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Abstract: Contextuality was originally defined only for consistently connected systems of random
variables (those without disturbance/signaling). Contextuality-by-Default theory (CbD) offers an
extension of the notion of contextuality to inconsistently connected systems (those with disturbance)
by defining it in terms of the systems’ couplings subject to certain constraints. Such extensions are
sometimes met with skepticism. We pose the question of whether it is possible to develop a set
of substantive requirements (i.e., those addressing a notion itself rather than its presentation form)
such that (1) for any consistently connected system, these requirements are satisfied, but (2) they are
violated for some inconsistently connected systems. We show that no such set of requirements is
possible, not only for CbD but for all possible CbD-like extensions of contextuality. This follows from
the fact that any extended contextuality theory T is contextually equivalent to a theory T′ in which
all systems are consistently connected. The contextual equivalence means the following: there is a
bijective correspondence between the systems in T and T′ such that the corresponding systems in
T and T′ are, in a well-defined sense, mere reformulations of each other, and they are contextual or
noncontextual together.

Keywords: contextual equivalence; contextuality; consistent connectedness; consistification; connec-
tions; disturbance; signaling

1. Introduction

A formal theory T of contextuality is defined by a class R of possible systems of
random variables and a rule by which these systems are divided into noncontextual and
contextual ones. In the original theory of contextuality (a term in which we include both
the Kochen–Specker contextuality and the contextuality in distributed systems, referred
to as nonlocality [1–8]), the class R is confined to consistently connected systems, or a
subclass thereof. These are the systems with no “disturbance” or “signaling,” which
means that the variables representing the same property (answering the same question) in
different contexts are identically distributed. The Contextuality-by-Default theory (CbD)
extends the notion of contextuality to all systems of random variables, including those
with disturbance [9,10], and it has been applied to several experimental and theoretical
situations [11–18]. A recent workshop on contextuality [19] exhibited a renewed interest to
studying contextuality in inconsistently connected systems, including approaches that are
distinctly non-CbD-like [20–22], and some work directly critical of CbD ([23], responded to
in Ref. [24]).

The present paper is not about CbD specifically. Rather, it is about a broad class of all
possible CbD-like theories, as defined below. The plan and the main message of the paper
are as follows. In Section 2, we present the terminology and notation to be used and define
the notion of a system of random variables modeling (representing or describing) another
system. In Section 3, we define the traditional notion of contextuality in the language of
probabilistic couplings [25], and we introduce the notion of C-contextuality as a very broad
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generalization of both traditional contextuality and CbD-contextuality. In Section 4, we
introduce the notion of consistification of a system and show that any theory T, irrespective
of its class R of systems and a specific version of the C-contextuality it uses, can be redefined
as a theory T′, whose systems are consistently connected, and that uses the traditional
notion of contextuality. Because of this, we conclude that there can be no set of substantive
requirements X for the notion of contextuality that are satisfied by all consistently connected
systems but contravened by some inconsistently connected ones. Indeed, if such a set of
requirements existed, one could form a theory T whose class R includes some systems
contravening X. However, X would then be satisfied by the theory T′ that is contextually
equivalent to T and a mere reformulation thereof. Consequently, requirements X cannot be
substantive: they address a form rather than the substance of the notion of contextuality.
In Section 5, we discuss some issues related to the consistified systems (the term used for
the consistently connected systems in T′), including the representability thereof by hidden
variable models. We also briefly discuss there a still more general (in fact, maximally
general) notion of C-contextuality, one that does not have the existence-and-uniqueness
property postulated for C-contextuality. In the final analysis, this does not alter the main
conclusion of the paper.

The idea that consistification precludes the possibility of rejecting extended contextu-
ality while accepting the traditional one was previously mentioned in Ref. [24]. However,
it was confined to CbD only and mentioned without elaborating. The consistification
procedure was first described in Ref. [13] for an older version of the CbD approach, and
it was elaborated and adapted to the current version of CbD in Ref. [26]. Finally, the
C-contextuality in our paper generalizes a more limited version of C-contextuality that was
used in Ref. [27] as a generalization of the CbD approach.

2. Basic Notions

A system of random variables is a set of double-indexed random variables

R =
{

Rc
q : c ∈ C, q ∈ Q, q ≺ c

}
, (1)

where q ∈ Q identifies what the random variable Rc
q represents (measures, responds to, or

describes); c ∈ C identifies circumstances under which Rc
q is recorded (including what other

random variables are recorded together with Rc
q); q and c are referred to as, respectively,

the content and the context of the random variable Rc
q; and the relation q ≺ c indicates that

a variable with content q is recorded in context c. As an example, this is a system with
Q = {1, 2, 3} and C = {1, 2, 3, 4}:

R1
1 R1

2 c = 1
R2

2 R2
3 c = 2

R3
1 R3

3 c = 3
R4

1 R4
2 R4

3 c = 4

q = 1 q = 2 q = 3 R

. (2)

The subset Rc =
{

Rc
q : q ∈ Q, q ≺ c

}
of random variables recorded in the same context

c (a row in the matrix above) is termed a bunch, and the subsetRq =
{

Rc
q : c ∈ C, q ≺ c

}
of

random variables sharing a content q (a column in the matrix above) is termed a connection.
The difference in font (Rc vs. Rq) reflects the fact that Rc is a random variable in its own
right (i.e., all its components are jointly distributed), whereas the components of Rq are
not jointly distributed. In fact, no two random variables Rc

q and Rc′
q′ are jointly distributed

unless they are in the same bunch, c = c′. The measurable space on which Rc
q is distributed

is assumed to be the same for all elements of a connection and can be denoted
(

Aq, Σq
)
.
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The triple (Q, C,≺) is called the format of the system. It is essentially the mathematical
depiction of “what the system is about,” what kind of empirical or theoretical situation it
represents. Thus, the format of the system in (2) can be presented as

? ? c = 1
? ? c = 2

? ? c = 3
? ? ? c = 4

q = 1 q = 2 q = 3 R’s format

, (3)

where ? indicates the elements of the relation ≺. To define a system of a given format, one
has to specify the distributions of its bunches.

As should be clear from Abstract and Introduction, in this paper, we use the notion
of one system of random variables, B, being a “mere reformulation” of another, A. Intu-
itively, this means that regardless of what empirical or theoretical situation is modeled
(described, represented) by A, it is also modeled by B. The relation between a system and
a situation it depicts is difficult to formalize directly, as one would have then to impose
some formal structure on the situation being represented before it is represented (as in
the representational theory of measurement, [28,29]). However, it is sufficient for our
purposes to formalize a simpler relationship: between a system A and another system that
models (describes, represents) the system A. Moreover, rather than presenting this rela-
tionship in a most general possible way, it will suffice to describe one special, universally
applicable construction of the modeling systems B. We will refer to this construction as
canonical modeling.

Consider two classes of systems, R and R†, in a bijective correspondence to each other,
about which we say that any system in R is canonically modeled by the corresponding
system in R†. The following definition gives a precise meaning to this relation.

Definition 1. We say that a system R ∈ R with format (Q, C,≺) is canonically modeled by a
systemR† ∈ R† with format

(
Q†, C†,≺†) if

(canonical contents) Q† = {(q, c) : q ≺ c},
(canonical contexts) C† = {(·, c) : c ∈ C} t {(q, ·) : q ∈ Q},
(canonical relation) (q, c) ≺† (·, c)⇐⇒ (q, c) ∈ Q†, and (q, c) ≺† (q, ·)⇐⇒ (q, c) ∈ Q†,

(main bunches) R(·,c) =
{

R(·,c)
(q,c) : (q, c) ≺† (·, c)

}
d
=
{

Rc
q : q ≺ c

}
= Rc

(auxiliary bunches) R(q,·) =
{

R(q,·)
(q,c) : (q, c) ≺† (q, ·)

}
is uniquely determined by the distribu-

tions of the corresponding variables inR(q,·) =
{

R(·,c)
(q,c) : (q, c) ≺† (q, ·)

}
.

Here, the symbol d
= stands for “has the same distribution as”. The dot symbol in

(·, c) and (q, ·) should be taken as part of the names of these contexts. We choose this
notation to emphasize that every random variable Rc

q of the system R is placed in R†

within two contexts, (·, c) and (q, ·), whose names are derived from the indices of the
variable. Note that the variables in the setR(q,·) defined here have the same distributions

as the corresponding variables in Rq =
{

Rc
q : q ≺ c

}
. We use the former set, however,

to emphasize that the auxiliary bunches are uniquely determined by the corresponding
variables in the main bunches. Note that the variables inR(q,·) are not jointly distributed,
so R(q,·) depends on their individual distributions only.
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To give an example, consider the systems

R1
1 R1

2 c = 1
R2

1 R2
2 c = 2

q = 1 q = 2 A

R(·,1)
(1,1) R(·,1)

(2,1) c = (·, 1)

R(·,2)
(1,2) R(·,2)

(2,2) c = (·, 2)

R(1,·)
(1,1) R(1,·)

(1,2) c = (1, ·)

R(2,·)
(2,1) R(2,·)

(2,2) c = (2, ·)

q = (1, 1) q = (2, 1) q = (1, 2) q = (2, 2) B

. (4)

Observe that in system B the contents, contexts, and the relation between them are con-
structed in accordance with Definition 1. System B canonically models system A if{

R(·,1)
(1,1), R(·,1)

(2,1)

}
d
=
{

R1
1, R1

2

}
,

{
R(·,2)
(1,2), R(·,2)

(2,2)

}
d
=
{

R2
1, R2

2

}
, (5)

and if there is a rule by which the distribution of

R(q,·) =
{

R(q,·)
(q,1), R(q,·)

(q,2)

}
, q = 1, 2, (6)

is uniquely determined by the distributions of the corresponding variables in

R(q,·) =
{

R(·,1)
(q,1), R(·,2)

(q,2)

}
, q = 1, 2. (7)

Observe the following properties of canonical modeling.

1. The formats ofR andR† are reconstructible from each other, and so are the bunches
of the two systems. Moreover,R† faithfully replicates the bunches ofR. This allows
one to say thatR andR† describe the same empirical or theoretical situation.

2. One might wonder why we need the auxiliary contexts at all, and they are indeed
unnecessary if all one wants is a system modeling another system, e.g.,

R(·,1)
(1,1) R(·,1)

(2,1) c = (·, 1)

R(·,2)
(1,2) R(·,2)

(2,2) c = (·, 2)

q = (1, 1) q = (2, 1) q = (1, 2) q = (2, 2) B′

However, we will see the utility of the auxiliary contexts when we introduce consisti-
fications and contextual equivalence, in Section 4.

3. The contents in the modeling system are “contextualized”. For instance, system A
in (4) may be describing an experiment in which two questions, q = 1 and q = 2, are
asked in two orders, c = 1 indicating “1 then 2” and c = 2 indicating “2 then 1” [30,31].
In this case, in the modeling system, the content q = (1, 2) should be interpreted as
“question 1 asked second”, and q = (1, 1) should be interpreted as “question 1 asked
first”. We return to the issue of interpretation in Section 5.1.

4. The indexation of the variables in a canonical model is clearly redundant, and it can
be simplified. It is more important, however, to maintain the general logic of indexing
the variables by their contents and contexts.

3. Traditional and Extended Contextuality

A systemR is consistently connected if in every connectionRq all its constituent vari-
ables have one and the same distribution. Otherwise, the system is inconsistently connected.
(The latter term is also used to designate arbitrary systems, i.e., in the meaning of “not
necessarily consistently connected”.)

An overall coupling of a systemR in (1) is an identically labeled system

S =
{

Sc
q : c ∈ C, q ∈ Q, q ≺ c

}
(8)
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of jointly distributed random variables such that its bunches Sc are distributed as the corre-
sponding bunches Rc,

Sc d
= Rc. (9)

Clearly, S has the same format asR. A coupling Sq of a connectionRq is a set

Sq =
{

Sc
q : c ∈ C, q ≺ c

}
(10)

of jointly distributed random variables such that Sc
q

d
= Rc

q for all its elements. A connection

coupling Sq is said to be an identity coupling if Sc
q = Sc′

q for any two of its elements. Obviously,
such a coupling exists if and only if all of its elements (equivalently, all elements of the
connection Rq) have one and the same distribution. Moreover, the identity coupling is
unique if it exists. (The uniqueness of a coupling should always be understood as the
uniqueness of its distribution. In other words, it is irrelevant on what domain probability
space the coupling is defined as a random variable.)

The traditional notion of contextuality is confined to consistently connected systems,
and it can be rigorously defined in our terminology as follows.

Definition 2. A consistently connected system R ∈ R is noncontextual if it has a coupling S
in which any connection Sq is the identity coupling of the connectionRq. Otherwise, the system
is contextual.

The class of all possible systems R in a theory T is denoted R. For instance, R can
only contain the systems with finite sets Q and C, or only the systems with dichotomous
random variables. By constraining the class R, one induces constraints on all possible
random variables, Rc

q ∈ R+
+, on bunches of random variables, Rc ∈ R+, and on possible

connections,Rq ∈ R+.
In CbD, contextuality of a system R is defined by considering its couplings S and

determining if, in some of them, the couplings Sq of the system’s connectionsRq satisfy a
certain statement. To generalize this definition to all possible CbD-like theories, all one has
to do is to replace this specific statement with one that is (almost) arbitrary. Let C be any
statement of the form “the coupling of connection Rq has the following properties: . . . ”.
The only constraints we impose on C are as follows.

Definition 3. C is considered well-fitting if (1) for any connection Rq ∈ R+, there is one and
only one coupling Sq ofRq that satisfies C, and (2) ifRq consists of identically distributed random
variables, then the coupling that satisfies C is the identity coupling. We denote such a coupling of
Rq as C

[
Rq
]
.

To give an example of a well-fitting statement C: in CbD, if the class R of all possible
systems is confined to the systems with dichotomous variables, the well-fitting statement
is C = “for any two random variables Sc1

q and Sc2
q in the coupling of connection Rq, the

probability of Sc1
q = Sc2

q is maximal possible”. Another example: if the class R of all possible
systems is confined to the systems with real-valued (or more generally, linearly ordered)
variables, then a well-fitting statement can be C = “for any two random variables Sc1

q
and Sc2

q in the coupling of connection Rq, Sc1
q and Sc2

q have the same quantile rank”. In
Section 5.3, we discuss the possibility of dropping the first of the two defining properties of
a well-fitting statement C.

Definition 4. Given a well-fitting C, a systemR is C-noncontextual if it has a coupling S such that,
for any connectionRq of the system, the connection coupling Sq coincides with C

[
Rq
]
. Otherwise,

the system is C-contextual.
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4. Equivalence and Impossibility Theorems

It follows from the last two definitions that, for a well-fitting C, a consistently con-
nected system is C-noncontextual if and only if it is noncontextual in the traditional sense
(i.e., in the sense of Definition 2). In other words, any extension of the notion of contex-
tuality using a well-fitting C properly reduces to the traditional notion when confined to
consistently connected systems. This is not, obviously, sufficient to consider the extension
of contextuality by means of a well-constructed C. There may be other desiderata for a
well-constructed notion of contextuality, and a specific choice of C may not satisfy them.
The question we pose now is as follows:

Q*: Is it possible to formulate a set of such desiderata/requirements X for the notion of
contextuality that, for some choice of C, (1) X is satisfied for any consistently connected
system, but (2) X is not satisfied for some inconsistently connected systems?

Note that we impose no constraints on what X may entail, except for its being related
to contextuality. It may, e.g., for some relation B between systems, have the form “if system
R1 is (non)contextual, then any systemR2 related toR1 by B is (non)contextual” [24].

To answer the question Q*, we need the following result.

Theorem 1. For any well-fitting C and system R, there is a consistently connected system R‡

that canonically models it (Definition 1), such thatR is C-contextual (Definition 4) if and only if
R‡ is contextual in the traditional sense (Definition 2).

Proof. LetR‡ be a canonically modeling system forR, with

R(q,·) =
{

R(q,·)
(q,c) : (q, c) ≺‡ (q, ·)

}
d
= C

[{
Rc

q : q ≺ c
}]

= C
[
Rq
]
. (*)

One can check thatR‡ is consistently connected: every connectionR(q,c) ofR‡ consists

of precisely two variables, R(·,c)
(q,c) and R(q,·)

(q,c), where R(·,c)
(q,c)

d
= R(q,·)

(q,c). Indeed, R(·,c)
(q,c)

d
= Rc

q,

because R(·,c) d
= Rc in any canonically modeling system and R(q,·)

(q,c)
d
= Rc

q because we know

from (*) that R(q,·)
(q,c)

d
= Sc

q, where Sc
q ∈ C

[
Rq
]
.

The system R‡ thus constructed is referred to as a consistification of R. We can now
define the consistification S‡ of a coupling S of a system in precisely the same way as for
the system itself, except that (*) is replaced with the straightforward

S(q,·) = Sq,

with the obvious correspondence between the different indexations within the two random
vectors. Clearly, S‡ is a coupling ofR‡.

Assume now thatR is noncontextual. This means that it has a coupling S such that

(a) Sc d
= Rc for every c ∈ C and (b) Sq = C

[
Rq
]

for every q ∈ Q. Then, in the coupling

S‡ of system R‡, we have (a’) S(·,c) d
= R(·,c) for every (·, c) ∈ C‡, and (b’) S(q,·) = C

[
Rq
]

for every (q, ·) ∈ C‡. Moreover, since both S(·,c)
(q,c) and S(q,·)

(q,c) equal Sc
q, we have (c’) S(·,c)

(q,c) =

S(q,·)
(q,c). However, (a’)-(b’)-(c’) mean that R‡ is noncontextual in the traditional sense. The

implication here is easily seen to be reversible, and we conclude thatR is noncontextual if
and only if so isR‡.

In our example (4), B is a consistification of A if we specify the rule for the auxiliary

bunches as follows: R(q,·)
(q,c)

d
= R(·,c)

(q,c), and the distribution of R(q,·) is the same as that of C
[
Rq
]
.
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If C is chosen as in CbD, the consistification of the system R in (2) is the system below
(omitting, for simplicity, the parentheses and commas in R(·,c)

(q,c) and R(q,·)
(q,c)):

R·111 R·121 c = ·1
R·222 R·232 c = ·2

R·313 R·333 c = ·3
R·414 R·424 R·434 c = ·4

R1·
11 R1·

13 R1·
14 c = 1·

R2·
21 R2·

22 R2·
24 c = 2·

R3·
32 R3·

33 R3·
34 c = 3·

q = 11 q = 21 q = 22 q = 32 q = 13 q = 33 q = 14 q = 24 q = 34 R‡

, (11)

where all variables are assumed to be dichotomous, and in each of the auxiliary bunches,
the variables are pairwise equal with maximal possible probability.

For the purposes of contextuality analysis,R‡ can be viewed as a mere reformulation
of R, a different form of the same substance. We express this fact by saying that R and
R‡ are contextually equivalent. (In Refs. [24,26], contextual equivalence is defined more
narrowly, requiring also the numerical coincidence of certain measures of contextuality,
such as contextual fraction [32]. In this paper, however, the level of abstraction is higher,
and we only consider the notion of contextuality rather than its quantifications.)

Consider now a theory of (generally, extended) contextuality T = T(C,R). In accor-
dance with Theorem 1, we can form the class R‡ of the consistifications of the elements of
R in a bijective correspondence with R. By extension of the term, we can say that T and
T′ = T

(
C0,R‡) are contextually equivalent. C0 here denotes the statement “the connection Rq

has an identity coupling” that underlies the traditional notion of contextuality, because by
definition, it can be viewed as a special case of any well-fitting statement C. We have now
everything we need to demonstrate our main conclusion. Let there be a set of requirements
X of the notion of contextuality that are satisfied by all consistently connected systems
(using the traditional contextuality) and contravened by some inconsistently connected
ones, using some version of C-contextuality. Let T include some of the inconsistently
connected systems contravening X. Clearly then, requirements X contradict theory T, but
they are satisfied by the contextually equivalent theory T′ = T

(
C0,R‡). Therefore, X is not

a set of substantive requirements. We can summarize this as a formal theorem.

Theorem 2. For any well-fitting C, there can be no set of substantive requirements X of the
notion of contextuality that are satisfied by all consistently connected systems (using the traditional
contextuality) and contravened by some inconsistently connected ones, using C-contextuality.

Of course, a set of requirements X satisfied by T′ but not T can be readily formulated.
The theorem says, however, that all it can do is lead one to prefer one of two equivalent
representations of contextuality, without affecting the substance of the notion.

Note also that in the theorem just formulated, we assume no relationship between the
set of requirements X and the bijective correspondence relating R to R‡. In particular, let X
have the form “if systemR1 is contextual, then any systemR2 related toR1 by relation B
is contextual.” It is not necessary then, although not excluded either, thatR‡

2 is also related
to R‡

1 by relation B. All that is stated in the theorem above is that if one wishes to use
this X as a substantive principle in testing competing theories, then the failure of a theory
to satisfy it cannot be selectively attributed to the fact that its R contains inconsistently
connected systems.

5. Miscellaneous Remarks

Here, we consider a few issues related to the main point of this paper.
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5.1. Interpretation of Contents and Contexts

Dealing with consistified systems R‡, one needs to get used to a new interpretation of
contents and contexts of the random variables: as mentioned previously, in R‡, contents
are “contextualized,” with (q, c) in place of just q, and the contexts are simply marginalized
contents, (·, c) and (q, ·). Consider as an example the EPR/Bohm experiment, the most
widely investigated paradigm in contextuality/nonlocality research [1,33,34]. In the usual
CbD notation, the system representing it is

R1
1 R1

2 c = 1
R2

2 R2
3 c = 2

R3
3 R3

4 c = 3
R4

1 R4
4 c = 4

q = 1 q = 2 q = 3 q = 4 A

, (12)

where q = 1 and q = 3 denote two settings (axes) to be chosen between by Alice, q = 2 and
q = 4 are settings to choose between by Bob, c indicates the combination of their choices,
and Rc

q is the dichotomous (spin-up/spin-down) variables. The consistified representation
of the same experiment is (again, omitting the parentheses and commas in the indexation)

R·111 R·121 c = ·1
R·222 R·232 c = ·2

R·333 R·343 c = ·3
R·444 R·414 c = ·4

R1·
11 R1·

14 c = 1·
R2·

21 R2·
22 c = 2·

R3·
32 R3·

33 c = 3·
R4·

43 R4·
44 c = 4·

q = 11 q = 21 q = 22 q = 32 q = 33 q = 43 q = 44 q = 14 A‡

. (13)

The interpretation of, say, the content q = (3, 2) here is as follows: it is the choice of axis
3 (that we know to be made by Alice) when Bob’s choice of his axis forms combination 2
with Alice’s choice (which we know to mean that Bob chooses axis 2). The interpretation
of context c = (·, 2) is that it is simply the set of contents whose second component is
2. Similarly, c = (3, ·) is the set of contents whose first component is 3. The random
variables within context c = (·, 2) are jointly distributed by observation, whereas the
random variables within context c = (3, ·) are jointly distributed by computation (that, in
turn, is uniquely determined by the observations). If C is defined in accordance with CbD,(

R2·
21, R2·

22
)

is computed so that R2·
21

d
= R·121, R2·

22
d
= R·222 (consistent connectedness), and the

probability of R2·
21 = R2·

22 is maximal possible. In particular, if R·121
d
= R·222, then R2·

21 = R2·
22.

5.2. Hidden Variable Models

One possible argument against contextuality in inconsistently connected systems is
that it is not distinguishable from inconsistent connectedness itself in the language of
hidden variable models (HVMs). If, the argument goes, a consistently connected systemR
in (1) is noncontextual, it has a coupling S in which all random variables can be presented as

Sc
q = F(q, Λ), (14)

where Λ is a “hidden” random variable [35]. IfR is contextual, then all its couplings can
only be presented as

Sc
q = F(q, c, Λ), (15)

with ineliminable c. However, the latter HVM representation is also required for all
inconsistently connected systems, irrespective of whether they are C-contextual or C-
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noncontextual. We would argue in response that this only means that on this general level
(merely showing the arguments of the functions), the language of HVMs is too crude to
capture the subtler properties of the couplings, such as contextuality under inconsistent
connectedness. However, even if one takes this issue as a matter of concern, it is eliminated
by the consistification procedure. The systemR‡ corresponding toR is noncontextual if
and only if it has a coupling S‡ such that, for all (q, c) ∈ Q‡,

S(·,c)
(q,c) = G((q, c), Λ) = S(q,·)

(q,c), (16)

for some random variable Λ. If R‡ is contextual, then in all its couplings, for some

(q, c) ∈ Q‡,S(·,c)
(q,c) 6= S(q,·)

(q,c), which means that their HVM representations can only be differ-
ent functions,

S(·,c)
(q,c) = G1((q, c), Λ), S(q,·)

(q,c) = G2((q, c), Λ), (17)

or, equivalently, the same function but with differently distributed hidden variables,

S(·,c)
(q,c) = H((q, c), Λ1), S(q,·)

(q,c) = H((q, c), Λ2). (18)

It is instructive to apply this to the EPR/Bohm systems A and A‡ in (12) and (13).
Here, contextuality is traditionally referred to as nonlocality because for the contextual
system A, all its couplings are represented in the form of (15): the ineliminable dependence
on c here is interpreted as the dependence of a measurement on a remote setting. However,
if one models the EPR/Bohm experiment by system A‡ instead, the HVM representations
(16) and (17) both contain the contextualized content (q, c) as an argument. Following the
logic above, they should both be considered nonlocal, even though one of them represents
a noncontextual system and is equivalent to (14), while the other represents a contextual
system and is equivalent to (15). It seems to us, in agreement with other authors [36], that
this demonstration speaks against a naturalistic interpretation of the HVMs in terms of
physical dependences.

5.3. The Existence and Uniqueness Constraint

In the definition of C-couplings, their reducibility to identity couplings when applied
to identically distributed variables is indispensable because without it, the C-contextuality
will not be an extension of traditional contextuality. How critical, however, is the second
constraint imposed on well-fitting C, that the C

[
Rq
]
-coupling always exists and is unique?

What if one considers statement C for which C
[
Rq
]

is a set that may be empty or contain
more than one coupling? This complicates the matters conceptually because then, in the
consistification procedure, the (q, ·)-type bunches, those filled with the C

[
Rq
]
-couplings,

cannot be formed unquely or cannot be formed at all. However, the main point of this
paper can still be made, with some qualifications.

We can agree that the consistification of an inconsistently connected system R is not a
single system R‡ but a cluster of systems

{
R‡

i : i ∈ I
}

, the elements of which are obtained
by filling the (q, ·)-type bunches in the consistification of R by all possible couplings of R’s
connections. We can further agree that the cluster

{
R‡

i : i ∈ I
}

is considered noncontextual

if it contains a noncontextual system R‡
i . In particular, if

{
R‡

i : i ∈ I
}

is empty (which means

that C
[
Rq
]

does not exist for at least one of the connections of R), the latter definition is not
satisfied, and the cluster should be considered contextual. Once again, we have a theory
dealing with consistently connected systems only, except that the empirical or theoretical
situations they depict are represented by clusters of systems sharing a format and the
(·, c)-bunches.

It might seem that dealing with an infinity of possible couplings C
[
Rq
]

or proving that
C
[
Rq
]

is empty is a significantly more difficult mathematical task than when C is well-fitting.
This is not the case, however, as the complication is not necessarily major. Mathematically,
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the problem of finding whether a system R is contextual consists in determining whether
the variable S having the same format as R can be assigned a probability measure subject
to certain constraints on its marginals. The constraints are imposed by the distributions
of the bunches Rc (that Sc have to match) and by the statement C that has to be satisfied
by the couplings Sq of the connections Rq. For discrete random variables and finite sets
Q and C, this is a linear programming task, provided that the compliance with C can be
presented in terms of linear inequalities of the probabilities in the distribution of Sq. For
the consistification R‡ the problem is precisely the same, except that in place of connection
couplings, one deals with (q, ·)-type bunches.
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