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Abstract: Simulating the real-time dynamics of gauge theories represents a paradigmatic use case
to test the hardware capabilities of a quantum computer, since it can involve non-trivial input
states’ preparation, discretized time evolution, long-distance entanglement, and measurement in
a noisy environment. We implemented an algorithm to simulate the real-time dynamics of a few-
qubit system that approximates the Schwinger model in the framework of lattice gauge theories,
with specific attention to the occurrence of a dynamical quantum phase transition. Limitations in
the simulation capabilities on IBM Quantum were imposed by noise affecting the application of
single-qubit and two-qubit gates, which combine in the decomposition of Trotter evolution. The
experimental results collected in quantum algorithm runs on IBM Quantum were compared with
noise models to characterize the performance in the absence of error mitigation.

Keywords: noisy intermediate-scale quantum devices; quantum electrodynamics; dynamical quantum
phase transition

1. Introduction

The availability of noisy intermediate-scale quantum (NISQ) devices in cloud access
platforms is a fundamental step towards the quantum computing era. Nonetheless, the
limited number of available qubits and the absence of controllable error probabilities pre-
vents these systems from actually outperforming current classical computing capabilities.
Multiple hardware setups have been engineered for quantum computing purposes, with
different advantages regarding gates’ fidelity and experimental realization. Examples of
NISQ devices are represented by circuits with superconducting transmon qubits [1–3],
ion traps or optical lattices hosting Rydberg atoms [4–8], and qubits encoded in photonic
modes of optical setups [9,10], this list being far from exhaustive.

In this framework, high-energy physics represents an interesting testbed for quantum
devices. On the one hand, quantum computation can be applied “downstream”, to optimize
data analysis and event reconstruction from experiments [11–15]. On the other hand, the
“upstream” investigation of gauge theories, especially in their lattice formulation [16–20],
can benefit from the possibility of performing quantum simulations of regimes not achiev-
able with perturbative techniques. Long-standing questions related to low-energy processes
in quantum chromodynamics (QCD) are still far from the current capabilities of Monte Carlo
techniques, due to the sign problem in fermionic amplitudes [21–23]. To overcome some of
these limitations, research at the interface of quantum information, condensed-matter, and
high-energy physics is targeting the adoption of new theoretical and computational tools.
The state-of-the-art in the field is represented by tensor network methods, able to reduce
the exponential complexity to a polynomial one for states characterized by short-range
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entanglement [24–30]. These methods are suitable candidates to obtain a breakthrough
in non-perturbative regimes: some preliminary studies about quantum electrodynamics
(QED) in one spatial dimension proved the ability of tensor networks in describing a wide
phenomenology, such as vacuum phase transition, the string-breaking mechanism, and
scattering processes [31–33]. On the other hand, highly entangled quantum systems must
be studied by means of specifically designed setups, since their complexity cannot be
managed with current classical computing capabilities.

A major role in making quantum computation and simulation effective to solve
practical problems in NISQ devices is played by error correction and mitigation [34–36]. In
the context of digital real-time evolution [37–42], such procedures should keep the quantum
state of the system in the physical subspaces allowed by the gauge constraint. Unfortunately,
these techniques are expected to limit the quantum advantage due to the required classical
information processing. Nevertheless, current simulations on NISQ devices would benefit
from the aforementioned techniques in the description of targeted physical phenomena. The
hardest operation for any device is represented by a controlled gate, whose implementation
varies in each platform, as with ion traps [4,41,42] or superconducting circuits [37–40].
These setups elaborate single-qubit states by means of laser pulses, tuned with the targeted
transitions. Instead, entangling gates are specifically engineered by exploiting the properties
of the hardware, thus leading to crucially different fidelities and times required for the
physical implementation. Alternatively, analog simulations, e.g., in optical lattices, can
adopt different strategies, such as a periodic drive to obtain energy terms endowed with
the same symmetry characterizing lattice QED [43,44]. In this case, errors can induce gauge-
invariance-breaking terms, which can lead to an emergent prethermal behavior [45–48].

This paper aimed at testing the superconducting qubit systems available in the IBM
Quantum platform [1] in a simple lattice gauge theory application. We implemented
digital evolutions generated by the QED Hamiltonian in 1 + 1 dimensions, consisting of
non-commuting local contributions [4,31–33,37,41,49–56] and displaying the occurrence
of dynamical quantum phase transitions (DQPTs) [57–59] in specific cases of quantum
quenches. A discretization of the electromagnetic field is required to implement gauge
degrees of freedom in the quantum simulator: accomplishing such a task by replacing
the continuous U(1) gauge group with one of the cyclic groups Zn guarantees a unitary
implementation of the gauge connections [49]; another possible choice is represented by
the family of quantum link models [60]. In order to assign each link of the lattice to a
single qubit, we chose a Z2 discretization, which ensures a minimal circuit depth [52], thus
reducing error sources. The study of real-time dynamics involves three crucial stages: the
preparation of initial states, the evolution, and the final measurements. Gate errors affecting
a digital simulation accumulate in a more or less coherent manner, which is affected by
more variables and more error sources than the stand-alone characterization of gates. Time
evolution is partitioned into steps to monitor the measurements statistics’ variation without
the inclusion of error correction and mitigation. The ground state preparation required
by the chosen quench protocol was specifically designed in order to minimize errors and
characterize the first stage’s output statistics. Then, we characterized the effectiveness
of time evolution, choosing to analyze the system in proximity of a DQPT, where the
dynamics is particularly sensitive to noise [51], thus framing the simulation in most unsafe
conditions. A concluding estimation of the amount of error probability reduction required
for a partial observation of the targeted DQPT was made by analyzing the statistics of the
collected results.

The paper is structured as follows. In Section 2, we introduce the lattice Schwinger
model and the Jordan–Wigner transformation that maps it into a qubit system and describe
the quench protocol and the DQPTs expected in the model. In Section 3, we describe the
experimental scheme composed of ground state preparation and the subsequent Trotter
evolution. The collected results are compared with the simulated evolution affected by
the error probabilities of noisy gates. In Section 4, we discuss our outcomes in light of the
existing literature and present a possible outlook for our research.
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2. The Lattice Schwinger Model

QED in 1 + 1 dimensions, also known as the Schwinger model, is a U(1) gauge
theory describing the interaction of the electromagnetic field, consisting of only an elec-
tric component, and a fermionic particle with mass m and charge g. The model can be
discretized on a one-dimensional lattice with spacing a, by associating with each lattice
site x an anticommuting field ψx, which represents a spinless fermion, while links be-
tween each pair of neighboring sites host the gauge degrees of freedom, described by
the electric field Ex,x+1 and the vector potential Ax,x+1. The latter determines the gauge
connection Ux,x+1 = eiaAx,x+1 , characterized by the generalized canonical commutation
relation [Ex′ ,x′+1, Ux,x+1] = δx,x′Ux,x+1. The lattice model Hamiltonian for a finite lattice
with N sites reads [4,31–33,49]

H = − i
2a

N−1

∑
x=0

(
ψ†

xUx,x+1ψx+1 −H.c.
)
+ m

N−1

∑
x=0

(−1)xψ†
xψx +

g2a
2

N−1

∑
x=0

E2
x,x+1, (1)

where periodic boundary conditions [50,51] require the identification N ≡ 0. The model
involves staggered (Kogut–Susskind) fermions [61], described by single-component spinors
ψx, with negative-mass components encoded in odd-x sites. The physical subspace HG is
spanned by states |φ〉 satisfying the Gauss law constraint Gx|φ〉 = 0 at all sites x, where,
for a Zn gauge group,

Gx =

√
n

2π
(Ex,x+1 − Ex−1,x)− ψ†

xψx −
(−1)x − 1

2
. (2)

The electric field was simulated in the following through a Zn discretization of
U(1) [31–33,49,52,53] with n = 2. Unlike in the quantum link models [50,51], where the electric
field is replaced by a spin operator, the Zn model is based on replacing gauge connections with
permutation matrices [49]. In the case of Z2, the electric field in each link (x, x + 1) can have two
eigenstates, which will be labeled as {|` = 1

2 〉x, |` = − 1
2 〉x}, with

Ex,x+1

∣∣∣∣±1
2

〉
x
= ±
√

π

2

∣∣∣∣±1
2

〉
x
, (3)

while the gauge connections act as [31–33]

Ux,x+1

∣∣∣∣±1
2

〉
x
=

∣∣∣∣∓1
2

〉
x
. (4)

An immediate implication of the Z2 model is the irrelevance in the Hamiltonian (1) of the
electric field energy, which becomes a constant.

The simplest nontrivial periodic lattice is composed by N = 2 sites: the states spanning
the physical subspace HG of the Z2 model in this simple case are shown in Figure 1. The
states in Panels (a) and (d) represent two “Dirac vacua”, with a filled negative-mass and an
empty positive-mass site. In these states, the total electric field is constant and nonvanishing.
These observations motivated the notation |vac〉± for these two states, where the index is
related to the sign of the background electric field. Particle hopping leads to the remaining
“mesonic” basis states |e+e−〉L and |e+e−〉R, represented in Panels (b) and (c), respectively,
where the index refers to the counterclockwise (L) or clockwise (R) hopping of the fermion
from the negative- to the positive-mass site.
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(a) (b) (c) (d)

Figure 1. Representation of the physical subspace basis states in a Zn gauge model, implemented on a
two-site lattice. In all panels, full (transparent) spheres represent occupied (empty) matter sites, while
red (blue) edges correspond to a positive (negative) electric field on a link. Panels (a,d) represent
“Dirac vacua”, characterized by an occupied negative-mass fermion site, an empty positive-mass
fermion site, and a constant background electric field. Panels (b,c) represent “meson” states, with
an occupied positive-mass fermion site, an empty negative-mass fermion site (corresponding to an
antiparticle), and a staggered electric field.

The Jordan–Wigner transformation maps the spinor field into a spin system [4,52],
which corresponds to our qubit register, as

ψx = ∏
`<x

(iZ`)
Xx + iYx

2
, ψ†

x = ∏
`<x

(−iZ`)
Xx − iYx

2
, (5)

where X, Y, and Z are Pauli matrices, σ± = X±iY
2 , and occupied sites correspond to qubit

states | ↓〉. The Hamiltonian of the resulting spin system is

H = HJ + Hm =
J
2

N−1

∑
x=0

(
σ−x Ux,x+1σ+

x+1 + H.c.
)
− m

2

N−1

∑
x=0

(−1)xZx =
N−1

∑
x=0

hx, (6)

where the free parameter corresponds to a coupling constant J = 1
a , once energy is scaled

in units of mass m.

2.1. Dynamical Quantum Phase Transitions

We aimed at studying the non-equilibrium dynamics of the described lattice Schwinger
model following a quantum quench [50,51,57]. Generally, in this protocol, one considers a
family of Hamiltonians H(γ) that depends on a tunable parameter and prepares an initial
state coinciding with the ground state |ψg〉 of H0 = H(γ0). At t = 0, the Hamiltonian sud-
denly switches to H = H(γ f ), determining the evolution |ψ(t)〉 = e−itH |ψg〉, characterized
by the survival (or Loschmidt) amplitude:

G(t) = 〈ψg|ψ(t)〉 . (7)

To identify a possible DQFT, we search for the zeros of the Loschmidt echo:

L(t) = |G(t)|2 = e−Nλ(t), (8)

which depends on the number N of degrees of freedom and on the rate function λ(t),
which becomes divergent in correspondence with the aforementioned zeros.

The targeted evolution generated by the Hamiltonian (6) is determined by a single
free parameter, as the Loschmidt amplitude phase ϕ(J, t) = arg G(t) is undefined in
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correspondence with the critical points. Nonetheless, in their neighborhood, ϕ is expected to
be smooth up to a discontinuity line of 2π starting from the criticality. This characterization
corresponds to a vortex, with a winding number:

ν =
1

2π

∮
C

ds ·∇ϕ, (9)

where C is a loop in the (J, t) plane [50].
The adopted protocol quenches the Kogut–Susskind staggered fermions at t = 0

by inverting the mass sign: H(m, J) −→ H(−m, J). The quenched Hamiltonian can be
decomposed into parity sectors, as described in Appendix A:

H(−m, J) = H(−) ⊕ H(+). (10)

In the even sector, the evolution is generated by

H(+) =

− J2−m2√
m2+J2

2Jm√
m2+J2

2Jm√
m2+J2

J2−m2√
m2+J2

, (11)

in the subspace spanned by the basis {|ψg〉, |ψḡ〉}, made of the even eigenstates of the initial
Hamiltonian H0 = H(m, J), which are associated with the lowest and highest eigenvalue
Eg = −

√
m2 + J2 and Eḡ = +

√
m2 + J2, respectively. The odd parity sector involves the

eigenstates |ψe〉 and |ψē〉 of H(m, J), which are independent of J and characterized by
the eigenvalues ±m; these two states are still eigenstates of the quenched Hamiltonian
H(−m, J), which only inverts their eigenvalues.

The Loschmidt amplitude for the initial ground state:

|ψg〉 = ag(|vac〉+ + |vac〉−) + bg(|e+e−〉L + |e+e−〉R), (12)

derived in Appendix A, reads

G(t) = (2a2
g − 2b2

g)
2e−iEgt

(
1 +

J2

m2 e−i(Eḡ−Eg)t
)

, (13)

with

ag =
1√

2
(

1 + p2
g

) , bg =
pg√

2
(

1 + p2
g

) , with pg =
m
J
−

√
m2

J2 + 1. (14)

DQPTs are observed for J = m at times

tj =
(2j + 1)π

2Eḡ
=

(2j + 1)π
2
√

2 m
, (15)

yielding the Rabi oscillations between |ψg〉 and |ψḡ〉 expected from Equation (11), as
shown in Figure 2. The behavior of the phase, reported in Figure 2b, features vortices
corresponding to Loschmidt echo nodes, while the remaining discontinuities in survival
maximum values compensate each other.
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(a) (b) (c)

Figure 2. Panel (a) shows the Loschmidt echo L(t) = | 〈ψg|ψ(t)〉 |2 with the variation of the free
parameter J, while the phase of the Loschmidt amplitude is represented in Panel (b); here, the green
paths around the DQPT points are characterized by a nonvanishing winding number. The Trotter
evolution discussed in Section 2.4 of Rabi states with step ∆t = 0.1, corresponding to J/m = 1 and
without noise, is shown in Panel (c).

2.2. Ground State Preparation

The protocol presented in Section 2.1 requires the preparation of the input state |ψg〉,
namely the ground state of H(m, J). Based on reasons clarified in Section 2.4, the degrees of
freedom of the lattice are assigned to the four qubits of the ibmq_manila circuit |q0q1q2q3〉:
• q0 and q3 host the “electric field” states of the Z2 links;
• The staggered spinless fermions are encoded in q1 and q2.

The four physical states refer to the following computational basis states: |vac〉− =
|1011〉, |e+e−〉L = |0101〉, |e+e−〉R = |1100〉, and |vac〉+ = |0010〉, expressed according
to the IBM qiskit notation | ↑〉 = |0〉 and | ↓〉 = |1〉 for matter sites and | 12 〉 = |0〉 and
| − 1

2 〉 = |1〉 for links. Since each state can be unambiguously identified by the first two
qubits |q0q1〉, one can associate with the ground state |ψg〉 an auxiliary product state of
two qubits:

|ψ′g〉 = ag(|10〉+ |00〉) + bg(|01〉+ |11〉) = 1√
2
(|0〉+ |1〉)⊗

√
2(ag|0〉+ bg|1〉), (16)

with the amplitudes corresponding, in the DQPT condition J/m = 1, to ag = 0.653 and
bg = −0.271.

The ground state for the complete four-qubit system is obtained by acting with CNOT
two-qubit gates:

CNOTij|qiqj〉 = |qi, qi ⊕ qj〉, (17)

which increase the amount of entanglement in the system. For this reason, containing the
error probability entailed by these gates is essential to guarantee an effective quantum
computation, which cannot be efficiently simulated by classical computers. The circuit
chosen for the ground state preparation reads

|ψg〉 = CNOT32 CNOT03 CNOT13 CNOT02 X2|ψ′g〉 ⊗ |00〉, (18)

and is pictorially represented in Figure 3.
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Figure 3. Circuit for the ground state preparation of H(m, J) corresponding to the dynamical quantum
phase transition value J/m = 1. Matter sites correspond to q1 and q2, while Z2 links are encoded in
q0 and q3.

2.3. Noise Models

The simulation of the circuits included an error probability entailed by each gate
application, generally described by the bit flip and phase flip error channel ρ 7→ D[ρ] =
∑3

i=0 KiρK†
i , with

K0 =
√

1− px − py − pz 1, K1 =
√

px X, K2 =
√

py Y, K3 =
√

pz Z. (19)

Such quantum channels, explicitly analyzed in Appendix B, are associated with every
single-qubit gate employed both in the state preparation and in its time evolution, while
for the two-qubit gates, the independent error probabilities (px, py, pz) can be varied in
Equation (19) to define

ρ 7→ D̃[ρ] =
3

∑
i,j=0

K̃ijρK̃†
ij with K̃ij = Ki ⊗ Kj (20)

for a two-qubit density matrix ρ. Each circuit includes also reset and measurement gates,
which are affected in the simulations only by bit flips [62,63], implemented by a single
noise contribution K1, thus corresponding to pz = py = 0.

The comparison of the simulations with the outputs of IBM Quantum was evaluated
in terms of the trace distance:

T(ρibmq, ρsim) =
1
2
||ρibmq − ρsim||1 =

1
2

Tr
[√

(ρibmq − ρsim)†(ρibmq − ρsim)
]
, (21)

which quantifies the similarity between the output state of simulated state ρsim and the
actual output of the IBM hardware ρibmq.

2.4. Trotter Evolution

The evolution determined by the Hamiltonian (6), composed of non-commuting local
terms hx, can be approximated by a Trotter decomposition basis on local unitary operators:

e−iHt = e−i ∑x hxt =
(

e−ihN−1∆te−ihN−2∆t . . . e−ih0∆t
) t

∆t
+O(∆t). (22)

The improved approximation that would in principle be provided by the Suzuki–Trotter
formula [52] is not well suited in this framework, because it would require a larger number
of gates for circuit implementation.

A decomposition of each term in Equation (22) according to the available set of
gates was formulated in [52]. Here, we present its specific application to the Z2 gauge
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group [31,49], where Ux,x+1 = U†
x,x+1 = Xx,x+1. The fermionic hopping contribution can

be equivalently expressed as

HJ =
J
4

N−1

∑
x=0

[Xx,x+1(XxXx+1 + YxYx+1)] =
N−1

∑
x=0

hJ,x. (23)

The evolution related to the Trotter time steps generated by the three qubits’ interaction in
Equation (23) was implemented according to the Cartan decomposition [64–66]. Concerning
the periodic lattice with N = 2 sites, we considered for clarity the hopping term hJ,0, acting
on the subsystem |q0q1q2〉:

e−ihJ,0∆t = K† AK, (24)

K = CNOT12 CNOT01 H1 H0 CNOT12, (25)

A = 1⊗ Rz(J∆t/2)⊗ Rz(−J∆t/2), (26)

where Hi is the Hadamard gate acting on qi and Rz(α) = e−iZα/2. The remaining term hJ,1
acts in an analogous way on the subsystem |q1q2q3〉, as represented in Figure 4.

Figure 4. Trotter step as given in [52] for the Z2 gauge group discretization of lattice QED. Gauge
degrees of freedom are encoded in qubits q0 and q3, while fermionic matter is described by qubits q1

and q2. The parameters used in Rz gates correspond to the choice J = m = 1 and ∆t = 0.1.

The decomposition first rotates the product basis states:

|q0〉 H

|q1〉 • H

|q2〉


H0 |q0〉 = |±〉

(H1 ⊗ 1) CNOT12|q1q2〉 = |0〉+(−1)q1 |1〉√
2

⊗ |q1 ⊕ q2〉 = |Qq1q2〉

with |±〉 = |(−1)q0〉 = 1√
2
(|0〉 ± |1〉) the X eigenstates. The action of Hadamard gate H0 is

required to entangle the state of the associated link with matter sites in the following steps:

|±〉 •

•
|Qq1q2〉


CNOT12 CNOT01 |±〉 ⊗ |Qq1q2〉 = CNOT12

|00〉±|11〉+(−1)q1 (|01〉±|10〉)
2 ⊗ |q1 ⊕ q2〉

= 1
2 [(|00〉 ± (−1)q1 |10〉)⊗ |q1 ⊕ q2〉 ± (|11〉 ± (−1)q1 |01〉)⊗ |q1 ⊕ q2〉] = |ZZq1q2〉

where the bar stands for the logical NOT. A further elaboration of the above |ZZq1q2〉
states expression simplifies the application of Cartan decomposition in the evolution with
diagonal operators:

|ZZq1q2(∆t)〉 = A|ZZq1q2〉 = 1⊗ Rz(J∆t/2)⊗ Rz(−J∆t/2)
[
|(−1)q1±〉 ⊗ 1√

2
(|0, q1 ⊕ q2〉+ (−1)q1 |1, q1 ⊕ q2〉)

]
= |(−1)q1±〉 ⊗ 1√

2

(
e−i J∆t

4 (1−(−1)q1⊕q2 )|0, q1 ⊕ q2〉+ (−1)q1ei J∆t
4 (1+(−1)q1⊕q2 )|1, q1 ⊕ q2〉

)
,

(27)
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such that states satisfying q1 ⊕ q2 = 1 acquire a time-dependent phase, while there is no
evolution outside the physical subspace HG with q1 ⊕ q2 = 0, as predicted by Equation (6).

Focusing on states with q1 ⊕ q2 = 1, the next circuit steps related to K† yield

|Qq1q2(∆t)〉 = CNOT01CNOT12|ZZq1q2(∆t)〉

=
1
2

(
e−i J∆t

2 |00〉 ± (−1)q1e−i J∆t
2 |11〉+ (−1)q1ei J∆t

2 |01〉 ± ei J∆t
2 |10〉

)
⊗ |1〉,

(28)

followed by the last part of the decomposition:

CNOT12H1H0|Qq1q2(∆t)〉 =


cos J∆t

2 |001〉 − i sin J∆t
2 |110〉, if q0 = 0, q1 = 0,

cos J∆t
2 |101〉 − i sin J∆t

2 |010〉, if q0 = 1, q1 = 0,
cos J∆t

2 |010〉 − i sin J∆t
2 |101〉, if q0 = 0, q1 = 1,

cos J∆t
2 |110〉 − i sin J∆t

2 |001〉, if q0 = 1, q1 = 1,

(29)

as expected by the action of e−iHJ,0∆t. Depending on states of the remaining link, encoded in
|q3〉, there are states not belonging to HG that show a time evolution: they correspond to the
ones shown in Figure 1 with a reversed matter site occupation. The remaining contributions
in the Trotter expansion of Equation (22) are the diagonal mass terms Hm = ∑N−1

x=0 hm,x of
Equation (6), expressed by

e−ihm,x∆t = Rz(−(−1)xm∆t) = ei(−1)xmZx∆t/2, (30)

as reported in Figure 4.
The topology of ibmq_manila in Figure 5a is well suited for the implementation of

the Trotter evolution, since every CNOT involves nearest-neighbor qubits. In a noiseless
scenario, the presented Trotter evolution would yield the Rabi oscillations in Figure 2c,
corresponding to the analytical solution of the evolution by the quenched Hamiltonian.

0 1 2 3 4

(a)

0 1 2

3

54 6

(b) (c)

Figure 5. Topologies of the circuits ibmq_manila, in Panel (a), and ibm_nairobi, in Panel (b). The
distributions of the ground state preparation fidelity obtained by applying the scheme proposed in
Section 2.2 are compared with the output of the built-in command QuantumCircuit.initialize in
the boxplot of Panel (c).

3. Simulations of Real-Time Dynamics

The experimental results presented in the following were collected in the IBM Quan-
tum platform [1]. The circuit test was based on the simplest periodic lattice required for
the implementation of the Schwinger model described in Section 2, composed of N = 2
sites for the matter field and an equal number of links endowed with the Z2 gauge group.
This choice allows for the optimization of the number of gates involved in each Trotter time
step, compared to higher-dimensional discretizations of the U(1) gauge group [52]. The
simulations include a noise model referring to an error probability affecting each gate, but
do not take into account effects related to coherence times, as discussed in Section 4.
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The ground state preparation procedure presented in Section 2.2 performs better
in terms of fidelity than the Python package qiskit built-in command QuantumCircuit.
initialize, as shown in Figure 5. Errors due to the use of CNOT gates between non-
neighboring qubits were investigated by implementing the same preparation in two differ-
ent topologies, shown in Figure 5a,b: in ibm_nairobi, the qubits are encoded as follows
(see the qubit labels in Panel (b)): q0 → “2”, q1 → “0”, q2 → “3”, q3 → “1”. Actu-
ally, Figure 3 shows the presence of three CNOT gates involving q3, together with each
one of the remaining qubits. For this reason, this is convenient to encoding it into the
highest-degree node of Figure 5b, while the ibm_nairobi circuit is limited to the first four
qubits. Despite their structural differences, the median values of the fidelities obtained
with the ibmq_manila and ibm_nairobi topologies are essentially the same and are about
0.7, showing in both cases a much higher efficiency with respect to the implementation
of QuantumCircuit.initialize. However, the collected statistics in Figure 5c, referring
to 80 runs for each ground state preparation modality, shows that the interquartile range
obtained with ibm_nairobi is smaller than the one provided by ibmq_manila. Moreover,
fluctuations towards low values in the former case are much less relevant.

The readout of the output states is based on state_tomography_circuits, which
exploits for our four-qubit circuit the Pauli basis, resulting in 34 circuits required by the
related orthogonal measurements [67]. Simulated noise models include the effects of bit
flips in the last measurement part of the circuit [62,63].

The ground state preparation was simulated by defining a noise model in AerSimulator.
Three different models were compared with the ibmq_manila output through the trace
distance defined in Equation (21) [68]. Each gate appearing in Figure 3 is affected by error
probabilities expressed by the error channels (19)–(20). The simulations in Figure 6 use the
following models of probability assignment:

(a) Single- and two-qubit gates share the same probability parameters (px, py, pz), gener-
ally different along the three axes;

(b) Single-qubit gates have the same error probability along each noise direction p1 =
px = py = pz; two-qubit gates have an analogous property, but are characterized by
an independent probability p2;

(c) Two parameters p1 and p2 quantify the error probability along both X and Z for single-
and two-qubit gates, respectively, while errors along Y are neglected.

The simulations reported in Figure 6a were averaged over 20 realizations of the noise
models, while those in Panels (b)–(c) were obtained from 50 realizations. Panel (a) shows
a contour plot corresponding to each value of py, obtained by interpolating the trace
distance evaluated over a grid consisting of 21× 21 points with spacing 1× 10−3 in the
(px, pz) plane. The considered output of ibmq_manila is a ground state averaged over
80 realizations. The mean value of the trace distance minimum in the variation of py is
10.81× 10−2 ± 3.3× 10−3, attained at the averaged coordinates in the plane (px, pz) =
((10.7± 1.1)× 10−3, (6.3± 0.9)× 10−3). These results are stable with respect to variations
in py. Indeed, a Y error is provided by a sequence of simultaneous bit flips and phase
flips, whose probability is much smaller than that of each single error. Panels (b)–(c) show
the trace distance of the two noise models with independent parameters for single- and
two-qubit gates with respect to the ground state ρibmq experimentally prepared 80 times,
with no error along Y in the case of Panel (c). The minimum values of the trace distance
in the two cases can be considered equal within the statistical fluctuations. Moreover, the
minima are found in correspondence with (p1,xyz, p2,xyz) ' (5× 10−3, 1× 10−2) in Panel
(b) and (p1,xz, p2,xz) ' (7.5× 10−3, 1.5× 10−2) in Panel (c), highlighting a scale factor of
3/2 due to the absence of the error along Y in the latter case. The minimum values of the
trace distance, which equal 9.77× 10−2 in Panel (b) and 11.16× 10−2 in Panel (c), express
the ability to distinguish the output ρsim from the experimental one ρibmq approximately
once out of ten times.
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(a)

(b) (c)

Figure 6. Trace distance T(ρibmq, ρsim) of the simulated noise models affecting circuits’ output
with respect to the averaged ground state of ibmq_manila by varying the error probabilities. In
Panel (a), contour plots in the plane (px, pz) refer to different values of py. Panels (b,c) evaluate the
variation in terms of single- and double-qubit gate error (p1, p2) with the inclusion or exclusion of Y
errors, respectively.

The ground state in the input evolves according to the quench protocol presented in
Section 2.1. Non-commuting local terms in the Hamiltonian, determined by the Jordan–
Wigner transformation (6), are circumvented by means of the Trotter evolution described
in Section 2.4, which was implemented using the ibmq_manila topology. The Loschmidt
echo and the overlaps with the remaining physical states are shown in Figure 7, where
the different curves were obtained by varying the time step length ∆t and by averaging 10
experimental realizations of evolution for each case.

The high error probability translates into a fast convergence towards the maximally
mixed state ρ∞ = (dim H )−11. This trend shows a striking deviation for the prob-
ability | 〈ψe|ψ(t)〉 |2 during the first two time steps, probably driven by a coherent er-
ror accumulation. To focus on this behavior, as well as to limit the computational re-
sources required in simulations, the trace distance is averaged over the first three time
steps ti = (i− 1)∆t, using

T(ρibmq, ρsim) =
1

3∆t

3

∑
i=1

T(ρibmq(ti), ρsim(ti))∆t, (31)
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expressing the mean probability of distinguishing the evolution outputs of ibmq_manila
from the simulated ones.

(a) (b) (c) (d)

Figure 7. Trotter evolution of the initial state |ψg〉 for different time steps ∆t, run in ibmq_manila.
The average over 10 realizations corresponds to the solid line, while the shaded region represents
the standard deviation. Loschmidt echo | 〈ψg|ψ(t)〉 |2 is shown in Panel (a), while probabilities of
finding the evolved state in remaining physical states |ψḡ〉, |ψe〉, |ψē〉 are reported in Panel (b),(c),(d)
respectively. Time is expressed in units of m−1 in all plots. The corresponding noiseless evolution is
reported in Figure 2c.

The optimal error probabilities for the ground state preparation are identified in
Figure 6c. Simulations of the evolution including noise models fix these parameters as-
signed to the gates in Figure 3. The Trotter evolution given in Figure 4 includes gates af-
fected by error probabilities, which we implemented according to the following two models:

• Single- and two-qubit gates are characterized by the same arbitrary parameters
(px, pz);

• Equal error probabilities in the X and Z directions, but they take generally different
values for single-qubit gates (p1 = px = pz) and two-qubit gates (p2 = px = pz).

The time step that determines the best resolution trade-off in view of investigating
the DQPT point is ∆t = 0.1. In the averaged trace distance (31), the argument ρibmq is
averaged over ten experimental realizations of the density matrix evolution, as represented
in Figure 7, while ρsim is averaged over 20 noise realizations for each time step of the
evolution. The contour plots in Figure 8 interpolate the evaluation over a grid composed by
31× 31 points with spacing 10−3. They describe how distinguishable both aforementioned
noise models are with respect to the evolution in ibmq_manila. The minimum value for
both models in Panels (a)–(b) is obtained by a further evaluation along the elongated
direction, and it is approximately equal to 23.5× 10−2, corresponding to (px, pz) ' (1.1×
10−2, 1.5× 10−2) in the case of Panel (a) and (p1, p2) ' (1× 10−2, 1.6× 10−2) in the case of
Panel (b). These values are used in Figure 9 to compare the evolution of physical states. In
Panels (a)–(d), the overall behavior characterized by a convergence towards the maximally
mixed state is captured by the noise models, but non-negligible deviations corresponding
to the probability | 〈ψe|ψ(t)〉 |2 in Panel (c) are still not captured by the model, probably
because they are driven by coherently accumulated errors, not included for stand-alone
gates in current noise models’ implementation. A comparable high number of single- and
two-qubit gates makes the two noise models overlap, as represented in Figure 8, so we can
focus on the simpler one described by the probabilities (px, pz). Such a probability array is
denoted as p in Figure 9e–h, where the comparison of the reduced noise regimes aimed at
estimating a threshold such that a revival is observed after the first DQPT. This translates
into the research of a non-monotonic behavior of the Loschmidt echo, which requires an
overall error probability per gate ten-times lower than in current implementations.
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(a) (b)

Figure 8. Averaged trace distance T(ρibmq, ρsim) of the evolution yielded in the first three time steps
by ibmq_manila and the simulated noise models. In Panel (a), probability parameters (px, pz) are
related to the X and Z errors, while, in Panel (b), (p1,xz, p2,xz) refer to the error probabilities in the
single- and two-qubit gates, respectively, in the case in which Y errors are neglected.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Noise model implemented in the qiskit simulation with Trotter step ∆t = 0.1. In Panels
(a–d), we use the optimal error probabilities determined in Figure 6–8. In Panels (e–h), such a probability
array is denoted by p to compare different noise regimes in order to observe a revival following the
first dynamical quantum phase transition. In all plots, time is expressed in units of m−1.

4. Discussion

Error correction and mitigation techniques are crucial for NISQ devices in order
to efficiently simulate the targeted dynamics [34–36]. An example was given in [37],
concerning the real-time dynamics on IBM Quantum of a periodic lattice model for a
1 + 1 QED model with N = 4 matter sites. There, the discretization of the gauge degrees
of freedom was based on a different (non-unitary) truncation. Moreover, the targeted
quantities were the vacuum energy and pair production, without a focus on the observation
of DQPTs. The exploitation of parity sectors and allowed momenta entails a large reduction
of the required qubit number, yielding a scheme able to constrain the evolution in the
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physical subspace. The reduced Hamiltonian for the matter degrees of freedom in the
targeted sector generates a Trotter dynamics implemented in circuits through the Cartan
decomposition. Aiming at the zero noise extrapolation, a procedure adopting repeated
application of noisy CNOT gates, was implemented. The circuit depth for each time
step increases with respect to the decomposition described in this work, thus allowing
us to estimate our targeted first DQPT (with time step ∆t = 0.1) corresponding to the
T2 coherence time, because of the 10-time-step limit mentioned in [37]. Indeed, the total
number of circuit moments in our Trotter evolution with 10 steps is equal to 200, as shown
in Figure 4. We have to include the ground state preparation depth in Figure 3, because of
the SWAP gates related to three CNOT between non-nearest neighbor qubits. The maximal
gate temporal extent allowed by the coherence time is slightly lower than the effective one,
thus signaling an overestimation of our error probabilities.

The comparison of our results with an ion trap simulation of the lattice Schwinger
model with N = 4 matter sites in [4] has to take into account the much lower number of
Mølmer–Sørensen gates, determined by the higher value of the time step. This is related to
the different purpose of the aforementioned work, which aimed at characterizing the pair
production mechanism.

The evolution in the proximity of a DQPT is considerably more affected by noise [50,51],
as simulated for a transverse field Ising model [40] with error rates comparable to those
obtained in our study. Nonetheless, the Hamiltonian terms of an Ising model concern
at most spin pairs, thus reducing the circuit complexity for Trotter product formulas. In
the case of commuting Hamiltonian terms, at the basis of plaquette dynamics without
matter degrees of freedom [38], the Trotter product is not required, thus yielding a further
reduction of the circuit depth. Concerning the estimated error probabilities in our analysis,
their magnitudes were confirmed in the study of scalar Yukawa coupling [69].

The current experimental realization of ion traps and Rydberg atoms in optical lattices
shows a higher value for the average gate fidelity of entangling gates [5,70,71]. The
introduction of thermal effects, as well as an increased number of parameters for gates’
errors must be considered in order to improve the proposed noise models. Such a detailed
description is motivated by the determined “optimal” error probabilities for ground state
preparation, which do not coincide with those characterizing time evolution. Moreover,
the coherent error accumulation would require more sophisticated noise models, such as
correlated dissipation in subsequent quantum channels. The inclusion of error correction
and mitigation [37–40] will be investigated in future research to keep the dynamics in the
physical subspace and to balance the noise affecting DQPTs’ observation.

5. Conclusions

We studied the possibility of simulating the real-time dynamics of a model of QED
in 1 + 1 dimensions, on an elementary lattice composed of two fermionic sites, imple-
mented on IBM Quantum [1]. More specifically, we analyzed the dynamics after a mass
quench, close to a dynamical quantum phase transition. The considered quench protocol
requires ground state preparation, based on an optimized circuit able to outperform built-in
functions, as measured by fidelity with the ideal state. Limitations in observing DQPTs
were described in terms of the error probabilities associated with each gate. Different
noise models were simulated and compared to capture the main features of the measured
evolution, thus determining a marginal contribution of noise along the Y direction. These
minimal models revealed the partial observation of the targeted DQPTs’ phenomena in
circuit implementations with a reduced error probability. The estimated error rate also
indicated a promising implementation on ion traps, such as those available in the IonQ
platform [72].
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Appendix A

The 1 + 1 QED Hamiltonian for a periodic lattice with N = 2 matter sites, analyzed in
Section 2.1 and referring to states in the physical subspace HG in Figure 1, is

H(m, J) = m
(
|e+e−〉L〈e+e−|+ |e+e−〉R〈e+e−| − |vac〉−〈vac| − |vac〉+〈vac|

)
+

J
2
(|vac〉− L〈e+e−|+ |vac〉− R〈e+e−|+ |e+e−〉L +〈vac|+ |e+e−〉R +〈vac|+ H.c.),

(A1)

in a total Hilbert space with dim H = 22N . By exploiting parity symmetry [50], the
eigenstates of the positive sector read

|ψg/ḡ〉 = ag/ḡ(|vac〉+ + |vac〉−) + bg/ḡ(|e+e−〉L + |e+e−〉R) (A2)

with the coefficients ratio pg/ḡ =
m∓
√

m2+J2

J being obtained by imposing H|ψg/ḡ〉 =

Eg/ḡ|ψg/ḡ〉. The amplitudes are equal to ag/ḡ =
[
2
(

1 + p2
g/ḡ

)]− 1
2 and bg/ḡ = ag/ḡ pg/ḡ,

thus yielding the Hamiltonian diagonalization with U = (|ψe〉, |ψē〉, |ψg〉, |ψḡ〉)ᵀ:

U† H(m, J)U = diag{Ee, Eē, Eg, Eḡ} = diag

{
−m, m,−

√
m2 + J2,

√
m2 + J2

}
, (A3)

where the negative parity eigenstates are |ψe〉 = 1√
2
(|vac〉+ − |vac〉−) and |ψē〉 = 1√

2
(|e+e−〉L −

|e+e−〉R).The evaluation of the expectation values allows us to identify a destructive inter-
ference underlying the suppression of hopping contributions in the negative parity sector.
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The quench at t = 0 inverts the mass sign H(m, J) −→ H(−m, J), whose diagonal-
ization with respect to the previous eigenstates yields a Rabi model in the positive parity
sector, while giving just an eigenvalue sign inversion in the negative parity sector, namely

U† H(−m, J)U = H(−) ⊕ H(+) =


m 0 0 0
0 −m 0 0

0 0 − J2−m2√
m2+J2

2Jm√
m2+J2

0 0 2Jm√
m2+J2

J2−m2√
m2+J2

, (A4)

with the eigenstate coefficients’ transformation:

bḡ −→ b′ḡ = −bg, aḡ −→ a′ḡ = ag,

bg −→ b′g = −bḡ, ag −→ a′g = aḡ.
(A5)

Finally, the analytical expression of the Loschmidt amplitude is obtained by exploiting
the completeness relation and reads

G(t) = 〈ψg|ψ(t)〉 = 〈ψg|e−iH(−m,J)t|ψg〉 = (2a2
g − 2b2

g)
2e−iEgt + (2agaḡ − 2bgbḡ)

2e−iEḡt =

= (2a2
g − 2b2

g)
2e−iEgt

1 +

 J̃√
1 + J̃2

1 +
J̃2

1−
√

1 + J̃2

2

e−i(Eḡ−Eg)t


= (2a2

g − 2b2
g)

2e−iEgt(1 + J̃2e−i(Eḡ−Eg)t),

(A6)

with a rescaled coupling J̃ = J/m.

Appendix B

The implementation of the noise models occurs through the application of quantum
channels. An open quantum system composed by a single qubit is described using a density
matrix, with components in the Pauli basis {Gk}k=0,1,2,3 = {σk/

√
2}k=0,1,2,3:

ρ(t) =
3

∑
k=0

rk(t)Gk, (A7)

consisting of its vectorized form. The dynamics is ruled by a master equation:

dρ(t)
dt

= Λ[ρ(t)], (A8)

which we represent in a matrix form Lk` = Tr{GkΛ[G`]}, which is time independent in the
Markovian case:

drk(t)
dt

=
3

∑
`=0

Lk`r`(t). (A9)

In the AerSimulator noise model, the simulations of single qubits exploit the Kraus–
Sudarshan representation, a linear map acting on density matrix states:

ρ(t) = Dt[ρ(0)] =
3

∑
i=0

Ki(t)ρ(0)K†
i (t), (A10)

whose matrix representation Dk`(t) = Tr{GkDt[G`]} yields

rk(t) =
3

∑
`=0

Dk`(t)r`(0). (A11)
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The composition of this linear map with the master equation reads dDt
dt = Λ ◦ Dt, by

the matrix expression:
dDk`(t)

dt
=

3

∑
m=0

LkmDm`(t), (A12)

in general consisting of a system of ordinary differential equations, which leads to the
semigroup solution D(t) = exp {tL}, with D(0) = 1 [74].

Depolarizing channels are common examples, defined by an equal probability p(t) for
errors along any direction:

K0(t) =
√

1− p(t) 1, Ki(t) =

√
p(t)

3
σi, (A13)

with Markovian master equation:

dρ(t)
dt

= Λ[ρ(t)] =
γ

4

3

∑
k=0

[σkρ(t)σk − ρ(t)]. (A14)

The corresponding Kraus–Sudarshan decomposition and channel matrix form read,
respectively,

Dk`(t) = (1− p(t))δk` + p(t)

[
2δk0δ`0 − δk` +

2
3 ∑

i
δkiδ`i

]
,

Lk` =
3
4

γδk` +
3
4

γ

[
2δk0δ`0 − δk` +

2
3 ∑

i
δkiδ`i

]
,

(A15)

composed in order to produce a single ordinary differential equation dD(t)
dt = LD(t), whose

solution converges towards the maximally mixed state:

p(t) =
3
4
(1− e−γt). (A16)

The quantum channels presented in Equation (19) generalize the previous case with
parameters px(t), py(t), and pz(t). The AerSimulator implementation does not show any
time dependence, adopting a fixed error rate along each direction during gates’ application,
while its inclusion allows the exploitation of quantum trajectories [75].

The Markovian master equation assigns a specific decoherence rate to each direction:

dρ(t)
dt

= Λ[ρ(t)] =
1
4

3

∑
k=0

γk[σkρ(t)σk − ρ(t)], (A17)

leading to the matrix representation of both the Kraus–Sudarshan map and the channel:

Dk`(t) = (1− px(t)− py(t)− pz(t))δk` +
[
(2δk0δ`0 − δk`)(px(t) + py(t) + pz(t))

+2(px(t)δk1δ`1 + py(t)δk2δ`2 + pz(t)δk3δ`3)
]
,

Lk` =
1
4
(γx + γy + γz)δk` +

1
4
[
(2δk0δ`0 − δk`)(γx + γy + γz)

+2(γxδk1δ`1 + γyδk2δ`2 + γzδk3δ`3)
]
,

(A18)

or, in a compact form,

D(t) = diag
{

1, 1− 2(py(t) + pz(t)), 1− 2(px(t) + pz(t)), 1− 2(px(t) + py(t))
}

,

L = diag
{

0,−1
2
(γy + γz),−

1
2
(γx + γz),−

1
2
(γx + γy)

}
.

(A19)
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The corresponding system of ordinary differential equation reads
ṗy(t) + ṗz(t) = 1

4 (γy + γz)[1− 2(py(t) + pz(t))],
ṗx(t) + ṗz(t) = 1

4 (γx + γz)[1− 2(px(t) + pz(t))],
ṗx(t) + ṗy(t) = 1

4 (γy + γz)[1− 2(px(t) + py(t))],

(A20)

with explicit time-dependent solutions:

px(t) =
1
4
(1− e−(γx+γy)

t
2 − e−(γx+γz)

t
2 + e−(γy+γz)

t
2 ),

py(t) =
1
4
(1− e−(γx+γy)

t
2 + e−(γx+γz)

t
2 − e−(γy+γz)

t
2 ),

pz(t) =
1
4
(1 + e−(γx+γy)

t
2 − e−(γx+γz)

t
2 − e−(γy+γz)

t
2 ),

(A21)

whose sum reduces to Equation (A16) when γx = γy = γz = γ.
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