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Abstract: Joint communications and sensing functionalities integrated into the same communi-
cation network have become increasingly relevant due to the large bandwidth requirements of
next-generation wireless communication systems and the impending spectral shortage. While there
exist system-level guidelines and waveform design specifications for such systems, an information-
theoretic analysis of the absolute performance capabilities of joint sensing and communication
systems that take into account practical limitations such as fading has not been addressed in the
literature. Motivated by this, we undertake a network information-theoretic analysis of a typical joint
communications and sensing system in this paper. Towards this end, we consider a state-dependent
fading Gaussian multiple access channel (GMAC) setup with an additive state. The state process is
assumed to be independent and identically distributed (i.i.d.) Gaussian, and non-causally available
to all the transmitting nodes. The fading gains on the respective links are assumed to be stationary
and ergodic and available only at the receiver. In this setting, with no knowledge of fading gains
at the transmitters, we are interested in joint message communication and estimation of the state
at the receiver to meet a target distortion in the mean-squared error sense. Our main contribution
here is a complete characterization of the distortion-rate trade-off region between the communication
rates and the state estimation distortion for a two-sender GMAC. Our results show that the optimal
strategy is based on static power allocation and involves uncoded transmissions to amplify the state,
along with the superposition of the digital message streams using appropriate Gaussian codebooks
and dirty paper coding (DPC). This acts as a design directive for realistic systems using joint sensing
and transmission in next-generation wireless standards and points to the relative benefits of uncoded
communications and joint source-channel coding in such systems.

Keywords: joint source-channel coding; joint compression and error correction; distortion-rate
trade-off region; multiple access channels; fading channels; MMSE; dirty paper coding

1. Introduction

The scarcity of spectrum, as well as the bandwidth requirements of key emerging ap-
plications such as 6G, necessitate a rethinking of resource consumption. In such systems, it
appears prudent to co-design sensing and communication functionalities. This method enables
significant gains in spectral, energy, hardware, and cost efficiency. This is known as joint sensing
and communication, and it represents a paradigm shift in which sensing and communication
operations can be jointly optimized by utilizing a single hardware platform and a joint signal
processing framework. These ideas have already been used in a number of novel applications,
including vehicular networks, indoor positioning, and covert communications. Joint sensing
and communication scenarios have recently received a lot of attention from the signal process-
ing community (see for instance [1–4]), the communications community (see [5–11]), and the
information theory community (see [12–16]). This work belongs to the final category, where
we take an information-theoretic view of joint sensing and communication in a multi-terminal
setting.
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Joint sensing and communication also arises in multi-user networks with several
sensor nodes observing a common analog source phenomenon, and communicating to a
base station (destination) over a wireless fading medium, see Figure 1.

Analog
Source
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Fading
AWGN
Medium

Destination

011010

Estimate

Figure 1. Sensor network example.

In this setting, the sensor nodes must convey a description of the source process to the
base station, which then tries to estimate the source process subject to a fidelity criterion.
Some of the sensor nodes might also have additional digital data to convey to the base
station, which must reliably recover them as well. Since the source process, as well as the
data from each node, are of interest to the base station, a tension naturally arises between
the rates of data communication and source estimation fidelity. The trade-off between these
objectives is of particular interest in such systems, which is among the primary motivations
for this work. The analog phenomenon in this example can be thought of as a channel state
that affects the digital communication of messages, with the receiver being required to
reliably estimate this channel state while also recovering the transmitted messages. As far
as the fading process is concerned, it is reasonable in practice to assume that the receiver
can track the channel variations, for example, via the use of pilot transmission sequences.

In this work, we consider an information-theoretic abstraction of the communication
setting in Figure 1. In particular, we focus on joint communication and state estimation
over a state-dependent fading Gaussian multiple access channel with no fading knowledge
at the transmitters. At each encoder, the state process is assumed to be known non-causally.
The fading processes encountered on the respective links are assumed to be stationary and
ergodic and to be known only at the receiver. The dual goals of message communication
and state estimation at the receiver must be met with a distortion tolerance with respect to a
squared-error metric. The trade-off between the average message communication rates and
the average distortion in receiver state estimation is of interest. We completely characterize
the optimal trade-off region between the communication rates of the different transmitters
and the state estimation distortion at the receiver. The details of the setting as well as the
motivation for investigating it, will be elucidated in the section that follows.

Having introduced the general problem framework, we now discuss the other rele-
vant contributions in the literature, emphasizing the differences from our setting under
consideration in the following section.

2. Literature Review

In this section, we discuss the related literature and place our contributions in the
context of the state of the art. In particular, we enlist prior works on joint communication
and channel state estimation in both point-to-point as well as network information theoretic
settings and identify several knowledge gaps.

Systems such as the one in Figure 1 can be modeled as state-dependent channels , where
the channel state typically refers to a variable used to model unknown parameters of the
channel statistics. A canonical form of such state-dependent channel models consisting
of an additive state over an additive white Gaussian noise (AWGN) channel was investi-
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gated in [17], popularly known as the dirty paper coding (DPC) setting. Surprisingly, [17]
demonstrated that regardless of the presence of the state, the channel capacity of this setting
remained the same as that of an AWGN channel, independent of the variance of the channel
state. This phenomenon later found widespread applications in settings such as digital
watermarking [18] and multiple-input-multiple-output wireless broadcast channels [19].

In certain state-dependent channels, in addition to communicating messages, the
transmitter may wish to assist the receiver in estimating the channel state (as in the sensor
network scenario described in Figure 1). Splitting the average available power between the
dual tasks of uncoded transmission of the state and DPC for the message was found to be
optimal for the mean squared error distortion measure [20] in a point-to-point (single-user)
AWGN channel. In [21], joint communication and state estimation were considered in a
different scenario where the transmitters were unaware of the channel state. In an interest-
ing variation of [20], Tian et al. [22] characterized the distortion-transmit power trade-off
in a point-to-point Gaussian model with noisy state observations at the transmitter in the
absence of messages. However, in the presence of messages [22], a complete characteri-
zation of the rate-distortion trade-off region remains unknown for the case of noisy state
observations at the transmitter.

In the literature, channel state estimation has been studied in two different frame-
works, each of them being motivated by different real-world problems. These frameworks
correspond to a) state estimation performed at the receiver and b) state estimation per-
formed at the transmitter side. We first consider the problem of channel state estimation at
the receiver, which has been investigated before in certain information-theoretic settings.
Relevant works include [23] (see also [24]), which investigated joint estimation and message
communication over a Gaussian broadcast channel (BC) without state-dependence and
derived a complete characterization of the trade-off between achievable rates and estima-
tion errors. In [25], communication and state estimation were studied in a multiple access
setting without fading, and the distortion-rate trade-off region was characterized. In [26], a
state-dependent Gaussian BC with the dual goals of amplifying the channel state at one of
the receivers while masking it [27] from the other receiver (with no message transmissions)
was investigated, and achievable coding schemes, as well as outer bounds, were derived.
More recently, [28] addressed state estimation for a discrete memoryless BC with causal
state information at the transmitter, also taking into account any possible feedback signals
from the strong receiver to the sender, and gave a characterization of the capacity region.

As far as channel state estimation at the transmitter is concerned, this line of work
originated in [12], where a point-to-point channel with generalized feedback signals to
aid the state estimation was investigated. Such models are motivated by joint radar and
communications systems where the radar, as well as data communication, share the same
frequency band. Following this,[13] considered a multiple access channel extension of the
same, where both the senders obtained generalized feedback and obtained an achievable
trade-off region. An improved achievable scheme for the multiple access setting was
derived recently in [15]. Most recently, a broadcast channel variant was investigated in [16]
(see also [14]), where inner and outer bounds were given for general broadcast channels
while a complete characterization was obtained for the special case of physically degraded
broadcast channels.

Fading multiple access channels without state (or state estimation requirements) and
different degrees of channel state information have been explored in the literature. For
instance, the ergodic capacity region for fast-fading Gaussian multiple access channels
(GMAC) with perfect channel state information at the transmitters and the receiver was
characterized in [29]. More general configurations for transmitter channel state availability
were analyzed in [30], where the capacity region for time-varying models was determined
via optimization over appropriate power control laws. Slow fading multiple access channels
with distributed channel state information at the transmitters were studied in [31].

State-dependent point-to-point fading channels with no state estimation have received
some attention in the literature. Vaze and Varanasi [32], for example, investigated a model
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with full state knowledge and partial knowledge of the fading process at the transmitter,
and the high-SNR achievable rate was characterized. Rini and Shamai [33] examined the
impact of phase fading in the DPC setting [17] when the receiver was informed of the fading
process. We also note that [34] has addressed point-to-point fading channels (without any
state process or state estimation requirements) with channel gains known at both the sender
and the receiver.

Having reviewed the related literature, we now identify the key knowledge gaps in
prior work and the necessity of our work.

Analysis of the State of the art and Research gaps: We identify the following crucial aspects.

• We note that none of the works above consider joint state estimation along with
message communication over state-dependent multi-terminal settings with noncausal
transmitter state information, which is highly relevant in applications like the joint
sensing and communication setting in Figure 1. This is addressed in this paper.

• While there exist system-level guidelines and waveform design specifications for such
systems, a network information-theoretic analysis of the absolute performance capa-
bilities of joint sensing and communication systems that take into account practical
limitations has not been addressed in the literature, which we undertake here.

• Moreover, none of the works on joint communication and estimation mentioned above
take fading links into account. Fading is an impairment that must be accounted for
in practical wireless communication channel models, such as the joint sensing and
communication application shown in Figure 1. This is another gap in the literature
that this paper seeks to fill by investigating joint communication and estimation over
state-dependent multi-user fading channels, the point-to-point counterpart of which
was addressed by the author in [35].

Novelty and relevance: In this paper, we address the problem of joint communication
and state estimation over a state-dependent fading GMAC with no fading knowledge at
the transmitters. The key scientific question we address here is: what is the best possible
trade-off between the competing goals of message communication from multiple senders
and the fidelity in state estimation at the receiver?

• The key novelty of our work is that it is the first instance where joint communication
and estimation have been considered in a multiple-user setting that also accounts for
fading links, as opposed to previous works, which focused only on non-fading links.

• Moreover, it is the first work that considers non-causal state information (as opposed
to causal or strictly causal) at the transmitter in a fading multi-user scenario which is
practically relevant as described in the sensor network example from Figure 1.

• Furthermore, we undertake a comprehensive network information-theoretic study
of the fundamental performance limits of such joint communication and estimation
settings, which is lacking in the literature. Please refer to Table 1, which highlights our
contributions in this paper with respect to the existing works.

The key relevance of our study is that it serves as a design guideline for practical systems
employing joint sensing and communication envisioned in future 6G wireless standards
and broadly applies to systems that involve joint compression and communication/rate-
distortion trade-offs. It also points to the relative benefits of uncoded transmission versus
joint source-channel coding in such systems. The progress embodied herein builds up
towards a better understanding of joint state estimation and communication problems in
multi-terminal settings (such as multiple access channels), which is relatively less explored
in the literature (with or without the fading aspect).

Summary of contributions: We list them below. See also the contribution summary Table 1,
which emphasizes the novelty of our work with respect to the existing works.

• One of our main contributions in the paper is a complete characterization (Theorem 1)
of the rate-distortion trade-off region for joint state estimation and communication
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over a two-user fading GMAC with the state. The key non-trivial part is the proof of
converse, which is given in Section 5.

• We prove that the optimal strategy for the setting under consideration involves un-
coded transmissions to amplify the state, along with the superposition of the digital
message streams using appropriate Gaussian codebooks and DPC.

• We prove the optimality of uncoded state amplification in the special case where there
are no messages to communicate—please refer to the section on implications of our
result given after the statement of Theorem 1 for the details.

• Our framework naturally generalizes the results of [35] to multiple users, [25] to fading
links and the work of [20] to fading links with multiple users, thereby providing a
unified framework that encompasses all these prior works on joint communication
and estimation.

• Our study gives a network information-theoretic analysis of the fundamental per-
formance limits of joint sensing and communication systems that take into account
practical limitations such as fading. This acts as a design directive for realistic systems
using joint sensing and transmission anticipated in upcoming wireless standards and
points to the relative merits of uncoded communications and joint source-channel
coding in such systems.

Table 1. Summary of paper contributions. Note that single-user (noncausal) refers to a point-to-point
state-dependent channel with noncausal transmitter state information, BC (causal) refers to a state-
dependent broadcast channel with causal transmitter state information, while MAC (noncausal) refers
to a state-dependent multiple access channel with noncausal state information at all the transmitters.

Single-User (Noncausal) BC (Causal) MAC (Noncausal)

No Fading Fading No Fading No Fading Fading

No State
Estimation [17] [32] [36] [37] This work

State
Estimation [20] This work [28] [25] This work

Notations: Random variables are denoted by capital letters, while their realizations are
denoted by the corresponding lower-case letters. We use P(·) to denote the probability of
an event. The joint probability distribution of two random variables (X, Y) is denoted by
pX,Y(x, y). Let E[·] denote the expected value of a random variable. At times, we will use
an explicit subscript in the expectation operation, EX [·], to denote that the expectation is
taken with respect to the probability distribution of the random variable X. All logarithms
are in base 2, unless mentioned otherwise. We denote random sequences of length n with a
superscript notation, i.e., Un := U1, U2, · · · , Un. An indexed set of random sequences each
of length n is denoted with a subscript for the random variable and a superscript for the
length, i.e., Un

j := Uj1, Uj2, · · · , Ujn, where Uji stands for the i−th component of Un
j . The

covariance of a random vector Xn is denoted by Cov(Xn). Calligraphic letters represent
alphabets of random variables. ‖.‖ denotes the Euclidean norm of a vector, while Conv(·)
denotes the convex closure of a set. The absolute value of a number is denoted | · |, while the
transpose of a matrix A is denoted as AT . The notation A ⊥⊥ B is used to denote independent
random variables (A, B). The Gaussian (normal) distribution with mean µ and variance σ2

is denoted byN (µ, σ2). The set of real numbers is denoted by R, while the set of n−tuples of
positive real numbers is denoted by Rn

+. The Shannon entropy of a discrete-valued random
variable X is denoted by H(X), while the differential entropy of a continuous-valued
random variable Y is denoted by h(Y). The mutual information between any two random
variables V and W is denoted by I(V; W). The corresponding conditional quantities given
a random variable Z are conditional entropy H(X|Z), conditional differential entropy
h(Y|Z), and conditional mutual information I(V; W|Z). If n is an integer variable, φ(n) is
a positive function and f (n) is an arbitrary function, we say that f = o(φ) provided that
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limn→∞ f (n)/φ(n) = 0. For any three random variables (A, B, C), we say that A→ B→ C
is a Markov chain if A and C are conditionally independent given B.

The rest of the paper is organized as follows: in Section 3, we introduce the system
model and state our main results. Sections 4 and 5 contain the achievable coding scheme
and the converse to the rate-distortion trade-off region, respectively. Section 6 contains
concluding remarks. The Appendices A.1, A.2, and A.3 contain all the details of the proofs
that are skipped in the main discussion, to maintain the readability of the paper.

3. System Model and Results

Consider the fading multiple access channel shown in Figure 2. The observed samples
at the receiver at time instant i ∈ {1, 2, . . . , n} are given by

Yi =
2

∑
j=1

Θj,iXj,i + Si + Zi. (1)

Here, the samples of the additive noise process are independent and identically
distributed (i.i.d.) according to Zi ∼ N (0, σ2

Z), while the samples of the state process
are i.i.d. according to Si ∼ N (0, σ2

S). The state process is assumed to be known non-
causally at each encoder. The fading processes encountered on the respective links are
represented by Θn

j , j ∈ {1, 2}, with these fading gains being known only at the receiver. The
fading processes encountered on both links are assumed to be stationary and ergodic. The
codeword lengths can be chosen arbitrarily long to average over the fading of the channel.
The given model represents a fast-fading multiple access channel with no knowledge of
the fading processes at the transmitters. The state, fading, and additive noise processes are
assumed to be independent of each other. In our model, the power constraint on the inputs
is assumed to be across blocks, averaged over the random state and the codebook. The
dual goals of message ((W1, W2) in Figure 2) communication, and estimation of the state Sn

at the receiver to meet a distortion tolerance with respect to a squared error metric must
be met. The trade-off between the average message communication rates (R1, R2) and the
average distortion incurred in state estimation (D) at the receiver is sought.

Enc 1

Enc 2

+

×

×

DecoderSn

X1i

X2i

Zn
W1

W2

(Θn
1 , Θn

2 )

Θ1i

Θ2i

Ŵ1

Ŵ2

Ŝn

Figure 2. State estimation over a fading Gaussian MAC with state, without fading knowledge
at the transmitters.

We take Wj to be uniformly drawn from the setWj , {1, 2, · · · , 2nRj} for j = {1, 2},
and independent of each other. The messages (W1, W2) are assumed to be independent of
the state process Sn. The power constraint on the transmissions is:

1
n
EWj ,Sn

[
n

∑
i=1

X2
ji(Wj, Sn)

]
≤ Pj, j = {1, 2}. (2)

After n observations, the decoder estimates Ŝn = φ(Yn, Θn
1 , Θn

2 ) using a (state) recon-
struction map φ(·) : Yn ×∏2

j=1 Θn
j → Rn, and also decodes the messages (W1, W2). The
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(message) decoding map is given by ψ : Yn ×∏2
j=1 Θn

j → W1 ×W2. Our aim here is to
maintain the average squared-error distortion incurred in state estimation below a given
threshold, while also ensuring that the average error probability of decoding the messages
is small enough.

Definition 1. A scheme using the encoder mappings Ej : {1, · · · , 2nRj} × Sn → Xj for j = 1, 2
satisfying the power constraints in (2), along with two mappings φ(·) and ψ(·) at the receiver is
called an (n, R1, R2, P1, P2) communication-estimation scheme.

A triple (R1, R2, D) is said to be achievable if there exists a sequence of (n, R1, R2, P1, P2)
communication-estimation schemes such that

lim sup
n→∞

1
n
EΘn

1 ,Θn
2

{
E[‖Sn − φ(Yn, Θn

1 , Θn
2 )‖2]

}
≤ D, (3)

and

lim sup
n→∞

EΘn
1 ,Θn

2
{P(ψ(Yn, Θn

1 , Θn
2 ) 6= (W1, W2))} = 0. (4)

Let Cfad-mac
est (P1, P2) be the closure of the set of all achievable (R1, R2, D) triples, with

0 ≤ D ≤ σ2
S . The main result of the paper is stated below.

Theorem 1. For the fading Gaussian MAC with state, the trade-off region C fad-mac
est (P1, P2) is

characterized by the convex closure of all (R1, R2, D) ∈ R3
+ such that

R1 ≤ EΘ1

[
1
2

log

(
1 +

γΘ2
1P1

σ2
Z

)]
, (5)

R2 ≤ EΘ2

[
1
2

log

(
1 +

βΘ2
2P2

σ2
Z

)]
, (6)

R1 + R2 ≤ EΘ1,Θ2

[
1
2

log

(
1 +

γΘ2
1P1+βΘ2

2P2

σ2
Z

)]
, (7)

D ≥ EΘ1,Θ2


σ2

S(σ
2
Z+γΘ2

1P1+βΘ2
2P2)Θ2

1P1+Θ2
2P2+σ2

S+σ2
Z+2Θ1

√
γ̄P1σ2

S

+2Θ2

√
β̄P2σ2

S+2Θ1Θ2

√
γ̄β̄P1P2




, (8)

for some fractions γ ∈ [0, 1] and β ∈ [0, 1], with γ̄ , 1− γ and β̄ , 1− β.

Proof. The proof is given in the following two sections, wherein Section 4 contains the
achievability proof while the converse is proved in Section 5.

Implications of our result: We now discuss the main consequences of our Theorem 1 for the
sensor network scenario outlined earlier in Figure 1. If a given transmitter (sensor node)
has a message to communicate to the receiver (base station), then the optimal strategy
involves splitting its available power budget into two parts: one part is used to send a
scaled version of the state (uncoded state amplification), while the other part is used to
communicate the message using dirty paper coding. The parameters γ and β in Theorem 1
precisely perform this role of power-sharing between the dual goals of communication and
estimation. This will be elaborated upon in the proof of achievability in Section 4.
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On the other hand, if a given transmitter (sensor node) has no messages to communi-
cate to the receiver (base station), then the optimal strategy simply involves utilizing its
entire power budget for uncoded state amplification, i.e., sending the scaled version

Xj =

√
Pj

σ2
S

S. (9)

In other words, uncoded transmission is optimal for such nodes. This phenomenon
resembles that of [38], albeit the latter is in the context of non-fading links with no message
communication and no state-dependence. We close this section with a series of remarks that
shed further light on the implications of our Theorem 1 and its connection with existing
results in the literature.

Remark 1. When the second sender is absent, i.e., P2 = 0, and with constant fading gains
Θ1(= Θ2) = 1 almost surely, our Theorem 1 recovers the characterization of [20] for the point-to-
point non-fading scenario as a special case.

Remark 2. When the fading gains are constant, i.e., Θ1 = Θ2 = 1 almost surely, our Theorem 1
recovers the characterization of [25] for the multiple-access non-fading scenario as a special case.

Remark 3. When γ = β = 0, we obtain an extreme point of the region with zero rates, i.e,
R1 = R2 = 0, and the best state estimate, i.e., minimum possible distortion

Dmin = EΘ1,Θ2


σ2

Sσ2
ZΘ2

1P1+Θ2
2P2+σ2

S+σ2
Z+2Θ1

√
P1σ2

S

+2Θ2

√
P2σ2

S+2Θ1Θ2
√

P1P2




. (10)

This corresponds to each encoder utilizing its entire power budget for uncoded state amplifica-
tion, and therefore no message communication is possible.

Remark 4. On the other hand, when γ = β = 1, we obtain the other extreme point of the region
with the maximum possible rates for a fading Gaussian MAC, and the worst state estimate, i.e.,
maximum possible distortion

R1 ≤ R1,max = EΘ1

[
1
2

log

(
1 +

Θ2
1P1

σ2
Z

)]
, (11)

R2 ≤ R2,max = EΘ2

[
1
2

log

(
1 +

Θ2
2P2

σ2
Z

)]
, (12)

R1 + R2 ≤ EΘ1,Θ2

[
1
2

log

(
1 +

Θ2
1P1+Θ2

2P2

σ2
Z

)]
, (13)

D ≥ Dmax = EΘ1,Θ2

[
σ2

S(σ
2
Z+Θ2

1P1+Θ2
2P2)(

Θ2
1P1+Θ2

2P2+σ2
S+σ2

Z
)], (14)

This corresponds to each encoder utilizing its entire power budget for message communication, and
therefore no state amplification is possible, and maximum distortion is incurred in state estimation.

4. Achievability

The achievability builds upon well-known techniques like dirty paper coding and
successive cancellation, along with appropriate power splitting. The power P1 available at



Entropy 2023, 25, 588 9 of 22

encoder 1 is split into two parts: γP1 for message transmission and γ̄P1 for state amplifi-
cation, for some γ ∈ [0, 1]. Similarly, the power P2 available at the second encoder is split
into βP2 (message transmission) and β̄P2 (state amplification) for some β ∈ [0, 1]. Then, the
following state amplification signals are generated

X1sj =

√
γ̄P1

σ2
S

Sj and X2sj =

√
β̄P2

σ2
S

Sj, 1 ≤ j ≤ n (15)

at the respective encoders. In other words, the power fractions γ̄P1 and β̄P2 at encoders 1
and 2 respectively are used for uncoded state amplification. Hence, (1) can be rewritten as

Yj = Θ1jX1mj + Θ1jX1sj + Θ2jX2mj

+ Θ2jX2sj + Sj + Zj

= Θ1jX1mj+Θ2jX2mj

+

(
1+Θ1j

√
γ̄P1

σ2
S
+Θ2j

√
β̄P2

σ2
S

)
Sj+Zj,

(16)

where E[||Xn
1m||2] ≤ nγP1 and E[||Xn

2m||2] ≤ nβP2, with both Xn
1m and Xn

2m being indepen-
dent of Sn. The subscript m in (16) indicates that the corresponding signals are intended
for message transmission, whereas the subscript s indicates state amplification signals. To
communicate the messages across to the receiver, we invoke the writing on dirty paper
result for a Gaussian MAC [37].

From the DPC result [17], we recall that a known state process over an AWGN channel
can be completely canceled. In particular, a rate R that satisfies

R ≤ I(U; Y)− I(U; S), (17)

when evaluated for some feasible joint probability distribution pU,S,X(u, s, x)pY|X,S(y|x, s),
can be achieved by Gelfand-Pinsker coding [39] for a point-to-point channel with a non-
causally known state. In order to prove the achievability of the rates (5)–(7), we first
consider a dirty paper channel with input Θ1jX1mj, known state

S′j =
(

1 + Θ1j

√
γ̄P1/σ2

S + Θ2j

√
β̄P2/σ2

S

)
Sj,

and unknown noise Θ2jX2mj + Zj. We choose U1j = Θ1jX1mj + α1jS′j, X1mj ⊥⊥ Sj with
X1mj ∼ N (0, γP1) and

α1j =
γΘ2

1jP1

γΘ2
1jP1 + βΘ2

2jP2 + σ2
Z

.

This yields the following rate for user-1 at time instant j with the error probability
approaching zero

1
2

log

(
1 +

γΘ2
1jP1

βΘ2
2jP2 + σ2

Z

)
. (18)

The achievable rate for user-1 averaged over a time interval {1, 2, . . . , n} is

1
n

n

∑
j=1

1
2

log

(
1 +

γΘ2
1jP1

βΘ2
2jP2 + σ2

Z

)
, (19)
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which converges as n→ ∞ to

E
[

1
2

log

(
1 +

γΘ2
1P1

βΘ2
2P2 + σ2

Z

)]
(20)

due to the stationarity and ergodicity of the fading processes. The decoded codeword U1j
is then subtracted from the channel output to obtain another dirty paper channel

Ỹj = Yj −U1j = Θ2jX2mj + (1− α1j)S′j + Zj,

with input Θ2jX2mj, known state S′′j = (1− α1j)S′j and unknown noise Zj. We pick U2j =

Θ2jX2mj + α2jS′′j , X2mj ⊥⊥ Sj with X2mj ∼ N (0, βP2) and

α2j =
βΘ2

2jP2

βΘ2
2jP2 + σ2

Z
.

This yields the following rate for user-2 at time instant j with the error probability
approaching zero

1
2

log

(
1 +

βΘ2
2jP2

σ2
Z

)
. (21)

The achievable rate for user-2 averaged over a time interval {1, 2, . . . , n} is

1
n

n

∑
j=1

1
2

log

(
1 +

βΘ2
2jP2

σ2
Z

)
, (22)

which converges as n→ ∞ to

E
[

1
2

log

(
1 +

βΘ2
2P2

σ2
Z

)]
(23)

due to the stationarity and ergodicity of the fading processes. By reversing the decoding
order and using time-sharing, the region in expressions (5) through (7) can be achieved.
Note that the right-hand sides of expressions (20) and (23) add up to the right-hand side of
the sum rate expression in (7). For the state estimate, the receiver forms the linear minimum
mean-squared error (MMSE) estimate Ŝj(Yj) of Sj based on Yj:

Ŝj(Yj) =
(σ2

S + Θ1j

√
γ̄P1σ2

S + Θ2j

√
β̄P2σ2

S) Yj
Θ2

1jP1+Θ2
2jP2+σ2

S+σ2
Z

+2Θ1j

√
γ̄P1σ2

S+2Θ2j

√
β̄P2σ2

S

+2Θ1jΘ2j

√
γ̄β̄P1P2


,

c1

c2
Yj,
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where

c1 = σ2
S + Θ1j

√
γ̄P1σ2

S + Θ2j

√
β̄P2σ2

S ,

c2 =


Θ2

1jP1+Θ2
2jP2+σ2

S+σ2
Z

+2Θ1j

√
γ̄P1σ2

S+2Θ2j

√
β̄P2σ2

S

+2Θ1jΘ2j

√
γ̄β̄P1P2

.

For the achievable distortion at time instant j, we evaluate the expected squared error
between Sj and Ŝj(Yj), above. The resulting MMSE can be easily verified to be

E[|Sj − Ŝj|2] = σ2
S −

c2
1

c2

=
σ2

S(σ
2
Z+γΘ2

1jP1+βΘ2
2jP2)

Θ2
1jP1+Θ2

2jP2+σ2
S+σ2

Z

+2Θ1j

√
γ̄P1σ2

S+2Θ2j

√
β̄P2σ2

S

+2Θ1jΘ2j

√
γ̄β̄P1P2


.

The achievable distortion averaged over a time interval {1, 2, . . . , n} is

1
n

n

∑
j=1

σ2
S(σ

2
Z+γΘ2

1jP1+βΘ2
2jP2)

Θ2
1jP1+Θ2

2jP2+σ2
S+σ2

Z

+2Θ1j

√
γ̄P1σ2

S+2Θ2j

√
β̄P2σ2

S

+2Θ1jΘ2j

√
γ̄β̄P1P2


,

which converges as n→ ∞ to

E


σ2

S(σ
2
Z+γΘ2

1P1+βΘ2
2P2)

Θ2
1P1+Θ2

2P2+σ2
S+σ2

Z

+2Θ1

√
γ̄P1σ2

S+2Θ2

√
β̄P2σ2

S

+2Θ1Θ2

√
γ̄β̄P1P2




(24)

due to the stationarity and ergodicity of the fading processes. This concludes the proof
of achievability.

5. Converse

In this section, we prove that any successful scheme (that has a vanishing probability
of error and is within the distortion tolerance) must satisfy the rate-distortion constraints of
Theorem 1. This is proved in two subsections: in Section 5.1, we construct an outer bound
on the rate-distortion trade-off region. Subsequently, we shall prove in the next Section 5.2
that this outer bound is achievable, thereby proving Theorem 1.

5.1. Outer Bound

The proof of our outer bound is aided by the following lemma, adapted from (Equa-
tion (2), [20]).
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Lemma 1. Any communication estimation scheme achieving a distortion Dn , 1
nE||Sn − Ŝn||2

over blocklength n satisfies

n
2

log

(
σ2

S
Dn

)
≤ I(Sn; Yn, Θn

1 , Θn
2 ). (25)

Proof. The proof is given in Appendix A.1.

Another useful property is the differential entropy maximizing property of the Gaus-
sian distribution [40], i.e., for Xn

g ∼ N (0, K),

h(Xn) ≤ h(Xn
g ) whenever Cov(Xn) � K. (26)

The above facts will be extensively used in our proofs.
For (η1, η2, λ) ∈ R3

+, we define

L(η1, η2, λ) = max η1R1 + η2R2 +
λ

2
log

σ2
S

D
,

where the maximum is over all (R1, R2, D) obeying (5)–(8). We note that it suffices to restrict
attention to ηi ≥ 0, since ηi < 0 will trivially correspond to Ri = 0 in the maximization,
a case already accounted for by ηi = 0. Likewise, since D ≤ σ2

S , only λ ≥ 0 need be
considered. Therefore, we only consider non-negative weighting coefficients in the sequel.
The converse is established by showing that if (R1, R2, Dn) is achievable using block length
n, then, for all η1, η2, λ ≥ 0,

η1R1 + η2R2 +
λ

2
log

σ2
S

Dn
≤ L(η1, η2, λ) + o(1), (27)

where o(1) has the usual meaning in standard Landau notation. We note that since the tuple
(W1, W2, Sn, Θn

1 , Θn
2 ) is independent, the Markov chain Xn

1 → Sn → Xn
2 holds. Denoting

σ2
X|Yn , min

α∈Rn×1
E[X− αTYn]2,

we have for the i-th entry in a block of transmissions,

σ2
X1i+X2i |Sn = σ2

X1i |Sn + σ2
X2i |Sn .

We define the empirical covariance matrix Ki of the vector (X1i, X2i, Si) with Ki(p, l)
denoting its entries. Let us denote

Ki(j, j) = E[X2
ji] = Pji, j = 1, 2

where Pji, j = 1, 2 satisfy the power constraints

P1 ≥
1
n

n

∑
i=1

P1i,

P2 ≥
1
n

n

∑
i=1

P2i.

Next, we introduce two parameters γi ∈ [0, 1] and βi ∈ [0, 1] such that

σ2
X1i |Sn , γiP1i, (28)

σ2
X2i |Sn , βiP2i. (29)
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We now define two parameters γ ∈ [0, 1] and β ∈ [0, 1] such that

γ =
1

nP1

n

∑
i=1

γiP1i,

β =
1

nP2

n

∑
i=1

βiP2i.
(30)

With this, we are ready to prove (27). Firstly, considering the case where η1 ≥ η2 is
sufficient, as a simple renaming of the indices will give us the other case. For η2 > 0, since
λ is an arbitrary positive number, maximizing the left-hand side of (27) is equivalent to

maximizing η1R1 + η2R2 + η2λ 1
2 log σ2

S
Dn

. Dividing by η2, and then renaming η1
η2

as η, the
maximization becomes ∀η ≥ 1, λ ≥ 0,

max ηR1 + R2 +
λ

2
log

σ2
S

Dn
. (31)

For a given η > 1, three regimes of λ arise, as shown in Figure 3. Let R1(γ), R2(β),
Rsum(γ, β) and D(γ, β), respectively, denote the right-hand side of Equations (5)–(8).
The following two lemmas are crucial to our proofs.

0 1 η
λ < 1 λ > η

1 < λ < η

Figure 3. Range of λ for a given η.

Lemma 2. For λ ≤ 1, and γ, β defined in (30), we have

ηR1 + R2 +
λ

2
log

σ2
S

Dn

≤ (η − 1)R1(γ)+Rsum(γ, β)+
λ

2
log

σ2
S

D(γ, β)
+o(1).

(32)

Proof. The proof is given in Appendix A.2.

Lemma 3. The function g(γ, β) := Rsum(γ, β) + 1
2 log σ2

S
D(γ,β) is a non-increasing function in

each of the arguments when the other argument is held fixed, for γ ∈ [0, 1] and β ∈ [0, 1].

Proof. We first note that D(γ, β) increases with γ (or β), see (8). Furthermore, a straightfor-
ward inspection reveals that g(γ, β) is non-increasing in each of the arguments.

We now consider the different regimes for λ (see Figure 3).

Case 1 (λ ≤ 1 and η ≥ 1): In this regime, Lemma 2 directly gives a bound on the
weighted sum rate.

Case 2 (λ ≥ η and η ≥ 1): Since η ≥ 1, we have
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ηR1 + R2 +
λ

2
log

σ2
S

Dn
≤ ηR1 + ηR2 +

λ

2
log

σ2
S

Dn

= η(R1 + R2) +
λ

2
log

σ2
S

Dn

= η

(
R1 + R2 +

1
2

log
σ2

S
Dn

)
+

λ− η

2
log

σ2
S

Dn

(a)
≤ η

(
Rsum(0, 0) +

1
2

log
σ2

S
D(0, 0)

)
+

λ− η

2
log

σ2
S

Dn

(b)
≤ 0 +

η

2
log

σ2
S

D(0, 0)
+

λ− η

2
log

σ2
S

D(0, 0)
,

(33)

where (a) follows from an application of Lemma 2 followed by Lemma 3, and (b) follows
from the fact that uncoded transmission of the state by the two users acting as a super-user
with power (

√
P1 +

√
P2)

2 results in the minimal distortion possible [20].

Case 3 (1 ≤ λ ≤ η and η ≥ 1): Since λ ≥ 1, we have

Since λ ≥ 1, we have

ηR1 + R2 +
λ

2
log

σ2
S

Dn
≤ ηR1 + λR2 +

λ

2
log

σ2
S

Dn

= (η − λ)R1 + λ

(
R1 + R2 +

1
2

log
σ2

S
Dn

)

≤ (η − λ)R1 + λ

(
Rsum(γ, 0) +

1
2

log
σ2

S
D(γ, 0)

)
,

where the last step follows from Lemmas 2 and 3. From (A11) in Appendix A.2, it follows
that the inequality R1 ≤ EΘ1

[
1
2 log(1 + γΘ2

1P1/σ2
Z)
]

holds. Thus,

ηR1 + R2 +
λ

2
log

σ2
S

Dn
≤ ηRsum(γ, 0) +

λ

2
log

σ2
S

D(γ, 0)
. (34)

We next prove that (32)–(34) define the region in Theorem 1.

5.2. Equivalence of Inner and Outer Bounds

We now show that the regions defined by the inner and outer bounds in Sections 4 and 5.1
coincide, thereby establishing the capacity region. We will consider three regimes for λ ≥ 0

for each η ≥ 1, and prove that the maximal value of ηR1 + R2 +
λ
2 log σ2

S
D in the outer bound

specified by (32)–(34) can be achieved.

While maximizing ηR1 + R2 +
λ
2 log σ2

S
Dn

, we already proved that λ ≥ η corresponds
to an extreme point with zero sum-rate (Case 2 in Section 5.1). Clearly, the corresponding
distortion lower bound D(0, 0) for this case specified by (33) can be achieved by uncoded
state transmission by both transmitters using all the available powers. As a result, the
condition λ = η encompasses all λ ≥ η. Moreover, the regime 1 ≤ λ ≤ η (Case 3 of
Section 5.1) corresponds to the case where R2 = 0. This implies that we only need to
consider λ = 1 rather than λ ∈ [1, η). Clearly, the region with R2 = 0 follows from the

single-user results of [35], but for a state process with variance (
√

P2 +
√

σ2
S)

2. This
proves the achievability of the bound specified by (34). This leaves us with proving the
achievability for those cases in which 0 < λ < 1 holds, corresponding to (32). In this
regime, the following lemma is crucial.
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Lemma 4. For (0 < λ < 1, η ≥ 1), the function k(γ, β) := (η − 1)R1(γ) + Rsum(γ, β) +
λ
2 log σ2

S
D(γ,β) is jointly strictly concave in (γ, β) for 0 ≤ γ ≤ 1 and 0 ≤ β ≤ 1.

Proof. The proof is given in Appendix A.3.

Since we know that ηR1 + R2 +
λ
2 log σ2

S
Dn
≤ k(γ, β) for some value of (γ, β) ∈ [0, 1]×

[0, 1], the strict concavity of k(·) suggests the existence of a unique (γ∗, β∗) for which

ηR1 + R2 +
λ
2 log σ2

S
Dn

is maximized for the given η > 1 and 0 ≤ λ ≤ 1. Evidently, choosing
these maximizing parameters (γ∗, β∗) in our achievable theorem will give us the same
operating point. Reversing the roles of R1 and R2, we have covered the whole region. Thus,
we have established the achievability of the outer bound specified with (32)–(34). This
completes the proof of Theorem 1.

6. Conclusions

We investigated joint message transmission and state estimation in a state-dependent
fading Gaussian multiple access channel in this paper and characterized the trade-off region
between message rates and state estimation distortion. It was shown that the optimal
strategy involved static power allocation and uncoded state amplification combined with
Gaussian signaling and dirty paper coding. While the role of uncoded communications has
been examined before for non-fading settings without state dependence, ours is the first
result that brings out its significance in the context of state-dependent fading systems.

Our framework naturally generalizes previous results concerning state estimation
on point-to-point fading channels to multiple users as well as point-to-point non-fading
settings to fading links with multiple users. Our results contribute to a better understanding
of joint state estimation and communication problems in multi-terminal settings. They can
be used as design guidelines for practical systems employing joint sensing and commu-
nication envisioned in future 6G wireless standards and broadly applies to systems that
involve joint compression and communication/rate-distortion trade-offs.

However, we assumed perfect state observation at the transmitters in this work. A
long-standing open problem is that of communicating state and message streams in a
fading GMAC with noisy state observations at the transmitters, which is left for future
work. Moreover, there could be settings when the receiver cannot track the channel fading
gains either, unlike this work. Thus, another interesting avenue for further research is an
investigation of the current setup when the encoders, as well as the decoder, are totally
uninformed about the fading coefficients on the links.
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Appendix A

Appendix A.1. Proof of Lemma 1

The proof is along the lines of (Equation (2), [20]), with appropriate modifications
to incorporate the fading coefficients (Θn

1 , Θn
2 ). We provide a full proof for completeness.

Consider the following chain of inequalities, starting with the right-hand side in Lemma 1:

1
n

I(Sn; Yn, Θn
1 , Θn

2 )

=
1
n
(h(Sn)− h(Sn|Yn, Θn

1 , Θn
2 ))

(a)
=

1
n
(h(Sn)− h(Sn − Ŝn(Yn, Θn

1 , Θn
2 )|Yn, Θn

1 , Θn
2 ))

≥ 1
n
(h(Sn)− h(Sn − Ŝn))

(b)
=

1
n
(

n

∑
i=1

h(Si)− h(Sn − Ŝn))

≥ 1
n

n

∑
i=1

(h(Si)− h(Si − Ŝi))

=
1
n

n

∑
i=1

(
1
2

log(2πeσ2
S)− h(Si − Ŝi)

)
(c)
≥ 1

n

n

∑
i=1

(
1
2

log(2πeσ2
S)−

1
2

log(2πeE(Si − Ŝi)
2)

)
(d)
≥ 1

2
log(2πeσ2

S)−
1
2

log

(
2πe

1
n

n

∑
i=1

E(Si − Ŝi)
2

)

=
1
2

log(2πeσ2
S)−

1
2

log

(
2πe

1
n
E‖Sn − Ŝn‖2

)

=
1
2

log

(
σ2

S
1
nE‖Sn − Ŝn‖2

)

=
1
2

log(
σ2

S
Dn

),

(A1)

where (a) follows since Ŝn(Yn, Θn
1 , Θn

2 ) is a function of (Yn, Θn
1 , Θn

2 ), (b) follows since Sn is
i.i.d., (c) follows since the Gaussian distribution maximizes differential entropy for a given
variance, while (d) follows from Jensen’s inequality.
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Appendix A.2. Proof of Lemma 2

By Fano’s inequality [40], we can write for any ε > 0, for large enough n, H(W1, W2|Yn) ≤
nε. Then, we have

nηR1 + nR2 +
nλ

2
log

(
σ2

S
Dn

)

=n(η − 1)R1 + n
2

∑
j=1

Rj +
nλ

2
log

(
σ2

S
Dn

)
(a)
≤ (η − 1)H(W1) + H(W1, W2) + λI(Sn; Yn, Θn

1 , Θn
2 )

(b)
= (η − 1)H(W1|Xn

2 , Sn, Θn
1 ) + H(W1, W2|Sn, Θn

1 , Θn
2 )

+ λI(Sn; Yn, Θn
1 , Θn

2 )

(c)
= (η − 1)H(W1|Xn

2 , Sn, Θn
1 ) + H(W1, W2|Sn, Θn

1 , Θn
2 )

+ λI(Sn; Yn|Θn
1 , Θn

2 )

(d)
≤ (η − 1)I(W1; Yn|Xn

2 , Sn, Θn
1 ) + nε

+ I(W1, W2; Yn|Sn, Θn
1 , Θn

2 ) + nε + λI(Sn; Yn|Θn
1 , Θn

2 )

= (η − 1)I(W1; Yn|Xn
2 , Sn, Θn

1 )

+ λI(W1, W2, Sn; Yn|Θn
1 , Θn

2 )

+ (1− λ)I(W1, W2; Yn|Sn, Θn
1 , Θn

2 ) + 2nε

= (η − 1)(h(Yn|Xn
2 , Sn, Θn

1 )− h(Yn|W1, Xn
2 , Sn, Θn

1 ))

+ λ(h(Yn|Θn
1 , Θn

2 )− h(Yn|W1, W2, Sn, Θn
1 , Θn

2 ))

+ (1− λ)(h(Yn|Sn, Θn
1 , Θn

2 )

− h(Yn|W1, W2, Sn, Θn
1 , Θn

2 )) + 2nε

≤
n

∑
i=1

(η − 1)(h(Yi|X2i, Si, Θ1i)− h(Zi))

+
n

∑
i=1

{
λh(Yi|Θ1i, Θ2i)+(1−λ)h(Yi|Si, Θ1i, Θ2i)

− h(Zi)
}
+ 2nε

= E
[

n

∑
i=1

(η − 1)(h(Yi|X2i, Si, Θ1i = Θ1)− h(Zi))

]

+E
[ n

∑
i=1

(λh(Yi|Θ1i = Θ1, Θ2i = Θ2)

+ (1− λ)h(Yi|Si, Θ1i = Θ1, Θ2i = Θ2)

− h(Zi))

]
+ 2nε,

(A2)

where (a) uses Lemma 1 and the fact that the messages are uniformly distributed on their
respective alphabets, (b) follows since (W1, W2) ⊥⊥ (Sn, Θn

1 , Θn
2 ) and W1 ⊥⊥ (Xn

2 , Sn, Θn
1 ), (c)

follows since (Θn
1 , Θn

2 ) ⊥⊥ Sn and (d) follows from Fano’s inequality. We now upper bound
the term λh(Yi|Θ1i = Θ1, Θ2i = Θ2) + (1− λ)h(Yi|Si, Θ1i = Θ1, Θ2i = Θ2) in (A2). Notice
that for a given covariance matrix Ki, λh(Yi|Θ1i = Θ1, Θ2i = Θ2) + (1− λ)h(Yi|Si, Θ1i =
Θ1, Θ2i = Θ2), λ ∈ [0, 1], is simultaneously maximized when (Θ1X1i + Θ2X2i) is jointly
Gaussian with Si.
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Without loss of generality, for the purposes of finding an upper bound on ηR1 + R2 +
λ
2 log σ2

S
Dn

, we can express Xji in terms of its linear least squares estimate given Sn and an
error term. Therefore,

Xji = Vji + Wji, (A3)

where Vji is uncorrelated with Sn, and Wji = ∑n
k=1 β jikSk for appropriate coefficients

{β jik, k ∈ {1, 2, . . . , n}}. But it is readily verified from expressions (28), (29) and (A3) that
E[W2

1i] = (1− γi)P1i and E[W2
2i] = (1− βi)P2i. Now, for a fixed E[W2

1i] = (1− γi)P1i, it
follows that the variance of Θ1X1i + Si = Θ1V1i + (Θ1W1i + Si) would be maximized when
Θ1W1i is a scaled version of Si, i.e.,

Θ1X1i = Θ1V1i+µ1iΘ1

√
(1−γi)

P1i

σ2
S

Si, (A4)

where µ1i ∈ {−1,+1} is the sign of the correlation between X1i and Si. Likewise, we
can express

Θ2X2i = Θ2V2i+µ2iΘ2

√
(1−βi)

P2i

σ2
S

Si, (A5)

where µ2i ∈ {−1,+1} is the sign of the correlation between X2i and Si. Adding expressions
(A4) and (A5), we obtain

2

∑
j=1

ΘjXji = Vi+

(
µ1iΘ1

√
(1−γi)

P1i

σ2
S

+ µ2iΘ2

√
(1−βi)

P2i

σ2
S

)
Si,

(A6)

where Vi = Θ1V1i + Θ2V2i is zero mean Gaussian, and independent of Sn. The second term on
the right-hand side of (A6) can be understood as the linear estimate of (Θ1X1i + Θ2X2i) given
Si. Since Vi = Θ1V1i + Θ2V2i and Sn are independent, it follows from (28) and (29) that

Var[Vi] = σ2
Θ1X1i+Θ2X2i |Sn

= γiΘ2
1P1i + βiΘ2

2P2i.

Using this, it follows that

E[(Θ1X1i + Θ2X2i)
2] ≤ Θ2

1P1i + Θ2
2P2i

+ 2Θ1Θ2

√
(1− γi)(1− βi)P1iP2i,

where we have taken µ1i = µ2i = 1 as the sign of correlation in (A6), since negative corre-
lation can only be detrimental for the right-hand side. Denoting κ(x) = (1/2) log(2πex)
and using the differential entropy maximizing property of Gaussian random variables for
a given variance, we have

h(Yi|X2i, Si, Θ1i = Θ1) ≤ κ(γiΘ2
1P1i + σ2

Z), (A7)

h(Yi|Si, Θ1i = Θ1, Θ2i = Θ2)

≤ κ(γiΘ2
1P1i + βiΘ2

2P2i + σ2
Z),

(A8)
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h(Yi|Θ1i = Θ1, Θ2i = Θ2)

≤ κ

(
Θ2

1P1i+Θ2
2P2i+σ2

S+σ2
Z

+2Θ1

√
γ̄iP1iσ

2
S+2Θ2

√
β̄iP2iσ

2
S

+2Θ1Θ2

√
γ̄i β̄iP1iP2i

)
,

(A9)

where (A8) is under the choice of (Θ1X1i +Θ2X2i) which maximizes λh(Yi|Θ1i = Θ1, Θ2i =
Θ2) + (1− λ)h(Yi|Si, Θ1i = Θ1, Θ2i = Θ2), for all λ ∈ [0, 1]. Continuing the sequence of
inequalities from (A2):

nηR1 + nR2 +
nλ

2
log

(
σ2

S
Dn

)
− 2nε

(a)
≤ E

[
n

∑
i=1

(η − 1)
1
2

log

(
γiΘ2

1P1i + σ2
Z

σ2
Z

)]
− n

2
log(σ2

Z)

+E


n

∑
i=1

λ

2
log



Θ2
1P1i+ Θ2

2P2i+σ2
S

+σ2
Z +2Θ1

√
γ̄iP1iσ

2
S

+2Θ2

√
β̄iP2iσ

2
S

+2Θ1Θ2

√
γ̄i β̄iP1iP2i




+E

[
n

∑
i=1

(1− λ)

2
log

(
γiΘ2

1P1i

+ βiΘ2
2P2i + σ2

Z

)]
(b)
≤ E

[
(η − 1)

n
2

log

(
γΘ2

1P1 + σ2
Z

σ2
Z

)]
− n

2
log(σ2

Z)

+E


λn
2

log



Θ2
1P1+Θ2

2P2+σ2
S

+σ2
Z + 2Θ1

√
γ̄P1σ2

S

+2Θ2

√
β̄P2σ2

S

+ 2Θ1Θ2

√
γ̄β̄P1P2




+E

[
n(1− λ)

2
log

(
γΘ2

1P1

+ βΘ2
2P2 + σ2

Z

)]
(c)
= E

[
(η − 1)

n
2

log

(
γΘ2

1P1 + σ2
Z

σ2
Z

)]

+ nRsum(γ, β) +
λn
2

log

(
σ2

S
D(γ, β)

)
.

(A10)

where (a) follows from the fact that both λ and (1− λ) are non-negative for λ ∈ [0, 1]
and expressions (A7)–(A9), (b) follows from Jensen’s Inequality, and (c) follows from the
definitions of Rsum(γ, β), D(γ, β) from (7) and (8). Thus, the lemma is proved for all
λ ∈ [0, 1]. Following similar lines, the individual rate R1 can be bounded using Fano’s
inequality and (A7), to obtain

R1 ≤ E
[

1
2

log

(
γΘ2

1P1 + σ2
Z

σ2
Z

)]
. (A11)
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Appendix A.3. Proof of Lemma 4

Consider a concave function T(ω), where ω = [ω1 ω2 . . . ωN ] ∈ [0, 1]N , and define

f (ω) :=
N

∑
i=1

δi log

(
1 +

i

∑
j=1

ωjPj

)
+

λ

2
log T(ω), (A12)

where δi, 1 ≤ i ≤ N and λ are non-negative constants.

Lemma A1. For 0 < λ ≤ 1, f (·) is strictly concave in ω ∈ [0, 1]N , whenever δi, 1 ≤ i ≤ N are
not identically zero.

Proof. The first term, which is a linear combination of logarithms, is strictly concave. We
next consider the second term. Let y1 and y2 be two N− dimensional vectors in RN . Notice
that for ι ∈ [0, 1],

ι log T(y1) + (1−ι) log T(y2)

≤ log(ιT(y1)+(1−ι)T(y2))

≤ log T(ιy1 + (1− ι)y2),

(A13)

since T(·) itself is concave by assumption.

Let us now proceed to prove Lemma 4. We denote

T(γ, β) = Θ2
1P1 + Θ2

2P2 + σ2
S + σ2

Z

+ 2Θ1

√
γ̄P1σ2

S + 2Θ2

√
β̄P2σ2

S

+ 2Θ1Θ2

√
γ̄β̄P1P2,

(A14)

for convenience. Note that the function

k′(γ, β) ,
(η − 1)

2
log

(
1 +

γΘ2
1P1

σ2
Z

)

+
λ

2
log

(
T(γ, β)

σ2
Z

)

+
(1− λ)

2
log

(
1+

γΘ2
1P1+βΘ2

2P2

σ2
Z

) (A15)

is a sum similar to (A12). We first show that k′(γ, β) is strictly concave by proving T(·) in (A14)
to be a concave function. For d0 > 0, and non-negative constants d1, · · · , dN, the function

T(ω) = d0 +
N

∑
i=1

N

∑
j=1

didj

√
(1−ωi)(1−ωj)

is concave. To see this, we note that
√

x is strictly concave in x ≥ 0. Moreover,
√

xz is jointly
concave in (x, z) ∈ [0, 1]2, implying that T(ω) is a concave function. Notice that concavity
in the range of interest is unaffected if every variable x ∈ [0, 1] is replaced by 1− x. Finally,
it follows that the function in Lemma 4, k(γ, β) = E[k′(γ, β)], is strictly concave as well as
a result of Jensen’s inequality. This concludes the proof of the lemma.
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