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Abstract: We study the evolution of the energy and magnetic moment of a quantum charged particle
placed in a homogeneous magnetic field, when this field changes its sign adiabatically. We show
that after a single magnetic field passage through zero value, the famous adiabatic invariant ratio
of energy to frequency is reestablished again, but with a proportionality coefficient higher than in
the initial state. The concrete value of this proportionality coefficient depends on the power index
of the frequency dependence on time near zero point. In particular, the adiabatic ratio of the initial
ground state (with zero radial and angular quantum numbers) triplicates if the frequency tends to
zero linearly as a function of time. If the Larmor frequency attains zero more than once, the adiabatic
proportionality coefficient strongly depends on the lengths of the time intervals between zero points,
so that the mean energy behavior can be quasi-stochastic after many passages through zero value.
The original Born–Fock adiabatic theorem does not work after the frequency passes through zero.
However, its generalization is found: the initial Fock state becomes a wide superposition of many
instantaneous Fock states, whose weights do not depend on time in the new adiabatic regime.

Keywords: generalized adiabatic invariants; generalized Born–Fock theorem; time-dependent
Larmor frequency; mean energy; energy fluctuations; mean value and fluctuations of magnetic
moment; single and multiple frequency passages through zero

1. Introduction

We consider the motion of a non-relativistic spinless particle of mass M = 1 and charge
e in the xy-plane in the presence of a uniform time-dependent magnetic field B(t) directed
along the z-axis (perpendicular to the plane). Since this motion is independent from the
motion along the axis, it can be described by means of the two-dimensional Hamiltonian
(in the Gauss system of units)

H(t) =
1
2 ∑

j=1,2

[
p̂j − eAj(t)/c

]2. (1)

Here, pj and Aj are components of the canonical momentum and vector potential, re-
spectively. In this paper, we assume the “circular” gauge of the vector potential, A(t) =
B(t)(−y, x)/2. Then,

H(t) =
1
2

[
p̂2

x + p̂2
y + ω2(t)

(
x̂2 + ŷ2

)]
−ω(t)

(
x̂ p̂y − ŷ p̂x

)
, ω(t) = eB(t)/(2c). (2)

Solutions to the stationary Schrödinger equation Ĥψ = Eψ with Hamiltonian (2)
(including an additional isotropic harmonic oscillator potential) were found for the first
time by Fock [1] and later by Darwin [2] in the special case of B(t) = const. These solutions
can be written in polar coordinates as follows,
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ψnrm(r, ϕ) =

√
κnr!

π(nr + |m|)!

(
κr2
)|m|/2

L(|m|)
nr

(
κr2
)

exp
(
−κr2/2 + imϕ

)
, (3)

κ = |ω|/h̄, m = 0,±1,±2, . . . , nr = 0, 1, 2, . . . . (4)

Function L(α)
n (z) is the generalized Laguerre polynomial, defined as [3,4]

L(α)
n (z) =

1
n!

ezz−α dn

dzn

(
e−zzα+n).

The energy eigenvalues are given by the formula

Enrm = h̄|ω|(1 + |m|+ 2nr)− h̄ωm, (5)

which consists of two parts, in accordance with the two parts of Hamiltonian (2). Note
that the radial part of the wave function (3) depends on the absolute value |m| of the
canonical angular momentum eigenvalue. The algebraic value m (which can be either
positive or negative) enters through the preserved canonical angular momentum operator
in Hamiltonian (2). If ω > 0, all states with m ≥ 0 have the same energy h̄|ω|(1 + 2nr),
meaning an infinite degeneracy of these energy levels. On the other hand, the same infinite
degeneracy happens for all states with m ≤ 0 if ω < 0. These observations are important
for the interpretation of results in the following sections.

What happens with the solution (3), when the magnetic field depends on time after
some initial time instant ti? A general answer was given many years ago by Malkin, Man’ko
and Trifonov [5]:

Ψnrm(r, ϕ; t) =

√
K(t)nr![K(t)r2]

|m|

π(nr + |m|)!
L(|m|)

nr

[
K(t)r2

]
exp

(
i

ε̇

2h̄ε
r2 + imϕ + iχ(t)

)
. (6)

The real function K(t) = h̄−1|ε(t)|−2 is determined by the complex function ε(t), which
is the solution to the classical equation of the harmonic oscillator with a time-dependent
frequency,

ε̈ + ω2(t)ε = 0, (7)

satisfying the initial conditions

ε(ti) = [ω(ti)]
−1/2, ε̇(ti) = i[ω(ti)]

1/2. (8)

These conditions fix the value of the time-independent Wronskian

ε̇ε∗ − ε̇∗ε = 2i. (9)

We assume that ω(ti) > 0. Since the phase χ(t) is not important for our purposes, we do
not provide herein its explicit (rather complicated) expression. Functions (6) are orthogonal
and normalized:

〈Ψn′rm′(t)|Ψnrm(t)〉 = δmm′δn′rnr
. (10)

Various results related to quantum systems described by means of time-dependent
Hamiltonian (2) were found over the past five decades after paper [5]: see, e.g., papers [6–14].
However, an interesting special case of time inversion of the magnetic field, especially in the
adiabatic regime, was not considered in previous studies, despite adiabatic approximation
in quantum mechanics being the subject of numerous papers: see, e.g., [15–22]. The aim of
our paper is to fill in this gap (at least partially). Remember that stationary homogeneous
magnetic fields can be created inside solenoids with constant currents. On the other hand,
alternating currents are quite common in our daily lives. Hence, it can be interesting to
understand, what can happen with initial quantum states of a charged particle placed
inside a solenoid with an alternating current. It is worth noticing in this connection, that
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periodic variations of the magnetic field created by a current with the standard frequency
50 Hz can be considered as adiabatic, if the amplitude of the magnetic field is sufficiently
large. Indeed, the Larmor frequency of an electron in the magnetic field of the order of 1 T
is of the order of 1011 s−1. This means that the period of rotation of the particle is many
orders of magnitude smaller than the scale of variations of the magnetic field. This presents
one of the motivations behind our study.

The adiabatic evolution of the unidimensional harmonic oscillator, whose frequency
passes through zero, was studied in the recent paper by Ref. [23]. However, when the
frequency turns into zero and returns to nonzero values for this system, the situation
seems to be rather exceptional (although possible). On the other hand, a passage of the
Larmor frequency through zero is quite natural if the magnetic field changes its sign.
In addition, the existence of the second degree of freedom and additional invariant (the
canonical angular momentum) adds more interesting features to the dynamics of the system
described by means of Hamiltonian (2). One of these new features is the evolution of the
magnetic moment. Another interesting feature is the infinite degeneracy of the stationary
energy levels in the presence of a magnetic field. An analysis of these additional features
represents the second motivation of the present study.

The remainder of this paper is structured as follows. In Section 2, we bring general
formulas describing the adiabatic evolution of the Fock states and the magnetic moment,
including the adiabatic regimes with and without crossing zero value of the Larmor fre-
quency. Sections 3 and 4 are devoted to an analysis of the new adiabatic parameters in the
cases of single and multiple transitions of the frequency through zero. In Section 5, we
consider the violation and generalization of the Born–Fock theorem when a magnetic field
slowly changes its sign. Analytical results are illustrated with several figures. In Section 6,
we study the evolution of the mean energy and the mean magnetic moment (as well as
their fluctuations) in the case of initial Fock states. A more general case of initial “invariant
states” of the magnetic moment operator is considered in Section 7. Section 8 provides the
discussion of main results.

2. Adiabatic Evolution of the Fock States

The adiabatic (quasiclassical) approximate complex solution to Equation (7) with
ω(t) > 0 can be written in the form

ε(t) ≈ [ω(t)]−1/2eiφ̃(t), ε̇(t) ≈ i[ω(t)]1/2eiφ̃(t), φ̃(t) =
∫ t

ti

ω(z)dz. (11)

In this approximation, the solution (6) assumes the form (3) with the instantaneous value
of function ω(t). This result agrees with the famous Born–Fock adiabatic theorem [15]. The
mean energy evolves according to Equation (5) with ω = ω(t). In particular, all states with
m ≥ 0 have the same mean energy h̄ω(t)(1 + 2nr) if ω(t) > 0.

The magnetic moment operator has the form [24–32]

M̂ =
e

2c
(
x̂π̂y − ŷπ̂x

)
, π̂j ≡ p̂j − eAj(x̂, ŷ). (12)

For the “circular” gauge of the vector potential, A = B(−y, x)/2, we can write

M̂ =
[

x̂ p̂y − ŷ p̂x −ω
(

x̂2 + ŷ2
)]

e/(2c). (13)

The magnetic moment operator does not commute with Hamiltonian (2):[
Ĥ, M̂

]
= iωµB

(
x̂π̂x + π̂x x̂ + ŷπ̂y + π̂yŷ

)
, (14)

where µB = eh̄/(2c) is the Bohr magneton (for the unit mass chosen in this paper).
The mean value 〈r2〉 ≡ 〈x2 + y2〉 in the state (6) is given by a simple formula (see

Appendix A)
〈r2〉nr ,m = [K(t)]−1(2nr + |m|+ 1). (15)
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Consequently, the mean value of the magnetic moment in the Fock state (6) equals

〈M〉nr ,m = µB

[
m−ω(t)|ε(t)|2(2nr + |m|+ 1)

]
. (16)

This is not an eigenvalue of the magnetic moment operator, since the spectrum of this
operator is continuous [33]. Formula (16) is interesting because it shows that the mean value
of the magnetic moment in the energy eigenstate (when ω = const > 0 and ω|ε|2 = 1)
is proportional to the energy eigenvalue, although non-commuting operators Ĥ (2) and
M̂ (13) have quite different structures and spectra.

Fluctuations of the magnetic moment, characterized by the variance σM = 〈M̂2〉 −
〈M̂〉2, can be calculated with the aid of formula (see Appendix A)

〈r4〉nr ,m = [K(t)]−2[6nr(nr + |m|+ 1) + (|m|+ 1)(|m|+ 2)]. (17)

The result is

σ
(nr ,m)
M =

[
µBω(t)|ε(t)|2

]2
[2nr(nr + |m|+ 1) + |m|+ 1]. (18)

We see that fluctuations of the magnetic moment can be strong in the initial energy eigen-
states (when ω|ε|2 = 1) with large values of the quantum numbers nr and |m|. However,
they are strong in the ground state (nr = m = 0) as well: σ

(0,0)
M = [〈M〉0,0]

2.
In the adiabatic regime (11), the mean magnetic moment does not depend on time,

providing an example of adiabatic invariants:

〈M〉nr ,m = µB[m− (2nr + |m|+ 1)] = −Enr ,m(t)/[h̄ω(t)]. (19)

However, the solution (11) holds under the condition

|ω̇|/ω2(t)� 1, (20)

which is clearly broken when ω(t) = 0. Nonetheless, when the frequency slowly passes
through zero value and slowly becomes not too small again, the conditions of the quasiclas-
sical approximation are reestablished. We suppose that ω = 0 at some instant t∗ > ti. Then,
the solution to Equation (7) can be written in the following most general quasiclassical
form at t � t∗ [this formal relation means that time instant t is so far from the instant t∗
that the condition (20) can be considered fulfilled]:

ε(t) ≈ |ω(t)|−1/2
[
u+eiφ(t) + u−e−iφ(t)

]
, φ(t) =

∫ t

t∗
|ω(τ)|dτ, (21)

ε̇(t) ≈ i|ω(t)|1/2
[
u+eiφ(t) − u−e−iφ(t)

]
. (22)

Constant complex coefficients u± must obey the condition

|u+|2 − |u−|2 = 1, (23)

which is the consequence of Equation (9). Note the choice of the lower limit of integration
in the definition of the phase function φ(t). This choice is insignificant for the solution in
the form (11), which is represented by a single exponential function. However, when one
deals with a superposition of two exponential functions in (21), the choice of the integration
limits influences the phases of complex coefficients u±. If the frequency passes through
zero, the time instant t∗ is distinguished. Therefore, the choice of t∗ as the starting point
of integration seems the most natural. To fix the values of coefficients u±, we choose the
function ε(t) at t� t∗ in the form (11), but with the phase φ̃(t) replaced with the function
φ(t) defined as in Equation (21). Then, although φ(t) < 0 for t < t∗, the time derivative
dφ/dt = |ω(t)| is positive.
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In general, the mean magnetic moment oscillates at t� t∗:

〈M〉nr ,m = µB

[
m− ω(t)

|ω(t)|w(t)(2nr + |m|+ 1)
]

, (24)

w(t) = |u+|2 + |u−|2 + 2Re
[
u+u∗−e2iφ(t)

]
. (25)

If ω(t) < 0, the function w(t) enters Equation (25) with the positive sign. Otherwise, its
contribution is negative. Due to Equation (23), we have the inequalities

wmin =

(√
1 + |u−|2 + |u−|

)−2
≤ w(t) ≤

(√
1 + |u−|2 + |u−|

)2
= wmax. (26)

Since wmin < 1 and wmax > 1 if |u−| > 0, the mean magnetic moment (24) oscillates
between negative and positive values for sufficiently large (by absolute value) negative
values of the quantum number m.

3. Examples of Adiabatic Coefficients

Exact values of the adiabatic coefficients are determined by the behavior of function
ω(t) near zero value. It was proposed in paper [23], that absolute values of these coefficients
can be expressed in terms of the exponent n in the behavior ω2(t) ∼ |t− t∗|n when ω(t)
passes through zero. This hypothesis was based on the analysis of exact solutions to
Equation (7) for the time-dependent frequency ω2(t) = ω2

0 |t/τ|n, when this equation can
be reduced to the Bessel equation. In that paper, devoted to the adiabatic dynamics of a
quantum harmonic oscillator, the exponent n could assume arbitrary non-negative values,
as soon as function ω2(t) had physical meaning. However, it is the function ω(t) that has
physical meaning in the problems involving magnetic fields. For this reason, supposing that
function ω(t) can smoothly change its sign, we consider here the special case of solutions
obtained in [23], when n is an even number, i.e.,

ω(t) = ω0(−t/τ)k, −τ ≤ t ≤ τ, k = 0, 1, 2, . . . (27)

Then, in the adiabatic limit ω0τ � 1, the following formulas were derived in [23]:

u−1
+ = sin

[
π

2(k + 1)

]
, u− = i cot

[
π

2(k + 1)

]
. (28)

It is probable that the most natural situation takes place for k = 1, i.e., the linear time
dependence of a slow transition of magnetic field through zero value. In this case, we
have |u−| = 1 and |u+|2 = 2. Another interesting situation corresponds to k = 2, when
|u−|2 = 3. In this case, the magnetic field slowly diminishes to zero, but instead of crossing
through zero, it slowly returns to the initial value. For k = 3 (a “cubical” crossing through
zero frequency), we have |u−|2 = (

√
2 + 1)2.

Another explicit exact solution to Equation (7) was found in paper [34] for the time-
dependent Larmor frequency, which changes continuously from the initial value ωi to the
final value ω f as

ω(t) =
ω f exp(κt) + ωi

exp(κt) + 1
, −∞ < t < ∞, κ > 0. (29)

Here, the positive parameter κ characterizes the speed of frequency evolution. The follow-
ing formula was obtained in the adiabatic regime, when |ωi −ω f | � κ/2:

|u−|2 ≈ exp[2π(|ω̃i − ω̃ f | − ω̃i − |ω̃ f |)], ω̃i,k ≡ ωi,k/κ. (30)

If ωi > ω f > 0, Equation (30) yields |u−|2 ≈ exp(−4πω̃ f ) � 1, so that the adiabatic
invariance of the magnetic moment is preserved. On the other hand, the same Equation (30)
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yields |u−|2 ≈ 1 for ω f < 0 (provided |ω̃ f | � 1). We see that two different functions
ω(t), given by Equation (27) with k = 1 and Equation (29), yield identical absolute values of
the adiabatic coefficients |u±|. A common feature of these two functions is the linear time
dependence of the transition through zero value.

However, the phases of adiabatic coefficients are sensitive to the exact form of function
ω(t). For example, it was shown in [23] that function (29) with ω f = −ωi yields the
complex adiabatic coefficients

u+ =
√

2 exp[−4iω̃0 ln(2)], u− = i. (31)

We see that phases of coefficients u+ given by Equation (28) with k = 1 and Equation (31)
are different.

4. Multiple Adiabatic Passages of Magnetic Field through Zero Value

What can happen if the Larmor frequency ω(t) passes adiabatically through zero
value several times, at instants t0, t1, t2, . . .? We suppose that we know all coefficients in the
transition rules through zero frequency at each instant tk:{

[ω(t)]−1/2eiφk(t)
}

t�tk
→
{
[ω(t)]−1/2

[
u(k)
+ eiφk(t) + u(k)

− e−iφk(t)
]}

t�tk
, (32)

φk(t) =
∫ t

tk

|ω(z)|dz. (33)

The resulting transformation after N zero-crossings can be written as{
[ω(t)]−1/2eiφ0(t)

}
t�t0
→
{
[ω(t)]−1/2

[
U(N−1)
+ eiφ0(t) + U(N−1)

− e−iφ0(t)
]}

t�tN−1
, (34)

assuming that U(0)
± = u(0)

± . To establish the recurrence relations between the coefficients

U(N−1)
± and U(N)

± , we apply the rule (32) to the function arising after the Nth zero, using
the superposition principle and taking into account that the function [ω(t)]−1/2e−iφk(t)

transforms as ε∗(t) after the frequency passes through zero value:{
[ω(t)]−1/2e−iφk(t)

}
t�tk
→
{
[ω(t)]−1/2

[
u(k)∗
+ e−iφk(t) + u(k)∗

− eiφk(t)
]}

t�tk
.

Then, using the relations

φ0(t) = Φk + φk(t), Φk =
∫ tk

t0

|ω(z)|dz, (35)

we can write the following equation for t� tN :

U(N)
+ eiφ0(t) + U(N)

− e−iφ0(t) = U(N−1)
+ eiΦN

[
u(N)
+ eiφN(t) + u(N)

− e−iφN(t)
]

+ U(N−1)
− e−iΦN

[
u(N)∗
+ e−iφN(t) + u(N)∗

− eiφN(t)
]
.

Equating the terms with the same time dependence e±iφN(t), we arrive at the following
recurrence relations:

U(N)
+ = U(N−1)

+ u(N)
+ + U(N−1)

− u(N)∗
− e−2iΦN , (36)

U(N)
− = U(N−1)

− u(N)∗
+ + U(N−1)

+ u(N)
− e2iΦN . (37)

One can verify that the identity |U(N)
+ |2 − |U(N)

− |2 = 1 is the consequence of identities

|U(N−1)
+ |2 − |U(N−1)

− |2 = 1, |u(N)
+ |2 − |u

(N)
− |2 = 1.
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We see a strong dependence of coefficients U(N)
± on the phases ΦN , i.e., on the time intervals

between the passages through zero frequency. In the case of double passage through zero,
the following inequalities hold:(

|u(0)
+ u(1)

− | − |u
(1)
+ u(0)

− |
)2
≤ |U(1)

− |2 ≤
(
|u(0)

+ u(1)
− |+ |u

(1)
+ u(0)

− |
)2

. (38)

In particular, two identical passages through zero frequency can result in the value U(1)
− = 0,

i.e., in reestablishing the standard adiabatic behavior, under the condition Re
[
u(0)
+ eiΦ1

]
= 0.

5. Generalization of the Born–Fock Theorem

The time-dependent solution (6) is a superposition of adiabatic eigenstates (3) with
the instantaneous value of frequency ω(t) and the same value of the canonical angular
momentum quantum number m:

Ψnrm(r, ϕ; t) =
∞

∑
qr=0

C(m)
nrqr (t)ψqrm(r, ϕ), C(m)

nrqr (t) = 〈ψqrm|Ψnrm(t)〉. (39)

Coefficients C(m)
nrqr (t) are oscillating functions of the phase φ(t) [defined in Equation (21)]. It

is remarkable, however, that the modules squared |C(m)
nrqr |2 do not oscillate: they depend on

the absolute values of constant parameters u± only, as shown in Appendix B:

|C(m)
nrqr |2 =

(n> + |m|)!n<!|u−|2|qr−nr |

(n< + |m|)!n>!|u+|2(|qr−nr |+|m|+1)

[
P(|qr−nr |,|m|)

n<

(
1− |u−|2
1 + |u−|2

)]2

. (40)

Here, P(a,b)
k (z) is the Jacobi polynomial. Other notations are as follows:

n< = min(qr, nr), n> = max(qr, nr).

Formula (40) has many interesting consequences. First, it does not depend on the
sign of quantum number m, while the energy levels (5) are different for positive and
negative values of m. Second, the probabilities (40) are different for different positive
values of m, although the initial energy eigenvalues are the same, if ω(t < t∗) > 0. If
ω(t) < 0 for t > t∗, eigenstates ψqrm(r, ϕ) in the expansion (39) describe the states with the
instantaneous energy eigenvalues Eqrm(ω < 0) = h̄|ω(t)|(1 + |m|+ m + 2qr), which are
different for different positive values of m, in contradistinction to the infinite energy levels
degeneracy at t < t∗.

The simplest special case is nr = 0, when n< = 0 and n> = qr. Then, the Jacobi
polynomial turns into unity, so that

|C(m)
0qr
|2 =

(qr + |m|)!|u−|2qr

|m|!qr!|u+|2(qr+|m|+1)
. (41)

One can verify that ∑∞
qr=0 |C

(m)
0qr
|2 = 1, due to the formula

Sm(x) =
∞

∑
k=0

(m + k)!
m!k!

xk = (1− x)−m−1. (42)

The mean energy in the distribution (41) can be easily calculated with the aid of
Formula (42):

〈Ĥ(t)〉 = h̄|ω(t)|
∞

∑
qr=0
|C(m)

0qr
|2
(

1 + |m| − ω(t)
|ω(t)|m + 2qr

)
= h̄|ω(t)|

[
1 + |m| − ω(t)

|ω(t)|m + 2(1 + |m|)|u−|2
]

. (43)
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Remember that the initial energy was Ein = h̄|ωin|(1 + |m| −m), and all initial states with
m ≥ 0 had the same energy. However, when the Larmor frequency passes through zero
and changes its sign, this infinite degeneracy is removed. Moreover, the degeneracy is
removed even when the frequency maintains its sign, if u− 6= 0. In any case, the adiabatic
ratio 〈Ĥ(t)〉/|ω(t)| always increases when the frequency passes through zero.

The distribution (41) as a function of qr has a rather simple form. It decays monotonously
if m = 0, going to a distribution with a single maximum at qr + 1 ≈ |m| |u−|2 for large
values of |m|. However, the situation is more intricate for nonzero values of the initial
radial quantum number nr = n. In the special case when |u−|2 = 1 and |u+|2 = 2 (a single
linear transition of the magnetic field through zero), the general distribution (40) assumes
the form

|C(m)
nq |2|u− |=1 =

(n> + |m|)!n<!
(n< + |m|)!n>!2|q−n|+|m|+1

[
P(|q−n|,|m|)

n< (0)
]2

=
(n + |m|)!(q + |m|)!n!q!

2n+q+|m|+1

[
n<

∑
k=0

(−1)k

k!(n− k)!(q− k)!(k + |m|)!

]2

. (44)

Several examples of the distribution (44) as a function of qr = q are shown in
Figures 1 and 2 for various values of parameters nr = n and |m|. We see that the distri-
butions are very wide. Moreover, periodic structures are observed, and these structures
become almost regular for large values of number q. The number of these structures
is close to n + 1 when parameters n and |m| are not too small. The symbols 〈q〉 and
σ1/2

q stand for the average value of number q and mean square deviation of this number,
calculated numerically.
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Figure 1. The probability distribution (44) of finding the initial Fock state |n, m〉 in the Fock state
|q, m〉 after the frequency slowly passes through zero value, as a function of q for a fixed parameter m,
in the case of |u−| = 1 and |u+| =

√
2.
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Figure 2. The probability distribution (44) of finding the initial Fock state |n, m〉 in the Fock state
|q, m〉 after the frequency slowly passes through zero value, as a function of q for a fixed parameter n,
in the case of |u−| = 1 and |u+| =

√
2.

In Figures 3 and 4, we show similar distributions for |u−| =
√

3 and |u+| = 2. These
values correspond to the “parabolic” form of function ω(t) near the point t∗, when the
Larmor frequency attains zero; however, it does not change its sign, returning slowly to
positive values. In this case,

|C(m)
nq |2|u+ |=2 = (n>+|m|)!n< !(3/4)|q−n|

(n<+|m|)!n> !4|m|+1

[
P(|q−n|,|m|)

n< (−1/2)
]2

= (n+|m|)!(q+|m|)!n!q!3q+n

4|m|+1+q+n

[
∑n<

k=0
(−3)−k

k!(n−k)!(q−k)!(k+|m|)!

]2
. (45)

The plots of distribution (45) are similar to those for distribution (44), with the same number
nr + 1 of periodic structures, but with an increased mean value 〈q〉. A simple analytic
formula for this mean value is derived in Section 6.

The probability |C(m)
nn |2 of remaining in the initial Fock state turns out to be very low

for many initial quantum numbers n, except for the case of n = m = 0: see Figures 5 and 6.
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Figure 3. The probability distribution (44) of finding the initial Fock state |n, m〉 in the Fock state
|q, m〉 after the frequency slowly passes through zero value, as a function of q for a fixed parameter m,
in the case of |u−| =

√
3 and |u+| = 2.
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Figure 4. The probability distribution (44) of finding the initial Fock state |n, m〉 in the Fock state
|q, m〉 after the frequency slowly passes through zero value, as a function of q for a fixed parameter n,
in the case of |u−| =

√
3 and |u+| = 2.
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Figure 5. The probability of finding the initial Fock state |n, m〉 in the same Fock state after the
frequency slowly passes through zero value, as a function of n for different fixed values of the angular
moment quantum number |m|, for |u−| = 1 and |u+| =

√
2.
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Figure 6. The probability of finding the initial Fock state |n, m〉 in the same Fock state after the
frequency slowly passes through zero value, as a function of n for different fixed values of the angular
moment quantum number |m|, for |u−| =

√
3 and |u+| = 2.
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6. Mean Energy

To find the mean energy after the inversion of the magnetic field for an arbitrary initial
energy eigenstate, one could try to calculate the sum

∞

∑
qr=0
|C(m)

nrqr |2
(

1 + |m| − ω(t)
|ω(t)|m + 2qr

)
= 1 + |m| − ω(t)

|ω(t)|m + 2
∞

∑
qr=0
|C(m)

nrqr |2qr. (46)

However, this method is not easy, because the sum contains squares of the Jacobi polyno-
mials with variable lower and upper indexes. A direct calculation of the kinetic energy
mean value 〈 p̂2

x + p̂2
y〉/2 requires a knowledge of complicated integrals containing deriva-

tives of function (6). It is probable that the simplest way is to notice that Hamiltonian (2)
is quadratic with respect to the coordinates and momenta operators. Consequently, the
Heisenberg or Ehrenfest equations for these operators are linear. This means that their
time-dependent mean values are linear combinations of the initial values with certain
time-dependent coefficients. It is convenient to introduce vector Q = (x, y, px, py) (whose
components are either mean values of quantum operators or classical variables). Then,

Q(t) = Λ(t; ti)Q(ti), (47)

where Λ(t; ti) is a 4× 4 matrix. Combining mean values Qjk ≡ 〈Q̂jQ̂k + Q̂kQ̂j〉/2 into the
4× 4 symmetric matrix Q, one can verify the relation (see [35])

Q(t) = Λ(t; ti)Q(ti)Λ̃(t; ti), (48)

where Λ̃ means the transposed matrix. In our case, matrix Λ(t; ti) can be expressed in
terms of the solution ε(t) and its derivative ε̇(t) as follows [34],

Λ(t; ti) = ω1/2
i

∥∥∥∥ Re(ε)R Im(ε)R/ωi
Re(ε̇)R Im(ε̇)R/ωi

∥∥∥∥, R =

∥∥∥∥ cos φ̃ sin φ̃
− sin φ̃ cos φ̃

∥∥∥∥, (49)

with the phase φ̃ defined in Equation (11). Comparing Equations (2), (5) and (15), we obtain
the initial mean value

〈 p̂2
x + p̂2

y〉nrm = ωi(2nr + |m|+ 1).

Moreover, since the initial wave function (3) possesses rotational symmetry, the initial
covariance matrix Q(ti) can be written in the following block form:

Q(ti) =
h̄
2

∥∥∥∥ Iγ/ωi mΣ
−mΣ Iγωi

∥∥∥∥, I =
∥∥∥∥ 1 0

0 1

∥∥∥∥, Σ =

∥∥∥∥ 0 1
−1 0

∥∥∥∥, (50)

where γ = 2nr + |m|+ 1. In this case, we obtain

Q(t) = h̄
2

∥∥∥∥ Iγ|ε(t)|2 mΣ + IγRe(ε̇ε∗)
−mΣ + IγRe(ε̇ε∗) Iγ|ε̇(t)|2

∥∥∥∥. (51)

Consequently,

〈Ĥ(t)〉 = h̄γ

2

[
|ε̇(t)|2 + |ε(t)|2ω2(t)

]
−mh̄ω(t). (52)

In the adiabatic regime, using Equation (21), we obtain the formula

〈Ĥ(t)〉 = h̄|ω(t)|(2nr + |m|+ 1)
(
|u+|2 + |u−|2

)
− h̄ω(t)m, (53)

which goes to (43) if nr = 0. Comparing Equations (24) and (25) with Equation (53), we see
that Equation (19) can be generalized as follows,

〈M〉 = −〈Ĥ(t)〉/[h̄ω(t)], (54)
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where the overline means an additional time averaging over fast oscillations of the mean
magnetic moment, as soon as w(t) = |u+|2 + |u−|2.

Comparing Equations (46) and (53), it is easy to see the equality(
1 + 2|u−|2

)
(2nr + |m|+ 1) = 2〈q〉+ |m|+ 1,

which results in the formula

〈q〉 = nr

(
1 + 2|u−|2

)
+ |u−|2(|m|+ 1). (55)

In particular, we have 〈q〉 = 3nr + |m|+ 1 for |u−|2 = 1 and 〈q〉 = 7nr + 3(|m|+ 1) for
|u−|2 = 3. These relations coincide with the results of numeric calculations given in
Figures 1–4.

It is interesting to calculate the variance σH = 〈Ĥ2〉 − 〈Ĥ〉2, characterizing the energy
fluctuations. This variance equals zero in the initial Fock state. However, it becomes
nonzero when the frequency passes through zero. Relatively simple calculations can be
performed if nr = 0. Then, the sum

∞

∑
qr=0
|C(m)

0qr
|2
(

1 + |m| − ω(t)
|ω(t)|m + 2qr

)2

can be found with the aid of Formula (42) and its consequences. The results are as follows,

〈Ĥ2〉 = [h̄ω(t)]2
[(

1− ω(t)
|ω(t)|m + |m|

)2

+ 4(1 + |m|)
(

2− ω(t)
|ω(t)|m + |m|

)
|u−|2

+4(1 + |m|)(2 + |m|)|u−|4
]
,

σH = 4[h̄ω(t)]2(1 + |m|)|u+u−|2. (56)

Note that the variance (56) does not depend on the sign of quantum number m, while the
mean value (53) is sensitive to this sign. If nr > 0, the calculations become rather cumbersome,
so we do not perform them here. For explicit expressions in some special cases, one can
consult papers [32,36].

7. Adiabatic Evolution of the “Invariant States” of the Magnetic Moment Operator

The stationary Fock states (3) are determined by integral parameters nr = 0, 1, 2, . . . and
m = 0,±1,±2, . . . In these normalized states, the energy and canonical angular momentum
have definite values. In addition, the mean value of the magnetic moment operator (13) does
not depend on time in these states. Recently, a wider family of isotropic states, possessing
time-independent mean values of the magnetic moment operator for the time-independent
Hamiltonian (2) and named as “magnetic moment invariant states”, was found in paper [37].
They are determined by two continuous positive parameters, G+ ≥ 1 and G− ≥ 1, with the
following nonzero mean values (provided ω > 0):

〈π2
x〉 = 〈π2

y〉 = 〈Ĥ〉 = h̄ωG+, (57)

〈x̂ p̂y〉 = −〈ŷ p̂x〉 =
h̄
4
(G− − G+), 〈yπx〉 = −〈xπy〉 =

h̄
2

G+, (58)

〈p2
x〉 = 〈p2

y〉 = ω2〈x2〉 = ω2〈y2〉 = 1
4

h̄ω(G+ + G−). (59)

The solution (3) results in Formulas (57)–(59) with the integral positive coefficients

G± = 1 + 2nr + |m| ∓m. (60)
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It is known that there exist many quite different quantum states with the same mean
values of canonical operators and their powers (products). In particular, one can construct
a two-parameter family of Gaussian states possessing the second-order moments (57)–(59)
with arbitrary coefficients G± ≥ 1. Their Wigner functions have the following form [37]
[here r = (x, y) and p = (px, py)]:

WG(r, p) =
4

G+G−
exp

{
−

(G+ + G−)
[
ω2r2 + p2]+ 2(G+ − G−)ω(xpy − ypx)

2h̄ωG+G−

}
. (61)

The quantum purity of the state (61) equals

P =
∫

W2(r, p)
drdp
(2πh̄)2 = (G+G−)−1. (62)

Consequently, all Gaussian “magnetic moment invariant states” are mixed if G± > 1, in
contradistinction to the pure quantum states (3) with integral values of parameters G±,
given by Equation (60). The meaning of parameters G+ and G− becomes more clear, if one
goes from the canonical operators in the phase space to the relative (xr, yr) and guiding
center (xc, yc) coordinates,

xr = −πy/(2mω), yr = πx/(2mω), xc = x + πy/(2mω), yc = y− πx/(2mω). (63)

The importance of these integrals of motion was emphasized by many authors in recent
decades [24,38–55]. Equivalent integrals of motion, obtained by the multiplication of xc
and yc by mω, were considered under the name “pseudomomentum” in papers [43,56,57].

The corresponding second-order moments are as follows,

〈x2
r 〉 = 〈y2

r 〉 =
h̄

4ω
G+, 〈x2

c 〉 = 〈y2
c 〉 =

h̄
4ω

G−, (64)

with zero mean values of all cross-products. Now, the inequalities G± ≥ 1 follow from
the commutators [x̂r, ŷr] = [ŷc, x̂c] = ih̄/(2ω) and the Heisenberg–Weyl (actually, Robert-
son’s [58]) uncertainty relation

〈A2〉〈B2〉 ≥ |〈[Â, B̂]〉|2/4. (65)

The evolution of the second-order moments can be calculated in the same way as that
shown in Section 6. It is sufficient to replace γ with (G+ + G−)/2 and m with (G− − G+)/2
in Equations (50) and (51). Hence, the mean values of energy and magnetic moment for
t > ti can be written as follows,

E(t) ≡ 〈Ĥ(t)〉 = h̄
4
(G+ + G−)

[
|ε̇(t)|2 + ω2(t)|ε(t)|2

]
+

h̄
2

ω(t)(G+ − G−), (66)

M(t) =
µB
2

[
G− − G+ −ω(t)|ε(t)|2(G+ + G−)

]
. (67)

If the frequency slowly goes to a constant asymptotic value ω f (which can be positive
or negative), then the quantum mechanical mean value of the energy tends to a time-
independent value

E f =
h̄
2

[
|ω f |(G+ + G−)

(
1 + 2|u−|2

)
+ ω f (G+ − G−)

]
. (68)

The quantum-mechanical mean value of the kinetic angular momentum performs harmonic
oscillations with frequency 2|ω f | between the valuesMmin andMmax. The amplitude of
these oscillations equals

∆M =
1
2
(Mmax −Mmin) = µB|u+u−|(G+ + G−). (69)
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The time-averaged value of these oscillations equals

〈M〉 = µB
2

[
G− − G+ −

ω f

|ω f |
(G+ + G−)

(
1 + 2|u−|2

)]
. (70)

8. Conclusions

The main results of this paper include the discovery of the existence of generalized
adiabatic invariants and a generalized Born–Fock adiabatic theorem for a charged particle in
a homogeneous magnetic field, when this field slowly passes through zero value. According
to the original Born–Fock theorem, the initial discrete energy eigenstates maintain their
forms during the adiabatic evolution of the Hamiltonian, so that parameters of the wave
functions correspond to instantaneous values of coefficients of the Hamiltonian. This
statement becomes invalid when the time-dependent Larmor frequency approaches zero
value. We considered a scenario where the frequency slowly departs from zero, in such
a way that the adiabatic condition (20) is reestablished. The evolved quantum state then
becomes a superposition of instantaneous energy eigenstates with different radial quantum
numbers (but the same angular quantum numbers, due to the conservation of the canonical
angular momentum). The generalized Born–Fock theorem states that the weight of each
member of this superposition does not depend on time, as soon as the condition (20)
is fulfilled. It is remarkable that all these weights depend on the single parameter |u−|
of the most general adiabatic solution (21) to the classical Equation (7) of the harmonic
oscillator with a time-dependent frequency. Using examples of exact solutions, we believe
(although we have no rigorous proof) that the value of |u−| in the case of a single transition
of frequency through zero is determined by the exponent k in the frequency behavior near
zero: ω(t) ∼ (t− t∗)k. In particular, |u−| = 1 if k = 1. Regarding cases where there are
multiple frequency passages through zero, the final coefficient |u−| is highly sensitive to
the additional parameter—the phase Φ, which is the integral of the absolute value |ω(t)|
between the first and last zero frequency instants. Consequently, the adiabatic behavior
after many crossings through zero frequency can be quasi-chaotic. Under certain specific
conditions, the mean energy can even return to the initial value after multiple frequency
passage through zero, while it can be significantly amplified under other specific conditions.
However, in all the cases, the adiabatic ratio 〈Ĥ(t)〉/[h̄|ω(t)] can only increase after many
frequency passages through zero value. This ratio coincides (by absolute value) with the
double mean value of the magnetic moment in the adiabatic regime. The word “double”
means the quantum-mechanical averaging accompanied with the time averaging over
rapid oscillations in time.

Note that the concepts of adiabaticity and multiple passages through zero frequency are
completely compatible. For example, the Larmor frequency of an electron in the magnetic field
of the order of 1 T is of the order of 1011 s−1. In such a case, periodic variations of the magnetic
field with the standard frequency 50 Hz are totally adiabatic. It would be interesting to observe
what can happen with the statistical properties of the energy and magnetic moment in this
realistic situation after a great number (of an order of 102 or higher) of frequency transitions
through zero. However, this can be the subject of another study. There are several other
challenging problems. In particular, in the case of very slow evolution, various dissipation
effects can change the evolution drastically. Another problem to address is gaining an
understanding of the adiabatic evolution for different gauges of the vector potential. Some
results presented in the paper by Ref. [36] indicate that the evolution can be quite different
for the Landau gauge, because of another geometry of the induced electric field. However,
the general linear gauge of the time-dependent magnetic field remains an unsolved problem.
Furthermore, we pose the following question: What happens to arbitrary superpositions
of the Fock states in the case of adiabatic evolution, especially when the magnetic field
changes its sign? We see that the number of unsolved interesting problems is not small.
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Appendix A. Integrals with Squares of the Laguerre Polynomials

Since
∣∣exp

[
ir2 ε̇/(2h̄ε)

]∣∣2 = exp
(
−Kr2), due to identity (9), the calculation of the mean

values 〈r2j〉 in the state (6) can be reduced (using the substitution x = Kr2) to the calculation
of the integrals

Ij =
∫ ∞

0
xa+je−x

[
L(a)

n (x)
]2

dx. (A1)

These integrals are absent in the available reference books (such as [4], for example).
However, it is easy to see that I1 = − limb→1 ∂J(b)/∂b, where J(b) is the special case of a
more general integral 7.414.4 from [4]:

J(b) =
∫ ∞

0
xae−bx

[
L(a)

n (x)
]2

dx

=
(2n + a)!(b− 1)2n

(n!)2b2n+a+1 F
[
−n,−n;−2n− a;

b(b− 2)
(b− 1)2

]
. (A2)

Here, F(u, v : w; z) is the Gauss hypergeometric function. Using the definition of this
function, we can write

J(b) = b−2n−a−1
{
(n + a)!

n!
[b(2− b)]n + (b− 1)2[b(2− b)]n−1 (n + a + 1)!

(n− 1)!

+(b− 1)4 f (b)
}

, (A3)

where f (b) is some function, which is regular at the point b = 1. Calculating the derivative
of function (A3) with respect to b and putting b = 1 in the final expression, we arrive at
the formula

I1 =
(n + a)!

n!
(2n + a + 1). (A4)

Its consequence is Formula (15). Similarly,

I2 = lim
b→1

∂2 J(b)/∂b2 =
(n + a)!

n!
[6n(n + a + 1) + (a + 1)(a + 2)]. (A5)

Appendix B. Calculation of Coefficients in the Expansion (39)

The scalar product 〈ψqrm|Ψnrm(t)〉 can be calculated with the help of Equation 7.414.4
from [4],

I =
∫ ∞

0
xae−bxL(a)

n (λx)L(a)
q (µx)dx

=
(n + q + a)!(b− λ)n(b− µ)q

n!q!bn+q+a+1 F
[
−n,−q;−n− q− a;

b(b− λ− µ)

(b− λ)(b− µ)

]
. (A6)
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The Gauss hypergeometric function in the right-hand side is a polynomial of the order
n< = min(n, q). One of possible forms is the expression in terms of the Jacobi polynomial
(see Equation 4.22.1 from [59]):

P(α,β)
n (x) =

(2n + α + β)!
n!(n + α + β)!

(
x− 1

2

)n
F
(
−n,−n− α;−2n− α− β;

2
1− x

)
. (A7)

Then, Formula (A6) can be written as follows (assuming q ≥ n),

I =
(q + |m|)!(b− µ)q−n(λ + µ− b)n

q!bq+|m|+1
P(q−n,|m|)

n

(
b(λ + µ− b)− 2λµ

b(b− λ− µ)

)
. (A8)

In our case, we have x = r2 and λ = |ω|/h̄. Other parameters are as follows,

b =
1

2h̄

(
|ω| − iε̇

ε

)
=
|ω|u+eiφ

h̄z
, µ =

|ω|
h̄|z|2 , z = u+eiφ + u−e−iφ,

b− λ = − |ω|u−e−iφ

h̄z
, b− µ =

|ω|u∗−eiφ

h̄z∗
, λ + µ− b =

|ω|u∗+e−iφ

h̄z∗
.

The phase φ was defined in Equation (21). Consequently, the argument of the Jacobi
polynomial in Equation (A8) equals

b(λ + µ− b)− 2λµ

b(b− λ− µ)
=

1− |u−|2
1 + |u−|2

.

Combining all terms in the Formulas (3), (6) and (A8), we obtain the following expression
for the complex coefficient 〈ψqrm|Ψnrm(t)〉 with qr ≥ nr:

〈ψqrm|Ψnrm(t)〉 =

[
(qr + |m|)!nr!
(nr + |m|)!qr!

( z
z∗
)2qr+|m|+1

]1/2

eiχ(t)−iφ(t)(2nr+|m|+1)

× (u∗−)
qr−nr (u∗+)

nr

uqr+|m|+1
+

P(qr−nr ,|m|)
nr

(
1− |u−|2
1 + |u−|2

)
. (A9)

Similar formulas (in a slightly different context) were found in paper [5]. All phase factors
disappear when one calculates the module squared |〈ψqrm|Ψnrm(t)〉|2. Moreover, this
quantity becomes symmetric with respect to quantum numbers qr and nr. The result is
given by Equation (40) of the main text.
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