
Citation: Cheng, R.; Yin, L.-Z.; Jiang,

Z.-H.; Xu, X.-M. Gate-Level Circuit

Partitioning Algorithm Based on

Clustering and an Improved Genetic

Algorithm. Entropy 2023, 25, 597.

https://doi.org/10.3390/e25040597

Academic Editor: Sergio Saponara

Received: 11 February 2023

Revised: 21 March 2023

Accepted: 29 March 2023

Published: 31 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Gate-Level Circuit Partitioning Algorithm Based on Clustering
and an Improved Genetic Algorithm
Rui Cheng 1, Lin-Zi Yin 1,*, Zhao-Hui Jiang 2 and Xue-Mei Xu 1

1 School of Physics and Electronics, Central South University, Changsha 410083, China
2 School of Automation, Central South University, Changsha 410083, China
* Correspondence: yinlinzi@csu.edu.cn

Abstract: Gate-level circuit partitioning is an important development trend for improving the effi-
ciency of simulation in EDA software. In this paper, a gate-level circuit partitioning algorithm, based
on clustering and an improved genetic algorithm, is proposed for the gate-level simulation task.
First, a clustering algorithm based on betweenness centrality is proposed to quickly identify clusters
in the original circuit and achieve the circuit coarse. Next, a constraint-based genetic algorithm is
proposed which provides absolute and probabilistic genetic strategies for clustered circuits and other
circuits, respectively. This new genetic strategy guarantees the integrity of clusters and is effective
for realizing the fine partitioning of gate-level circuits. The experimental results using 12 ISCAS ‘89
and ISCAS ‘85 benchmark circuits show that the proposed algorithm is 5% better than Metis, 80%
better than KL, and 61% better than traditional genetic algorithms for finding the minimum number
of connections between subsets.

Keywords: circuit partitioning; clustering algorithm; genetic algorithm; betweenness centrality

1. Introduction

Gate-level circuit partitioning is a very important phase during EDA simulation [1].
It divides large-scale circuits into similar-sized subsets, with a minimum number of con-
nections between subsets. The quality of circuit partitioning directly affects the sequence
simulation [2–4]. With the rapid increase in chip integration, gate-level circuit partitioning
algorithms are attracting expanding attention from the industry and scholars, becoming an
essential part of new generation EDA simulation software. There are two key indicators
to evaluate a circuit partitioning algorithm: the minimum number of connections and
load balancing. Early circuit partitioning algorithms mainly include KL [5–7] and FM [8,9].
With the development of machine learning theory, some heuristic algorithms, such as the
genetic algorithm [10–14], the particle swarm optimization algorithm [15,16], the bird flock
algorithm [17], etc., have also emerged. In order to further improve the calculation speed,
multi-level partition algorithms [18–20], such as Metis [21] and /hMetis [22], etc., have
received extensive attention in recent years. Kumar [23] proposed a streaming Metis parti-
tion to alleviate the computational resource constraints when dealing with large graphs.
He applied the traditional multi-level graph partition strategy to divide ultra-large-scale
circuits [24].

In general, multi-level partition algorithms include two phases: the coarse partition
phase and the fine partition phase. The former identifies clusters in the original circuit and
achieves circuit coarsening. The latter classifies the other nodes for the minimum number
of connections and load balancing. Although there are many algorithms to identify the
clusters of a circuit, the clustering algorithm is the most popular and effective to identify
similar nodes at the same time [25]. Clustering plays an important role in many scientific
fields [26], including earth sciences [27,28], biology [29–31], economics [32], community
detection [33], etc. The nodes identified by clustering algorithms are called clusters, which

Entropy 2023, 25, 597. https://doi.org/10.3390/e25040597 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25040597
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e25040597
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25040597?type=check_update&version=1

Entropy 2023, 25, 597 2 of 16

is very important for rapidly realizing the coarse partitioning of a circuit. However, the
traditional clustering algorithms suffer from some disadvantages when they are applied to
gate-level circuit coarse partition, including the random search starting node and how to
determine the optimal cluster size, etc. Thus, it is necessary to design an efficient clustering
algorithm based on the gate-level circuit features.

Moreover, these traditional multi-level partition algorithms, such as Metis, would
break the related clusters of the original circuits. This means that their fine partition
modules would contradict the conclusions of the coarse partition modules, to some extent.
Furthermore, these traditional algorithms often prioritize load balancing and treat the
minimum number of connections as a minor condition. For example, in the fine partition
phase, the traditional Metis algorithms are often optimized by the peer-to-peer exchange of
the elements in different subsets, which strictly guarantees load balancing, but may lead to
an increase in the number of connections. For gate-level circuit partitioning, the number
of connections between subsets, called cutsize, is key to reduce the waiting delay when
simulating different partition subsets. Thus, it is necessary to design a new fine partition
algorithm which not only ensures the integrity of clusters to achieve the compatibility with
the coarse partition algorithm, but also takes the minimum cutsize as the most important
optimization target.

In order to resolve the above disadvantages, a new gate-level circuit partitioning algo-
rithm based on clustering and an improved genetic algorithm is proposed. The proposed
algorithm adopts a two-level partition structure. In the coarse partition phase, the notions
of degree and betweenness centrality [34–37] of the graph theory are applied to optimize the
search starting node and identify the boundary of a cluster, respectively. They are effective
to improve the computational efficiency of clustering algorithms and determine the related
clusters. In the fine partition phase, a constraint-based genetic algorithm is proposed which
adopts the absolute genetic strategy for nodes in clusters and the probabilistic genetic
strategy for other nodes. This new genetic strategy can effectively realize the seamless
connection with the coarse partition, greatly reduce the search space, and improve the
convergence speed. In addition, the proposed genetic algorithm takes the minimum cutsize
as the optimization objective of the fitness calculation, and can obtain a relatively better
partition scheme, with a minimum cutsize.

The main contributions of this paper include the following: (1) a new gate-level
circuit partitioning algorithm is proposed; (2) a clustering algorithm based on betweenness
centrality is proposed which can identify and preserve clusters to realize the coarse partition
of a gate-level circuit; and (3) a constraint-based genetic algorithm is proposed, combining
absolute genetic strategy and probabilistic genetic strategy, which realizes a seamless
connection with coarse partition and is effective to obtain better partition results.

2. Preliminary Knowledge

A gate-level circuit can be described as an undirected graph G(V, E), where V = {v1, v2, · · · , vn}
is a set of nodes that represents the set of electronic components. E = {e1, e2, · · · , em} corresponds
to the set of graph edges that represents the set of connections between electronic components. The
number of edges connected to node v, called the degree of node v, is denoted as dG(v) or d(v).

Given an integrated circuit graph G(V, E), if all the nodes are divided into k two-two
disjoint subsets {V1, V2, · · · , Vk} and V1 ∪ V2 ∪ · · · ∪ Vk = V, then the union of subsets
is referred to as a k-way partition of graph G. Considering a given balance factor β, the
k-way partition is considered to be load balancing if it satisfies the following:

For any Vp ∈ V, 1 < = p < = k,
∣∣ Vp

∣∣ represents cardinality, that is, the number of nodes
in Vp, which needs to satisfy Equation (1):

(1/k)·(1 − β)∑k
i=1|Vi | ≤

∣∣ Vp
∣∣ ≤ (1/k) (1 + β) ∑k

i=1|Vi| (1)

Entropy 2023, 25, 597 3 of 16

Betweenness centrality provides a general standard for the measurement of graph
centrality. For any node vp ∈ V, the betweenness centrality c

(
vp

)
represents the probability

sum of the shortest path through node vp:

c
(
vp

)
= ∑vi ,vj∈V

σ
(
vi, vj | vp

)
σ
(
vi, vj

) ; p 6= i 6= j (2)

where σ
(
vi, vj

)
is the number of shortest paths between any node vi and vj, and σ

(
vi, vj

∣∣vp
)

is the number of shortest paths that contain node vp. Nodes with high betweenness
centrality play the role of a broker, or gatekeeper, to connect the nodes and sub-groups [36].
In other words, it is a “bridge connection” of circuit clusters. A simple example is shown in
Figure 1.

Entropy 2023, 25, x FOR PEER REVIEW 3 of 16

Betweenness centrality provides a general standard for the measurement of graph
centrality. For any node 𝑣௣ ∈ 𝑉, the betweenness centrality 𝑐൫𝑣௣൯ represents the proba-
bility sum of the shortest path through node 𝑣௣: 𝑐൫𝑣௣൯ = ෍ 𝜎൫𝑣௜, 𝑣௝ ∣ 𝑣௣൯𝜎൫𝑣௜, 𝑣௝൯௩೔,௩ೕ∈௏ ; 𝑝 ≠ 𝑖 ≠ 𝑗 (2)

where 𝜎൫𝑣௜, 𝑣௝൯ is the number of shortest paths between any node 𝑣௜ and 𝑣௝ , and 𝜎൫𝑣௜, 𝑣௝|𝑣௣൯ is the number of shortest paths that contain node 𝑣௣. Nodes with high be-
tweenness centrality play the role of a broker, or gatekeeper, to connect the nodes and
sub-groups [36]. In other words, it is a “bridge connection” of circuit clusters. A simple
example is shown in Figure 1.

Figure 1. Schematic diagram of betweenness centrality. The betweenness centrality of nodes 1–9 is
{0.107, 0.018, 0.554, 0.107, 0.571, 0.107, 0.554, 0.018, 0.107}, and node 5 has the highest betweenness.
That is, node 5 connects two clusters, {1, 2, 3, 4} and {6, 7, 8, 9}.

For ease of expression, we define the concepts of the high betweenness node set and
the non-high betweenness maximum degree node to identify the boundary and starting
node of the clustering algorithms, as follows:
Definition 1. Given a gate-level circuit G = (V, E), a node set Y ⊆ V is called the high betweenness
node set, if it satisfies the following two conditions:
1. |Y| = k − 1;
2. For ∀ 𝑣′ ∈ 𝑉\𝑌, ∀ 𝑣 ∈ 𝑌, it has c(v) ≥ c(v’).

In detail, the high betweenness node set Y contains k − 1 nodes with the highest be-
tweenness centrality.
Definition 2. Given a gate-level circuit G = (V, E), and a high betweenness node set Y, node 𝑣௠௔௫
is called a non-high betweenness maximum degree node if it satisfies the following two conditions:
1. 𝑣௠௔௫ ∉ 𝑌;
2. ∀𝑣 ∈ 𝑉\𝑌, 𝑑(𝑣௠௔௫) ≥ 𝑑(𝑣).

The node 𝑣௠௔௫ is mainly used as the starting node for each round of clustering, and
it is necessary to ensure that this node is not in the high betweenness node set Y.

3. Gate-Level Circuit Partitioning Algorithm Based on Cluster and an Improved Ge-
netic Algorithm

The goal of circuit partitioning is to divide large-scale circuits into similar-sized sub-
sets, with a minimum cutsize. First, a real gate-level circuit stored in the netlist file was
modeled into an undirected graph through preprocessing. Next, a two-level partition
structure was adopted to obtain the smallest cutsize and guarantee a certain load balanc-
ing. In detail, we proposed a clustering algorithm based on betweenness centrality to re-
alize coarse partitioning of the original gate-level circuit and to guarantee a certain load
balancing. On this basis, a constraint-based genetic algorithm is proposed to realize a fine
partition for the minimum cutsize. The various phases of the three-way partition of the
circuit under a two-level partition structure are shown in Figure 2.

Figure 1. Schematic diagram of betweenness centrality. The betweenness centrality of nodes 1–9 is
{0.107, 0.018, 0.554, 0.107, 0.571, 0.107, 0.554, 0.018, 0.107}, and node 5 has the highest betweenness.
That is, node 5 connects two clusters, {1, 2, 3, 4} and {6, 7, 8, 9}.

For ease of expression, we define the concepts of the high betweenness node set and
the non-high betweenness maximum degree node to identify the boundary and starting
node of the clustering algorithms, as follows:

Definition 1. Given a gate-level circuit G = (V, E), a node set Y ⊆ V is called the high betweenness
node set, if it satisfies the following two conditions:

1. |Y| = k − 1;
2. For ∀ v′ ∈ V\Y, ∀ v ∈ Y, it has c(v) ≥ c(v′).

In detail, the high betweenness node set Y contains k − 1 nodes with the highest
betweenness centrality.

Definition 2. Given a gate-level circuit G = (V, E), and a high betweenness node set Y, node vmax
is called a non-high betweenness maximum degree node if it satisfies the following two conditions:

1. vmax /∈ Y;
2. ∀v ∈ V\Y, d(vmax) ≥ d(v).

The node vmax is mainly used as the starting node for each round of clustering, and it
is necessary to ensure that this node is not in the high betweenness node set Y.

3. Gate-Level Circuit Partitioning Algorithm Based on Cluster and an Improved
Genetic Algorithm

The goal of circuit partitioning is to divide large-scale circuits into similar-sized subsets,
with a minimum cutsize. First, a real gate-level circuit stored in the netlist file was modeled
into an undirected graph through preprocessing. Next, a two-level partition structure was
adopted to obtain the smallest cutsize and guarantee a certain load balancing. In detail,
we proposed a clustering algorithm based on betweenness centrality to realize coarse
partitioning of the original gate-level circuit and to guarantee a certain load balancing. On
this basis, a constraint-based genetic algorithm is proposed to realize a fine partition for
the minimum cutsize. The various phases of the three-way partition of the circuit under a
two-level partition structure are shown in Figure 2.

Entropy 2023, 25, 597 4 of 16Entropy 2023, 25, x FOR PEER REVIEW 4 of 16

Figure 2. Schematic diagram of the three-way partition of the circuit under a two-level partition
structure. During the preprocessing phase, all the electronic components in the circuit are unified,
and the undirected graph 𝐺଴ is outputted. During the coarse partition phase, the clustering algo-
rithm reduces the scale of 𝐺଴ and outputs cluster set Vc and minimum graph 𝐺௞. During the fine
partition phase, the improved genetic algorithm assigns nodes in 𝐺௞ to each cluster and outputs
the circuits with the minimum cutsize.

The proposed algorithm, that is, the gate-level circuit partitioning algorithm based
on the clusters and the improved genetic algorithm, works only for undirected graphs,
and is not directly applicable to circuits. The algorithm mainly includes the following two
parts:
1. The clustering algorithm based on betweenness centrality. It applies BFS (breadth-

first search) to identify the clusters in a graph and realize the coarse partition. These
clusters can ensure a certain load balancing and greatly reduce the scale of the graph;
that is, the solution space of the subsequent fine partitioning algorithm is reduced.

2. The constraint-based genetic algorithm. It adopts the absolute genetic strategy for
nodes in clusters and the probabilistic genetic strategy for other nodes, so as to
achieve the rapid convergence of the algorithm and to match with the coarse parti-
tion. The genetic algorithm takes the minimum cutsize as the optimal goal and out-
puts the best partition scheme.

3.1. Gate-Level Circuit Modeling and Preprocessing
A gate-level circuit is typically stored in a text file containing instantiated logical

gates and port-map-based connections. Circuit partitioning, generally formulated as a
graph partitioning problem, is an important step in the physical design of circuits [38].
The connection matrix is one of the storage forms of undirected graphs, so the key to con-
vert a circuit to an undirected graph is to convert the circuit to a connection matrix.
Definition 3. The connection matrix M = {mij} of a gate-level circuit is defined as follows: 𝑚௜௝ = ൜1, 𝜎(𝑣௜, 𝑣௝) > 0 & 𝑖 ≠ 𝑗0, 𝑒𝑙𝑠𝑒 (3)

The size of the connection matrix is N*N; N is the number of electronic components,
each row and column correspond to an electronic component, and 𝑚௜௝ represents the
connection relationship between electronic components 𝑣௜ and 𝑣௝. For ease of partition-
ing, we remove the self-loop and discrete node situations, unify the electronic compo-
nents, and use 1 to represent the connection relationship between the electronic

Figure 2. Schematic diagram of the three-way partition of the circuit under a two-level partition
structure. During the preprocessing phase, all the electronic components in the circuit are unified,
and the undirected graph G0 is outputted. During the coarse partition phase, the clustering algorithm
reduces the scale of G0 and outputs cluster set Vc and minimum graph Gk. During the fine partition
phase, the improved genetic algorithm assigns nodes in Gk to each cluster and outputs the circuits
with the minimum cutsize.

The proposed algorithm, that is, the gate-level circuit partitioning algorithm based on
the clusters and the improved genetic algorithm, works only for undirected graphs, and is
not directly applicable to circuits. The algorithm mainly includes the following two parts:

1. The clustering algorithm based on betweenness centrality. It applies BFS (breadth-first
search) to identify the clusters in a graph and realize the coarse partition. These
clusters can ensure a certain load balancing and greatly reduce the scale of the graph;
that is, the solution space of the subsequent fine partitioning algorithm is reduced.

2. The constraint-based genetic algorithm. It adopts the absolute genetic strategy for
nodes in clusters and the probabilistic genetic strategy for other nodes, so as to achieve
the rapid convergence of the algorithm and to match with the coarse partition. The
genetic algorithm takes the minimum cutsize as the optimal goal and outputs the best
partition scheme.

3.1. Gate-Level Circuit Modeling and Preprocessing

A gate-level circuit is typically stored in a text file containing instantiated logical gates
and port-map-based connections. Circuit partitioning, generally formulated as a graph
partitioning problem, is an important step in the physical design of circuits [38]. The
connection matrix is one of the storage forms of undirected graphs, so the key to convert a
circuit to an undirected graph is to convert the circuit to a connection matrix.

Definition 3. The connection matrix M = {mij} of a gate-level circuit is defined as follows:

mij =

{
1, σ(vi, vj) > 0 & i 6= j

0, else
(3)

The size of the connection matrix is N*N; N is the number of electronic components,
each row and column correspond to an electronic component, and mij represents the
connection relationship between electronic components vi and vj. For ease of partitioning,

Entropy 2023, 25, 597 5 of 16

we remove the self-loop and discrete node situations, unify the electronic components, and
use 1 to represent the connection relationship between the electronic components, while
0 represents no connection. A simple example of the gate-level circuit conversion to an
undirected graph is shown in Figure 3.

Entropy 2023, 25, x FOR PEER REVIEW 5 of 16

components, while 0 represents no connection. A simple example of the gate-level circuit
conversion to an undirected graph is shown in Figure 3.

Figure 3. Converting the gate-level circuit to an undirected graph. The circuit contains four logic
gates, where U1, U2, and U4 are NOT gates, and U3 is the AND gate. The corresponding connection
matrix is M. U1 and U4 have no direct connection relationship; thus, the corresponding elements
m14 and m41 are 0. If there is a connection relationship between other electronic elements, the corre-
sponding element value is 1.

3.2. Clustering Algorithm based on Betweenness Centrality
The clustering algorithm proposed in this paper is mainly used to realize the coarse

partition of the original graph. It outputs all the identified clusters Vc and the minimum
graph 𝐺௞. Different from the traditional random search, we adopt the non-high between-
ness maximum degree value 𝑣௠௔௫ as the starting node of the BFS algorithm. In addition,
the nodes with high betweenness centrality are applied as the search boundary because
they play the role of connecting different clusters in the graph. Additionally, the search
process ends when one of the following conditions is satisfied: (1) BFS algorithm searches
a node belonging to Y, and the number of searched nodes is greater than the lower limit
LR. (2) The number of searched nodes is greater than the upper limit UR.

Finally, all the nodes searched in each round are regarded as cluster 𝑉௜. The above
process is repeated until k clusters are found; then, the clustering algorithm terminates
and outputs a minimum graph.

The main process of the clustering algorithm based on betweenness centrality is
shown in Algorithm 1.

Algorithm 1: A clustering algorithm based on betweenness centrality
Input: 𝐺଴, the number of subsets k, high betweenness node set Y, lower limit of a cluster
LR, upper limit UR, cluster set Vc
Output: Vc, minimum graph 𝐺௞.
Variables: a cluster 𝑉௜
1. for i in k do
2. 𝑣௠௔௫ = maxdegree_search (𝐺଴\𝑉௖); //𝑣௠௔௫ does not belong to Vc
3. 𝑉௜ = [];
4. 𝑉௜ = BFS (𝑣௠௔௫, 𝐺଴, 𝑉௖, 𝑉௜ Y, LR, UR);
5. 𝑉௖. append (𝑉௜); //Store a cluster
6. if i== k−1:
7. 𝐺௞ = 𝐺଴\𝑉௖;

return 𝐺௞;
8. end for

Analysis of the following parameters: (1) The lower limit of a cluster LR (lower
range). If 𝑣௠௔௫ node is directly connected to a node in set Y, or is particularly close, then
BFS would be terminated too early, resulting in the current cluster being too small. There-
fore, set a lower limit LR. This threshold is a ratio of the number of searched nodes to the
total number of nodes, and is dependent on k. We set LR as (0.3~0.4) in the two-way par-
tition and (0.18~0.28) in the three-way partition. When the nodes in set Y are searched, the
related BFS algorithm can be terminated if the number of nodes reaches LR. In the related

Figure 3. Converting the gate-level circuit to an undirected graph. The circuit contains four logic
gates, where U1, U2, and U4 are NOT gates, and U3 is the AND gate. The corresponding connection
matrix is M. U1 and U4 have no direct connection relationship; thus, the corresponding elements
m14 and m41 are 0. If there is a connection relationship between other electronic elements, the
corresponding element value is 1.

3.2. Clustering Algorithm Based on Betweenness Centrality

The clustering algorithm proposed in this paper is mainly used to realize the coarse
partition of the original graph. It outputs all the identified clusters Vc and the minimum
graph Gk. Different from the traditional random search, we adopt the non-high betweenness
maximum degree value vmax as the starting node of the BFS algorithm. In addition, the
nodes with high betweenness centrality are applied as the search boundary because they
play the role of connecting different clusters in the graph. Additionally, the search process
ends when one of the following conditions is satisfied: (1) BFS algorithm searches a node
belonging to Y, and the number of searched nodes is greater than the lower limit LR. (2) The
number of searched nodes is greater than the upper limit UR.

Finally, all the nodes searched in each round are regarded as cluster Vi. The above
process is repeated until k clusters are found; then, the clustering algorithm terminates and
outputs a minimum graph.

The main process of the clustering algorithm based on betweenness centrality is shown
in Algorithm 1.

Algorithm 1: A clustering algorithm based on betweenness centrality

Input: G0, the number of subsets k, high betweenness node set Y, lower limit of a cluster LR,
upper limit UR, cluster set Vc
Output: Vc, minimum graph Gk.
Variables: a cluster Vi

1. for i in k do
2. vmax = maxdegree_search (G0\Vc); //vmax does not belong to Vc
3. Vi = [];
4. Vi = BFS (vmax, G0, Vc, Vi Y, LR, UR);
5. Vc. append (Vi); //Store a cluster
6. if i == k−1:
7. Gk = G0\Vc;

return Gk;
8. end for

Analysis of the following parameters: (1) The lower limit of a cluster LR (lower range).
If vmax node is directly connected to a node in set Y, or is particularly close, then BFS would
be terminated too early, resulting in the current cluster being too small. Therefore, set
a lower limit LR. This threshold is a ratio of the number of searched nodes to the total
number of nodes, and is dependent on k. We set LR as (0.3~0.4) in the two-way partition
and (0.18~0.28) in the three-way partition. When the nodes in set Y are searched, the
related BFS algorithm can be terminated if the number of nodes reaches LR. In the related

Entropy 2023, 25, 597 6 of 16

experiments in Section 4, we tested all the possible LR using the step size 0.02, selecting
the best parameter. For example, in the two-way partition, we set LR as 0.3, 0.32, 0.34, 0.36,
0.38, and 0.40 in turn, selecting the best LR. (2) The upper limit UR (upper range). If the
starting node vmax is particularly far from the nodes in set Y, then the BFS algorithm may
delay convergence, resulting in the related cluster being too big, which is not conducive to
load balancing. Therefore, we set the upper limit UR depending on the number of nodes.
We set the limit to 0.45 in the two-way partition and 0.3 in the three-way partition. That
is, if the number of nodes in Vi is greater than UR, BFS is terminated. By setting the lower
and upper limits of the number of search nodes, the clustering algorithm is helpful for
achieving load balancing.

The related judgment logic is described in Figure 4.

Entropy 2023, 25, x FOR PEER REVIEW 6 of 16

experiments in Section 4, we tested all the possible LR using the step size 0.02, selecting
the best parameter. For example, in the two-way partition, we set LR as 0.3, 0.32, 0.34, 0.36,
0.38, and 0.40 in turn, selecting the best LR. (2) The upper limit UR (upper range). If the
starting node 𝑣௠௔௫ is particularly far from the nodes in set Y, then the BFS algorithm may
delay convergence, resulting in the related cluster being too big, which is not conducive
to load balancing. Therefore, we set the upper limit UR depending on the number of
nodes. We set the limit to 0.45 in the two-way partition and 0.3 in the three-way partition.
That is, if the number of nodes in 𝑉௜ is greater than UR, BFS is terminated. By setting the
lower and upper limits of the number of search nodes, the clustering algorithm is helpful
for achieving load balancing.

The related judgment logic is described in Figure 4.
First of all, detect whether the node searched by BFS is in the set Vc; if yes, continue

the search process; if no, determine whether it is in set Y; if yes, determine whether the
number of nodes is greater than LR; if yes, the algorithm ends; if not, continue the BFS
search. If the high betweenness node is not searched, determine whether the number of
nodes in 𝑉௜ is greater than UR; if it is greater, the algorithm ends, and if it is not greater,
continue the BFS search.

Figure 4. Flowchart of judgment logic.

The main process of the BFS algorithm with judgment logic is shown in Algorithm 2.

Algorithm 2: The BFS algorithm with judgment logic
Input: 𝑣௠௔௫, 𝐺଴, 𝑉௖, 𝑉௜LR, UR
Output: 𝑉௜
Variable: The initial value of the queue is an empty list, stopping condition: whether the
BFS search algorithm has searched for a node that belongs to set Y.
1. def BFS (𝑣௠௔௫, 𝐺଴, 𝑉௖, 𝑉௜ Y, LR, UR):
2. Initialize the queue;
3. while queue:
4. node = queue.pop(0);
5. for each in node’s all neighbor nodes do
6. if each in 𝑉௖: //Perform the avoidance of duplicate check operation
7. continue;
8. if stopping condition: //Statement determines whether to terminate or not
9. if len(𝑉௜) > LR:

Figure 4. Flowchart of judgment logic.

First of all, detect whether the node searched by BFS is in the set Vc; if yes, continue
the search process; if no, determine whether it is in set Y; if yes, determine whether the
number of nodes is greater than LR; if yes, the algorithm ends; if not, continue the BFS
search. If the high betweenness node is not searched, determine whether the number of
nodes in Vi is greater than UR; if it is greater, the algorithm ends, and if it is not greater,
continue the BFS search.

3.3. Constraint-Based Genetic Algorithm

The classic genetic algorithms suffer from two problems when they are applied to
circuit partitioning task. First, the convergence speed and final output results would be poor
because of the big solution spaces caused by a large size circuit. Second, the probabilistic
genetic strategy of traditional genetic algorithms may destroy the clusters in a circuit,
thereby negating the result of the coarse partition.

In view of the above two points, we proposed a new genetic strategy using genes on
chromosomes. In detail, we define the genes corresponding to the nodes identified by the
coarse partition as absolute genetic genes, which do not participate in the crossover and
mutation operation and are guaranteed to be inherited into the next generation. On the
other hand, the other nodes are treated as traditional probabilistic genetic genes. Because
the length of short chromosomes after removing absolute genetic genes is often only about
20–30% of the complete chromosome, the related solution space is only about 5–10% of the
traditional area. This is effective for improving the calculation speed and achieving rapid
convergence.

Entropy 2023, 25, 597 7 of 16

Moreover, to ensure that crossover and mutation do not impact the absolute genetic
genes, the absolute genetic genes in the complete chromosomes are removed before the
next round of evolution, and the remaining genetic information is copied as a new short
chromosome to achieve crossover and mutation. This process is realized by the Split
function. On the other hand, we also define the Joint function to add absolute genetic genes
to a short chromosome to recover a complete chromosome. The flowchart of the entire
genetic algorithm is shown in Figure 5.

The main process of the BFS algorithm with judgment logic is shown in Algorithm 2.

Algorithm 2: The BFS algorithm with judgment logic

Input: vmax, G0, Vc, ViLR, UR
Output: Vi
Variable: The initial value of the queue is an empty list, stopping condition: whether the BFS search
algorithm has searched for a node that belongs to set Y.

1. def BFS (vmax, G0, Vc, Vi Y, LR, UR):
2. Initialize the queue;
3. while queue:
4. node = queue.pop(0);
5. for each in node’s all neighbor nodes do
6. if each in Vc: //Perform the avoidance of duplicate check operation
7. continue;
8. if stopping condition: //Statement determines whether to terminate or not
9. if len(Vi) > LR:
10. return Vi;
11. break;
12. elif each not in Vi; //Perform the avoidance of duplicate check operation
13. the node joins the queue and joins the Vi;
14. else:
15. if len(Vi) > UR:
16. return Vi;
17. break;
18. elif each not in Vi:
19. the node joins the queue and joins the Vi;
20. end for

Entropy 2023, 25, x FOR PEER REVIEW 7 of 16

10. return 𝑉௜;
11. break;
12. elif each not in 𝑉௜; //Perform the avoidance of duplicate check operation
13. the node joins the queue and joins the 𝑉௜;
14. else:
15. if len(𝑉௜) > UR:
16. return 𝑉௜;
17. break;
18. elif each not in 𝑉௜:
19. the node joins the queue and joins the 𝑉௜;
20. end for

3.3. Constraint-Based Genetic Algorithm
The classic genetic algorithms suffer from two problems when they are applied to

circuit partitioning task. First, the convergence speed and final output results would be
poor because of the big solution spaces caused by a large size circuit. Second, the proba-
bilistic genetic strategy of traditional genetic algorithms may destroy the clusters in a cir-
cuit, thereby negating the result of the coarse partition.

In view of the above two points, we proposed a new genetic strategy using genes on
chromosomes. In detail, we define the genes corresponding to the nodes identified by the
coarse partition as absolute genetic genes, which do not participate in the crossover and
mutation operation and are guaranteed to be inherited into the next generation. On the
other hand, the other nodes are treated as traditional probabilistic genetic genes. Because
the length of short chromosomes after removing absolute genetic genes is often only about
20–30% of the complete chromosome, the related solution space is only about 5–10% of
the traditional area. This is effective for improving the calculation speed and achieving
rapid convergence.

Moreover, to ensure that crossover and mutation do not impact the absolute genetic
genes, the absolute genetic genes in the complete chromosomes are removed before the
next round of evolution, and the remaining genetic information is copied as a new short
chromosome to achieve crossover and mutation. This process is realized by the Split func-
tion. On the other hand, we also define the Joint function to add absolute genetic genes to
a short chromosome to recover a complete chromosome. The flowchart of the entire ge-
netic algorithm is shown in Figure 5.

Figure 5. Flowchart of constraint-based genetic algorithm.

Entropy 2023, 25, 597 8 of 16

3.3.1. Chromosome Encoding and Population Initialization

In this paper, a gene represents a node in a graph or an electronic component in a
circuit. Each gene has two important parameters: value and subscript. The value of the gene
represents which subset the node belongs to, and the subscript corresponds to the mark
of the node with the range of values [0, k − 1]. For the output of the clustering algorithm,
minimum graph Gk and cluster set Vc, there are different encoding rules, as follows:

For the nodes in cluster set Vc, their related gene values come from their cluster marks.
For example, all the nodes of cluster Vi have the same gene value i.

For the nodes in minimum graph Gk, they are randomly initialized as P_size short
chromosomes of population P0. The length of short chromosomes is Nk, which is the
number of nodes in minimum graph Gk. The P0 initialization process is as follows: (1) Select
each integer in [0, k − 1] in turn and add it to a short empty chromosome until the
chromosome is full. At this time, the number of each integer in the chromosome is basically
the same, about Nk/k. (2) Shuffle the chromosome to obtain random short chromosomes.
(3) Repeat the above operation to obtain P_size short chromosomes with a length of Nk,
which is the primary population P0. The flowchart of chromosome encoding is shown in
Figure 6.

Entropy 2023, 25, x FOR PEER REVIEW 8 of 16

Figure 5. Flowchart of constraint-based genetic algorithm.

3.3.1. Chromosome Encoding and Population Initialization
In this paper, a gene represents a node in a graph or an electronic component in a

circuit. Each gene has two important parameters: value and subscript. The value of the
gene represents which subset the node belongs to, and the subscript corresponds to the
mark of the node with the range of values [0, k − 1]. For the output of the clustering algo-
rithm, minimum graph 𝐺௞ and cluster set 𝑉௖, there are different encoding rules, as fol-
lows:

For the nodes in cluster set 𝑉௖ , their related gene values come from their cluster
marks. For example, all the nodes of cluster 𝑉୧ have the same gene value i.

For the nodes in minimum graph 𝐺௞, they are randomly initialized as P_size short
chromosomes of population P0. The length of short chromosomes is 𝑁௞, which is the num-
ber of nodes in minimum graph 𝐺௞. The P0 initialization process is as follows: (1) Select
each integer in [0, k − 1] in turn and add it to a short empty chromosome until the chro-
mosome is full. At this time, the number of each integer in the chromosome is basically
the same, about 𝑁௞/𝑘. (2) Shuffle the chromosome to obtain random short chromosomes.
(3) Repeat the above operation to obtain P_size short chromosomes with a length of 𝑁௞,
which is the primary population 𝑃଴. The flowchart of chromosome encoding is shown in
Figure 6.

Figure 6. Schematic diagram of chromosome encoding. The nodes of undirected graph G are di-
vided into 3 subsets 𝑉଴: {1,7,9}, 𝑉ଵ: {2,8,11}, 𝑉ଶ: {4,10,12} and minimum graph 𝐺௞: {3,5,6,13}. The val-
ues of all genes on Chromosome_𝑉௜ are the same, 0 on Chromosome_𝑉ଵ, 1 on Chromosome_𝑉ଶ, and 2 on
Chromosome_𝑉ଶ. The values of genes on short chromosomes Chromosome_1 and Chromosome_2 in the
population are random. The subscripts of all chromosomes in Figure 6 are set according to the marks
of their corresponding nodes in G.

3.3.2. Crossing, Mutation Operators
Crossover: The offspring chromosome first receives all the genes of the father; here,

the gene refers to the number [0, k − 1]. Then, another chromosome is selected as the
mother, randomly generating the crossover point, and the child receives the mother’s gene
located at this point. It should be noted that crossovers do not always occur when off-
spring chromosomes are produced, but they do occur with a certain probability.

Mutation: Each offspring may mutate, and for the k-way partition, the probability
that each gene in [0, k − 1] mutates into any integer in [0, k − 1] (except itself) is the same.

3.3.3. Joint Function
Joint function mainly adds absolute genetic genes to short chromosomes and obtains

complete chromosomes for the fitness calculation, as shown in the following equation: 𝑉଴ ∪ 𝑉ଵ ∪ ⋯ ∪ 𝑉௞ିଵ ∪ 𝑉௞ = 𝑉௔௟௟ (4)

Figure 6. Schematic diagram of chromosome encoding. The nodes of undirected graph G are divided
into 3 subsets V0: {1,7,9}, V1: {2,8,11}, V2: {4,10,12} and minimum graph Gk : {3,5,6,13}. The values
of all genes on Chromosome_Vi are the same, 0 on Chromosome_V1, 1 on Chromosome_V2 , and 2 on
Chromosome_V2. The values of genes on short chromosomes Chromosome_1 and Chromosome_2 in the
population are random. The subscripts of all chromosomes in Figure 6 are set according to the marks
of their corresponding nodes in G.

3.3.2. Crossing, Mutation Operators

Crossover: The offspring chromosome first receives all the genes of the father; here,
the gene refers to the number [0, k − 1]. Then, another chromosome is selected as the
mother, randomly generating the crossover point, and the child receives the mother’s gene
located at this point. It should be noted that crossovers do not always occur when offspring
chromosomes are produced, but they do occur with a certain probability.

Mutation: Each offspring may mutate, and for the k-way partition, the probability that
each gene in [0, k − 1] mutates into any integer in [0, k − 1] (except itself) is the same.

3.3.3. Joint Function

Joint function mainly adds absolute genetic genes to short chromosomes and obtains
complete chromosomes for the fitness calculation, as shown in the following equation:

V0 ∪V1 ∪ · · · ∪Vk−1 ∪Vk = Vall (4)

where Vc = {V0, V1, · · · , Vk−1} means k clusters identified by the clustering algorithm.
Vk contains all the nodes of minimum graph Gk, that is, the genes of short chromosomes.

Joint function takes the current population Pi as input, and initializes P_size empty
chromosomes with a length of Nall (the number of nodes in Vall). The subscripts of the

Entropy 2023, 25, 597 9 of 16

chromosomes are arranged from 1 to Nall , from smallest to the largest, and the assignment
of the values of genes on ith complete chromosome CompleteChromosome_i are as follows:

(1) All genes related to the nodes in Vc will be copied to the complete chromosomes,
according to subscript. That is, they are absolute genetic genes.

(2) For any chromosome CompleteChromosome_i, the other genes are copied from the
related short chromosome Chromosome_i in the population.

When all values of genes on the P_size complete chromosomes are assigned, the new
population is outputted.

Taking the three-way partition as an example, the effect of the Joint function is shown
in Figure 7.

Entropy 2023, 25, x FOR PEER REVIEW 9 of 16

where 𝑉௖ = ሼ𝑉଴, 𝑉ଵ, ⋯ , 𝑉௞ିଵሽ means k clusters identified by the clustering algorithm. 𝑉௞
contains all the nodes of minimum graph 𝐺௞, that is, the genes of short chromosomes.

Joint function takes the current population 𝑃୧ as input, and initializes P_size empty
chromosomes with a length of 𝑁௔௟௟ (the number of nodes in 𝑉௔௟௟). The subscripts of the
chromosomes are arranged from 1 to 𝑁௔௟௟, from smallest to the largest, and the assignment
of the values of genes on ith complete chromosome CompleteChromosome_i are as follows:
(1) All genes related to the nodes in 𝑉௖ will be copied to the complete chromosomes,

according to subscript. That is, they are absolute genetic genes.
(2) For any chromosome CompleteChromosome_i, the other genes are copied from the re-

lated short chromosome Chromosome_i in the population.
When all values of genes on the P_size complete chromosomes are assigned, the new

population is outputted.
Taking the three-way partition as an example, the effect of the Joint function is shown

in Figure 7.

Figure 7. Schematic diagram of the Joint function. Chromosome_1 and Chromosome_2 represent two
short chromosomes in the current population, P_size = 2, and set 𝑉଴, 𝑉ଵ, and 𝑉ଶ are three clusters
identified by the clustering algorithm. This function joins the absolute genetic genes with short chro-
mosomes Chromosome_1 and Chromosome_2 and outputs two complete chromosomes CompleteChro-
mosome_1, CompleteChromosome_2.

3.3.4. New Fitness Function
The fitness function is applied to score and evaluate all the chromosomes. Since the

coarse partition process has achieved a certain balance, the minimum cutsize is only con-
sidered by the fitness function for the fine partition, which is defined as follows: 𝑓𝑖𝑡𝑛𝑒𝑠𝑠௜ = 𝐶௠௔௫ − 𝐶௜ (5)

where 𝐶௠௔௫ is the maximum cutsize of chromosomes in the current population, 𝐶௜ is the
cutsize of ith chromosome, and 𝑓𝑖𝑡𝑛𝑒𝑠𝑠௜ is the fitness of the ith chromosome.

We use the conventional roulette method to select the optimized chromosome, and
the selected probability 𝑝𝑒𝑟௜ is defined as follows: 𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑠𝑢𝑚 = ∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠௜௉_௦௜௭௘௜ୀଵ (6)𝑝𝑒𝑟௜ = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠௜/𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑠𝑢𝑚 (7)

where P_size is the size of the population, and per_i represents the probability that the ith
chromosome would be selected. Obviously, Chromosomes with high probability are more
likely to be selected, and their genetic factors would gradually expand in the population.
This fitness function is beneficial to obtain the fine partition result with the minimum cut-
size.

3.3.5. Split Function
To degrade the solution space of the genetic algorithm, before the next round of ge-

netic algorithms begins, it is necessary to perform Split operations on the chromosomes in

Figure 7. Schematic diagram of the Joint function. Chromosome_1 and Chromosome_2 represent
two short chromosomes in the current population, P_size = 2, and set V0, V1, and V2 are three
clusters identified by the clustering algorithm. This function joins the absolute genetic genes with
short chromosomes Chromosome_1 and Chromosome_2 and outputs two complete chromosomes
CompleteChromosome_1, CompleteChromosome_2.

3.3.4. New Fitness Function

The fitness function is applied to score and evaluate all the chromosomes. Since
the coarse partition process has achieved a certain balance, the minimum cutsize is only
considered by the fitness function for the fine partition, which is defined as follows:

f itnessi = Cmax − Ci (5)

where Cmax is the maximum cutsize of chromosomes in the current population, Ci is the
cutsize of ith chromosome, and f itnessi is the fitness of the ith chromosome.

We use the conventional roulette method to select the optimized chromosome, and
the selected probability peri is defined as follows:

f itness_sum = ∑P_size
i=1 f itnessi (6)

peri = f itnessi/ f itness_sum (7)

where P_size is the size of the population, and per_i represents the probability that the
ith chromosome would be selected. Obviously, Chromosomes with high probability are
more likely to be selected, and their genetic factors would gradually expand in the pop-
ulation. This fitness function is beneficial to obtain the fine partition result with the
minimum cutsize.

3.3.5. Split Function

To degrade the solution space of the genetic algorithm, before the next round of genetic
algorithms begins, it is necessary to perform Split operations on the chromosomes in the
population to obtain new short chromosomes and to perform linear transformations on
Equation (4) to obtain:

Vk = Vall\V0\V1\ . . . \Vk−1 (8)

Entropy 2023, 25, 597 10 of 16

According to the above mathematical relationship, the Split function takes the current
population as input. The main function is to remove absolute genetic genes from each
complete chromosome in the current population.

For the ith complete chromosome CompleteChromosome_i, all absolute genetic genes in
this chromosome are deleted through subscripts stored in Vc, where Vc = {V0, V1, · · · , Vk−1}.
In detail, for any gene in CompleteChromosome_i, if its subscript is same as a node mark
in Vc, then it is deleted. The function outputs P_size short chromosomes, which is the
next generation population, and these are used as input to start the next round of genetic
evolution. This operation can reduce the solution space of the overall genetic algorithm
and effectively improve the computing efficiency.

Taking the three-way partition as an example, the effect of the Split function is shown
in Figure 8.

Entropy 2023, 25, x FOR PEER REVIEW 10 of 16

the population to obtain new short chromosomes and to perform linear transformations
on Equation (4) to obtain: 𝑉௞ = 𝑉௔௟௟\𝑉଴\𝑉ଵ\ …\𝑉௞ିଵ (8)

According to the above mathematical relationship, the Split function takes the cur-
rent population as input. The main function is to remove absolute genetic genes from each
complete chromosome in the current population.

For the ith complete chromosome CompleteChromosome_i, all absolute genetic genes
in this chromosome are deleted through subscripts stored in 𝑉௖ , where 𝑉௖ = ሼ𝑉଴, 𝑉ଵ, ⋯ , 𝑉௞ିଵሽ. In detail, for any gene in CompleteChromosome_i, if its subscript is same as
a node mark in 𝑉௖ , then it is deleted. The function outputs P_size short chromosomes,
which is the next generation population, and these are used as input to start the next round
of genetic evolution. This operation can reduce the solution space of the overall genetic
algorithm and effectively improve the computing efficiency.

Taking the three-way partition as an example, the effect of the Split function is shown
in Figure 8.

Figure 8. Schematic diagram of Split. The Split function splits the genes contained in 𝑉௖ from the
complete chromosome CompleteChromosome_1, CompleteChromosome_2, then outputs the related
short chromosomes Chromosome_1 and Chromosome_2.

3.3.6. Constraint-Based Genetic Algorithm
This algorithm takes the number of iterations as the main termination condition,

when the number of iterations exceeds the maximum number of iteration generation_max,
the algorithm terminates. Moreover, when the fitness of all chromosomes in the popula-
tion is equal, it represents the convergence of the algorithm; at this time, any chromosome
in the population is the best partition scheme for the original graph 𝐺଴, and the algorithm
is also terminated.

The main process of the constraint-based genetic algorithm is shown in Algorithm 3.

Algorithm 3: Constraint-based genetic algorithm
Input: 𝐺଴, Vc
Output: The partition scheme
Variable: The current population 𝑃௜, the maximum evolution generation of population
generation_max, i is the generation number, Crossover_rate, Mutation_rate.
1. for i in 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑚𝑎𝑥 do
2. Crossover (𝑃௜, Crossover_rate);
3. Mutation (𝑃�, Mutation_rate);
4. Joint (𝑃௜, 𝑉௖);
5. selection (𝑃�

௝);
6. if stopping condition:
7. return 𝑃�[0];

Figure 8. Schematic diagram of Split. The Split function splits the genes contained in Vc from the
complete chromosome CompleteChromosome_1, CompleteChromosome_2, then outputs the related short
chromosomes Chromosome_1 and Chromosome_2.

3.3.6. Constraint-Based Genetic Algorithm

This algorithm takes the number of iterations as the main termination condition, when
the number of iterations exceeds the maximum number of iteration generation_max, the
algorithm terminates. Moreover, when the fitness of all chromosomes in the population
is equal, it represents the convergence of the algorithm; at this time, any chromosome in
the population is the best partition scheme for the original graph G0, and the algorithm is
also terminated.

The main process of the constraint-based genetic algorithm is shown in Algorithm 3.

Algorithm 3: Constraint-based genetic algorithm

Input: G0, Vc
Output: The partition scheme
Variable: The current population Pi, the maximum evolution generation of population
generation_max, i is the generation number, Crossover_rate, Mutation_rate.

1. for i in generation_max do
2. Crossover (Pi, Crossover_rate);
3. Mutation (Pi, Mutation_rate);
4. Joint (Pi, Vc);

5. selection (Pj
i);

6. if stopping condition:
7. return Pi[0];
8. break;
9. else:
10. Pi+1 = Split (Pi, Vc);
11. end for

Entropy 2023, 25, 597 11 of 16

3.4. Complexity Analysis on the Complete Circuit Partitioning Algorithm

For the clustering algorithm, the time complexity of searching the adjacent nodes of a
node is O(n), and n is the number of nodes in a circuit graph. Then, the time complexity of
searching all the adjacent nodes is O(n2).

For the genetic algorithm, there are P_size chromosomes in a population; because
of the clustering algorithm, there are about 0.2*n genes on each chromosome, the time
complexity of gene exchange and mutation is O(0.2n), the time complexity of selection is
set to O(n), the probability of chromosome crossover is p (p ≈ 1), and the probability of
mutation is q (0 < q << 1). Then, in the process of inheritance of a generation, the time
complexity is O(p* P_size *0.2n + q* P_size + n). Suppose the iteration is b; thus, the total
time complexity is O(b*p*P_size *0.2n + b*q* P_size + b*n). Considering the fact that P_size
*b is always set as O(n), the final time complexity is O(n2).

Therefore, the complete time complexity of the proposed algorithm is O(n2).
For space complexity, the clustering algorithm needs to use an auxiliary queue, and in

the worst case scenario, all nodes need to enter the queue once, and the space complexity
is O(n). Additionally, in the worst case scenario, the genetic algorithm requires P_size
lists with length n, so the space complexity is O(P_size*n), and total space complexity is
O(P_size*n).

4. Experimental Results and Analysis

In order to verify the efficiency of the proposed algorithm, we conducted a series of
performance evaluations and comparison experiments. The algorithm is implemented in
Python, and all tests are completed on a laptop with a CPU basic frequency of 1.4 GHz,
8 GB memory, and a Windows 10 operating system. There are 12 circuits: (1) Cjtag is
the timing conversion circuit of JTAG; (2) Mmu is the memory interface management
circuit; (3) Other circuits come from ISCAS ‘89, ISCAS ‘85 standard test cases. In the
preprocessing phase, we remove the self-loop, discrete node situation. The number of logic
gates and signal lines are listed in Table 1. Moreover, the connection matrix before and
after gate-level circuits preprocessing for all test circuits can be found at the link below (the
gate-level circuit connection matrix file of the circuit samples can be obtained from https:
//gitee.com/beacon97/circuit_partition, accessed on 28 March 2023). The experimental
goal is to verify the efficiency of the proposed algorithm for finding the minimum cutsize
through two sets of experiments: two-way partition and three-way partition.

Table 1. Information table of circuits before and after preprocessing.

Circuit The Number of Logic Gates
before and after Preprocessing

The Number of Signal Lines
before and after Preprocessing

Cjtag 68/66 141/140
Mmu 302/236 391/360
s298 142/139 237/237
s349 196/180 227/221
s382 188/180 286/285
s344 195/188 241/241
s953 463/426 729/722
s1238 554/532 565/554
c1355 619/617 1089/1089
c1908 938/936 1519/1519
c2670 1642/1389 2288/2117
c3540 1741/1741 2958/2958

4.1. Analysis of the Results of the Two-Way Partition

The proposed algorithm is compared with the famous partition tool Metis, the classic
KL algorithm, and the Gene (traditional gene) algorithm. Among these, Metis was obtained
from Karypis Lab [21], and the KL algorithm was obtained from the literature [5]. In order
to improve the validity of the experiment, all the above algorithms were carried out 20 times,

https://gitee.com/beacon97/circuit_partition
https://gitee.com/beacon97/circuit_partition

Entropy 2023, 25, 597 12 of 16

and the minimum cutsize (Min) and the average cutsize (Avg) were recorded. All experi-
mental results were recorded under the premise of controlling the balance factor β within
0.2. The parameters were set as: k = 2, LR ∈ (0.3 ∼ 0.4), UR = 0.45, generation_max = 100,
Crossover_rate = 0.8, and Mutation_rate = 0.003. The cutsize results of the two-way partition
experiment on 12 test circuits are shown in Table 2. The smallest Min and Avg in each set
of experiments are marked in bold.

Table 2. Cutsize results table in two-way partition.

Circuit
Metis KL Gene Proposed

Algorithm

Min Avg Min Avg Min Avg Min/LR Avg

Cjtag 6 6 7 21 16 25 6/0.3 8
Mmu 1 1 108 123 1 18 1/0.3 1
s298 21 21 58 61 26 43 17/0.3 26
s349 8 8 41 72 33 62 7/0.3 12
s382 16 16 84 96 36 41 13/0.3 21
s344 11 11 44 56 31 97 10/0.3 23
s953 26 26 195 216 128 143 28/0.32 36

s1238 36 36 114 176 85 93 32/0.34 43
c1355 51 51 416 432 126 285 64/0.34 72
c1908 48 48 583 634 175 243 45/0.34 53
c2670 38 38 682 704 269 302 41/0.36 47
c3540 87 87 864 971 338 376 84/0.40 91

Figure 9A shows the results of the two-way partition using the proposed algorithm
and Metis, and Figure 9B shows the results of the proposed algorithm and the KL and Gene
algorithms. The y-axis represents the minimum cutsize Min. The y-axis on the other side
represents improvement.

Entropy 2023, 25, x FOR PEER REVIEW 12 of 16

c2670 1642/1389 2288/2117
c3540 1741/1741 2958/2958

4.1. Analysis of the Results of the Two-Way Partition
The proposed algorithm is compared with the famous partition tool Metis, the classic

KL algorithm, and the Gene (traditional gene) algorithm. Among these, Metis was ob-
tained from Karypis Lab [21], and the KL algorithm was obtained from the literature [5].
In order to improve the validity of the experiment, all the above algorithms were carried
out 20 times, and the minimum cutsize (Min) and the average cutsize (Avg) were recorded.
All experimental results were recorded under the premise of controlling the balance factor
β within 0.2. The parameters were set as: k = 2, LR ∈ (0.3~0.4), UR = 0.45, generation_max
= 100, Crossover_rate = 0.8, and Mutation_rate = 0.003. The cutsize results of the two-way
partition experiment on 12 test circuits are shown in Table 2. The smallest Min and Avg in
each set of experiments are marked in bold.

Table 2. Cutsize results table in two-way partition.

Circuit
Metis KL Gene Proposed

Algorithm
Min Avg Min Avg Min Avg Min/LR Avg

Cjtag 6 6 7 21 16 25 6/0.3 8
Mmu 1 1 108 123 1 18 1/0.3 1
s298 21 21 58 61 26 43 17/0.3 26
s349 8 8 41 72 33 62 7/0.3 12
s382 16 16 84 96 36 41 13/0.3 21
s344 11 11 44 56 31 97 10/0.3 23
s953 26 26 195 216 128 143 28/0.32 36
s1238 36 36 114 176 85 93 32/0.34 43
c1355 51 51 416 432 126 285 64/0.34 72
c1908 48 48 583 634 175 243 45/0.34 53
c2670 38 38 682 704 269 302 41/0.36 47
c3540 87 87 864 971 338 376 84/0.40 91

Figure 9A shows the results of the two-way partition using the proposed algorithm
and Metis, and Figure 9B shows the results of the proposed algorithm and the KL and
Gene algorithms. The y-axis represents the minimum cutsize Min. The y-axis on the other
side represents improvement.

Figure 9. Schematic diagram of two-way partition results. The polyline in (A) represents the
performance improvement rate of the proposed algorithm compared to Metis, which increases of
{0, 0, 19.05%, 12.50%, 18.75%, 9.09%, −7.69%, 11.11%, −9.80%, 6.25%, −7.89%, 3.45%}, respectively.
The black polyline in (B) represents increases of {14.29%, 99.97%, 70.69%, 82.93%, 84.52%, 77.27%,
85.60%, 71.90%, 84.62%, 92.29%, 93.99%, 90.28%}. The red polyline in Figure B represents increases
of {62.50%, 0, 34.62%, 78.79%, 63.89%, 67.74%, 78.13%, 62.35%,49.21%, 74.29%, 84.76%, 75.15%}. The
given bar charts illustrate the result of the algorithm applied to the test circuits in terms of the Min.

According to Table 3, the proposed algorithm obtained the best result (Min) 9 times
in 12 circuit samples, and the best performance can be improved by up to 19.05%. In
Figure 9A, the polyline is generally above the zero-dot line, and is improved by an average

Entropy 2023, 25, 597 13 of 16

of 4.57% compared with Metis. The above experimental results show that compared with
the Metis algorithm, the proposed algorithm exhibits a good advantage in finding the Min.
On the other hand, the stability of the proposed algorithm (Avg) is weaker than that of
Metis, which is related to the random crossover and mutation of the genetic algorithm, so
the proposed algorithm must be carried out multiple times to obtain the optimal results.

Table 3. Cutsize results table in the three-way partition.

Circuit
Metis Gene Proposed Algorithm

Min Avg Min Avg Min/LR Avg

Cjtag 13 13 25 33 8/0.18 10
Mmu 53 53 82 86 33/0.18 37
s298 41 41 51 68 37/0.18 49
s349 10 10 81 92 9/0.18 10
s382 39 39 113 126 30/0.18 41
s344 10 10 70 87 9/0.18 11
s953 40 40 148 189 47/0.20 51

s1238 57 57 220 248 60/0.24 65
c1355 93 93 288 317 91/0.26 96
c1908 81 81 343 403 92/0.28 102
c2670 60 60 529 581 76/0.28 79
c3540 141 141 692 743 203/0.28 224

Compared with the KL and Gene algorithms, the proposed algorithm obtains the best
results in all 12 samples. The black and red polylines represent the performance improve-
ment rate of the algorithm compared to KL and Gene, respectively, and the two polylines
are both above the zero-dot line. Among the 12 samples, the proposed algorithm improved
by an average of 78.95%, compared with the KL algorithm, and 60.95%, compared with the
Gene algorithm. From the above experimental results, it is concluded that compared with
the KL and Gene algorithms, the proposed algorithm shows great advantages in finding
the minimum cutsize Min. The stability of the proposed algorithm is also advantageous
over those of the KL and Gene algorithms.

4.2. Analysis of the Results of the Three-Way Partition

The KL algorithm only supports two-way partition experiments, so in the three-way
partition experiment, only the proposed algorithm, the Gene algorithm, and the Metis
algorithm are compared. The parameters are set as: k = 3, LR ∈ (0.18 ∼ 0.28), UR = 0.4,
generation_max = 100, Crossover_rate = 0.8, and Mutation_rate = 0.003. The cutsize results of
the three-way partition experiments on 12 test circuits are shown in Table 3.

Figure 10 shows the results of the three-way partition of the algorithm compared with
the Metis and Gene algorithms in finding the Min.

According to Table 3, compared with the Metis and Gene algorithms, the algorithm
proposed in this paper obtains 7 times better results for finding the minimum cutsize
Min. In Figure 10, the black polyline is generally above the zero-dot line. Among the
12 circuit samples, the proposed algorithm improved by an average of 2.02% over Metis.
The red polyline is also above zero, and the average improvement rate is 70.29%. The above
experimental results show that the proposed algorithm shows a good advantage for finding
the minimum cutsize in the three-way partition.

Entropy 2023, 25, 597 14 of 16Entropy 2023, 25, x FOR PEER REVIEW 14 of 16

Figure 10. Schematic diagram of three-way partition results. The black polyline in Figure 10 repre-
sents the performance improvement rate of the proposed algorithm compared to Metis, which in-
creases by {38.46%, 37.74%, 9.76%, 10.00%, 23.08%, 10.00%, −17.50%, −5.26%, 2.15%, −13.58%,
−26.67%, −43.97%}, respectively, and the red polyline in Figure 9 represents the improvement to the
Gene algorithm, which is {68.00%, 59.76%, 27.45%, 88.89%, 73.45%, 87.14%, 68.24%, 72.73%, 68.40%,
73.18%, 85.63%, 70.66%}. The bar chart of figure shows the partitioning results of Metis, the Gene
algorithm, and the proposed algorithm applied to the 12 circuit samples.

According to Table 3, compared with the Metis and Gene algorithms, the algorithm
proposed in this paper obtains 7 times better results for finding the minimum cutsize Min.
In Figure 10, the black polyline is generally above the zero-dot line. Among the 12 circuit
samples, the proposed algorithm improved by an average of 2.02% over Metis. The red
polyline is also above zero, and the average improvement rate is 70.29%. The above ex-
perimental results show that the proposed algorithm shows a good advantage for finding
the minimum cutsize in the three-way partition.

5. Conclusions
Aiming at the gate-level circuit partitioning problem faced by EDA simulation, we

propose a gate-level circuit partitioning algorithm based on clustering and an improved
genetic algorithm. By introducing the betweenness centrality, the clustering algorithm is
designed to quickly identify clusters in a circuit and realize the coarse partition. In the fine
partition phase, a constraint-based genetic algorithm is proposed which realizes a seam-
less connection with the coarse partition and is effective in obtaining a better partition
result. The test results of 12 circuits show that the proposed algorithm exhibits better per-
formance than Metis and traditional genetic algorithms in searching for the minimum
number of connections between subsets, which is effective for improving the partition
quality.

The algorithm in this paper is relatively insufficient in terms of processing the circuit
scale, and the next step will be based on the big data development platform to further
improve the overall performance of the algorithm.

Author Contributions: Methodology, R.C. and L.-Z.Y.; Formal analysis, Z.-H.J.; Resources, Z.-H.J.;
Writing—original draft, R.C.; Writing—review & editing, L.-Z.Y.; Visualization, R.C.; Supervision,
L.-Z.Y. and X.-M.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by [National Natural Science Foundation of China] grant
number [61773406] and [Provincial Natural Science Foundation of Hunan] grant number
[2021JJ30877] And The APC was funded by [Central South University].

Data Availability Statement: The data that support the findings of this study are available on re-
quest from the first author (chengrui@csu.edu.cn). Part of data can be obtained from
http://gitee.com/ beacon97.

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Cjtag Mmu s298 s349 s382 s344 s953 s1238s1355c1908c2670c3540
0

100

200

300

400

500

600

700

T
h
e
 M
i
n

Circuit Samples

 Metis
 This Paper Algorithm
 Gene

I
m
p
r
ov
e
m
e
nt
(
%
)

 Improvement to Metis
 Improvement to Gene

Figure 10. Schematic diagram of three-way partition results. The black polyline in Figure 10 rep-
resents the performance improvement rate of the proposed algorithm compared to Metis, which
increases by {38.46%, 37.74%, 9.76%, 10.00%, 23.08%, 10.00%, −17.50%, −5.26%, 2.15%, −13.58%,
−26.67%, −43.97%}, respectively, and the red polyline in Figure 9 represents the improvement to the
Gene algorithm, which is {68.00%, 59.76%, 27.45%, 88.89%, 73.45%, 87.14%, 68.24%, 72.73%, 68.40%,
73.18%, 85.63%, 70.66%}. The bar chart of figure shows the partitioning results of Metis, the Gene
algorithm, and the proposed algorithm applied to the 12 circuit samples.

5. Conclusions

Aiming at the gate-level circuit partitioning problem faced by EDA simulation, we
propose a gate-level circuit partitioning algorithm based on clustering and an improved
genetic algorithm. By introducing the betweenness centrality, the clustering algorithm is
designed to quickly identify clusters in a circuit and realize the coarse partition. In the fine
partition phase, a constraint-based genetic algorithm is proposed which realizes a seamless
connection with the coarse partition and is effective in obtaining a better partition result.
The test results of 12 circuits show that the proposed algorithm exhibits better performance
than Metis and traditional genetic algorithms in searching for the minimum number of
connections between subsets, which is effective for improving the partition quality.

The algorithm in this paper is relatively insufficient in terms of processing the circuit
scale, and the next step will be based on the big data development platform to further
improve the overall performance of the algorithm.

Author Contributions: Methodology, R.C. and L.-Z.Y.; Formal analysis, Z.-H.J.; Resources, Z.-H.J.;
Writing—original draft, R.C.; Writing—review & editing, L.-Z.Y.; Visualization, R.C.; Supervision,
L.-Z.Y. and X.-M.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by [National Natural Science Foundation of China] grant number
[61773406] and [Provincial Natural Science Foundation of Hunan] grant number [2021JJ30877] And
The APC was funded by [Central South University].

Data Availability Statement: The data that support the findings of this study are available on request
from the first author (chengrui@csu.edu.cn). Part of data can be obtained from http://gitee.com/beacon97.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Simoglou, S.; Sotiriou, C.; Blias, N. Timing Errors in STA-based Gate-Level Simulation. In Proceedings of the 26th IEEE

International Symposium on Asynchronous Circuits and Systems (ASYNC), Salt Lake City, UT, USA, 17–20 May 2020; pp. 1–2.
2. Ye, X.J.; Dong, W.; Li, P. Hierarchical Multialgorithm Parallel Circuit Simulation. IEEE Trans. Comput.-Aided Des. Integr. Circuits

Syst. 2011, 30, 45–58. [CrossRef]
3. Kim, Y.J.; Mavris, D.; Fujimoto, R. Time- and space-parallel simulation of air traffic networks. Simulation 2019, 95, 1213–1228.

[CrossRef]

http://gitee.com/beacon97
http://doi.org/10.1109/TCAD.2010.2067870
http://doi.org/10.1177/0037549719831358

Entropy 2023, 25, 597 15 of 16

4. D’Angelo, G.; Ferretti, S. Adaptive parallel and distributed simulation of complex networks. J. Parallel Distrib. Comput. 2022, 163,
30–44. [CrossRef]

5. Kernighan, B.W.; Lin, S. An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 1970, 2, 291–307. [CrossRef]
6. Sahu, P.K.; Manna, K.; Shah, N. Extending Kernighan–Lin partitioning heuristic for application mapping onto Network-on-Chip.

J. Syst. Archit. 2014, 60, 562–578. [CrossRef]
7. Lei, X.; Liang, W.; Li, K.C. A New Multilevel Circuit Partitioning Algorithm Based on the Improved KL Algorithm. In Proceedings

of the Intl Conference on Big Data Security on Cloud, IEEE Intl Conference on High Performance and Smart Computing, IEEE
Intl Conference on Intelligent Data and Security, Washington, DC, USA, 27–29 May 2019; pp. 178–182.

8. Fiduccia, C.M.; Mattheyses, R.M. A linear time heuristic for improving network partitions. In Proceedings of the 19th IEEE
Design Automation Conference, Las Vegas, NV, USA, 14–16 June 1982; pp. 175–181.

9. Zhu, W.X.; Cheng, H. Scatter Search Algorithm for VLSI Circuit Partitioning. Tien Tzu Hsueh Pao/Acta Electron. Sin. 2012, 40,
1207–1212.

10. Kim, Y.H.; Yoon, Y.; Geem, Z.W. A comparison study of harmony search and genetic algorithm for the max-cut problem. Swarm
Evol. Comput. 2019, 44, 130–135. [CrossRef]

11. Zhai, Q.; He, Y.; Wang, G. A general approach to solving hardware and software partitioning problem based on evolutionary
algorithms. Adv. Eng. Softw. 2021, 159, 102998. [CrossRef]

12. Su, Y.; Zhou, K.; Zhang, X.; Cheng, R.; Zheng, C. A parallel multi-objective evolutionary algorithm for community detection in
large-scale complex networks. Inf. Sci. 2021, 576, 374–392. [CrossRef]

13. Jin, D.; Liu, J.; Yang, B. Genetic algorithm with local search for community detection in large-scale complex networks. Acta Autom.
Sin. 2011, 37, 873–882.

14. Dong, Y.; Cao, L.; Zuo, K. Genetic Algorithm Based on a New Similarity for Probabilistic Transformation of Belief Functions.
Entropy 2022, 24, 1680. [CrossRef] [PubMed]

15. Guo, W.Z.; Chen, G.L.; Xiong, N.X.; Peng, S.J. Hybrid particle swarm optimization algorithm for VLSI circuit partitioning. J. Softw.
2011, 22, 833–842. [CrossRef]

16. Wu, L.; Qu, J.; Shi, H.; Li, P. Node Deployment Optimization for Wireless Sensor Networks Based on Virtual Force-Directed
Particle Swarm Optimization Algorithm and Evidence Theory. Entropy 2022, 24, 1637. [CrossRef]

17. Guru, R.P.; Vaithianathan, V. An efficient VLSI circuit partitioning algorithm based on satin bowerbird optimization (SBO). J.
Comput. Electron. 2020, 19, 1232–1248. [CrossRef]

18. Li, X.Y.; Pang, Y.F.; Zhao, C.X.; Liu, Y. A new multi-level algorithm for balanced partition problem on large scale directed graphs.
Adv. Aerodyn. 2021, 3, 23. [CrossRef]

19. Trifunović, A.; Knottenbelt, W. Parallel multilevel algorithms for hypergraph partitioning. J. Parallel Distrib. Comput. 2008, 68,
563–581. [CrossRef]

20. Hendrickson, B. A Multi-Level Algorithm for Partitioning Graphs. Supercomputing ’95. In Proceedings of the 1995 ACM/IEEE
Conference on Supercomputing, San Diego, CA, USA, 8 December 1995; p. 28.

21. Karypis, G.; Kumar, V. METIS—Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 2.0. technical
report. Appl. Phys. Lett. 2010, 97, 124101.

22. Karypis, G.; Aggarwal, R.; Kumar, V. Multilevel hypergraph partitioning: Application in VLSI domain. IEEE Trans. Very Large
Scale Integr. (VLSI) 1999, 7, 69–79. [CrossRef]

23. Kumar, R.; Caverlee, J.; Tong, H. Streaming METIS Partitioning. In Proceedings of the 8th IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM), San Francisco, CA, USA, 18–21 August 2016; pp. 17–24.

24. He, T.X.; Xiao, Z.; Chen, C.; Liu, C.B.; Li, K.L. DAG Partition Algorithm for Hardware Accelerated Function Verification. J. Softw.
2022, 33, 3236–3248.

25. Shao, C.; Du, X.; Yu, J.; Chen, J. Cluster-based improved isolation forest. Entropy 2022, 24, 611. [CrossRef]
26. Shalileh, S.; Mirkin, B. Community partitioning over feature-rich networks using an extended k-means method. Entropy 2022, 24,

626. [CrossRef] [PubMed]
27. Malzer, C.; Baum, M. Constraint-based hierarchical cluster selection in automotive radar data. Sensors 2021, 21, 3410. [CrossRef]
28. Cuzzocrea, A.; Gaber, M.M.; Fadda, E.; Grasso, G.M. An innovative framework for supporting big atmospheric data analytics via

clustering-based spatio-temporal analysis. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 3383–3398. [CrossRef]
29. Prieto Santamaría, L.; García del Valle, E.P.; Lagunes García, G.; Zanin, M.; Rodríguez González, A.; Menasalvas Ruiz, E.; Pérez

Gallardo, Y.; Hernández Chan, G.S. Analysis of new nosological models from disease similarities using clustering. In Proceedings
of the 33rd IEEE International Symposium on Computer-Based Medical Systems (CBMS), Rochester, MN, USA, 28–30 July 2020;
pp. 183–188.

30. Gamino-Sánchez, F.; Hernández-Gutiérrez, I.V.; Rosales-Silva, A.J.; Gallegos-Funes, F.J.; Mújica-Vargas, D.; Ramos-Díaz, E.;
Carvajal-Gámez, B.E.; Kinani, J.M.V. Block-Matching Fuzzy C-Means clustering algorithm for segmentation of color images
degraded with Gaussian noise. Eng. Appl. Artif. Intell. 2018, 73, 31–49. [CrossRef]

31. Vianney Kinani, J.M.; Rosales Silva, A.J.; Gallegos Funes, F.; Mújica Vargas, D.; Ramos Díaz, E.; Arellano, A. Medical imaging
lesion detection based on unified gravitational fuzzy clustering. J. Healthc. Eng. 2017, 2017, 8536206. [CrossRef] [PubMed]

32. Dzuba, S.; Krylov, D. Cluster analysis of financial strategies of companies. Mathematics 2021, 9, 3192. [CrossRef]

http://doi.org/10.1016/j.jpdc.2022.01.022
http://doi.org/10.1002/j.1538-7305.1970.tb01770.x
http://doi.org/10.1016/j.sysarc.2014.04.004
http://doi.org/10.1016/j.swevo.2018.01.004
http://doi.org/10.1016/j.advengsoft.2021.102998
http://doi.org/10.1016/j.ins.2021.06.089
http://doi.org/10.3390/e24111680
http://www.ncbi.nlm.nih.gov/pubmed/36421535
http://doi.org/10.3724/SP.J.1001.2011.03980
http://doi.org/10.3390/e24111637
http://doi.org/10.1007/s10825-020-01491-9
http://doi.org/10.1186/s42774-021-00074-x
http://doi.org/10.1016/j.jpdc.2007.11.002
http://doi.org/10.1109/92.748202
http://doi.org/10.3390/e24050611
http://doi.org/10.3390/e24050626
http://www.ncbi.nlm.nih.gov/pubmed/35626512
http://doi.org/10.3390/s21103410
http://doi.org/10.1007/s12652-018-0966-1
http://doi.org/10.1016/j.engappai.2018.04.026
http://doi.org/10.1155/2017/8536206
http://www.ncbi.nlm.nih.gov/pubmed/29158887
http://doi.org/10.3390/math9243192

Entropy 2023, 25, 597 16 of 16

33. Jin, H.; Yu, W.; Li, S. A clustering algorithm for determining community structure in complex networks. Phys. A Stat. Mech. Appl.
2018, 492, 980–993. [CrossRef]

34. Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [CrossRef]
35. Bian, T.; Hu, J.; Deng, Y. Identifying influential nodes in complex networks. Phys. A Stat. Mech. Appl. 2012, 391, 1777–1787.
36. Abbasi, A.; Hossain, L.; Leydesdorff, L. Betweenness centrality as a driver of preferential attachment in the evolution of research

collaboration networks. J. Informetr. 2012, 6, 403–412. [CrossRef]
37. Newman, M.; Girvan, M. Finding and Evaluating Community Structure in Networks. Phys. Rev. E 2004, 69, 026113. [CrossRef]

[PubMed]
38. Kolar, D.; Puksec, J.D.; Branica, I. VLSI circuit partition using simulated annealing algorithm. In Proceedings of the Electrotechnical

Conference, Dubrovnik, Croatia, 12–15 May 2004; pp. 205–208.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.physa.2017.11.029
http://doi.org/10.1016/0378-8733(78)90021-7
http://doi.org/10.1016/j.joi.2012.01.002
http://doi.org/10.1103/PhysRevE.69.026113
http://www.ncbi.nlm.nih.gov/pubmed/14995526

	Introduction
	Preliminary Knowledge
	Gate-Level Circuit Partitioning Algorithm Based on Cluster and an Improved Genetic Algorithm
	Gate-Level Circuit Modeling and Preprocessing
	Clustering Algorithm Based on Betweenness Centrality
	Constraint-Based Genetic Algorithm
	Chromosome Encoding and Population Initialization
	Crossing, Mutation Operators
	Joint Function
	New Fitness Function
	Split Function
	Constraint-Based Genetic Algorithm

	Complexity Analysis on the Complete Circuit Partitioning Algorithm

	Experimental Results and Analysis
	Analysis of the Results of the Two-Way Partition
	Analysis of the Results of the Three-Way Partition

	Conclusions
	References

