
Citation: Fan, Z.; Jia, K.; Zhang, L.;

Zou, F.; Du, Z.; Liu, M.; Cao, Y.;

Zhang, Q. A Cartesian-Based

Trajectory Optimization with Jerk

Constraints for a Robot. Entropy 2023,

25, 610. https://doi.org/10.3390/

e25040610

Academic Editors: Ahmad Taher

Azar, Quanmin Zhu, Giuseppe Fusco,

Amjad J. Humaidi and Ibraheem

Kasim Ibraheem

Received: 28 February 2023

Revised: 31 March 2023

Accepted: 31 March 2023

Published: 3 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

A Cartesian-Based Trajectory Optimization with Jerk
Constraints for a Robot
Zhiwei Fan 1,2,3,* , Kai Jia 1,2,4, Lei Zhang 1,2,4, Fengshan Zou 1,2,4, Zhenjun Du 4, Mingmin Liu 4, Yuting Cao 1,2,3

and Qiang Zhang 5

1 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences,
Shenyang 110016, China

2 Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 SIASUN Robot & Automation Co., Ltd., Shenyang 110169, China
5 School of Automation, Jiangsu University of Science and Technology, No. 666 Changhui Road,

Zhenjiang 212100, China
* Correspondence: fanzhiwei@sia.cn

Abstract: To address the time-optimal trajectory planning (TOTP) problem with joint jerk constraints
in a Cartesian coordinate system, we propose a time-optimal path-parameterization (TOPP) algo-
rithm based on nonlinear optimization. The key insight of our approach is the presentation of a
comprehensive and effective iterative optimization framework for solving the optimal control prob-
lem (OCP) formulation of the TOTP problem in the (s, ṡ)-phase plane. In particular, we identify
two major difficulties: establishing TOPP in Cartesian space satisfying third-order constraints in joint
space, and finding an efficient computational solution to TOPP, which includes nonlinear constraints.
Experimental results demonstrate that the proposed method is an effective solution for time-optimal
trajectory planning with joint jerk limits, and can be applied to a wide range of robotic systems.

Keywords: time-optimal trajectory planning; iterative optimization; jerk limits; time-optimal path
parameterization; phase plane

1. Introduction

Presently, industrial robotics has a wide range of applications, including welding,
palletizing, grinding and polishing, assembly, and painting [1–3]. After decades of research,
the problem of time-optimal trajectory planning (TOTP) of robots along specified paths
has been extensively studied to optimize operation time and improve the efficiency of
automated industrial robot operations [4]. TOTP is based on interpolation and introduces
the concepts of constraint and optimization to maximize the performance of the robot
and ensure the shortest time, while making the trajectory smooth and the operation run
smoothly [5]. Time-optimal path parameterization (TOPP) is a fast method for determining
critical conditions for navigating a pre-defined smooth path in a robot system’s configu-
ration space while respecting physical constraints [6]. Although finding the time-optimal
parameterization of a path subject to second-order constraints is a well-studied problem in
robotics, TOPP subject to third-order constraints (such as jerk and torque rate) has received
relatively little attention and remains largely open. Moreover, joint space trajectory plan-
ning cannot visualize the end position of the robotic arm, and Cartesian space trajectory
planning is often used in many specific industrial scenarios such as welding, cutting, or
machining that require operation on a predetermined path. Therefore, a TOTP algorithm
that satisfies the joint third-order constraints in Cartesian space is urgently needed.

Entropy 2023, 25, 610. https://doi.org/10.3390/e25040610 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25040610
https://doi.org/10.3390/e25040610
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-6231-3673
https://orcid.org/0000-0001-8324-6708
https://doi.org/10.3390/e25040610
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25040610?type=check_update&version=1

Entropy 2023, 25, 610 2 of 21

1.1. Related Works

Over the years, many academics have worked on the issue of TOTP for industrial
robots. This problem can be roughly divided into three main families of methods: Numeri-
cal Integration (NI), Convex Optimization (CO), and Dynamic Programming (DP).

The NI-based strategy was initiated by Bobrow et al. [7] and further developed by
other researchers. Kunz et al. [8] provided a circular-blends route differentiability approach
to ensure that the trajectory precisely follows the specified path of differentiable joint space.
Pham [9] provided a comprehensive solution to the problem of dynamic singularities.
Pham et al. [10] proposed TOPP3, a novel TOPP algorithm that addresses third-order
constraints, as well as the problem of singularities that may hinder the integration of
motion profiles and the smooth connection of optimal profiles.Shen et al. [11,12] proposed
various new characteristics of the NI method for TOTP along the defined path, and provided
explicit mathematical confirmation of these traits. Lu et al. [13] proposed a time-optimal
motion planning method for sculpted surface robot machining that takes joint space and
tool tip motion constraints into account. They solved the time-optimal tool motion planning
in robot machining using an efficient numerical integration method based on the Pontryagin
maximum principle. Methods based on NI explicitly calculate the optimal control at each
position along the path, instead of performing an implicit search such as the CO-based
method, which makes them very fast. However, finding the switch points between the
acceleration and deceleration phases is necessary, and the main reason for their failure.

The CO-based strategy has been expanded upon by numerous researchers after being
introduced by Verscheure et al. [14]. Xiao et al. [15] used the cubic polynomial fitting
method to construct the maximum pseudo-speed curve that meets the torque and speed
limits. Debrouwere et al. [16] proposed an effective sequential convex programming (SCP)
method to solve the corresponding nonconvex optimal control problems as a difference of
convex (DC) function. Pham et al. [6] presented a TOPP approach based on reachability
analysis (TOPP-RA), which iteratively computes the reachable and controllable sets at dis-
crete points along the path by solving linear programming problems (LP). Nagy et al. [17]
considered kinematics and dynamics constraints and generated the time-optimal veloc-
ity distribution for the LP control problem using the sequential optimization method.
Ma et al. [18] converted a nonconvex jerk limit into a linear acceleration constraint and
indirectly introduced it into CO for TOTP. This method preserves CO’s convexity and does
not increase the number of optimization variables, resulting in a quick calculation speed.
CO-based methods are easy to implement and quite robust, and can consider multiple
optimization objectives beyond just time. However, the optimization problem they solve is
very large. The number of variables and constraint inequalities scales with the discretiza-
tion grid size, resulting in implementation that is an order of magnitude slower than the
NI-based method.

The DP-based approach was first developed by [19] and has since been expanded
and improved upon by numerous researchers. Kaserer et al. [20] proposed a DP-based
method for solving the optimal path-tracking problem, which uses interpolation in the
phase plane. This approach considers joint speed, acceleration, torque, and mechanical
power, as well as joint jerk and torque rate limitations. Kaserer et al. [21] extended this
method to solve the time-optimal path-tracking problem for cooperative grasping tasks
involving two robots, while also accounting for robot speed, acceleration, jerk, and torque
constraints. Barnett et al. [22] introduced the bisection algorithm (BA), a novel technique
that extends DP approaches to tackle more complex problems with a larger number of
constraints. These approaches, which break down the larger problem into smaller sub-
problems, become increasingly advantageous as the number of constraints grows, compared
to direct transcription methods. Methods based on DP are simple to implement and do not
suffer from local minima problems, and they traverse all states at each path point (rather
than requiring convex space or convex function assumptions such as the CO-based method).
However, the state space to be searched is huge, resulting in implementation being one (or

Entropy 2023, 25, 610 3 of 21

even more) orders of magnitude slower than the CO-based method. Additionally, the DP
method cannot truly achieve the global optimal point due to the issue of grid precision.

There are several alternative approaches to the TOTP problem beyond the three
groups mentioned above [23–28]. Nevertheless, these approaches also neglect the third-
order constraint and do not perform planning in Cartesian space. Table 1 summarizes and
compares the similarities and differences of the above three methods in the following five
aspects: the requirement for calculating switching points, the ability to consider multiple
optimization objectives, the ability to achieve the optimal point (rather than approximately
achieving the optimal point), the planning space, and the highest constraint order.

Table 1. A brief overview of related methods.

Methods Calculate
Switch Points

Optimization
Objectives

(Simple,
Multiple)

Achieve
Optimal Point

Planning
Space

Constraint Order
(Second-Order,
Third-Order)

NI-based

[7,11,12] Need Simple Yes Joint/Cartesian Second-order

[8,9] Need Simple Yes Joint Second-order

[10,13] Need Simple Yes Joint Third-order

CO-based

[6,17] Not need Simple Yes Joint Third-order

[14,15] Not need Multiple Yes Joint/Cartesian Second-order

[16] Not need Multiple Yes Joint/Cartesian Third-order (Limit)

[18] Need Simple Yes Joint Third-order (Limit)

DP-based
[19,20] Not need Multiple No Joint Third-order

[21] Not need Multiple No Joint/Cartesian Third-order

[22] Not need Multiple No Joint Second-order

Ours Not need Multiple Yes Joint/Cartesian Third-order

1.2. Motivations and Contributions

Motivated by previous approaches, this paper proposes aTOTP algorithm that consid-
ers joint third-order limits in a Cartesian coordinate system, maximizing the robot operation
efficiency while maintaining smoothness and minimizing time. To achieve this, kinematic
feasibility is ensured by introducing joint velocity, acceleration, and jerk constraints on
the path parameters s, which are then relocated to the Cartesian space using a constraint
transfer method based on Lie theory (We use the Lie group SE(3) to represent the motion
of the robot end-effector in Cartesian space. The detailed description of using Lie theory
for robot forward and inverse kinematic analysis and the Jacobian matrix derivation pro-
cess is presented in the Appendix A), reducing the number of decision variables. After
establishing the optimal control problem (OCP) formulation of the TOTP problem in the
(s, ṡ) phase plane, the TOPP-RA algorithm is extended to the Cartesian space to obtain
an initial solution, and a constraint relaxation approach is used to simplify nonconvex
state-update constraints. The method is validated through simulation experiments on a
ROS-based platform and real-world experiments on an actual robot, demonstrating effec-
tiveness, generality, and robustness. This paper makes several contributions to the field of
optimal trajectory generation:

• A comprehensive and effective framework for iterative optimization is presented to
establish the OCP formulation of the TOTP problem, which is described by the path
parameter s;

• Given an efficient computational solution for computing the nonlinear TOPP in Carte-
sian space while satisfying third-order constraints in joint space;

Entropy 2023, 25, 610 4 of 21

• Experiments have demonstrated that the proposed method can effectively generate
smoother trajectories that satisfy jerk constraints on a wide range of robot systems.

The remainder of this paper is organized as follows. Section 2 outlines the key features
of the OCP model used for the TOPP algorithm. In Section 3, we present the Cartesian-
based TOPP-RA method and describe the proposed TOPP algorithm based on iterative
optimization. Section 4 reports extensive experimental results. Finally, in Section 5, we
provide concluding remarks.

2. Problem Statement

In this section, we establish the TOPP problem as an OCP in Cartesian space, which
includes joint third-order constraints and an objective function in the (s, ṡ) phase plane.
The details of these constraints will be formulated in the following subsections.

2.1. General Description

In a n-dof robot system, the state profiles in configuration space are denoted by
x(t) = [q(t); q̇(t); q̈(t)], where q ∈ Rn represents the configuration of the system. The
control inputs u(t) represent the third derivative of the joint angles,

...q(t), in configuration
space. The following is a standard OCP that can be used to describe the time-optimal speed
planning problem [29]:

min J(x(t), u(t))

s.t. ẋ(t) = fStatus−update(x(t), u(t)),

xmin ≤ x(t) ≤ xmax, umin ≤ u(t) ≤ umax, t ∈ [0, T];

x(0) = xinit, u(0) = uinit, x(T) = xgoal , u(T) = ugoal .

(1)

fStatus−update = 0 forms the status-update process. [xmin, xmax, umin, umax] describes the
allowable regions of state and control profiles. [xinit, uinit, xgoal , ugoal] denotes the start
and end conditions of the state and control profiles. T represents the total time, which is
unidentified now.

To translate the above model to a TOPP problem in the (s, ṡ) phase plane, we propose
a function p(s)s∈[0,send]

that represents a geometric path in the Cartesian space, and is
piece-wise C2-continuous. We introduce a time parameterization that itself represents the
parameter of the path, as a piece-wise C2, increasing scalar function s : [0, T] → [0, send].
The trajectory is then recovered as p(s(t))t∈[0,T] [30]. In the rest of this section, we introduce
how to complete the transformation of the TOPP problem through s : [0, T]→ [0, send].

2.2. Objective Function

To minimize the total time of robot movement, the objective function J(x(t), u(t)) is
defined as

J = T =
∫ T

t=0
1dt (2)

Replace the previous equation with ds/ds = 1 and change the integral limits from
[0, T] (time) to [0, send] (s) [31]. Formula (2) is updated as follows:

J =
∫ T

t=0
1dt =

∫ T

t=0

ds
ds

dt =
∫ send

s=0

dt
ds

ds =
∫ send

s=0

1
ṡ

ds (3)

Therefore, to minimize the time, ṡ−1(s) should be as small as possible. In other words,
ṡ(s) must be as large as possible while still satisfying the various constraints mentioned
later. This means that the state trajectory must follow the boundary of the phase diagram
plotted by (s, ṡ), which is naturally aligned with TOPP-RA method.

Entropy 2023, 25, 610 5 of 21

2.3. Constraints

In a TOPP problem, there are generally three types of constraints: status-update con-
straints, constraints on the states/control profiles, and two-point boundary constraints [32].

2.3.1. Status-Update Constraints

The state-update/kinematic constraints of a robot describe the kinematic feasibility
of the robot’s motion. Using forward and inverse kinematics, the configuration q in the
joint space can be converted to the corresponding Cartesian space representation p (see the
Appendix A for transformation method). As a result, the state and control profiles can be
expressed in terms of the geometric path p(s), which can then be further transformed to a
form represented by path parameters s, as shown in Equation (4).

d
ds

[
ṡ
s̈

]
=

s̈
ṡ...
s
ṡ

, s ∈ [0, send] (4)

The status-update function can be rewritten by performing a second-order Taylor
series expansion at si.

ṡ = ṡi +
s̈i

ṡi
∆(s) +

d2 ṡ
ds2

∣∣∣∣
s=ξ

(∆(s))2

s̈ = s̈i +

...
s i

ṡi
∆(s) +

d2 s̈
ds2

∣∣∣∣
s=η

(∆(s))2
(5)

where s ∈ [si, si+1], ξ, η ∈ [si, s] and ∆(s) = s− si. Let us define the first-order status-update
discretization function as follows:

ṡ = ṡi +
s̈i

ṡi
∆(s)

s̈ = s̈i +

...
s i

ṡi
∆(s)

(6)

The error of the first-order status-update discretization function, denoted by estate
f irst, is

as follows:
estate

f irst = O(∆2(s)) (7)

Similarly, by performing a third-order Tylor series expansion at si, the second-order
status-update discretization function and its error can be, respectively, rewritten as:

ṡ = ṡi +
s̈i

ṡi
∆(s) + (

...
s i

ṡ2
i
−

s̈2
i

ṡ3
i
)∆2(s)

s̈ = s̈i +

...
s i

ṡi
∆(s)−

s̈i
...
s i

ṡ3
i

∆2(s)
(8)

estate
second = O(∆3(s)) (9)

2.3.2. States/Control Profiles Constraints

The state/control constraints of a robot refer to the physical constraints that the robot
must adhere to during its motion process. Typically, these constraints involve the robot’s
state variables, such as position, velocity, acceleration, joint angles, and so on. The con-
straints on the robot’s states and control profiles can be formulated as xmin ≤ x(t) ≤ xmax
and umin ≤ u(t) ≤ umax, respectively, where t ∈ [0, T]. These constraints essentially
limit the speed, acceleration, and jerk of the robot’s joints [33], as illustrated in the
following equations.

Entropy 2023, 25, 610 6 of 21

q̇min
q̈min...qmin

 ≤
q̇(t)

q̈(t)...q(t)

 ≤
q̇max

q̈max...qmax

, t ∈ [0, T] (10)

The derivatives of the joints are projected into Cartesian space through the Jacobian
matrix, as shown in Formula (11), which yields the derivatives of the path parameter s.

Jq̇ = p′ ṡ

Jq̈ + J̇q̇ = p′′ ṡ2 + q′ s̈

J
...q + 2J̇q̇ + J̈q̇ = p′′′ ṡ3 + 3p′′ ṡs̈ + p′

...
s

(11)

where �′ is defined as the differentiation of � with respect to the path parameter s. Hence-
forth, we shall refer to s, ṡ, s̈, and

...
s as the position, velocity, acceleration, and jerk, respec-

tively. By substituting Equation (11) into Equation (10), the inequality constraints on the
states/control profiles can be expressed as follows:q̇min

q̈min...qmin

 ≤
 a(s)ṡ

b(s)ṡ2 + c(s)s̈
d(s)ṡ3 + e(s)ṡs̈ + f(s)

...
s

 ≤
q̇max

q̈max...qmax

, s ∈ [0, send], where (12)

a(s) := J−1(s)p′(s),

b(s) := J−1(s)(p′′(s)− J′(s)J−1(s)p′(s)),

c(s) := J−1(s)p′(s),

d(s) := J−1[p′′′(s)− 2J′(s)J−1(s)(p′′(s)− J′(s)J−1(s)p′(s))− J′′(s)J−1(s)p′(s)],

e(s) := 3J−1(s)(p′′(s)− J′(s)J−1(s)p′(s)),

f(s) := J−1(s)p′(s).

(13)

The formulas for calculating each order derivative of the Jacobian matrix (J′, J′′) will
be presented in the Appendix A.

2.3.3. Boundary Constraints

Boundary constraints refer to the limitations imposed on the state and control vari-
ables of a robot during the initial and final stages of its operation. The constraints
x(0) = xinit, u(0) = uinit, x(T) = xgoal , and u(T) = ugoal define the boundary conditions.
These boundary conditions ensure that the state and control profiles at the start moment
s = 0(t = 0) and the end moment s = send(t = T) represent the necessary facts at those
moments, respectively.

[ṡ(0), s̈(0),
...
s (0)] = [ṡ0, s̈0,

...
s 0],

[ṡ(send), s̈(send),
...
s (send)] = [ṡsend , s̈send ,

...
s send].

(14)

In particular, more degrees of freedom are allowed in setting the control profile
...
s at

s = 0(t = 0) to ensure the normal operation of the motor.
As a summary of this section, the following OCP is established to represent the TOPP

problem based on Cartesian space:

min (3)

s.t. Status-update constraints (4);

States/Control profiles constraints (12) and (13);

Two-point boundary constraints (14).

(15)

In general, when moving from the initial state to the target state along a predeter-
mined path, speed planning aims to resolve any potential conflicts that may arise between

Entropy 2023, 25, 610 7 of 21

kinematics-based constraints and environmental constraints. However, due to the nonlin-
ear relationship between the state and control variables, an appropriate initial solution is
required to solve the OCP (15). There is a problem with the state/control constraints (12)
in OCP (15) because the jerk of the robot is not taken into account when solving the initial
solution, which can easily lead to leaving out the free space required for kinematic feasibility.
Therefore, directly solving OCP (15) may not always be effective. An alternative option we
propose is to build an iterative framework in which the kinematic feasibility is adaptively
adjusted when it is found to be inappropriate. The details on how to find an effective
computational solution to TOPP with nonlinear constraints are described in Section 3.

3. TOPP by Iterative Optimization (TOPP-IO)

This section introduces our proposed Cartesian-based TOPP-IO method. First, we
present the initial guess and control group generated by the Cartesian-based TOPP-RA
method, followed by an explanation of the principle of the TOPP-IO method.

3.1. Cartesian-Based TOPP-RA Method

Combining with [6], we expanded the TOPP-RA method from joint space to Cartesian
space, which we call the Cartesian-based TOPP-RA method. The geometric path in Carte-
sian space, denoted by p(s), is divided into N segments with N + 1 grid points, where
(si, ṡi, s̈i,

...
s i) represents the i-th stage state and control profiles, with i ∈ [0, 1, . . . , N]. The

constraints of joint acceleration can be formulated as follows, by taking into account (12)
and (13):

Bṡ2 + Cs̈ ≤ Q̈ (16)

where B =

[
b(s)
−b(s)

]
, C =

[
c(s)
−c(s)

]
and Q̈ =

[
q̈max
−q̈min

]
. The velocity constraints of the joints

are expressed as a range of i-stage state variables, Xi = [(ṡ2
i)

lower, (ṡ2
i)

upper], which reflects
the allowable velocity of the joints.

(ṡ2
i)

lower =max
j

{
q̇min,j

aj(si)
| aj(si) > 0 or

q̇max,j

aj(si)
| aj(si) < 0

}
,

(ṡ2
i)

upper =min
j

{
q̇max,j

aj(si)
| aj(si) > 0 or

q̇min,j

aj(si)
| aj(si) < 0

}
.

(17)

where j is the j-th element of a(si), q̇min and q̇max. The state-update function for constant
acceleration over [si, si+1] is given by:

ṡ2
i+1 = ṡ2

i + 2∆i s̈i (18)

where ∆ = si+1 − si.

3.1.1. Backward Pass

In considering the segment [si, si+1] and assuming that the i+1-th feasible range,
Si+1, is known, the i-th feasible range, Si = [(ṡ2

i)
−, (ṡ2

i)
+], can be calculated using the

following formula:

(ṡ2
i)
− := min ṡ2

i ,

(ṡ2
i)

+ := max ṡ2
i ,

s.t. ṡ2
i ∈ Xi,

ṡ2
i + 2∆i s̈i ∈ Si+1,

Bṡ2
i + Cs̈i ≤ Q̈.

(19)

Entropy 2023, 25, 610 8 of 21

Obviously, Formula (19) indicates that for any ṡ2
i ∈ Si, there always exists a state

ṡ2
i+1 ∈ Si+1 that corresponds to it. In other words, we can always move from the feasible

range Si to Si+1 using the state-update function. By applying Formula (19) recursively, we
can obtain a set of transitive feasible ranges, [S0,S1, . . . ,Sn]. Any state that belongs to the
transitive feasible ranges can be transferred to the ending state when the last feasible range
set is determined.

3.1.2. Forward Pass

By transferring ṡ2
i ∈ Si from step i to ṡ2

i+1 ∈ Si+1 of step i + 1, we can recursively
reach the final state Sn. Furthermore, literature [6] has demonstrated that the transition
process occurs on a convex polygon. Therefore, selecting control variables that can reach
the upper limit of the next S will result in the shortest task time. This selection exhibits
locally greedy behavior while globally optimizing performance. Once the transitive feasible
ranges have been derived from the backward pass, the method for transferring (ṡ2

i)
∗ to

(ṡ2
i+1)

∗ using a greedy algorithm is as follows:

(ṡ2
i+1)

∗ := max(ṡ2
i)
∗ + 2∆i s̈i,

s.t. (ṡ2
i)
∗ + 2∆i s̈i ∈ Si+1,

B(ṡ2
i)
∗ + Cs̈i ≤ Q̈.

(20)

where (ṡ2
i)
∗ denotes the optimal solution at the i-th grid point. By setting determinis-

tic values of (ṡ2
0)
∗ ∈ S0 and Sn = {(ṡ2

n)
∗}, the solution of Cartesian-based TOPP-RA,

[(ṡ2
0)
∗, (ṡ2

1)
∗, . . . , (ṡ2

n)
∗], is obtained by recursively applying Formula (20).

3.2. Principle of the Proposed TOPP-IO Method

The general principle of the TOPP iterative optimization method is illustrated by
the pseudo-codes in Algorithm 1. Given a path P in Cartesian space, Algorithm 1 first
generates an initial conjecture using the ToppraGuess() function to numerically solve (15)
without joint jerk limits. This initial conjecture includes the path discretization, all the
parameters required to solve (15), and the initial values of all the decision variables. Then,
using the full content of this initial conjecture, Algorithm 1 establishes an iterative OCP
where an intermediate optimal solution is obtained from each iteration. After the first three
lines of initialization, the while loop is applied to iteratively solve the TOPPOCP. Similar
to (15), the only difference is that we add (4) as a soft constraint to the objective function.
Specifically, this iterative OCP solves the following optimization problems.

min (3) + ωso f t · fso f t(s)

s.t. States/Control profiles constraints (12) and (13);

Two-point boundary constraints (14).

(21)

where ωsi f t > 0 is a parameter used to weight the softening of the state updating, and
fso f t(s) is denoted as

fso f t(s) =
∫ send

s=0

∥∥∥∥[ṡ
s̈

]
− fStatus−update(s)

∥∥∥∥2

ds (22)

In each iteration of the while loop, the function SolveIteratively(OCPTOPP,G) is used to
solve (21) using the initial conjecture G. The function StateUpdateInfeasibility(G) evaluates
the infeasibility degree of the status update determined by fso f t(s) as given in (22). When
fso f t(s) becomes small enough, i.e., close to 0+, the function GetTrajectoryInformation(G)
is called to extract information about the optimal trajectory from the solution G.

Entropy 2023, 25, 610 9 of 21

Algorithm 1: An Iterative Optimal Method for TOPP
Input: Geometric path in Cartesian space P
Output: Optimal trajectory information infoopti

1 G = ToppraGuess(P) ;
2 ωso f t ← ωso f t0, iter ← 0, infoopti ← ∅ ;
3 while iter < itermax do
4 OCPTOPP ← BuildIterativeOCP(G) ;
5 G ← SolveIteratively(OCPTOPP,G) ;
6 fso f t(s)← StateUpdateInfeasibility(G) ;
7 if fso f t(s) < eso f t then
8 infoopti ← GetTrajectoryInformation(G) ;
9 return;

10 else
11 ωso f t ← ωso f t · α, iter ← iter + 1 ;
12 end
13 end
14 return;

3.3. Properties Discussion of Algorithm 1

This subsection describes the relevant properties of the proposed TOPP-IO method in
Algorithm 1.

First, the iterative process progressively increases the feasibility and optimality of
the phase state. It is assumed that the initial solution obtained by the Cartesian frame
TOPP-RA does not satisfy the jerk constraint and, hence, is not status-update feasible. In
such cases, restoring status-update feasibility becomes the primary goal of minimizing the
objective function of OCPTOPP. Therefore, the optimal solution differs from the initial guess
by reducing the status-update infeasibility. Although the status-update infeasibility may
not be eliminated, the resulting (s, ṡ) phase diagram is closer to being feasible, providing
opportunities for further improvement in succeeding iterations.

Second, optimality is achieved when Algorithm 1 exits from line 9. As the iteration
continues, the status-update infeasibility approaches 0+ and incrementing ωso f t expedites
the procedure. When the degree of status-update infeasibility is small, the total time (3) in
the objective function of (21) dominates. Thus, the objective function of (21) is minimized,
closing in on minimizing the original objective function (3) to an accuracy level of eso f t.

Third, the OCPTOPP is always feasible, which is a crucial cornerstone of the entire
iterative framework. With strict restrictions on CPU runtime and a willingness to accept
suboptimal solutions, a feasible solution can be obtained at any point by interrupting
the iterative optimization process. With very slow motion always feasible, the solution
procedure for each (21) is consistently in the feasible region of the solution space when the
initial solution is set to 0. Thus, as long as the obtained (s, ṡ) phase diagram’s near-future
period is status-update feasible, the resulting phase states can be transferred to the next
iterative OCPTOPP for further enhancements.

4. Simulation and Real-World Experiment Results

In this section, simulation experiments will be used to demonstrate the feasibility,
performance, and generality of the proposed method, as well as an industrial robot real
machine-verification experiment will be performed, which gives practical significance
to the TOPP-IO algorithm. The proposed method is executed on Ubuntu using an Intel
i7-7700HQ @ 2.80 GHz CPU and 16-GB RAM, and all optimization problems are solved
using CasADi (CasAdi is an open-source software framework for nonlinear optimization
and optimal control. It provides a flexible and efficient interface for constructing and
solving various optimization problems, including trajectory optimization) [34]. We use the
6-DOF Firefox robot from SIASUN in both the simulation and the real world, in addition

Entropy 2023, 25, 610 10 of 21

to the Pioneer P3-DX robot used in the simulation. The implementation of TOPP-IO was
done in C++, and the required communication between systems for these experiments was
established. Figure 1 illustrates the architecture of the implementation.

A Cartesian-based Iterative Optimization Frame

C-space
Waypoints

C-space path P

Path Interpolation
B-spline

TOPP-RA

ToppraGuess G

TOPP-IO

Velocity & Acceleration Limits

No

YesStateUpdateInfeasibilityOCP(G)

SolveIteratively(OCPTOPP) OCPTOPP =
BuildIterativeOCP(G)

Optimal trajectory
infomation Infoopti

Trajectory

Controller
SimulationExecution

Move!It plan

Move!It
Update joint state

Real-world Experiment PlatformSimulation

Figure 1. Architecture of implementation.

4.1. Experiment Settings

The joint and wheel velocity, acceleration, and jerk limits are presented in each experi-
ment, respectively, which are critical factors for the safe and efficient operation of robotic
systems. To assess the robustness and adaptability of our proposed algorithm, TOPP-IO,
we conducted a series of experiments with varying jerk limits. Specifically, we evaluated
the performance of TOPP-IO under four different jerk limits: 0.1×, 1×, 10×, and 100× the
default value. The basic parameters for the iterative optimization are carefully selected
to ensure the convergence and efficiency of the optimization process, which are listed
in Table 2.

Entropy 2023, 25, 610 11 of 21

Table 2. Hyperparameter setting for iterative optimization.

Hyperparameter Description Value

itermax Maximum iteration number 5
ωso f t0 ωso f t initial value 105

α Multiplier to enlarge ωso f t 10
eso f t Softened constraints tolerance 16

4.2. Comparison with TOPP-RA Method

This method is built and tested on the random geometric route depicted in Figure 2,
subject to joint velocity, acceleration, and jerk limitations which are presented in Table 3.
The simulation results are compared with those obtained from the CO algorithm (TOPP-RA)
presented in [6] to demonstrate the effectiveness of the proposed strategy in controlling the
acceleration surge caused by ignoring the jerk constraints.

Table 3. Velocity, acceleration, and jerk limits of joints.

Limits Joint1 Joint2 Joint3 Joint4 Joint5 Joint6

Vel. (rad/s) 2 2 2 4 4 4
Acc. (rad/s2) 5 6 6 12 12 12
Jerk (rad/s3) 16 16 18 20 28 28

(a) Cartesian space (b) Joint space

Figure 2. The geometric path on which this approach is implemented and tested.

The results of the two approaches, TOPP-RA and TOPP-IO, in the (s, ṡ) and (s, s̈) phase
planes are presented in Figures 3 and 4, respectively. It can be observed from Figure 4 that
TOPP-RA allows for steep slopes of acceleration due to the lack of restriction on jerk, leading
to an abrupt shift in acceleration between neighboring path points. This sudden change in
acceleration can be seen in the velocity curve of Figure 3, where there is no smooth transition
between the acceleration and deceleration portions. Such abrupt changes in acceleration can
result in jerky and unstable motion, which is not desirable in many real-world applications.
To address this issue, TOPP-IO imposes explicit joint jerk limitations, leading to smoother
acceleration profiles between neighboring path points. Figure 4 shows that the TOPP-IO
method successfully restricts the acceleration mutation, preventing any abrupt changes in
acceleration. Furthermore, the velocity curve of TOPP-IO in Figure 3 exhibits smoother
transitions between the portions representing acceleration and deceleration, guaranteeing
that the nearby segments will not violate the imposed restrictions.

Entropy 2023, 25, 610 12 of 21

Figure 3. Comparison of the TOPP-RA resultant velocity curve without jerk limitations (red dashed
line) and the one obtained from the proposed method with jerk limits (blue solid line).

Figure 4. Comparison of the TOPP-RA resultant acceleration curve without jerk limitations (red
dashed line) and the one obtained from the proposed method with jerk limits (blue solid line).

To further evaluate the performance of the two approaches, we compare their ex-
ecution times in Table 4 and display the corresponding speed, acceleration, and jerk
curves in Figure 5 for various jerk limits (100×, 10×, 1×, and 0.1×). In the TOPP-RA
method, it is evident that the acceleration profiles are bang-bang, satisfying all joint
second-order constraints.

With all third-order kinematic constraints, the jerk profiles are bang-bang in the TOPP-
IO method, leading to smoother transitions between the portions representing acceleration
and deceleration. Without joint jerk limits, the maximum acceleration is about 1638.4 rad/s3.
As the jerk limit is decreased from “none” to 100× and 10× jerk limits, the execution time
only slightly increases from 2.81067 s to 2.89393 s and 2.90326 s, respectively, and the
smoothing effect of the speed profile is not immediately noticeable. The speed profile
becomes smoother as the jerk limits approach 1× jerk limits. Notably, even when the jerk
limit is set to 0.1× jerk limits, TOPP-IO can still produce a valid solution, albeit with an
increased execution time.

Entropy 2023, 25, 610 13 of 21

Figure 5. Velocity, acceleration, and jerk profiles for various methods and jerk restrictions. (a) Speed,
(b) Acceleration, and (c) Jerk.

Table 4. Execution time of different trajectory planning algorithms and jerk restrictions.

Method TOPP-RA TOPP-IO

Jerk Limits (rad/s3) - 100× 10× 1× 0.1×
te (s) 2.81067 2.89393 2.90326 4.02941 8.63447

4.3. Application on Mobile Robot

Our method applies not only to manipulators but also to a wide range of robots.
To demonstrate its flexibility, we computed a ground trajectory for the Pioneer P3-DX, a
diff-drive mobile robot. The wheel velocity, acceleration, and jerk limitations are presented
in Table 5. Screenshots of the operational phase as well as the wheel speed curve in
comparison to TOPP-RA are shown in Figure 6.

Table 5. Velocity, acceleration, and jerk limits of wheels.

Limits Wheel1 Wheel2

Vel. (rad/s) 2 2
Acc. (rad/s2) 4 4
Jerk (rad/s3) 8 8

The restrictions on wheel jerk and route jerk constraints have similar effects on con-
trolling acceleration mutation. In this study, jerk restrictions were defined as wheel jerk
constraints that effectively limit acceleration mutation in the route. The robot trajectories
obtained from TOPP-RA and the proposed method are presented in Figure 7. Table 6 indi-
cates that the maximum absolute values of the robot’s acceleration and jerk curves obtained

Entropy 2023, 25, 610 14 of 21

from the proposed method are reduced by 60.28% and 69.82%, respectively, compared to
those from TOPP-RA.

(a) Cartesian space (b) Wheel space

Figure 6. The ground path on which this approach is implemented and tested.

Table 6. Comparing the maximum absolute value of the robot’s acceleration and jerk curves between
the two approaches.

Acceleration (m/s2) Jerk (m/s3)

TOPP-RA 3.98086 26.4858
TOPP-IO 1.58118 7.9937

Degree of decline 60.28% 69.82%

(a) Mobile robot acceleration (b) Mobile robot jerk

Figure 7. Comparing the resulting mobile robot acceleration (a) and jerk (b) from TOPP-RA and the
ones obtained from the proposed approach.

4.4. Real-World Experiments

In real-world experiments, we applied our method to the welding industry where
the objective is to complete tasks as quickly, safely, and efficiently as possible. TOPP-IO
succeeded in executing the assignment in a timely, safe, and stable manner. The running
state of the Firefox robot in the actual world is shown in Figure 8 and is consistent with the
simulation results.

Entropy 2023, 25, 610 15 of 21

(a) Simulation (t = 0 s) (b) Simulation (t = 1.42 s) (c) Simulation (t = 2.67 s) (d) Simulation (t = 4.62 s)

(e) Real Experiment (t = 0 s) (f) Real Experiment (t = 1.42 s) (g) Real Experiment (t = 2.67 s) (h) Real Experiment (t = 4.62 s)

Figure 8. Real-world experiments (e–h) in accordance with the simulation (a–d).

We performed both quantitative and qualitative analyses of our method’s performance
during the actual operation process. Specifically, we analyzed the position error of each
joint and examined the speed-tracking situation using joint1 as an example. Figure 9a
shows the joint position error of the TOPP-RA method during actual operation, while
Figure 9b displays the joint position error of the TOPP-IO method under the same path.
In addition, Table 7 compares the performance of our TOPP-IO method with that of the
TOPP-RA method. The results show that the average and maximum position errors of all
joints in TOPP-IO have been reduced to different degrees during operation. The absolute
values of the average position error and maximum position error have been reduced by
about 29% and 27%, respectively, compared to the TOPP-RA method.

Table 7. The absolute values of the average and maximum joint position error on different trajectory
planning algorithms.

Joint1 Joint2 Joint3 Joint4 Joint5 Joint6

Average
position error

TOPP-RA (rad) 0.0160 0.0296 0.0293 0.0075 0.0066 0.0192

TOPP-IO (rad) 0.0112 0.0205 0.0206 0.0053 0.0047 0.0135

Degree of decline 30.13% 30.67% 29.81% 29.60% 29.65% 29.46%

Maximum
position error

TOPP-RA (rad) 0.0518 0.0911 0.0849 0.0270 0.0183 0.0621

TOPP-IO (rad) 0.0339 0.0624 0.0557 0.0196 0.0127 0.0444

Degree of decline 34.63% 31.54% 34.36% 27.62% 30.36% 28.47%

To examine the speed-tracking situation, we used joint1 as an example. Figure 10a
shows the speed-tracking of the TOPP-RA method during actual operation, while Figure 10b
presents the speed curve of our TOPP-IO method, which considers the third-order con-
straint. Only the second-order constraint of joint space is considered, which leads to
snap-point (represented by the gray circle), or the sudden change in joint acceleration,
resulting in the inability to track the given speed on the actual physical robot. As shown in
the zoomed-in section of Figure 10a, the snap-point causes fluctuations in the speed curve.
In contrast, our TOPP-IO method eliminates the snap-point and enables smooth tracking of
joint speed. Our method ensures a smooth trajectory and efficient, steady completion of
the task while maintaining high speed.

Entropy 2023, 25, 610 16 of 21

(a) TOPP-RA joint position error (b) TOPP-IO joint position error

Figure 9. Comparing the resulting joint position error from TOPP-RA (a) and the ones obtained from
proposed approach (b).

(a) TOPP-RA velocity curve (b) TOPP-IO velocity curve

Figure 10. Comparing the resulting joint1 velocity curve from TOPP-RA (a) and the ones obtained
from proposed approach (b). (The gray circle represented the snap-point).

5. Conclusions

In this paper, we develop a comprehensive and efficient iterative optimization frame-
work for solving the TOTP problem with joint third-order constraints. The main contribu-
tions and results of this paper are as follows:

• The framework is constructed from the bottom up in the Cartesian coordinate system
and can be applied to both manipulator and mobile robots;

• Our study has identified two main challenges in the framework: how to consistently
represent the TOTP problem in the Cartesian space using the (s, ṡ) phase plane, while
imposing third-order kinematic constraints on each joint, and how to devise an efficient
computational solution strategy that uses a constraint relaxation approach to simplify
nonconvex constraints without violating them;

• We demonstrated the effectiveness of our proposed framework through both simu-
lation and physical experiments. Compared to the TOPP-RA method, our approach
effectively reduced the maximum absolute values of the robot’s jerk and the aver-
age absolute values of the position error over 60% and 29%, respectively. These are
critical factors in ensuring smooth robotic velocity tracking and reducing impact
during operation.

Our framework has a few limitations. First, we assume that the path of the end-effector
in Cartesian space is predetermined. We use B-spline interpolation to generate continuous,

Entropy 2023, 25, 610 17 of 21

smooth end-effector poses from the given path points. Second, our approach accepts
suboptimal solutions when a feasible solution can be obtained at any point by interrupting
the iterative optimization process.

Our future work can be divided into two main areas:

• First, we aim to extend our framework to handle both path planning and speed
planning simultaneously, which will enable our method to generate feasible solutions
more efficiently;

• Second, we plan to explore the potential of the constraint relaxation approaches
and achieve real-time performance. Moreover, handling dynamic environments is a
challenging and interesting area for future research.

Author Contributions: Conceptualization, Z.F. and Y.C.; methodology, Z.F.; software, Z.F.; validation,
Z.F., F.Z., Q.Z. and K.J.; formal analysis, L.Z. and Z.D.; investigation, Z.F.; resources, Z.D.; data
curation, M.L.; writing—original draft preparation, Z.F.; writing—review and editing, Z.F. and M.L.;
visualization, Z.F. and Y.C.; supervision, K.J.; project administration, L.Z.; funding acquisition, F.Z.
and Q.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (No. 2020YFB1710905)
and the National Natural Science Foundation of China (No. 61903162).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

TOTP time-optimal trajectory planning
TOPP time-optimal path parameterization
NI Numerical Integration
CO Convex Optimization
DP Dynamic Programming
DC difference of convex
SCP sequential convex programming
TOPP-RA TOPP approach based on reachability analysis
TOPP-IO TOPP approach based on iterative optimization
LP linear programming
BA bisection algorithm
NLP nonlinear programming

Appendix A. From Configuration Space to Cartesian Space

In this appendix, we introduce how to determine the position and attitude of the
end-effector and their derivatives using the robot joint variables and their derivatives of
each order, and then convert them into path parameter s for representation. This process
involves forward kinematics, inverse kinematics and the derivatives of Jacobian matrix,
which will be described in detail in the following subsections.

Appendix A.1. Forward and Inverse Kinematics

ψ is defined as the screw coordinate of the spiral axis relative to the spatial coordinate
system. Its Lie algebra representation is as follows:

se(3) =
{

ψ =

[
ρ
φ

]
∈ R6, ρ ∈ R3, φ ∈ so(3), ψ∧ =

[
φ∧ ρ

0T 1

]
∈ R4×4

}
(A1)

Entropy 2023, 25, 610 18 of 21

The Lie group corresponding to ψ can be expressed as

SE(3) =
{

Ψ =

[
R $

0T 1

]
∈ R4×4, R ∈ SO(3), $ ∈ R3

}
(A2)

where R and $ separately denote the directions and positions of the rigid-body. The
mapping between the Lie algebra ψ and the corresponding Lie group Ψ is given by:

Ψ = exp(ψ∧) =

[
exp(φ∧) (I−exp(φ∧))φ∧ρ+φφTρ

‖φ‖2

0T 1

]
(A3)

Consider a robot system with n degrees of freedom, whose configuration is represented
by q = [q1, q2, · · · , qn]T ∈ Rn. The forward kinematics model of the robot is determined
as follows:

Ψend(q) =
n

∏
i=1

exp(ψ∧i qi)ΨS =

[
Rend $end
0T 1

]
(A4)

where ΨS represents the pose matrix of the end coordinate system relative to the space
coordinate system when the robot is in the initial position; (qi, ψi) denote the joint position
and twist, respectively, of the i-th joint; Rend and $end separately denote the orientations
and positions of the end-effector.

For a given robot model, it is possible to convert the end pose p expressed in Carte-
sian space to the corresponding joint values q in joint space using inverse kinematics.
Similarly, the joint values q can be converted to the end pose p through forward kinemat-
ics. Thus, the reciprocal transformation between p and q can be achieved through these
two transformations.

Appendix A.2. Explicit Expressions of High-Order Jacobian Derivatives

Jacobian matrix in Formula (13) is as follows:

J = Jp · Jb =

[
A−1(r) O

O Rsb(r)

]
·
[
β1, β2, . . . , βn

]
(A5)

where Jb(q) ∈ R6×n represents the geometric Jacobian matrix; r ∈ R3 represents the
exponential coordinate of the axis angle, which is reflected in the last three lines of the p(s).
In Jp ∈ R6×6, A(r) ∈ R3×3 and Rsb(r) ∈ R3×3 can be expressed as:

A(r) = I− 1− cos‖r‖
‖r‖2 r∧ +

‖r‖ − sin‖r‖
‖r‖3 (r∧)2,

Rsb(r) = exp(r∧).
(A6)

Since r can be expressed by p(s), the first-order and second-order path parameter
derivatives of Jp are expressed as follows:

J′p(p(s)) =

−A−1(p(s))
dA(p(s))

ds
A−1(p(s)) 0

0T dRsb

ds

,

J′′p(p(s)) =

2A−1 dA
ds

A−1 dA
ds

A−1 −A−1 d2A
ds2 A−1 0

0T d2Rsb

ds2

.

(A7)

Entropy 2023, 25, 610 19 of 21

(1) First-order path parameter derivative J′: The first-order derivative of Jacobian matrix
J with respect to the path parameter s is as following:

J = J′p · Jb + Jp · J′b (A8)

The matrices Jp and J′p depend on the path parameter s, while Jb is a function of
the joint values q, which can be obtained by forward and inverse kinematics. Each
column of Jb(q) can be represented as an adjoint matrix, given by:

βi = Ad−1
Ψi

(ψi) = (Ψiψ
∧
i Ψ−1

i)∨ ∈ R6, where

Ψi =
n

∏
j=1

exp(ψ∧j qj)ΨS.
(A9)

According to the chain rule of differentiation, the first-order derivative of the geometric
Jacobian matrix with respect to the path parameter s, denoted as J′b, and its i-th column,
denoted as β′i, can be expressed as:

J′b =
[
β′1, β′2, . . . , β′n

]
,

β′i =
n

∑
j=1

∂βi
∂qj

q′j

=

[
∂βi
∂q1

,
∂βi
∂q2

, . . . ,
∂βi
∂qn

]
q′

=

[
∂βi
∂q1

,
∂βi
∂q2

, . . . ,
∂βi
∂qn

]
J−1p′.

(A10)

In combination with the literature [35],
∂βi
∂qj

can be calculated using (βi, βj) as follows:

∂βi
∂qj

=

{
0, j < i

adβj
(βi) = (β∧j β∧i − β∧i β∧j)

∨, j ≥ i (A11)

(2) Second-order path parameter derivative J′′: The second-order derivative of the Jaco-
bian matrix J with respect to the path parameter s is given by:

J = J′′p · Jb + J′p · J′b + Jp · J′′b (A12)

According to the chain rule, the second-order path parameter derivative, J′′b , and its
i-th column, β′′i , can be denoted as:

J′′b =
[
β′′1 , β′′2 , . . . , β′′n

]
,

β′′i =
∂

∂s
(

n

∑
j=1

∂βi
∂qj

q′j)

=
n

∑
j=1

∂βi
∂qj

q′′j +
∂

∂s
(

n

∑
j=1

∂βi
∂qj

)q′j

=

[
∂βi
∂q1

,
∂βi
∂q2

, . . . ,
∂βi
∂qn

]
q′′

+

[
∂

∂s
(

∂βi
∂q1

),
∂

∂s
(

∂βi
∂q2

), . . . ,
∂

∂s
(

∂βi
∂qn

)

]
J−1p′.

(A13)

where
q′′ = J−1(p′′ − J′J−1p′) (A14)

Entropy 2023, 25, 610 20 of 21

and
∂

∂s
(

∂βi
∂qj

) =

{
0, j < i

adβj
(β′i) + adβ′j

(βi), j ≥ i (A15)

Overall, this appendix establishes the forward kinematics of a robot using Lie theory
and symbolically derives the first-order and second-order derivatives of the Jacobian
matrix. Higher-order Jacobian matrices could be derived similarly. Furthermore, the
inverse kinematics for a specific robot model can be easily obtained.

References
1. Mikolajczyk, T. Manufacturing Using Robot. Adv. Mater. Res. 2012, 463, 1643–1646. In Proceedings of the Advanced Materials

Research II; Trans Tech Publications Ltd.: Baech, Switzerland, 2012. [CrossRef]
2. Oztemel, E.; Gursev, S. Literature review of Industry 4.0 and related technologies. J. Intell. Manuf. 2020, 31, 127–182. [CrossRef]
3. Chiurazzi, M.; Alcaide, J.O.; Diodato, A.; Menciassi, A.; Ciuti, G. Spherical Wrist Manipulator Local Planner for Redundant Tasks

in Collaborative Environments. Sensors 2023, 23, 677. [CrossRef] [PubMed]
4. Gasparetto, A.; Boscariol, P.; Lanzutti, A.; Vidoni, R. Trajectory Planning in Robotics. Math. Comput. Sci. 2012, 6, 269–279.

[CrossRef]
5. Zhang, T.; Zhang, M.; Zou, Y. Time-optimal and Smooth Trajectory Planning for Robot Manipulators. Int. J. Control. Autom. Syst.

2021, 19, 521–531. [CrossRef]
6. Pham, H.; Pham, Q.-C. A New Approach to Time-Optimal Path Parameterization Based on Reachability Analysis. IEEE Trans.

Robot. 2018, 34, 645–659. [CrossRef]
7. Bobrow, J.E.; Dubowsky, S.; Gibson, J.S. Time-Optimal Control of Robotic Manipulators Along Specified Paths. Int. J. Robot. Res.

1985, 4, 3–17. [CrossRef]
8. Kunz, T.; Stilman, M. Time-optimal trajectory generation for path following with bounded acceleration and velocity. In Robotics:

Science and Systems VIII; The MIT Press: Cambridge, MA, USA; London, UK, 2012; pp. 1–8.
9. Pham, Q.C. A General, Fast, and Robust Implementation of the Time-Optimal Path Parameterization Algorithm. IEEE Trans.

Robot. 2014, 30, 1533–1540. [CrossRef]
10. Pham, H.; Pham, Q.C. On the structure of the time-optimal path parameterization problem with third-order constraints. In

Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017;
pp. 679–686. [CrossRef]

11. Shen, P.; Zhang, X.; Fang, Y. Essential Properties of Numerical Integration for Time-Optimal Path-Constrained Trajectory Planning.
IEEE Robot. Autom. Lett. 2017, 2, 888–895. [CrossRef]

12. Shen, P.; Zhang, X.; Fang, Y. Complete and Time-Optimal Path-Constrained Trajectory Planning With Torque and Velocity
Constraints: Theory and Applications. IEEE/ASME Trans. Mechatronics 2018, 23, 735–746. [CrossRef]

13. Lu, L.; Zhang, J.; Fuh, J.Y.H.; Han, J.; Wang, H. Time-optimal tool motion planning with tool-tip kinematic constraints for robotic
machining of sculptured surfaces. Robot.-Comput.-Integr. Manuf. 2020, 65, 101969. [CrossRef]

14. Verscheure, D.; Demeulenäre, B.; Swevers, J.; De Schutter, J.; Diehl, M. Practical time-optimal trajectory planning for robots: A
convex optimization approach. IEEE Trans. Autom. Control. 2008, 53, 1–10.

15. Xiao, Y.; Dong, W.; Du, Z. A time-optimal trajectory planning approach based on calculation cost consideration. In Proceedings of
the 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, China, 5–8 August 2012; pp. 1845–1850.
[CrossRef]

16. Debrouwere, F.; Van Loock, W.; Pipeleers, G.; Dinh, Q.T.; Diehl, M.; De Schutter, J.; Swevers, J. Time-Optimal Path Following
for Robots With Convex-Concave Constraints Using Sequential Convex Programming. IEEE Trans. Robot. 2013, 29, 1485–1495.
[CrossRef]

17. Nagy, Á.; Vajk, I. Sequential Time-Optimal Path-Tracking Algorithm for Robots. IEEE Trans. Robot. 2019, 35, 1253–1259. [CrossRef]
18. Ma, J.-w.; Gao, S.; Yan, H.-t.; Lv, Q.; Hu, G.-q. A new approach to time-optimal trajectory planning with torque and jerk limits for

robot. Robot. Auton. Syst. 2021, 140, 103744. [CrossRef]
19. Shin, K.; McKay, N. A dynamic programming approach to trajectory planning of robotic manipulators. IEEE Trans. Autom.

Control. 1986, 31, 491–500. [CrossRef]
20. Kaserer, D.; Gattringer, H.; Müller, A. Nearly Optimal Path Following with Jerk and Torque Rate Limits Using Dynamic

Programming. IEEE Trans. Robot. 2019, 35, 521–528. [CrossRef]
21. Kaserer, D.; Gattringer, H.; Müller, A. Time Optimal Motion Planning and Admittance Control for Cooperative Grasping. IEEE

Robot. Autom. Lett. 2020, 5, 2216–2223. [CrossRef]
22. Barnett, E.; Gosselin, C. A Bisection Algorithm for Time-Optimal Trajectory Planning Along Fully Specified Paths. IEEE Trans.

Robot. 2021, 37, 131–145. [CrossRef]
23. Faulwasser, T.; Findeisen, R. Nonlinear Model Predictive Control for Constrained Output Path Following. IEEE Trans. Autom.

Control. 2016, 61, 1026–1039. [CrossRef]
24. Consolini, L.; Locatelli, M.; Minari, A.; Piazzi, A. An optimal complexity algorithm for minimum-time velocity planning. Syst.

Control. Lett. 2017, 103, 50–57. [CrossRef]

http://doi.org/10.4028/www.scientific.net/AMR.463-464.1643
http://dx.doi.org/10.1007/s10845-018-1433-8
http://dx.doi.org/10.3390/s23020677
http://www.ncbi.nlm.nih.gov/pubmed/36679473
http://dx.doi.org/10.1007/s11786-012-0123-8
http://dx.doi.org/10.1007/s12555-019-0703-3
http://dx.doi.org/10.1109/TRO.2018.2819195
http://dx.doi.org/10.1177/027836498500400301
http://dx.doi.org/10.1109/TRO.2014.2351113
http://dx.doi.org/10.1109/ICRA.2017.7989084
http://dx.doi.org/10.1109/LRA.2017.2655580
http://dx.doi.org/10.1109/TMECH.2018.2810828
http://dx.doi.org/10.1016/j.rcim.2020.101969
http://dx.doi.org/10.1109/ICMA.2012.6285102
http://dx.doi.org/10.1109/TRO.2013.2277565
http://dx.doi.org/10.1109/TRO.2019.2920090
http://dx.doi.org/10.1016/j.robot.2021.103744
http://dx.doi.org/10.1109/TAC.1986.1104317
http://dx.doi.org/10.1109/TRO.2018.2880120
http://dx.doi.org/10.1109/LRA.2020.2970644
http://dx.doi.org/10.1109/TRO.2020.3010632
http://dx.doi.org/10.1109/TAC.2015.2466911
http://dx.doi.org/10.1016/j.sysconle.2017.02.001

Entropy 2023, 25, 610 21 of 21

25. Steinhauser, A.; Swevers, J. An Efficient Iterative Learning Approach to Time-Optimal Path Tracking for Industrial Robots. IEEE
Trans. Ind. Inform. 2018, 14, 5200–5207. [CrossRef]

26. Consolini, L.; Locatelli, M.; Minari, A. A Sequential Algorithm for Jerk Limited Speed Planning. IEEE Trans. Autom. Sci. Eng.
2022, 19, 3192–3209. [CrossRef]

27. Petrone, V.; Ferrentino, E.; Chiacchio, P. Time-Optimal Trajectory Planning With Interaction With the Environment. IEEE Robot.
Autom. Lett. 2022, 7, 10399–10405. [CrossRef]

28. Yang, Y.; Xu, H.z.; Li, S.h.; Zhang, L.l.; Yao, X.m. Time-optimal trajectory optimization of serial robotic manipulator with kinematic
and dynamic limits based on improved particle swarm optimization. Int. J. Adv. Manuf. Technol. 2022, 120, 1253–1264. [CrossRef]

29. Singh, S.; Leu, M.C. Optimal Trajectory Generation for Robotic Manipulators Using Dynamic Programming. J. Dyn. Syst. Meas.
Control. 1987, 109, 88–96. [CrossRef]

30. Slotine, J.J.E.; Yang, H.S. Improving the Efficiency of Time-Optimal Path-Following Algorithms. In Proceedings of the 1988
American Control Conference, Atlanta, GA, USA, 15–17 June 1988; pp. 2129–2134. [CrossRef]

31. Consolini, L.; Locatelli, M.; Minari, A.; Nagy, Á.; Vajk, I. Optimal Time-Complexity Speed Planning for Robot Manipulators. IEEE
Trans. Robot. 2019, 35, 790–797. [CrossRef]

32. Li, B.; Ouyang, Y.; Li, L.; Zhang, Y. Autonomous Driving on Curvy Roads Without Reliance on Frenet Frame: A Cartesian-Based
Trajectory Planning Method. IEEE Trans. Intell. Transp. Syst. 2022, 23, 15729–15741. [CrossRef]

33. Guarino Lo Bianco, C.; Faroni, M.; Beschi, M.; Visioli, A. A Predictive Technique for the Real-Time Trajectory Scaling Under
High-Order Constraints. IEEE/ASME Trans. Mechatronics 2022, 27, 315–326. [CrossRef]

34. Andersson, J.A.E.; Gillis, J.; Horn, G.; Rawlings, J.B.; Diehl, M. CasADi—A software framework for nonlinear optimization and
optimal control. Math. Program. Comput. 2019, 11, 1–36. [CrossRef]

35. Fu, Z.; Spyrakos-Papastavridis, E.; Lin, Y.-H.; Dai, J.S. Analytical Expressions of Serial Manipulator Jacobians and their High-
Order Derivatives based on Lie Theory. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation
(ICRA), Paris, France, 31 May–31 August 2020; pp. 7095–7100. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TII.2018.2851963
http://dx.doi.org/10.1109/TASE.2021.3111758
http://dx.doi.org/10.1109/LRA.2022.3191813
http://dx.doi.org/10.1007/s00170-022-08796-y
http://dx.doi.org/10.1115/1.3143842
http://dx.doi.org/10.23919/ACC.1988.4790076
http://dx.doi.org/10.1109/TRO.2019.2899212
http://dx.doi.org/10.1109/TITS.2022.3145389
http://dx.doi.org/10.1109/TMECH.2021.3063627
http://dx.doi.org/10.1007/s12532-018-0139-4
http://dx.doi.org/10.1109/ICRA40945.2020.9197131

	Introduction
	Related Works
	Motivations and Contributions

	Problem Statement
	General Description
	Objective Function
	Constraints
	 Status-Update Constraints
	States/Control Profiles Constraints
	Boundary Constraints

	TOPP by Iterative Optimization (TOPP-IO)
	Cartesian-Based TOPP-RA Method
	Backward Pass
	Forward Pass

	Principle of the Proposed TOPP-IO Method
	Properties Discussion of Algorithm 1

	Simulation and Real-World Experiment Results
	Experiment Settings
	Comparison with TOPP-RA Method
	Application on Mobile Robot
	Real-World Experiments

	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2

	References

