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Abstract: In this paper, we propose a secure multi-party summation based on single photons. With
the help of a semi-honest third party, n participants can simultaneously obtain the summation result
without revealing their secret inputs. Our protocol uses single photon states as the information
carriers. In addition, each participant with secret input only performs simple single-particle operators
rather than particle preparation and any complex quantum measurements. These features make our
protocol more feasible to implement. We demonstrate the correctness and security of the proposed
protocol, which is resistant to participant attack and outside attack. In the end, we compare in detail
the performance of the quantum summation protocol in this paper with other schemes in terms of
different indicators. By comparison, our protocol is efficient and easy to implement.
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1. Introduction

As a fundamental primitive in modern cryptography, secure multi-party computation
(SMC) enables n (n ≥ 2) parties to jointly compute a function based on their private inputs
while keeping these inputs private. Yao [1] first put forward the idea of SMC in 1982. SMC
has a wide range of applications in secret ballot elections [2], private bidding and auc-
tions [3,4], secret sharing [5], data mining [6], and so on. However, the appearance of Shor’s
algorithm [7] and Grover’s algorithm [8] threatened the security of classical cryptography
protocols based on difficult mathematical problems. To cope with this problem, people
considered using the principles of quantum mechanics in cryptography protocols, which
led to the birth of various interesting research fields, such as quantum key distribution
(QKD) [9–12], quantum secret sharing (QSS) [13,14] and, the area of research in which this
article is based, secure multi-party quantum computation (SMQC). Of these, the QKD field
has made many notable advances. In 2018, Lucamarini et al. [9] presented overcoming
the rate–distance limit of quantum key distribution protocol without quantum repeaters.
Lin et al. [10] proposed a simple security analysis of the phase-matching measurement-
device-independent quantum key distribution protocol. In 2022, Gu et al. [11] proposed an
experimental measurement-device-independent-type quantum key distribution protocol
with flawed and correlated sources. Xie et al. [12] presented a breaking the rate-loss bound
of quantum key distribution protocol with asynchronous two-photon interference.

Secure multi-party quantum summation (SMQS) is a subfield of secure multi-party
quantum computing and has gained much attention these years. It can enable n partici-
pants to jointly calculate a summation without revealing any participant’s secret to others.
Quantum summation can be applied to a variety of fields, such as quantum voting [15–18] ,
quantum anonymous ranking [19,20], and quantum private equality comparison [21–23].
Designing efficient and practical quantum summation protocols is thus significant.

To date, a variety of quantum summation protocols have been proposed by using
various quantum resources. For example, in 2006, Hillery et al. [24] proposed a multi-party
summation protocol with the two-particle N-level entangled states. In 2010, Chen et al. [25]
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presented a binary quantum summation protocol based on GHZ entangled states. In 2016,
Shi et al. [26] proposed an interesting quantum algorithm to calculate multi-party summa-
tion and multiplication. The calculation result is safely translated into the corresponding
phase information by using the quantum Fourier transform. In 2017, Zhang et al. [27]
devised a multi-party quantum summation protocol that requires three-particle entangled
states to be shared among users. Liu et al. [28] presented a quantum summation protocol
by sharing multi-particle entangled states, including bell state, among users. Since their
protocol’s quantum communication is two-way, it is vulnerable to Trojan horse attack. In
2019, Ji et al. [29] designed two quantum summation protocols by employing entanglement
swapping property between the d-level Bell state and the d-level n-partite cat state. In 2021,
Wu et al. [30] proposed a multi-party quantum summation protocol based on the d-level
Bell states. In 2022, Hayashi et al. [31] utilized phase GHZ states to construct a secure
quantum modulo summation protocol that had the advantage of verifiability based on
self-testing, allowing it to perform in worse security environments.

In the above proposed QSMS protocols, most protocols depend on sharing a multi-
particle entangled state among users. Nevertheless, these protocols encounter a problem in
practical application, that is, it is difficult to prepare the information carriers (multi-particle
entangled states) with current technology. With this in mind, some papers designed the
QSMS protocol in single particles. In 2014, Zhang et al. [32] employed single photons in
both polarization and spatial-mode degrees of freedom to design a high-capacity quantum
summation protocol. However, their protocol has a security vulnerability. A malicious
participant can use an intercept-resend attack to obtain the next participant’s secret [33]. In
2019, Zhang et al. [34] used a set of mutually unbiased bases in a single d-level quantum
system to construct a multi-party quantum summation protocol. Unlike other protocols
that sum a whole string of numbers, their protocol can only sum a single number. In
2020, Duan et al. [35] used single photons to construct a quantum summation protocol
for transmission in a circular way. In their protocol, randomly selected encoded particles
need to be measured to check the security of the communication, which prevents the final
result from being calculated as each participant wishes, thus greatly limiting the practical
application of their protocol.

Based on the above, publishing safe, efficient and easy to implement protocols is
necessary. So, we propose a novel quantum secure multi-party summation protocol using
single photons. The secret inputs are encoded as single photons and then encrypted with a
simple unitary operation. Relying on this method, our protocol can achieve efficient and
easy-to-implement goals with fewer quantum resources. The rest of this paper is organized
as follows. In Section 2, we propose a three-party quantum summation protocol and discuss
the security of the presented protocol. In Section 3, we generalize the proposed three-party
quantum summation protocol to multi-part and analyze the security of the multi-party
protocol. In Section 4, we compare the previous quantum summation protocols with our
multi-party quantum summation protocol. Finally, we make a conclusion in Section 5.

2. The Three-Party Quantum Summation Protocol
2.1. Proposed Protocol

Secure three modulo-2 summation is defined as follows. Suppose that there are three
participants named Alice, Bob and Charlie, who all own the same length of secret input
xA, xB, xC, respectively, where xA = (xA1, xA2, · · · , xAm), xB = (xB1, xB2, . . . , xBm) and
xC = (xC1, xC2, . . . , xCm). Here, xAt, xBt, xCt ∈ {0, 1} for t = 1, 2, . . . , m. They calculate the
sum by encoding the information on the information carrier, that is, (xA + xB + xC)mod2.
(Note that (xA + xB + xC)mod2 = xA1 ⊕ xB1 ⊕ xC1, xA2 ⊕ xB2 ⊕ xC2, . . . , xAm ⊕ xBm ⊕ xCm.
Here, “⊕” denotes the addition modulo 2).

In addition, it should satisfy the following requirements (please refer to [36]):
Correctness: The result of modulo-2 summation of all participants’ secret inputs

should be correct.
Fairness: All participants receive the summation result simultaneously.
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Privacy: Participants’ secret inputs are private. In other words, no participant can
learn about other participants’ secret inputs, even though the participant can launch various
quantum attacks and up to n-2 participants are allowed to conspire but not with TP and an
outside eavesdropper (here, n is the number of participants in the protocol).

Security: An outside eavesdropper cannot learn any information about each partici-
pant’s secret input without being detected.

In the following, we propose a secure protocol to accomplish this task with the help of
a third party (TP). The TP is assumed to be semi-honest but non-collusive, that is to say,
TP is allowed to launch various attacks by using different quantum resources under the
premise of loyally execution of the protocol, but he cannot collude with other participants.
The classical and quantum channel used in our protocol are assumed to be authenticated
and noiseless, respectively.

All participants agree on the following forms:

|0〉0 = |0〉, |0〉1 = |+〉,
|1〉0 = |1〉, |1〉1 = |−〉.

(1)

Here, we denote the two orthogonal states of a qubit as |0〉0 and |1〉0, respectively,

and define |0〉1 = |+〉, |1〉1 = |−〉, where |+〉 = 1√
2
(|0〉+ |1〉), |−〉 = 1√

2
(|0〉 − |1〉) . In

addition, |0〉0 = |0〉, |1〉0 = |1〉 represent the classical bits 0, 1, respectively. The specific
steps of three-party protocol are shown in Figure 1.

Figure 1. The process of three-party quantum summation.

Our three-party protocol works as follow:
Step 1: TP sends a secret key sequence lA(lB, lC) to Alice (Bob, Charlie) via the quantum

key distribution protocol [11] beforehand, where lA = (lA1, . . . , lAm)(lB = (lB1, . . . , lBm),
lC = (lC1, . . . , lCm)), lAt(lBt, lCt) ∈ {0, 1}, t = 1, 2, · · · , m.

Step 2: According to the secret key sequence lA previously shared with Alice, TP
generates m copies of single photon states and uses these particles to construct a sequence

SA =
{
|0〉lA1

, |0〉lA2
, . . . , |0〉lAm

}
.

To ensure the security of particle transmission, TP prepares m decoy photons, which
randomly in {|0〉, |1〉, |+〉, |−〉}. Then, he inserts the decoy photons into SA at random
positions and records the insertion positions. Denote the new sequence by SA. Finally, TP
sends SA to Alice.

Step 3: After confirming that Alice has received all the particles from TP, Alice checks
the security of the transmission of SA with TP. Specifically, TP announces the insertion
positions and the bases of the decoy photons in SA to Alice. Then, based on the announced
information, Alice measures these decoy states on the correct bases and publishes the
measurement results to TP. Subsequently, according to Alice’s measurements, TP checks
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for the presence of eavesdroppers in the quantum channel. If the error rate is higher than
the threshold determined by the channel noise, TP cancels this protocol and restarts it.
Otherwise, TP proceeds to the next steps.

Step 4: After determining that the transmission has not eavesdropped, Alice obtains
SA by extracting decoy photons from SA. Then, Alice encodes his secret input xA on the
sequence SA. Concretely, Alice performs the unitary operation UxAt

Y on the t th particle of
SA. Here, the operators are defined by [37],

U1
Y = iY =

[
0 1
−1 0

]
, (2)

U0
Y = I =

[
1 0
0 1

]
. (3)

Obviously, after Alice finishes the encoding operations, the quantum states in SA are
changed into

{
|xA1〉lA1

, |xA2〉lA2
, . . . , |xAm〉lAm

}
. The transformed sequence is denoted as

SB. Alice prepares m decoy states that are randomly in {|0〉, |1〉, |+〉, |−〉} and inserts them
in SB to form a new sequence SB. Afterward, Alice sends SB to Bob. After receiving the
sequence SB, Bob performs the same operation as Alice, namely, security checking and
encoding secret information. In addition, Bob performs the Hadamard operation HlBt on
the t th particle of SB according to the received secret key sequence lB:

H1 = H = − 1√
2

[
1 1
1 −1

]
, (4)

H0 = I =
[

1 0
0 1

]
. (5)

After completing the above operations, Bob obtains a sequence SC. Then, he randomly
places decoy photons into the sequence SC to form a new sequence SC. Finally, Bob sends
SC to Charlie. When Charlie receives the sequence SC, he performs the same operations as
Bob, namely security checking, encoding the secret information and the secret key. Then
Charlie sends the resulting new sequence STP to TP.

Step 5: After receiving the sequence STP, TP and Charlie jointly check the secu-
rity of the transmission channel. TP obtains the sequence STP by extracting decoy pho-
tons after confirming that the channel is safe. Then, TP computing L1 = lA1 ⊕ lB1 ⊕ lC1,
L2 = lA2 ⊕ lB2 ⊕ lC2, . . . , Lm = lAm ⊕ lBm ⊕ lCm. If Lt = 1(t = 1, 2, . . . , m), TP will perform
the Hadamard operation on the t th particle of STP. Otherwise, the particles in STP will re-
main the same. After the above operation, TP measures the particles with the Z basis. Then,
TP can acquire the summation xA1 ⊕ xB1 ⊕ xC1, xA2 ⊕ xB2 ⊕ xC2, . . . , xAm ⊕ xBm ⊕ xCm.
Finally, TP announces the summation result to Alice, Bob, and Charlie via a public channel.

To illustrate our protocol more clearly, we will take an example with three participants,
Alice, Bob and Charlie. For the sake of convenience, we will omit the security checking.

Sample 1: We assume the secret input of Alice Bob and Charlie are xA = (010),
xB = (011) and xC = (011), respectively.

First, TP sends secret key sequences to Alice, Bob and Charlie, where the secret key
sequence is lA = (001), lB = (010) and lC = (011), respectively. Then, TP generates the
three copies of single photon states |0〉0, |0〉0, |0〉1 and sends them to Alice. Alice applies
the encoding operations on the signal particles according to the secret numbers xA and
transmits the encoded particles to Bob. Subsequently, Bob encodes the received particles
according to his secret input xB and secret key sequence lB and transmits them to Charlie.
When Charlie receives the signal particles, he performs the same operation as Bob. He
encodes the particles according to his secret input xC and secret key sequence lC and then
transmits them to the TP. The corresponding operations and the changes in quantum states
are shown in Table 1.
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Table 1. Encoding operations on the sequence.

x1 = (0, 1, 0) x2 = (0, 1, 0) x3 = (0, 1, 1)

|0〉0
UxA1−→ |0〉0

UlB1 UxB1−−−−−→ |0〉0
UlC1 UxC1−−−−−→ |0〉0

|0〉1
UxA2−→ |1〉0

UlB2 UxB2−−−−−→ |0〉1
UlC2 UxC2−−−−−→ |1〉0

|0〉0
UxA3−→ |1〉1

UlB3 UxB3−−−−−→ |1〉1
UlC3 UxC3−−−−−→ |0〉0

After the above steps, TP calculates the sum of the keys L1 = 0, L2 = 0, L3 = 0. He
performs the operation I ⊗ I ⊗ I based on the calculation result and yields the states
|0〉, |1〉, |0〉. Finally, TP measures these particles in the Z basis and obtains the summation
xA ⊕ xB ⊕ xC = 010.

Channel loss of the cited QKD protocol: Although we assumed that the quantum
channel is noiseless, channel loss is a major issue in the construction of QKD, so it is
discussed here. The QKD protocol [11] used in our protocol utilizes coherent states to
against realistic flawed sources and ensure security by adopting the reference technique. A
proof-of-principle experiment in Ref. [11] demonstrates the feasibility of the QKD protocol
in terms of resistance to channel loss.

2.2. Correctness

In this part, we discuss the correctness of the proposed three-party quantum summa-
tion protocol. Here, we show that all participants provide their secret inputs honestly, and
they can eventually obtain the correct summation result:

xA1 + xB1 + xC1(mod2), xA2 + xB2 + xC2(mod2), . . . , xAm + xBm + xCm(mod2) (6)

By deriving Equations (2)–(5), we can obtain the following equations:

H2 = U2
Y = I (7)

HUY H = −UY (8)

HUY = −UY H (9)

Before the protocol is implemented, Alice, Bob and Charlie negotiate a coding rule (1),
where |0〉, |1〉 represent the classical bits 0, 1, respectively. Without loss of generality, we
consider only the operation performed on the j-th particle. Suppose that the initial state of
the t-th particle is |S〉jε{|0〉, |+〉} . In step 4, Alice, Bob and Charlie perform their unitary
operations on |S〉t, and the state of the t-th particle will change to the following form:

|S∗〉t = HlCt UxCt
Y HlBt UxBt

Y UxAt
Y |S〉t (10)

Obviously, we know

UY|0〉0 = UY|0〉 = −|1〉;
UY|0〉1 = UY|1〉 = |0〉;
UY|1〉0 = UY|+〉 = |−〉;
UY|1〉1 = UY|−〉 = −|+〉.

(11)

So, we can obtain the

U1|0〉0 = |0⊕ 1〉0, U1|0〉1 = |0⊕ 1〉1, U1|1〉0 = |1⊕ 1〉0, U1|1〉1 = |1⊕ 1〉1,

U0|0〉0 = |0⊕ 0〉0, U0|0〉1 = |0⊕ 0〉1, U0|1〉0 = |0⊕ 1〉0, U0|1〉1 = |0⊕ 1〉1.
(12)
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In addition, the Hadamard operator is equivalent to the interchange of Z basis (|0〉, |1〉)
and X basis (|+〉, |−〉). This is expressed in the following forms:

H|0〉0 = |0〉0⊕1, H|0〉1 = |0〉1⊕1, H|1〉0 = |1〉0⊕1, H|1〉1 = |1〉1⊕1. (13)

By Equations (12) and (13), |S∗〉t can be expressed in the following form:

|S∗〉t = |xAt ⊕ xBt ⊕ xCt〉lAt⊕lBt⊕lCt . (14)

In step 5, TP performs unitary operations on |S∗〉t based on the sum of the secret keys.
Through the above equations, we can derive that

HLt |S∗〉j = HLt HlCt UxCt
Y HlBt UxBt

Y UxAt
Y |S〉t

= HLt⊕lAt⊕lBt⊕lCt UxAt⊕xBt⊕xCt |S〉t
= |xAt ⊕ xBt ⊕ xCt〉Lt⊕lAt⊕lBt⊕lCt

(15)

Clearly, Lt ⊕ lAt ⊕ lBt ⊕ lCt = 0. So, we can further acquire

HLt |S∗〉t = |xAt ⊕ xBt ⊕ xCt〉0. (16)

After TP performs Z basis measurement on the t-th particle of sequence STP, the
particle collapse into classical information xAt ⊕ xBt ⊕ xCt. Therefore, when TP has finished
performing Z basis measurements, the particles in sequence STP will collapse into the sum
of Alice, Bob and Charlie’s secret inputs.

It can be concluded that the output of the three-party quantum summation protocol
is correct.

2.3. Security Analysis

This part will prove that the proposed three-party quantum summation protocol is
secure against two kinds of threats: outside attack and participant attack. In the aspect of
defending against the outside attack, we will show that an outside eavesdropper cannot
learn any participant’s secret. In the aspect of the participant attack, we will show that the
protocol is information-theoretically secure [38], that is, anyone including TP cannot obtain
any information about other participants.

2.3.1. Outside Attack

Obviously, the same protection measures are used for each transmission of the particles.
Without loss of generality, here, we only analyze the security of the transmission of SC
against an outside eavesdropper, namely Eve. She strives to steal the secret inputs of
participants. Hence, she could exploit any possible attack strategies but not collusion,
such as the Trojan horse attack, the entanglement attack, the intercept–resend attack, the
measure–resend attack. We will explain that our protocol is resistant to these attacks, and
the specific analysis is as follows:

(1) The Trojan horse attacks
The Trojan horse attacks consist mainly of the delay-photon Trojan horse attack [39]

and the invisible photon eavesdropping attack [40]. Since the particles of SC are transmitting
one-way, this protocol is naturally protected against the Trojan horse attacks from Eve.

(2) The entangle-measure attack
Eve cannot discover the difference between target and decoy photons. Therefore, she

usually extracts some useful information by entangling her auxiliary particle |ε〉with the one in
SC through a unitary operation UE. Her behavior can be expressed as Equations (17) and (18):

UE|0〉|ε〉 = a1|0〉|ε00〉+ b1|1〉|ε01〉, (17)
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UE|1〉|ε〉 = a2|0〉|ε10〉+ b2|1〉|ε11〉, (18)

where |ai|2 + |bi|2 = 1 (i = 1, 2). If Eve’s operation does not introduce an error in the
eavesdropping check, the following requirements are met:

UE|0〉|ε〉 = |0〉|ε0〉,
UE|1〉|ε〉 = |1〉|ε1〉,
UE|+〉|ε〉 = |+〉|ε+〉,
UE|−〉|ε〉 = |−〉|ε−〉.

(19)

Taking UE|−〉|ε〉 = |−〉|ε−〉 as an example, we expand both sides of the equation
as follows:

UE|−〉|ε〉 = |−〉|ε−〉,

=⇒ 1√
2
(UE|0〉|ε〉 −UE|1〉|ε〉) =

1√
2
(|0〉|ε−〉 − |1〉|ε−〉),

=⇒ 1√
2
(a1|0〉|ε00〉+ b1|1〉|ε01 − a2|0〉|ε10 − b2|1〉|ε11〉) =

1√
2
(|0〉|ε−〉 − |1〉|ε−〉),

=⇒ 1√
2
[|0〉(a1|ε00〉 − a2|ε10〉 − |ε−〉) + |1〉(b1|ε10〉 − b2|ε11〉+ |ε−〉)] = 0,

=⇒a1|ε00〉 − a2|ε10〉 − |ε−〉 = 0,

b1|ε10〉 − b2|ε11〉+ |ε−〉 = 0.

(20)

Here, 0 donates a column zero vector. In the same way, we can infer

a1|ε00〉+ a2|ε10〉 − |ε+〉 = 0,

b1|ε10〉+ b2|ε11〉 − |ε+〉 = 0,

a1|ε00〉 − a2|ε10〉 − |ε−〉 = 0,

b1|ε10〉 − b2|ε11〉+ |ε−〉 = 0,

a1|ε00〉 − |ε0〉 = 0,

b1|ε01〉 = 0,

b2|ε11〉 − |ε1〉 = 0,

a2|ε10〉 = 0.

(21)

Hence, we can deduce the following result from Equation (21): a2 = b1 = 0,
a1 = b2 = 1 and |ε00〉 = |ε11〉 = |ε0〉 = |ε1〉. Substituting these results for the symbols in
the Equations (17) and (18), we can obtain

UE|0〉|ε〉 = |0〉|ε00〉,
UE|1〉|ε〉 = |1〉|ε00〉.

(22)

Consequently, Eve cannot distinguish {|0〉, |1〉} without introducing errors. If there
is an error, it will be detected in the eavesdropping check. Then the protocol will be
restarted without information disclosure, which makes Eve launch this kind of attack while
acquiring nothing.
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(3) The intercept-resend attack
Since Eve does not know the positions of the decoy photons, in order to obtain

information from Bob, Eve intercepts SC that Bob sends to Charlie. Eve then substitutes
all the particles with fake ones randomly generated in {|0〉, |1〉, |+〉, |−〉} and sends them
to Charlie. Suppose that the initial decoy particle state is |0〉, if Eve generates the particle

randomly in the {|0〉, |1〉} basis, the probability that Eve’s attack will be detected is
1
2

, and if

Eve generates the particle randomly in the {|+〉, |−〉} basis, the probability that Eve’s attack

will be detected is
1
2

. In conclusion, the probability that Eve’s attack can be detected is
1
2
× 1

2
+

1
2
× 1

2
=

1
2

. When we use n decoy particles for eavesdropping, the probability of

Eve’s attack being detected is 1 − (
1
2
)n, which will approach 1 if n is large enough.

(4) The measurement-resend attack
Since Eve does not know the positions of the decoy photons, in order to obtain

information from Bob, Eve intercepts SC that Bob sends to Charlie. Subsequently, Eve
randomly selects the Z basis or X basis to measure the intercepted particles and prepares
new quantum states to send to Charlie based on the results of the measurements. Suppose
that the initial decoy particle state is |0〉. If Eve chooses to measure with Z basis, Eve’s
attack will incur no error, and if Eve chooses to measure with X basis, the probability that

Eve’s attack will be detected is
1
2

. In conclusion, the probability that Eve’s attack can be

detected is
1
2
× 1

2
=

1
4

. When we use n decoy particles for eavesdropping, the probability

of Eve’s attack being detected is 1 − (
3
4
)n, which will approach 1 if n is large enough.

2.3.2. Participant Attack

We now focus on the participant attack, a more severe threat to the protocol’s security.
Naturally, in a quantum summation protocol with n participants, when any n − 1 partici-
pants conspire together, they can easily learn the left one’s secret input. Here, n is a positive
integer equal or greater than 3. Therefore, we only analyze the participant attack from one
dishonest participant.

In order to prevent their secret inputs from being known by others, each participant
encrypts the t-th particle by using secret keys. He privately performs the Hadamard
gate operation on the t-th particle. It is worth noting that if the protocol is information-
theoretically secure, then for every input ρ, the output ρc is a totally mixed state [38]. So, we
determine whether the proposed protocol is information-theoretically secure by comparing
the input density matrix with the output density matrix. The input state is related to the
output state as follows:

ρout = ∑
i

piUiρinU†
i (23)

where ρin is the density matrix of all possible initial input states, and Ui is the corresponding
unitary operator applied to the input state. We only analyze the relationship between the
initial state and the output state of the t-th particle sent by Bob to Charlie in that Alice,
Bob and Charlie play the same role in our protocol. Firstly, since the initial state of the t-th
particle is at either |0〉 or |+〉, we can obtain

ρin = (
1
2
|0〉〈0|+ 1

2
|+〉〈+|) (24)
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Then, after Alice and Bob performing the corresponding operators, the output density
matrix should be in

ρout =
1
4
{H0U0[

1
2

U0(
1
2
|0〉〈0|+ 1

2
|+〉〈+|) + 1

2
U1(

1
2
|0〉〈0|+ 1

2
|+〉〈+|)]}

+
1
4
{H1U0[

1
2

U0(
1
2
|0〉〈0|+ 1

2
|+〉〈+|) + 1

2
U1(

1
2
|0〉〈0|+ 1

2
|+〉〈+|)]}

+
1
4
{H0U1[

1
2

U0(
1
2
|0〉〈0|+ 1

2
|+〉〈+|) + 1

2
U1(

1
2
|0〉〈0|+ 1

2
|+〉〈+|)]}

+
1
4
{H1U1[

1
2

U0(
1
2
|0〉〈0|+ 1

2
|+〉〈+|) + 1

2
U1(

1
2
|0〉〈0|+ 1

2
|+〉〈+|)]}

=
1
4
(

1
4
|0〉〈0|+ 1

4
|+〉〈+|+ 1

4
|1〉〈1|+ 1

4
|−〉〈−|)

+
1
4
(

1
4
|+〉〈+|+ 1

4
|0〉〈0|+ 1

4
|−〉〈−|+ 1

4
|1〉〈1|)

+
1
4
(

1
4
|1〉〈1|+ 1

4
|−〉〈−|+ 1

4
|0〉〈0|+ 1

4
|+〉〈+|)

+
1
4
(

1
4
|−〉〈−|+ 1

4
|1〉〈1|+ 1

4
|+〉〈+|+ 1

4
|0〉〈0|)

=
1
4
(|0〉〈0|+ |1〉〈1|+ |+〉〈+|+ |−〉〈−|)

=
1
4
[

(
1 0
0 0

)
+

(
0 0
0 1

)
+

1
2

(
1 1
1 1

)
+

1
2

(
1 −1
−1 1

)
]

=
1
2

(
1 0
0 1

)
=

1
2

I

(25)

By Equation (25), we can see that the output of the t th particle after Bob performs
quantum operators is just a totally mixed state. Namely, anyone, including the next
participant, cannot acquire any information about Bob’s secret input xB.

We then consider the case where the attack comes from TP. Since TP is a assumed
a semi-honest third party in our protocol, he may try his best to learn the participants’
secret inputs without conspiring with anyone. Unlike an outside eavesdropper, TP can
use various quantum resources to launch attacks, such as the Trojan horse attack, the
intercept–resend attack and so on; besides, he can try to learn participants’ information
from intermediate recorded by himself in the procedure of the protocol. We will explain
that TP cannot learn any participants’ secret inputs. Similar to the density matrix analysis
above, TP cannot learn the secret input of any participant from the recorded information.
In addition, if TP wanted to intercept the transmitted particles without being detected,
that would be impossible. Because, as analyzed in the outside attack above, every particle
transmission requires a security check, any interception is detected in the security check.

Therefore, the proposed three-party quantum summation protocol is information-
theoretically secure.

3. The Multi-Party Quantum Summation Protocol
3.1. Proposed Protocol

In this section, we will describe in detail how to generalize the three-party protocol
to the multi-party protocol. We assume that there are n participants labeled P1, P2, . . . , Pn
(n > 2), and every participant Pi (i = 1, . . . , n) has secret input xi = (xi1, xi2, . . . , xim), xitε{0, 1},
t = 1, 2, . . . , m. All participants want to obtain the summations

n
∑

i=1
xi = (x11⊕ . . .⊕xn1, . . . ,

x1m⊕ . . .⊕xnm) and without revealing their secret information. Similarly, it should satisfy
the requirements described in Section 2.1: correctness, fairness, security and privacy.
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All participants still agree with the encoding forms described above:

|0〉0 = |0〉, |0〉1 = |+〉
|1〉0 = |1〉, |1〉1 = |−〉

(26)

with |0〉0 = |0〉 and |1〉0 = |1〉 denoting the classical bits 0 and 1 respectively.
Step 1: TP sends a secret key sequence li to Pi via the quantum key distribution

protocol [11] in advance, where li = (li1, li2, . . . , lim), litε{0, 1}, t = 1, 2, . . . , m.
Step 2: TP encodes the secret key sequence l1 previously shared with P1 according to

the above agreement, and he can obtain m copies of single photon states

S1 =
{
|0〉l11 , |0〉l12 , ..., |0〉l1m

}
.

TP randomly inserts m decoy photons randomly in {|0〉, |1〉, |+〉, |−〉} into sequence
S1. Define the new sequence as S1 Finally, TP sends S1 to P1.

Step 3: After confirming that P1 received all the particles S1, TP and P1 check the
transmissions between them for eavesdroppers. Concretely, TP first announces the inser-
tion positions and the bases of the decoy photons to P1. Then, based on the announced
information, P1 uses the correct basis to measure these decoy photons and publishes the
measurement results to TP. Subsequently, according to their measuring results, TP checks
whether eavesdroppers exist in the quantum channels. If the error rate is higher than
the threshold determined by the channel noise, TP cancels this protocol and restarts it.
Otherwise, TP proceeds to the next step.

Step 4: By extracting all the decoy photons from S1 and discarding them, P1 can
acquire the sequence S1. Then, P1 performs the unitary operation Ux1t on the t-th particle
of S1 according to his secret input x1. When P1 completes the encoding operation, the
quantum states in S1 would change to

{
|x11〉l11 , |x12〉l12 , . . . , |x1m〉l1m

}
. Define the changed

sequence as S2. P1 mixes S2 with m decoy states randomly in {|0〉, |1〉, |+〉, |−〉} to form a
new sequence S2. Finally, P1 sends S2 to P2.

Step 5: For j = 2, 3, . . . , n: when Pj received the sequence Sj from Pj−1, Pj−1 checks
the security of transmission with Pj, which similar to Step 3. After determining that the
channel is secure, Pj removes the decoy states and encodes his secret input Xj similar to
Step 4. Furthermore, Pj encodes the information according to the secret key sequence lj

sent by TP. To be clear, Pj performs the unitary operation Hljt on the t th particle of Sj. Then,
Pj mixes sequence Sj and decoy photons randomly to form a new sequence Sj, and sends it
to Pj+1. Of note, the last participant Pn sends the particle sequence Sn+1 to TP.

Step 6: When TP has received the sequence Sn+1, TP checks the security of transmis-
sion channel with Pn. TP obtains Sn+1 by extracts and discards decoy photons from Sn+1.

Then, TP computing L1 =
n
∑

i=1
li1, L2 =

n
∑

i=1
li2, . . . , Lm =

n
∑

i=1
lim. If the result Lt is 1, TP will

perform the Hadamard operation on the t th particle of Sn. Otherwise, the particles in
Sn will not change. After the above steps, TP measures the particles with Z basis. Then,
TP can obtain the summation ∑n

i=1 xi1, ∑n
i=1 xi2, . . . , ∑n

i=1 xim. Finally, TP announces the
summation result to P1, P2, . . . , Pn.

3.2. Correctness

It is correct for a secure multi-party summation protocol, which means that all partici-
pants can obtain the sum without revealing any secrets. In the following, we will show that
the result of this protocol is the sum of their secret inputs.

Before the protocol is executed, the participants Pi, i = 1, . . . , n negotiate a coding rule
whereby |0〉 and |1〉 represent the classical bits 0 and 1, respectively. Suppose that the initial
state of the t th particle is |S〉tε{|0〉, |+〉}, t = 1, 2, . . . , m. In Steps 4 and 5, the encoding
operation Hlit Uxit

Y has been performed n− 1 times, that is, Hl2t Ux2t
Y , Hl3t Ux3t

Y , . . . , Hlnt Uxnt
Y ,
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where lit, xitε{0, 1}. After these encoding operations, by Equations (7)–(13), we can obtain
the following:

|S∗〉1 = Hln1Uxn1
Y . . . Hl21Ux21

Y Ux11
Y |S〉1

= |x11 ⊕ x21 ⊕ . . . . . . xn1〉l11⊕l21⊕...⊕ln1

|S∗〉2 = Hln2Uxn2
Y . . . Hl22Ux22

Y Ux12
Y |S〉2

= |x12 ⊕ x22 ⊕ . . . . . . xn2〉l12⊕l22⊕...⊕ln2

. . .

|S∗〉m = Hlnm Uxnm
Y . . . Hl2m Ux2m

Y Ux1m
Y |S〉m

= |x1m ⊕ x2m ⊕ . . . . . . xnm〉l1m⊕l2m⊕...⊕lnm

(27)

In Step 6, TP performs unitary operations on |S∗〉t based on the sum of secret keys. So,
quantum states will change to the following form:

HL1 |S∗〉1 = HL1 Hln1Uxn1
Y . . . Hl21Ux21

Y Ux11
Y |S〉1

= |x11 ⊕ x21 ⊕ . . .⊕ xn1〉L1⊕l11⊕l21⊕...⊕ln1

HL2 |S∗〉2 = HL2 Hln2Uxn2
Y . . . Hl22Ux22

Y Ux12
Y |S〉2

= |x12 ⊕ x22 ⊕ . . .⊕ xn2〉L2⊕l12⊕l22⊕...⊕ln2

. . .

HLm |S∗〉m = HLm Hlnm Uxnm
Y . . . Hl2m Ux2m

Y Ux1m
Y |S〉m

= |x1m ⊕ x2m ⊕ . . .⊕ xnm〉Lm⊕l1m⊕l2m⊕...⊕lnm

(28)

Obviously, L1 ⊕ l11 ⊕ l21 ⊕ . . .⊕ ln1 = 0, . . . , Lm ⊕ l1m ⊕ l2m ⊕ . . .⊕ lnm = 0. So, we
can further obtain

HL1 |S∗〉1 = |x11 ⊕ x21 ⊕ . . .⊕ xn1〉0
HL2 |S∗〉2 = |x12 ⊕ x22 ⊕ . . .⊕ xn2〉0
. . .

HLm |S∗〉m = |x1m ⊕ x2m ⊕ . . .⊕ xnm〉0

(29)

Finally, TP performs the Z-basis measurement on the particles in the sequence Sn+1,
and the particles collapse into classical information:

x11 ⊕ x21 ⊕ . . .⊕ xn1, x12 ⊕ x22 ⊕ . . .⊕ xn2, . . . , x1m ⊕ x2m ⊕ . . .⊕ xnm. (30)

Therefore, the correct result can be acquired by performing the protocol.

3.3. Security Analyse

For security, we use the same method to prevent outside and participant attacks in
both three-party and multi-party quantum summation because the idea of the proposed
two protocols is the same. We analyze the security of our multi-party protocol. Firstly, we
prove that our protocol is resistant to outside attacks. Secondly, we show that participant
attacks are ineffective for our protocol.

3.3.1. Outside Attack

We analyze the possibility of an outside eavesdropper, Eve, obtaining the secret inputs
from all participants.

Eve is considered to be able to launch various attacks using different quantum re-
sources but not conspire. Next, we will explain that her attacks are ineffective. In order
to obtain something useful information about participants’ secret inputs, Eve can utilize
the particle transmission in steps 2, 4, and 5 to launch active attacks, such as the intercept–
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resend attack, the entanglement–measure attack, the measurement–resend attack and so
on. However, we use decoy photons, which are randomly chosen from the two conjugate
bases, Z basis and X basis, to detect the presence of an outside eavesdropper. This idea
is derived from the unconditional security BB84 protocol [41]. It has been proven to be
unconditionally secure [42]. We take the measurement-resend attack as an example here: if
Eve tries to intercept the particles sent from Pi to Pi+1 and measures them, then prepares
fake quantum states based on the results to resend to P(i+1), he will introduce an extra error
rate that would allow him to be detected during security checking. For a decoy photon
chosen for detection, Alice reflects this particle back to TP with a probability of 1/2. Thus,
Eve has a (1/2)*(1/2) = (1/4) probability of being detected. When we use n decoy particles
for eavesdropping, the probability of Eve being caught turns into 1 − (3/4)n, which will
approach 1 if n is large enough. Therefore, if Eve launches active attacks during the particle
transmissions, she will inevitably leave traces on the decoy photons and be detected by
the eavesdropping check process since the locations and measurement basis of the decoy
photons are not known until they are announced. In addition, since the transmission of
particles in our protocol in the quantum channel is unidirectional, it is naturally resistant to
the Trojan horse attacks.

3.3.2. Participant Attack

In this subsection, we will sufficiently analyze two scenarios of participant attack: the
participant attack from one or more dishonest parties and the participant attack from TP.

Case 1: The participant attack from one or more dishonest parties

In the following, we will analyze two situations: one participant wants to learn the
secret numbers from others; the other is more than one participant colluding together to
learn secret numbers from others.

(a) The participant attack from one dishonest party
Without loss of generality, we assume that P2 is the dishonest participant.
In Step 4, P2 receives S2 =

{
|x11〉l11 , |x12〉l12 , . . . , |x1m〉l1m

}
from P1, but he cannot learn

P1’s secret message X1 from S2 because P2 does not know l1 and he cannot conspire with TP,
who knows the parties’ keys. In the protocol of this paper, the secret key represents a change
in the measurement base, and the attacker does not know the key, so naturally, he will not
know the corresponding measurement base. In addition, if P2 tries to intercept particles
transmitted between the remaining participants, he will be detected as an outside attacker
because he does not know the position of the decoy photon and the measurement base.

Therefore, P2 cannot obtain the secret input of P1.
(b) The participant attack from more than one dishonest party.
If n− 1 participants collude, they can easily deduce the secret input of the other partici-

pant from the final summation result. Thus, the proposed multi-party quantum summation
protocol can resist the collusion attack from at most n − 2 participants. Without loss of gen-
erality, we assume n− 2 parties P1, P2, . . . , Pi−1, Pi+1, . . . , Pn−1 collude together to learn the
secret input xi of Pi. In Step 5, Pi+1 can obtain Si+1 = {|x11 ⊕ . . .⊕ xi1〉l11⊕...⊕li1 , . . . , |x1m ⊕
. . .⊕ xim〉l1m⊕...⊕lim} from Pi.

By Equation (25), we can obtain the density matrix of the t-th particle output states in
the sequence Si+1:

ρout = ∑
i

piUiρinU†
i =

1
2

I (31)

Since the output of the t-th particle after Pi performs the corresponding operators
is just a totally mixed state, no one can obtain any information about Pi’s secret input,
even if P1, P2, · · · , Pi−1, Pi+1, · · · , Pn−1 collude together to deduce xi. Furthermore, from a
measurement perspective, since P1, P2, · · · , Pi−1, Pi+1, · · · , Pn−1 do not know the key, Pi+1
cannot know the measurement basis corresponding to the quantum sequence and thus
cannot obtain the secret information xi of Pi. In Step 6, P1, P2, · · · , Pi−1, Pi+1, · · · , Pn−1 can
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learn the summation result from TP. They can only obtain the value of xi ⊕ xn and cannot
deduce xi because they have no knowledge about the secret input xn.

Therefore, P1, P2, . . . , Pi−1, Pi+1, . . . , Pn−1 cannot learn the secret information of Pi, even
if they conspire.

Case 2: The participant attack from TP

Let us now consider TP attacks. In our protocol, TP is assumed as a semi-honest third
party, which means that TP can perform all sorts of attacks by using various quantum
resources, and attempt learn the secret inputs of participants from the information he
records while the protocol is in progress but non-collusive. Next we will show that TP
cannot obtain secret inputs of any participants without being detected.

In Step 6, TP can obtain Sn+1 = {|x11 ⊕ · · · ⊕ xn1〉l11⊕···⊕ln1 , · · · , |x1m ⊕ · · ·
⊕xnm〉l1m⊕···⊕lnm}. TP obtains the sum of all secret inputs after encoding and measur-
ing the quantum sequence Sn+1. Although TP knows the keys of all participants, he is still
unable to learn any secret inputs from them. After encoding, the quantum states sequence
Sn+1 will become {|x11 ⊕ · · · ⊕ xn1〉0, |x12 ⊕ · · · ⊕ xn2〉0, · · · , |x1m ⊕ · · · ⊕ xnm〉0}, and the
effect of the key is eliminated. Thus, without colluding with the participants, TP does not
derive clues about secret information from the sum. Even if TP measured the particles
directly after obtaining the sequence Sn+1, he would still not acquire the desired result. It
is worth noting that TP can infer the measurement base corresponding to each particle in
the sequence Sn+1 from the secret keys of all participants. Because it is still a mixture of
information from all participants, TP does not separate the secret inputs of any participants
from Sn+1. If TP attempts to intercept transited particles between any two participants,
he will be detected as an outside attacker. Furthermore, even if TP does intercept the
transmitted particles, it will not be able to obtain the desired secret information because it
did not know the location of the decoy photons.

Therefore, TP cannot obtain any participants’ secret inputs without being caught.

4. Comparisons

In this section, we compare the previous quantum summation protocols with our
multi-party quantum summation from the quantum resource, the quantum operations,
particle transmission mode, quantum measurements and the qubit efficiency in Table 2.

The qubit efficiency of secure quantum communication was introduced by Cabello [43],
defined as

η =
c

q + b
, (32)

where c is the total number of the classical plaintext message bits, q represents the number
of the used qubits and b denotes the number of classical bits exchanged for decoding the
message. For simplicity, we suppose that the number of participants is N, the length of the
summation is m, and m decoy particles are employed to check eavesdrop.

Ref. [32] presented a secure multi-party summation protocol based on single photons

in both polarization and spatial-mode degrees of freedom. In their protocol,
m
2

single
photons are used in both polarization and spatial-mode degrees of freedom for encoding,
mN decoy particles are used for detecting the presence of eavesdroppers, and finally, TP

announces the result will cost m classical bits. So, the qubit efficiency is η =
2

2N + 3
.

Ref. [35] proposed a multi-party summation protocol within a d-level quantum system.
In their protocol, P1 generates 2(m + δ) d-level single photons, of which (m + δ) photons
are used to check whether the communication is secure, and δ photons are used to check
the security of communication with P2, P3, . . . , PN . For ease of calculation, we assume that,
ideally, δ = m. P1 restores all photons in his hand to the original orders will cost 2(N − 1)m
classical bits, and announcing the result when the summation is complete will cost m

classical bits. So, the qubit efficiency is η =
1

2N + 3
.
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Table 2. Comparison between previous quantum summation protocols and ours.

Ref. [32] Ref. [35] Ref. [34] Ref. [27] Ref. [44] Ref. [28] Ref. [30] Ref. [31] Our Protocol

Quantum
resource

single photons
in both

polarization and
spatial-mode

degree of
freedom

d-level
single-photon

state

d-level
single-photon

state

three-particle
entangled state

d-level
N-particle

entangled state

N-particle
entangled state Bell state phase GHZ state single-photon

state

Quantum
operations Single-photon

operators
Unitary

operations

Two unitary
operations
(Xd and Yd)

CNOT and
Hadamard
operators

Quantum
Fourier

transformand
and Pauli
operators

Pauli and
Hadamard
operators

NOT and
identity

operators
No

Pauli and
Hadamard
operators

Particle
transmission

mode
circle-type circle-type circle-type tree-type tree-type tree-type circle-type star-type circle-type

Quantum
measurements

for TP

Single-photon
projective

measurements

single qudit
measurements

Single qudit
measurement No No

Single-photon
projective

measurements

Single-photon
projective

measurements
No

Single-photon
projective

measurements
Quantum

measurement
for participants

No No No
Single-photon

projective
measurements

Single qudit
measurements No

Single-photon
projective

measurements

Computational
basis

measurements
No

Qubit efficiency 2
2N + 3

1
2N + 3

1
2N + 3

1
4N − 1

1
3N − 2

1
3N − 2

1
5N

1
4N4 + 3N

1
2N + 2
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Ref. [34] employed single particles to construct a multi-party summation protocol
in a d-level quantum system, where d is restricted to odd primes. Since the summation
length of their protocol is 1, we assume for convenience of calculation that the number of
decoy particles is also 1 for each participant. In their protocol, (N + 1) decoy particles are
used for checking the presence of eavesdroppers, P1, . . . , PN announces that their encrypted
number to TP for summation will cost N classical bits, and TP announces the result will

cost 1 classical bit. So, the qubit efficiency is η =
1

2N + 3
.

Ref. [27] utilized three-party entangle states to construct a modulo-2 summation
protocol. In their protocol, there are mN particles for key generation, mN particles for
checking the honesty of the initiator, m(N− 1) decoy particles for eavesdropping detection,
and participants need to announce mN classical bits to get the summation. So, the qubit

efficiency is η =
1

4N − 1
.

Ref. [44] proposed a secure multi-party summation protocol by employing d-level
n-particle entangle states. P1 prepares mN particles for encoding and (N − 1)m decoy
particles for eavesdropping detecting. In addition, P2, · · · , PN need to announce P1 their
measurements to acquire the sum, and this process will cost (N − 1)m particles. So, the

qubit efficiency is η =
1

3N − 2
.

Ref. [28] used N-particle entangled states to construct a secure multi-party summation
protocol. There are two cases for their protocol since the difference between the two cases
is only in the number of particles prepared, and the difference is not significant. We will
only consider the n − 1 mod 2 = 0 case. In their protocol, mN particles for encoding and
(N − 1)m decoy particles are employed to detect eavesdropping during the transmission
of the particle sequence Si from P1 to Pi, where i = 2, . . . , N. Moreover, (N − 1)m decoy
particles are needed to detect eavesdropping during the particle sequence S′i sent back to

P1 by Pi. So, the qubit efficiency is η =
1

3N − 1
.

In the protocol of Ref. [30], d-level single quantum systems are employed to design
a multi-party quantum summation. Within their protocol, there are 2mN particles for
encoding and 2mN decoy particles for eavesdropping detection. Furthermore, participants
need to announce mN classical bits to compute the summation. So, the qubit efficiency is

η =
1

5N
.

Ref. [31] proposed a multi-party modulo summation protocol based on GHZ states.
For ease of calculation, we assume that each group of N copies, except the final group,
where each copy consists of N qubits. In their protocol, (4N3 + 1)N particles for verifiable
generation, N bits for summation, participants announce their result will cost N bites. So,

the qubit efficiency is η =
1

4N4 + 3N
.

In our protocol, there are mN particles for previous keys distribution, m particles for
encoding, and mN particles for eavesdropping detection. In addition, when the sum is
obtained, TP needs to announce m classical bits. Then, the qubit efficiency of the presented

protocols is η =
1

2N + 2
. In our work, only single photons, unitary operation, and single-

particle measurement are introduced.
According to Table 2, we can conclude the following: 1© As for the qubit efficiency,

our protocol is second only to the protocol in Ref. [32]. However, Ref. [32] has a drawback
in terms of security. The secret input encoded on single photons is not encrypted, and a
malicious participant Pi (i = 1 , . . . , n − 1) can obtain Pi+1’s secret by an intercept-resend
attack. To solve this problem, Ref. [33] proposed a modification. At the beginning of
the protocol, each participant first shares a set of keys with TP by using some secure
quantum key distribution protocols, and then encodes the sum of secrets and keys on
the photons instead. Although this modification increases safety, it makes Ref. [32] no
longer advantageous in terms of qubit efficiency compared to our protocol. Our proto-
col can guarantee safety and convenience with excellent qubit efficiency. 2© As for the
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quantum resource, this protocol outperforms protocols in Refs. [27,28,30–32,44], as the
preparations of multiple-particle entangled states and single photons in both polarization
and spatial-mode degree of freedom are more difficult than those of single photon states. In
addition, in Refs. [28,30], every participant needs quantum generators to generate quantum
states, which will make it more difficult to implement the protocol. 3© As for quantum
operations, with the current technology, it is difficult to achieve the manipulation in the
high-dimensional quantum system as in Refs. [26,27,34,35,44]. Our protocol is carried out
in two-dimensional Hilbert space, which is feasible with current technology [45]. 4© As
for quantum measurements, this protocol exceeds protocols in Refs. [27,30,34,35,44], since
the single qudit measurements in Refs. [34,35,44] are much more complicated to realize
than the single-photon projective measurements, and in Refs. [27,30,44], every participant
requires quantum measurement devices in multiple different bases, which makes them
more cumbersome to implement than our protocol. So, our protocol is more efficient and
feasible compared to other protocols.

5. Conclusions

In summary, we presented a novel and efficient protocol for secure multi-party quan-
tum summation. In our approach, n participants complete this task with the help of a
semi-honest TP. TP is responsible for preparing and distributing single-photon states and
performing quantum measurements, while participants only employ unitary operations
to encode their secret data and transfer the particle to the next participant. The proposed
protocol can also resist various attacks, such as the entanglement–measure attack, the
measurement–resend attack, and the denial-of-service attack. Furthermore, considering
the practical security and technical feasibility, our protocol takes single-photon states as
quantum resources and only needs simple single-particle operators and single-photon
measurements. Therefore, the proposed protocol is feasible with the current technology
and of high efficiency.
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