ,t

iU|jU

)
, 1− α

)
= α− αβ

(21)

Hence, the value of Fri
t

(
CoVaRβ,t

iD|jD

)
can be inferred by inverting the copula function

for given values of α and β, which is denoted as F̂ri
t

(
CoVaRβ,t

iD|jD

)
, and the value of CoVaR

can be inferred by inverting the marginal distribution function of ri
t as CoVaRβ,t

iD|jD =

F−1
ri

t

(
F̂ri

t

(
CoVaRβ,t

iD|jD

))
. Similarly, the other three types of CoVaR can be obtained. To

validate the significance of the risk contagion, the Kolmogorov–Smirnov (K-S) test [20] is
employed to implement the significance test.

4. Data and Descriptive Statistics

This work adopts the China Securities Index 300 (CSI300), an important financial index
jointly released by the Shanghai and Shenzhen Stock Exchanges on 8 April 2005 to represent
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the Chinese stock market. It consists of 300 stocks, accounting for approximately 70% of
the total market capitalization of the Shanghai and Shenzhen stock markets. Compared
with other stock indexes in China, the issuers of the constituent stocks in CSI300 are mostly
mature companies that have the characteristics of strong resistance to manipulation, lower
volatility, and strong liquidity. Therefore, it comprehensively reflects the performance of
the Chinese stock market. According to [19], three risk areas, including Asia–Oceania,
Europe, and the Americas, can be identified in risk contagion. Therefore, the S&P500 and
GSPTSE indexes are selected to represent the Americas market, the DAX30 and FTSE100
indexes are selected to represent the European market, and the Nikkei225 and ASX200
indexes are selected to represent the Asia–Oceania market. The monthly price time series
collected from Wind database are used for empirical analyses because: (1) it covers less
noises than the daily and weekly prices and is widely employed in copula modeling, and
(2) it contains more trend information than the yearly prices but does not suffer from
manipulation [14,20,48]. The period is from July 2005, when CSI300 is officially released, to
December 2020, with 186 data points containing multiple economic cycles and economic
events. The logarithmic returns series rt reflecting the level of price changes are calculated
as: rt = (lnPt − lnPt−1)× 100%, where Pt denotes the price at the end of month t.

Figure 1 reports the prices and returns of the selected stock indexes. First, the stock
market volatility in the same region is relatively similar, but those in different regions are
quite different. Second, due to the global emergencies during the sample period, such
as the global financial crisis, the European debt crisis, and the COVID-19 epidemic, the
markets experienced several large fluctuations simultaneously, implying the potential risk
contagion between Chinese and mature markets. Third, the volatility of Chinese market is
significantly higher than mature markets, which may be caused by the large gap between
Chinese and mature stock markets in terms of the completeness of risk supervision and the
professionalism of market participants.
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Figure 1. Monthly prices and returns of the selected indexes.

Table 1 reports the descriptive statistics of the return series, in which their average
values are all positive. The CSI300 has the highest monthly average return with 0.0096,
followed by the S&P500 and the DAX30, while the FTSE100 has the lowest monthly
average return. The CSI300 has the highest volatility, with the standard deviation of
0.0858, followed by the Nikkei225. The lowest standard deviation 0.0402 is observed in the
FTSE100. Moreover, the skewness statistics are all less than 0, suggesting that all the return
series are featured as a long tail to the left, and there are more extreme negative returns.
The skewness values of the Nikkei225 and the ASX200 are larger than others, and that
of the CSI300 is closer to 0. Meanwhile, the Nikkei225 and the ASX200 have the highest
kurtosis, implying the leptokurtosis feature in Asia–Oceania market is more prominent.
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The Jarque-Bera (J-B) test confirms that all return series are not normally distributed but
featured as leptokurtosis. The Pearson correlation coefficients between CSI300 and other
indexes proves a weak but positive correlation between Chinese and mature markets,
and the correlations between Chinese market and the Americas, Asia–Oceania, and the
European markets decreases in turn.

Table 1. Descriptive statistics of monthly returns.

CSI300 S&P500 GSPTSE DAX30 FTSE100 Nikkei225 ASX200

Mean 0.0096 0.0062 0.0030 0.0059 0.0013 0.0046 0.0023
Max. 0.2463 0.1194 0.0997 0.1550 0.1155 0.1401 0.0949
Min. −0.2991 −0.1856 −0.2168 −0.2131 −0.1413 −0.2722 −0.2380
Std. 0.0858 0.0436 0.0404 0.0543 0.0402 0.0570 0.0428

Skew. −0.524 −0.888 −1.649 −0.809 −0.668 −0.896 −1.470
Kurt. 4.691 5.245 9.930 5.010 4.236 5.347 7.963
J-B. 30.685 a 63.540 a 456.478 a 51.620 a 25.654 a 67.595 a 257.900 a

Pearson. 1.000 0.402 a 0.403 a 0.374 a 0.307 a 0.361 a 0.380 a

Note: superscript a represent the significant levels at 1%.

5. Empirical Results

This study uses Eviews 9 to perform a marginal distribution estimation and output
the residual series and MATLAB 2018 to fit copula models.

5.1. Marginal Distribution Estimation

A diagnostic test on stationarity, autocorrelation, and heteroscedasticity needs to be
conducted before marginal distribution modeling. The results are reported in Table A1
(seen in Appendix A), showing that all the return series are stationary by ADF, PP, and
KPSS tests. According to the Ljung–Box test, only the CSI300 have autocorrelation. The
Q2(P) and ARCH(P) statistics ensure the presence of ARCH effects in all series except the
DAX30. Thus, AR-GARCH is suitable to fit the marginal distribution.

Considering the significance of parameters and the results of diagnostic test, the
results of marginal distribution are provided in Panel A of Table A2 (see Appendix A).
Most coefficients are significant at 5% level. Panel B of Table A2 reports the diagnostic
results for the residuals, in which the autocorrelation and conditional heteroscedasticity
are effectively overcome. Then, the standard residues are employed to conduct the risk
dependence analyses with copula models.

5.2. Dynamic and Asymmetric Dependence Measured by MS-M-Clayton Copula

The M-Clayton copula model is first employed to measure both positive and negative
dependence structures (Wang et al., 2013; Ji et al., 2018), and Table 2 reports the results,
in which all parameters are significant at the 1% level. It is worth noting that the weight
parameter ω across different pairwise returns is various, indicating that the existence
of negative dependence between Chinese and mature stock markets. Therefore, how
to recognize the occurrence of different risk dependence structures and correlations has
become an urgent problem to be clarified.

Table 3 further reports the estimated results of the MS-M-Clayton copula model,
where the model outperforms the invariant M-Clayton copula in terms of the logarithmic
likelihood values. Most of the estimated parameters are significant at the 10% level,
meaning that there are not only both positive and negative dependence structures but
also dependence-switching between Chinese and mature stock markets. Overall, the risk
dependence structures and correlations are different in each dependence state. Taking the
CSI300-S&P500 as an example, the P22 of 0.864 is significant and higher than P11, meaning
that state 2 is the dominant dependence structure. Similarly, for the CSI300-GSPTSE,
CSI300-FTSE100, and CSI300-Nikkei225 pairs, state 2 plays a dominant role, while state 1 is
dominant in CSI300-DAX30 and CSI300-ASX200 pairs.
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Table 2. M-Clayton copula estimates of CSI300 with mature stock indexes.

CSI300-S&P500 CSI300-GSPTSE CSI300-DAX30 CSI300-FTSE100 CSI300-
Nikkei225 CSI300-ASX200

α1 0.682 a 2.194 a 0.889 a 0.892 a 0.488 a 0.969 a

α2 2.68 × 10−7 a 8.67 × 10−8 a 1.69 × 10−7 a 3.24 × 10−8 a 49.415 a 5.23 × 10−7 a

α3 0.674 a 0.513 a 2.587 a 7.08 × 10−9 a 0.506 a 4.705 a

α4 3.0967 a 5.58 × 10−8 a 1.18 × 10−7 a 9.049 a 5.946 a 2.45 × 10−7 a

ω 0.924 a 0.594 a 0.571 a 0.923 a 0.947 a 0.443 a

Log-L −13.473 −8.808 −10.369 −10.453 −10.075 −9.776

Note: superscript a represent the significant levels at 1%.

Table 3. MS-M-Clayton copula estimates of CSI300 with mature stock indexes.

Copula CSI300-
S&P500 CSI300-GSPTSE CSI300-DAX30 CSI300-FTSE100 CSI300-

Nikkei225 CSI300-ASX200

αS1
1 3.176 0.262 a 0.652 a 1.622 0.527 a 0.243 a

αS1
2 1.82 × 10−10 a 9.12 × 10−8 a 25.801 a 4.11 × 10−9 a 54.908 a 2.68 × 10−8 a

αS1
3 0.601 c 5.594 a 0.998 a 3.278 a 2.66 × 10−9 a 0.141

αS1
4 3.043 8.28 × 10−8 a 3.95 × 10−9 a 1.70 × 10−9 a 3.62 × 10−9 a 1.770

αS2
1 0.584 a 1.637 a 0.275 0.653 a 0.461 a 1.627

αS2
2 1.95 × 10−10 a 3.23 × 10−8 a 1.11 × 10−10 a 3.28 × 10−9 a 3.24 × 10−10 a 0.094

αS2
3 0.616 a 1.39 × 10−7 a 20.078 a 1.93 × 10−10 a 0.776 a 5.363 a

αS2
4 3.077 8.03 × 10−9 a 5.89 × 10−10 a 6.832 a 6.844 a 1.37 × 10−8 a

ωS1 0.656 b 0.984 a 0.978 a 0.827 a 0.676 a 1.000 a

ωS2 0.999 a 0.676 a 0.415 c 0.817 a 0.971 a 0.932 c

P11 0.517 0.943 a 0.846 a 0.941 a 0.943 a 0.881 a

P22 0.864 a 0.974 a 0.710 a 0.971 a 0.993 a 0.727 a

Log-L −13.626 −11.276 −12.487 −12.369 −11.522 −11.777

Note: superscript a, b, and c represent the significant levels at 1%, 5%, and 10%, respectively.

Table 4 reports the tail correlation coefficients based on the constructed copula. Specifi-
cally, the values of λUU are larger than that of λLL between CSI300 and S&P500, DAX30, and
Nikkei225, meaning that the upside risk correlation triggered by positive factors is stronger
than the downside risk correlation triggered by negative factors, while the opposite rela-
tionship occurs between CSI300 and GSPTSE, FTSE100, and ASX200. Moreover, compared
with the Americas and European mature markets, the downside risk correlation between
Chinese and Asia–Oceania markets manifesting in synchronized decline is the lowest,
which is usually paid special attention in practice. Although the negative dependence is
not in dominant in the dominant state, it is still asymmetric. Specifically, the upper–lower
tail correlation between CSI300 and S&P500, FTSE100, and Nikkei225 is stronger than the
lower–upper tail correlation, indicating the probability of extreme rises in Chinese market
when extreme declines occur in the three mature markets. The opposite situation can be
found between CSI300 and DAX30. As for the main dependence state between CSI300
and GSPTSE and ASX200 returns, the negative dependence correlation is not observed.
Therefore, during the period of smooth economic operation denoted by the main state,
except for monitoring the positive risk spillover, Chinese investors and managers should
pay close attention to investment opportunities in the declines of S&P500, FTSE100, and
Nikkei225 while managing exposure carefully in the rises of DAX30.
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Table 4. Tail correlation coefficients between CSI300 and mature stock indexes.

State 1 State 2

λLL λLU λUU λUL λLL λLU λUU λUL

CSI300-S&P500 0.264 0.000 0.103 0.137 0.152 0.000 0.162 0.001
CSI300-GSPTSE 0.035 0.000 0.435 0.000 0.221 0.000 0.000 0.000
CSI300-DAX30 0.169 0.011 0.244 0.000 0.017 0.000 0.200 0.000

CSI300-FTSE100 0.270 0.000 0.334 0.000 0.141 0.000 0.000 0.083
CSI300-Nikkei225 0.091 0.160 0.000 0.000 0.108 0.000 0.199 0.013

CSI300-ASX200 0.029 0.000 0.004 0.000 0.304 0.000 0.410 0.000

Figure 2 provides the trajectories of PS1 and PS2 , in which the state transitions
are observed in the risk dependence between Chinese and most mature markets. For
CSI300-S&P500, there is no state-switching, and state 2 is dominant during the entire sam-
ple period, implying the stable dependence and risk correlation between the two markets.
For CSI300-GSPTSE, the state transitions occur concentrated in the periods from 2013 to
2015, corresponding to cyclical financial market bubbles and the post-COVID-19 [3], in
which the secondary state should be paid more attention because more investment opportu-
nities appear with a stronger upside tail correlation and a downside tail correlation close to
0. The state transitions of CSI300-DAX30 appear periodically around 2009 (may be affected
by European debt crisis) with weak persistence [53]. In the secondary state, the upside tail
correlation is significant, while the downside correlation decreases to near 0, increasing the
investment motivation. For CSI300-FTSE100, state 2 with apparent downside risk correla-
tion is dominant in most of the period. However, state 1 with both upside and downside
risk correlations switches to be the main dependence structure temporarily around 2009
(European debt crisis) and since the COVID-19 epidemic [53]. For CSI300-Nikkei225, state
1 with reversal correlation was the main state before 2009 and in 2012, corresponding to
the global financial crisis and the Asian financial turmoil led by the exchange rate system,
respectively [54]. However, state 2 with positive dependence structure plays a dominant
role in most of the period, especially in recent years. For CSI300-ASX200, state 1 with a
relatively low tail correlation is dominant. The state-switching process occurs around 2012
and 2015 temporarily, which is accompanied by an increase in positive risk correlation caused
by regional financial turmoil [54]. Moreover, in the comparison between markets in different
regions, the Asia–Oceania markets have the relatively low risk association, especially the
downside risk correlation that is paid much attention in practice, with the Chinese market.
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Figure 2. State transition probabilities between Chinese and mature markets (The blue line represents
state 1, and the orange line represents state 2).
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5.3. Comparative Analysis
5.3.1. Static Dependence Measured by Invariant Copula Models

To explain the similarity and differences between our findings and previous research,
we first employ seven commonly used invariant copulas, including the Gaussian, Student’s
t, Gumbel, 180◦ rotated Gumbel, Clayton, 180◦ rotated Clayton, and SJC copulas [53] to
measure the risk dependence between Chinese and mature markets. The estimated results
of invariant copulas are reported in Table 5.

Table 5. Invariant copula estimates of the CSI300 with mature stock indexes.

Copula CSI300-
SP500

CSI300-
GSPTSE

CSI300-
DAX30

CSI300-
FTSE100

CSI300-
Nikkei225

CSI300-
ASX200

Gaussian
ρ 0.372 a 0.348 a 0.361 a 0.266 a 0.314 a 0.349 a

Log-L −12.496 −10.781 −11.660 −6.077 −8.637 −10.853
Student’s t

ρ 0.372 a 0.347 a 0.375 a 0.285 a 0.314 a 0.356 a

v 99.899 a 99.983 a 7.966 a 7.527 a 99.320 a 8.910 a

Log-L −12.474 −10.596 −12.438 −7.069 −8.634 −11.710
Gumbel

δ 1.223 a 1.183 a 1.260 a 1.141 a 1.183 a 1.228 a

Log-L −6.541 −4.251 −8.307 −2.477 −4.729 −6.603
180◦ rotated Gumbel

δ 1.326 a 1.281 a 1.329 a 1.259 a 1.256 a 1.316 a

Log-L −15.498 −11.794 −14.612 −10.533 −10.484 −14.249
Clayton

ρ 0.630 a 0.543 a 0.594 a 0.523 b 0.505 a 0.593 a

Log-L −16.645 −13.235 −14.419 −12.023 −12.126 −14.634
180◦ rotated Clayton

ρ 0.307 c 0.263 0.355 c 0.130 0.237 0.310 c

Log-L −4.233 −3.046 −5.244 −0.671 −2.478 −4.320
SJC
λU 2.83 × 10−7 4.77 × 10−7 5.57 × 10−8 1.85 × 10−7 4.21 × 10−7 4.96 × 10−7

λL 0.380 0.404 0.366 a 0.346 0.320 0.354
Log-L −16.508 −11.868 −14.474 −12.044 −11.464 −14.735

Note: superscript a, b, and c represent the significant levels at 1%, 5%, and 10%, respectively.

According to the logarithmic likelihood values, it is found that the Clayton copula
performs the best with significant estimated parameters, followed by the 180◦ rotated Gum-
bel copula, the Student’s t copula, and the Gaussian copula, successively, and the Gumbel
copula and 180◦ rotated Clayton copula perform the worst. In the SJC copula measuring
asymmetric positive dependence, the lower tail correlations are larger than the upper ones,
but most parameters are not significant. The results suggest a positive but asymmetric
risk dependence between Chinese and mature markets, and the downside correlation is
stronger than the upside correlation. Overall, the results are generally consistent with
the findings drawn from M-Clayton and MS-M-Clayton copulas but fail to capture the
negative dependence structure and the upside correlations between CSI300 and S&P500,
DAX30, and Nikkei225 effectively. Moreover, the static copulas are unable to capture the
time-varying or dependence-switching characteristics of the correlations.

5.3.2. Dynamic Dependence Measured by Time-Varying Parameter Copula

To assess the dynamic risk dependence correlation between Chinese and mature
markets, Table 6 further reports the estimated results of four TVP copulas, in which most of
the estimated parameters are significant at the 10% level. It can be found that TVP copulas
perform better than the corresponding invariant copulas. Specifically, the TVP-180◦ rotated
Gumbel copula describing the lower–lower tail correlation effectively captures the risk
dependence between Chinese and mature markets, and the TVP-SJC copula also proves
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that the lower–lower correlation is more significant. The results confirm the positive risk
dependence structure and the prominent downside risk correlation between Chinese and
mature markets. The effectiveness of time-varying mechanism in depicting the dynamic risk
correlation is also verified. Although TVP copulas provide an analytical view on dynamic risk
correlation, a significant difference between them and the proposed MS-M-Clayton copula is
that the potential negative dependence structure is not effectively depicted.

Table 6. TVP copula estimates of the CSI300 with mature stock indexes.

Copula CSI300-S&P500 CSI300-GSPTSE CSI300-DAX30 CSI300-FTSE100 CSI300-
Nikkei225 CSI300-ASX200

TVP-Gaussian
ψ0 0.255 a 1.162 a 0.091 a 0.711 a 0.321 a 1.601 a

ψ1 0.270 a 0.258 a −0.169 a 0.023 a −0.049 a −0.739 a

ψ2 1.227 a −1.423 a 2.042 a −0.635 a 1.117 a −1.762 a

Log-L −13.283 −10.836 −13.771 −6.078 −8.661 −11.657
TVP-180◦ Rotated Gumbel

ωL 2.435 a 1.144 a 2.800 a 1.557 a 0.993 a −0.429 a

αL −0.815 a −0.311 a −0.768 a −0.557 a −0.324 a 0.683 a

βL −2.851 a −0.766 a −5.030 a −1.291 a −0.263 a 0.340 a

Log-L −18.779 −11.955 −17.436 −10.738 −10.512 −14.862
TVP-Gumbel

ωU 2.338 a 2.903 a 3.366 a 3.106 a −0.654 a −0.608 a

αU −0.916 a −0.744 a −1.018 a −1.363 a 0.942 a 0.620 a

βU −2.541 a −6.164 a −6.821 a −4.265 a −0.110 a 1.100 a

Log-L −9.867 −9.881 −15.758 −7.732 −5.015 −8.784
TVP-SJC

ωU −14.830 a −14.363 a −15.343 a −15.242 a −14.593 a −14.490 a

αU −0.012 a −0.002 b −8.391 × 10−4 c −0.002 a −0.002 a −5.799 × 10−4 b

βU −0.003 a 7.327 × 10−5 4.025 × 10−6 −1.465 × 10−6 −1.469 × 10−5 −1.642 × 10−4

ωL 2.792 a 0.459 a 5.150 a 4.447 a −0.181 a −2.235 a

αL −5.960 a −2.988 a −18.110 a −15.809 a −1.477 a 1.071 a

βL −4.505 a −1.209 a −4.230 a −4.203 a −0.858 a 3.771 a

Log-L −19.595 −12.379 −17.450 −12.804 −11.371 −14.976

Note: superscript a, b, and c represent the significant levels at 1%, 5%, and 10%, respectively.

5.4. Asymmetric Risk Spillover Measurement by VaR, CoVaR and Nomalized CoVaR

To provide implications for risk supervision and portfolio risk management, we
studied the extreme risk spillovers between Chinese and mature stock markets in different
routes by VaR and CoVaR based on the information from marginal distribution and Ms-
M-Clayton copula model. We set α and β equal to 0.05 for downside CoVaR and 0.95 for
the upside CoVaR calculation. Table 7 reports the summary statistics of the VaR and the
CoVaR, and Figure 3 shows the dynamic trajectories for intuitive observation.

For stock index pairs except CSI300-FTSE100, the absolute values of upside VaR
and CoVaR are larger than those of the downside, respectively, meaning that the upside
risk is larger than the downside risk in Chinese market. Moreover, the VaR and CoVaR
show phased extreme fluctuations, which may be related to the macroeconomic uncer-
tainties, such as the periods around 2008, 2013, and 2015. For the positive risk contagion
(3 and 6 rows in Table 7), the absolute values of CoVaR are all greater than that of VaR
when measuring either upside or downside risks, indicating the synergistic risk spillover
from mature markets to the Chinese market. In the measurement of negative risk contagion
(4–5 rows in Table 7), the absolute values of CoVaR are generally smaller than that of VaR,
implying the weak existence of reverse risk spillovers. Overall, the positive risk contagion
from mature markets to the Chinese market are more significant than the negative conta-
gion. It is noteworthy that the downside risk contagion between Chinese and Asia–Oceania
markets is relatively weak, suggesting that the Asia–Oceania market can be considered as a
potential choice for investors in the Chinese market to diversify their investment portfolios.



Entropy 2023, 25, 619 14 of 20

Table 8 further reports the hypothesis testing results by K-S test, and the statistics are
generally significant at 10% level, rejecting the null hypothesis that VaR is equal to CoVaR.

Table 7. Summary statistics of the VaR and the CoVaR (The CoVaRβ,t
CSI300(D)|Other(D)

and

CoVaRβ,t
CSI300(U)|Other(D)

denote the downside and upside VaRs of the CSI300 conditional

on the extreme declines of mature markets, respectively; the CoVaRβ,t
CSI300(D)|Other(U)

and

CoVaRβ,t
CSI300(U)|Other(U)

denote the downside and upside VaRs of the CSI300 conditional on the
extreme rises of mature markets, respectively).

CSI300-
S&P500

CSI300-
GSPTSE

CSI300-
DAX30

CSI300-
FTSE100

CSI300-
Nikkei225

CSI300-
ASX200

VaRα,t
CSI300,D −12.258 (4.483)

VaRα,t
CSI300,U 14.720 (4.227)

CoVaRβ,t
CSI300(D)|Other(D)

−19.060
(6.337)

−18.840
(6.335)

−18.791
(6.271)

−19.021
(6.228)

−18.275
(6.143)

−18.369
(6.126)

CoVaRβ,t
CSI300(D)|Other(U)

−7.773 (3.309) −12.474
(5.122) −8.736 (3.646) −11.459

(4.664)
−10.170
(4.875) −9.026 (3.706)

CoVaRβ,t
CSI300(U)|Other(D)

13.260 (3.827) 14.060 (5.324) 10.639 (3.344) 16.491 (5.574) 12.942 (5.057) 11.247 (3.468)

CoVaRβ,t
CSI300(U)|Other(U)

21.470 (6.056) 19.090 (4.497) 21.704 (6.116) 18.901 (4.802) 21.119 (5.988) 20.147 (5.650)

Note: this table reports the means and the standard errors (in parentheses) of VaR and CoVaR.
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Table 8. The hypothesis testing for equalities of CoVaR and VaR.

Null Hypotheses CSI300-
S&P500

CSI300-
GSPTSE

CSI300-
DAX30

CSI300-
FTSE100

CSI300-
Nikkei225

CSI300-
ASX200

CoVaRβ,t
CSI300(D)|Other(D)

=

VaRα,t
CSI300,D

0.593 a (0.000) 0.577 a (0.000) 0.577 a (0.000) 0.582 a (0.000) 0.550 a (0.000) 0.550 a (0.000)

CoVaRβ,t
CSI300(D)|Other(U)

=

VaRα,t
CSI300,D

0.582 a (0.000) 0.077 (0.637) 0.456 a (0.000) 0.159 b (0.017) 0.330 a (0.000) 0.445 a (0.000)

CoVaRβ,t
CSI300(U)|Other(D)

=

VaRα,t
CSI300,U

0.181 a (0.004) 0.220 a (0.000) 0.478 a (0.000) 0.132 (0.077) 0.324 b (0.047) 0.412 a (0.000)

CoVaRβ,t
CSI300(U)|Other(U)

=

VaRα,t
CSI300,U

0.533 a (0.000) 0.456 a (0.000) 0.544 a (0.000) 0.418 a (0.000) 0.517 a (0.000) 0.473 a (0.000)

Note: superscript a and b represent the significant levels at 1% and 5% respectively.

To further evaluate the intensity of risk spillovers in different routes and analyze
its asymmetry, Table 9 reports the summary statistics of the CoVaR normalized by VaR

(CoVaR/VaR). It can be observed that the mean values of
CoVaRβ,t

CSI300(D)|Other(D)

VaRα,t
CSI300,D

are greater

than those of
CoVaRβ,t

CSI300(D)|Other(U)

VaRα,t
CSI300,D

, and the mean values of
CoVaRβ,t

CSI300(U)|Other(U)

VaRα,t
CSI300,U

are greater

than those of
CoVaRβ,t

CSI300(U)|Other(D)

VaRα,t
CSI300,U

, indicating that the positive and negative risk contagion

effects are asymmetric, and the positive effect is stronger than the negative effect. Mean-

while, the mean values of
CoVaRβ,t

CSI300(D)|Other(D)

VaRα,t
CSI300,D

are greater than those of
CoVaRβ,t

CSI300(U)|Other(U)

VaRα,t
CSI300,U

,

and the mean values of
CoVaRβ,t

CSI300(U)|Other(D)

VaRα,t
CSI300,U

are greater than those of
CoVaRβ,t

CSI300(D)|Other(U)

VaRα,t
CSI300,D

except in CSI300-GSPTSE pairwise returns, implying the asymmetry between upside and
downside risk contagion effects, and the downside effect is generally stronger, while the
opposite effect is in negative contagion. The analyses are statistically supported by K-S tests
(see in Tables A3 and A4 of Appendix A).

Table 9. Summary statistics of the CoVaR/VaR.

CSI300-
SP500

CSI300-
GSPTSE

CSI300-
DAX30

CSI300-
FTSE100

CSI300-
Nikkei225

CSI300-
ASX200

CoVaRβ,t
CSI300(D)|Other(D)

VaRα,t
CSI300,D

1.571 (0.082) 1.551 (0.082) 1.548 (0.079) 1.569 (0.080) 1.504 (0.069) 1.513 (0.080)

CoVaRβ,t
CSI300(D)|Other(U)

VaRα,t
CSI300,D

0.625 (0.056) 1.014 (0.161) 0.707 (0.101) 0.926 (0.094) 0.828 (0.264) 0.729 (0.054)

CoVaRβ,t
CSI300(U)|Other(D)

VaRα,t
CSI300,U

0.903 (0.056) 0.943 (0.162) 0.721 (0.063) 1.110 (0.113) 0.871 (0.185) 0.762 (0.051)

CoVaRβ,t
CSI300(U)|Other(U)

VaRα,t
CSI300,U

1.461 (0.055) 1.317 (0.110) 1.478 (0.059) 1.299 (0.118) 1.441 (0.111) 1.372 (0.061)

Note: this table presents the means and the standard errors (in parentheses) of the CoVaR/VaR.

6. Conclusions

The risk contagion between Chinese and mature markets has attracted more and more
attention from both scholars and market participants. In this work, we construct a novel Ms-
M-Clayton copula model to identify both positive and negative dependences and revisit the
risk contagion between Chinese market and six mature markets in the Americas, Europe,
and Asia–Oceania. Four basic Clayton copulas with various rotations are weighted to
capture different tail correlations, and a two-state transition mechanism following Markov
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chain is introduced to allow the copula depicting dynamic risk correlations. Based on the
estimated results, we calculate the CoVaR to measure the risk contagion between markets.
The major conclusions are as follows:

Firstly, the financial risk dependence structures are asymmetric, and the correlations
are heterogeneous. Overall, the positive dependence is dominant between Chinese and
mature markets. Meanwhile, the downside risk correlation is stronger than the upside one
between Chinese and American, German, and Japanese markets, while the opposite relevance
is observed for Chinese and Canadian, British, and Australian markets. It is noted that
compared to the Americas and European markets, the risk correlation between Chinese and
Asia–Oceania markets is relatively weak. Moreover, the negative dependence should not be
ignored as it may emerge in a volatile market environment and provide market participants
with signals to manage their exposure. Then, the financial risk contagion is also asymmetric,
which manifests in both positive and negative contagion effects, as well as in both upside and
downside contagion effects. Overall, the positive effect is stronger than the negative effect, and
the downside effect is stronger than the upside effect in positive structure. Compared with
mature markets in Europe and the Americas, the risk spillover from Asia–Oceania markets is
relatively weak, indicating that the Japanese and Australian markets can be considered as a
potential choice for the investors in the Chinese market to diversify their portfolios.

This work enriches the understanding of financial risk contagion mechanism of Chi-
nese and mature markets, which provides both practical and policy implications for investor
and supervisors. With respect to practical aspects, before constructing an international
portfolio, it is necessary for investors to use such quantitative models to identify and
filter out markets with stronger downside risk correlation in order to better diversify
their investment risks. In this study, the Chinese stock market generally has weaker risk
relationship and contagion effects with mature markets in Asia–Oceania compared to
the Americas and Europe thus, the Japanese and Australian markets can be regarded as
feasible choices for Chinese market investors to diversify investment risks. In addition,
since the Ms-M-Clayton has the capability to detect negative risk dependence structures,
it is possible for investors to leverage it to discover the unusual opportunities to hedge
investment risk by constructing cross-market portfolios. In the policy-making perspective,
for the emerging markets at a disadvantage in risk contagion, it is essential to improve their
financial system and decrease the pressure of capital outflows under extreme conditions.
Specifically, according to the findings of this work, the dependence structures between
markets are generally stable, which creates the possibility for supervisors to predict future
risk scenarios and formulate guiding or regulatory policies using the Ms-M-Clayton copula.
Moreover, as the model is sensitive to the transition probability in risk dependence states,
and the supervisors are able to perceptively monitor the potential risk changes and imple-
ment risk prevention measures on previous experience. Furthermore, the Ms-M-Clayton
copula model is also applicable for the series analyses of various engineering fields.

To mention, we focus only on the risk contagion between Chinese and mature stock
markets in this work. Several fast-growing economies, such as Brazil, Russia, India,
and South Africa, constituting the BRICS group with China, represent over 18% of the
population and approximately 8% of the GDP around the world. A comparative analysis
of their stock markets may be a promising topic in future research.
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Appendix A

Table A1. Diagnostic tests of stationarity, autocorrelation, and heteroscedasticity.

CSI300 S&P500 GSPTSE DAX30 FTSE100 Nikkei225 ASX200

ADF −11.633 *** −12.099 *** −11.859 *** −12.234 *** −13.419 *** −11.760 *** −12.253 ***
PP −12.293 *** −12.145 *** −11.920 *** −12.181 *** −13.418 *** −11.763 *** −12.248 ***

KPSS 0.104 0.179 0.033 0.045 0.059 0.135 0.048
Q (5) 21.335 *** 6.294 7.096 7.109 3.385 4.423 3.236
Q (10) 25.902 *** 15.362 14.193 15.727 9.440 8.564 6.966
Q2(5) 28.419 *** 48.390 *** 16.423 *** 5.253 17.739 *** 5.174 11.914 **
Q2(10) 58.267 *** 52.676 *** 18.408 ** 12.539 39.787 *** 10.733 14.600

ARCH (1) 0.704 26.472 *** 15.538 *** 2.126 15.553 *** 3.634 * 11.383 ***
ARCH (5) 14.973 *** 40.282 *** 17.452 *** 4.533 17.119 *** 7.610 11.441 **

Note: ***, **, and * represent the significant levels at 1%, 5%, and 10%, respectively.

Table A2. Parameter estimation results of the marginal distribution models and diagnostic tests.

Parameters CSI300 S&P500 GSPTSE DAX30 FTSE100 Nikkei225 ASX200

Panel A. φ0
1.348 **
(0.668)

1.092 ***
(0.240)

0.282 ***
(0.100)

0.589
(0.398)

0.447
(0.280)

0.659
(0.494)

0.760 ***
(0.286)

AR-GARCH
model

φ1
0.092 *
(0.071)

φ4
0.189 ***
(0.062)

α0
4.201

(4.241)
1.137

(0.937)
0.642 ***
(0.211)

1.106
(1.058)

4.700
(3.963)

11.320 ***
(2.144)

α1
0.153

(0.116)
0.248 ***
(0.102)

0.535 ***
(0.103)

0.132 **
(0.062)

0.128 **
(0.053)

0.356 ***
(0.130)

β1
0.797 ***
(0.135)

0.723 ***
(0.105)

0.342 ***
(0.097)

0.809 ***
(0.102)

0.730 ***
(0.149)

GED. 1.193 ***
(0.135)

1.286 ***
(0.213)

1.652 ***
(0.262)

1.494 ***
(0.242)

Panel B. Log-L −627.552 −510.743 −343.105 −578.161 −511.389 −579.028 −517.528

Diagnostic
tests

AIC 6.973 5.546 3.732 6.228 5.553 6.314 5.608
Q (5) 3.820 1.698 3.799 7.109 0.712 0.474 1.594

Q (10) 6.385 6.374 7.398 15.727 4.119 3.896 5.102
Q2 (5) 2.549 3.639 3.505 5.971 5.056 2.588 1.393

Q2 (10) 9.202 9.977 9.374 12.817 15.250 7.690 9.668
ARCH (1) 0.278 1.998 2.009 2.124 2.289 0.796 0.590
ARCH (5) 2.491 3.607 3.678 4.533 4.583 3.340 1.273

Note: ***, **, and * represent the significant levels at 1%, 5%, and 10%, respectively.

Table A3. The K-S test for CoVaR/VaR between positive and negative risk spillovers.

Hypotheses CSI300-
S&P500

CSI300-
GSPTSE

CSI300-
DAX30

CSI300-
FTSE100

CSI300-
Nikkei225

CSI300-
ASX200

H0 :
CoVaRβ,t

CSI300(D)|Other(D)

VaRα,t
CSI300,D

=
CoVaRβ,t

CSI300(D)|Other(U)

VaRα,t
CSI300,D

;

H1 :
CoVaRβ,t

CSI300(D)|Other(D)

VaRα,t
CSI300,D

6=
CoVaRβ,t

CSI300(D)|Other(U)

VaRα,t
CSI300,D

.

1.000 ***
(0.000)

1.000 ***
(0.000)

1.000 ***
(0.000)

1.000 ***
(0.000)

0.945 ***
(0.000)

0.550 ***
(0.000)

H0 :
CoVaRβ,t

CSI300(U)|Other(U)

VaRα,t
CSI300,U

=
CoVaRβ,t

CSI300(U)|Other(D)

VaRα,t
CSI300,U

;

H1 :
CoVaRβ,t

CSI300(U)|Other(U)

VaRα,t
CSI300,U

6=
CoVaRβ,t

CSI300(U)|Other(D)

VaRα,t
CSI300,U

.

1.000 ***
(0.000)

0.824 ***
(0.000)

1.000 ***
(0.000)

0.577 ***
(0.000)

0.896 ***
(0.000)

0.445 ***
(0.000)

Note: this table summarize the results of the Kolmogorov–Smirnov (KS) tests; *** represent the significant levels
at 1%, and the p-values for the KS statistics are reported in parentheses.
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Table A4. The K-S test for CoVaRs/VaRs between upside and downside risk spillovers.

Hypotheses CSI300-
S&P500

CSI300-
GSPTSE

CSI300-
DAX30

CSI300-
FTSE100

CSI300-
Nikkei225

CSI300-
ASX200

H0 :
CoVaRβ,t

CSI300(D)|Other(D)

VaRα,t
CSI300,D

=
CoVaRβ,t

CSI300(U)|Other(U)

VaRα,t
CSI300,U

;

H1 :
CoVaRβ,t

CSI300(D)|Other(D)

VaRα,t
CSI300,D

6=
CoVaRβ,t

CSI300(U)|Other(U)

VaRα,t
CSI300,U

.

0.615 ***
(0.000)

0.797 ***
(0.000)

0.440 ***
(0.000)

0.830 ***
(0.000)

0.247 ***
(0.000)

0.412 ***
(0.000)

H0 :
CoVaRβ,t

CSI300(D)|Other(U)

VaRα,t
CSI300,D

=
CoVaRβ,t

CSI300(U)|Other(D)

VaRα,t
CSI300,U

;

H1 :
CoVaRβ,t

CSI300(D)|Other(U)

VaRα,t
CSI300,D

6=
CoVaRβ,t

CSI300(U)|Other(D)

VaRα,t
CSI300,U

.

0.989 ***
(0.000)

0.346 ***
(0.000)

0.253
(0.217)

0.703 ***
(0.000)

0.484 ***
(0.000)

0.473 ***
(0.000)

Note: this table summarize the results of the Kolmogorov–Smirnov (KS) tests; *** represent the significant levels
at 1%, and the p-values for the KS statistics are reported in parentheses.
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