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Abstract: Finite-element methods are industry standards for finding numerical solutions to partial
differential equations. However, the application scale remains pivotal to the practical use of these
methods, even for modern-day supercomputers. Large, multi-scale applications, for example, can be
limited by their requirement of prohibitively large linear system solutions. It is therefore worthwhile
to investigate whether near-term quantum algorithms have the potential for offering any kind of
advantage over classical linear solvers. In this study, we investigate the recently proposed variational
quantum linear solver (VQLS) for discrete solutions to partial differential equations. This method was
found to scale polylogarithmically with the linear system size, and the method can be implemented
using shallow quantum circuits on noisy intermediate-scale quantum (NISQ) computers. Herein, we
utilize the hybrid VQLS to solve both the steady Poisson equation and the time-dependent heat and
wave equations.

Keywords: quantum computing; quantum variational algorithm; finite-element methods; Poisson
equation; heat equation; quantum algorithms

1. Introduction

Quantum computing has reached a new era where theory is transitioning into practice
as quantum computers and simulators become more widespread and available to the
scientific community. This transition has encouraged algorithmic exploration, with an intent
toward showing “quantum supremacy” or “quantum advantage”. Quantum advantage
refers to the demonstrated and measured success in processing a real-world problem faster
on a quantum computer than on a classic computer. Quantum supremacy [1], on the other
hand, refers to the demonstrated and measured ability to process any problem faster on a
quantum computer, regardless of its real-world applicability [2].

In 2019, Arute et al. [3] claimed to have achieved quantum supremacy using a pro-
grammable superconducting processor by “performing a series of operations in 200 s that
would take a supercomputer about 10,000 years to complete”. In December 2020, a group
based out of the University of Science and Technology of China (USTC) led by Jian-Wei Pan
claimed quantum supremacy by implementing Gaussian boson sampling on 76 photons
with their photonic quantum computer [4]. The paper states that to generate the number of
samples the quantum computer generates in 20 s, a classical supercomputer would require
600 million years of computation. Although these supremacy claims have been the source
of much recent debate, mostly with respect to whether or not their classical comparisons
are the most efficient, it is clear that we are on the threshold of a new age of computation,
heralded by today’s noisy intermediate-scale quantum (NISQ) hardware.

Today’s NISQ computers are limited in scalability because they are (1) subject to
noise and thus not fault-tolerant, and (2) they are qubit-limited (usually meaning less than
100 qubits). Regarding the latter, however, the number of qubits on modern day quantum
computers is rapidly growing, with IBM projecting a remarkable 1121 qubit system in
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2023. Although this exponential qubit growth is vital in the near term, “shot” noise arising
form the Heisenberg uncertainty principle and zero-point thermal fluctuations cause a
phenomenon called decoherence, which may ultimately prevent scalability to larger qubit
applications. Quantum systems achieve their notable advantage over classical ones via
entanglement, a process by which a pure state quantum system develops a probability
distribution over multiple classical outcomes. Entanglement gives quantum computers
the ability to process and store exponentially more information than a classical computer.
Noise, however, introduces errors that cause decoherence in the entanglement and can
significantly degrade the performance of NISQ computers [5–8]. In fact, much of today’s
quantum computing efforts are in noise mitigation [9–14]. In January 2022, for example, a
group of scientists from the University of Chicago and Purdue University collaborated on
a new promising noise control technique: Instead of directly trying to measure the noise,
they constructed a unique “fingerprint” of the noise on a quantum computer as it was
seen by a program run on the computer [15]. This approach shows promise for mitigating
the noise problem, as well as suggesting ways that users could actually turn noise into
an advantage.

Despite these drawbacks, NISQ computers remain promising in application areas
such as quantum chemistry, cybersecurity, drug development, financial modeling, traffic
optimization, weather forecasting, climate change prediction, artificial intelligence and
machine learning. Over the last few years, quantum hardware has become available to
the average researcher, mostly through two types of cloud computing. The first type is
cloud services providing access to a single company’s collection of quantum devices. The
Qiskit cloud service offered by IBM Quantum [16] is the premier example of this. On the
other hand, there are multi-platform services such as Amazon Braket [17] that work as
intermediaries to give users options to access quantum devices owned by multiple vendors.
In most cases, cloud computing interfaces for quantum devices are implemented in Python
to provide starting points for accessing working quantum devices. Introductory resources
for algorithmic understanding and design are also widely available to the public. For
example, the IBM Qiskit textbook [18] provides a college-level introduction to quantum
information with integrated programming exercises, the Codebook by Xanadu [19] provides
an introductory course built around the Pennylane package, allowing for differentiable
programming of quantum computers, and QBraid is an online platform for developing
quantum software with introductory quantum tutorials [20].

As near-term supremacy does not mean utility, many today utilize these current cloud
resources for the investigation of quantum advantages for practical problems. NISQ com-
puters must be restricted to “shallow” circuits for noise control. These circuits have a
minimal number of qubits that are more easily controlled. One way of keeping quantum
circuits shallow, for example, is by combining quantum and classical algorithms so that
only the computationally intensive portion of the problem is implemented on the quantum
computer, thereby offering some degree of quantum speed-up or advantage while maintain-
ing shallow circuits amenable to NISQ computers. This type of hybrid set-up is somewhat
analogous, for example, to classical GPU acceleration. Recently, hybrid methods such as
these have been utilized for near-term acceleration of machine learning and optimization
problems [21–29]. A number of quantum algorithms for machine learning are based on
the idea of amplitude encoding, which associates the amplitudes of a quantum state with
the inputs and outputs of computations [24,30,31]. Since a state of m qubits is described
by 2m complex amplitudes, this information encoding can allow for an exponentially
compact representation. Intuitively, this corresponds to associating a discrete probability
distribution over binary random variables with a classical vector. The goal of algorithms
based on amplitude encoding is to formulate quantum algorithms whose resources grow
polynomially in the number of qubits m, which amounts to a logarithmic time complexity
in the number of amplitudes and therefore the dimension of the input.

Many quantum machine learning algorithms are based on variations in the quantum
algorithm for linear systems of equations [32] (colloquially called HHL after the paper’s
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authors) which, under specific conditions, perform a matrix inversion using an amount of
physical resources growing only logarithmically in the dimensions of the matrix. One of
these conditions is that a Hamiltonian which, entry-wise, corresponds to the matrix can
be simulated efficiently, which is known to be possible if the matrix is sparse [33] or low
in rank [23]. Quantum matrix inversion can be applied to machine learning methods in
which the training reduces to solving a linear system of equations, such as in least squares
linear regression [30,31], the least squares version of support vector machines [24], and
Gaussian processes [34].

For suitably conditioned linear systems, the HHL algorithm scales logarithmically in
n, suggesting the possibility of exponential speed-up over classical systems [32], which
holds promise for quantum computers beyond the NISQ era. In today’s NISQ machines,
however, shot noise has dramatically limited the size of the linear systems directly solvable
by the HHL algorithm. To date, 2 × 2 systems have been solved by superconducting
qubits [35,36], nuclear magnetic resonance [37], and photonic devices [38,39]. The largest
system solved on a gate-based computer was an 8× 8 problem using NMR [40].

Given today’s NISQ limitations of the HHL algorithm, an alternative method for
linear system solution has been proposed to gain a quantum advantage: variational hybrid
quantum-classical algorithms (VHQCAs). VHQCAs are capable of providing an advan-
tage to Shor’s algorithm for factoring [41] and have gained momentum in the fields of
chemistry [42–45], simulation [46–50], data compression [51], state diagonalization [52–54],
compiling [55,56], quantum foundations [57], fidelity estimation [58], and meteorology [59].
The general VHQCA algorithm reduces the quantum circuit depth by using a classical
optimizer and only evaluating the cost/objective function on the quantum computer.

In this study, we continue to investigate quantum advantages in classical problems by
utilizing a VHQCA recently introduced by Bravo-Prieto et al. [60,61] called the variational
quantum linear solver (VQLS) to obtain finite-element solutions to the Poisson, heat, and
wave equations. The quantum/classical hybrid VQLS is a method for solving linear
systems on near-term quantum computers which variationally prepares a quantum state
|x〉 such that A |x〉 ∝ |b〉. Bravo-Prieto et al. were able to derive a meaningful termination
condition for VQLS that allows one to guarantee a desired solution precision with efficient
quantum circuits to estimate the variational cost function C while providing evidence for
the classical hardness of its estimation. Using Rigetti’s quantum computer, the VQLS was
used for solutions up to a problem size of 1024× 1024 (10 qubits), which is the largest
implementation of a linear system on quantum hardware to date. The time complexity of
the VQLS was heuristically found to scale efficiently with the linear solution precision ε,
the matrix condition number κ, and the linear system size N.

2. The Variational Quantum Linear Solver

The quantum/classical hybrid VQLS [60,61] algorithm attempts to find a solution to
the linear system such that A |x〉 ∝ |b〉 by minimizing a scalar cost function based on the
scaled projection of A |x〉 onto |b〉. The solution vector |x〉 is approximated with a wave
function created through a quantum circuit ansatz. To prepare a linear system for VQLS
solution, the matrix A must be expressed as a linear combination of universal quantum
gates. Additionally, the right-hand side (RHS) of the linear system must be transformed
into a normalized quantum state |b〉, which can be generated by unitary operations U
applied to the ground state of some number of qubits. We now discuss these elements of
the VQLS in detail.

2.1. The Variational Ansatz

In the VQLS algorithm, |x〉 is prepared by acting on the |0〉 state with a trainable gate
sequence V(α). The ansatz V(α) can be expressed in terms of L gates from a gate alphabet
A = Gk(α) as

V(α) = GkL(αL) · · ·Gki
(αi) · · ·Gk1(α1) (1)
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Here, ~k = (kL, · · · , k1) identifies the types of gates and their placement in the circuit
(i.e., on which qubit they act), while α represents the continuous parameters over which
optimization occurs. All results presented herein are based on a “fixed ansatz”, where
~k is fixed over time and V is only optimized over α. Though it was not investigated in
this study, variable ansatz optimization was shown to improve convergence in some cases
in [52,62].

Training of the ansatz is performed layer by layer, just as in neural networks. The
number of layers is decided by the user. Although the solution function space widens as
the layers are increased, over-determined parameter optimization may become difficult
and inefficient. The properties of a good ansatz are as follows: (1) the circuit is shallow,
minimizing decoherence, (2) it has minimal optimization parameters, and (3) the ansatz
should span the space where the solution lives. Of all the layer structures we tested, the
ansatz given in [60] (shown in Figure 1) was the most optimal one. This ansatz begins with
an initial y rotation (Ry) of each qubit before moving on to the layered portion of the circuit.

Figure 1. A four-qubit example of the fixed ansatz used for this study.

Each layer starts with alternating controlled-z (CZ) gates followed by Ry rotations
on the controlled qubits. The CZ gates have the crucial function of entangling the qubits,
which allows for an exponentially larger space representation than a purely classical cost
evaluation. The Ry gates allow one to “search” the state space by varying the rotational
parameters.

In this study, a range of layers were tested for each application of the VQLS. Some
general guidelines for choosing the number of layers were found: (1) a greater number
of layers was needed, as the problem’s dimensionality was increased (resulting in larger
linear systems), and (2) a greater number of layers was required, as the number of terms in
the Pauli decomposition of the stiffness matrix grew. These two factors greatly limited the
size of the finite-element problems we could test at this time to a maximum of 10 nodes
(8 internal nodes or 3 qubits).

2.2. Matrix Pauli Decomposition

In order to solve the linear system using the VQLS, the matrix must be represented as
a linear combination of Hermitian unitary operators A = ∑i ci Ui, representing a system
Hamiltonian where Ui represents the unitaries and ci represents complex coefficients.
Additional assumptions are that the matrix condition number κ < inf and ‖A‖ ≤ 1 and
that the Ai unitaries can be implemented with efficient quantum circuits. Typically, this
decomposition consists of a linear combination of Kronecker products of the Identity and
Pauli matrices, as these gates are widely used and recognized. These matrices and gates
are defined as follows:

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(2)

For all application matrices herein, a recently proposed algorithm given in [63], which
takes a square real symmetric matrix of an arbitrary size and decomposes it into a tensor
product of Pauli spin matrices, was used. The routine was given by the authors in Python
and is publicly available. The mathematical procedure for generating this decomposition
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for a general-sized stiffness matrix, often encountered in discrete finite-element methods, is
given in Appendix A.

2.3. Right-Hand Side Preparation

The VQLS requires that the linear system RHS be transformed into a normalized
quantum state |b〉 generated by some series of unitary operations U applied to the ground
state of the qubits:

|b〉 = U |0〉 (3)

Again, we assume that U can be efficiently implemented with a quantum circuit. For
example, if the boundary conditions are homogeneous, and a reduced linear system is used
which includes only the internal domain grid points, then the constant RHS wave function
can be created by a quantum circuit which applies a Hadamard gate to each qubit:

|b〉 = (H0H1H1 · · ·Hm−1) |0〉 (4)

where m is the total number of qubits used to represent the reduced system. In general,
however, the RHS vector of the linear systems will not be constant, and a vector-specific
circuit must be generated. For the applications herein, we utilized the “isometry” package
in Qiskit to produce the corresponding quantum state from a specific RHS vector. It is
worth noting that more general, non-constant RHSs may lead to deeper, more complex
circuitry that may affect the VQLS’s efficiency, since this circuit is evaluated in a controlled
manner during each cost calculation.

3. Computational Details

The VQLS in this study was implemented in Python using IBM’s Qiskit [16]. Qiskit
is an open source software development kit for working with OpenQASM and the IBM
Q quantum processors. For prototypical applications, such as those needed for the early
stages of this work, Qiskit offers a quantum computer simulator which allows the user
to build and test quantum circuits on a local machine without the need for a quantum
computer. The Qiskit package, along with its statevector simulator, can be imported into
a Python script in the usual way. For all problems in this study, the Qiskit Aer simulator
backend was used.

4. Training Algorithm

Scientific Python (SciPy) offers a variety of options for both constrained and uncon-
strained optimization of scalar objective/cost functions. The purpose of these optimizers is
to update the parameters of the VQLS ansantz. Generally speaking, multi-variant objection
function optimizers fall into two categories: gradient- and non-gradient-based optimization.
Gradient-based methods, such as the Newton conjugate gradient method, use the objective
function gradients (i.e., Jacobians or Hessians) to move in a descending direction toward a
minima. Non-gradient methods, on the other hand, work by iteratively approximating the
actual constrained optimization problem with linear programming problems. During an
iteration, an approximating linear programming problem is solved to obtain a candidate
for the optimal solution. The candidate solution is evaluated using the original objective
and constraint functions, yielding a new data point in the optimization space. This in-
formation is used to improve the approximating linear programming problem used for
the next iteration of the algorithm. When the solution cannot be improved anymore, the
step size is reduced, refining the search. When the step size becomes sufficiently small,
the algorithm finishes.

Previous studies have compared gradient- and non-gradient based optimization for
a range of VQLS applications using quantum simulators, quantum simulators with shot
noise, and fully quantum applications. In particular, in [64], it was shown that once shot
noise is included in either the statevector simulator or real quantum application, gradient-
based optimizers do not offer much of an advantage over non-gradient optimizers. A
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popular choice for VQLS applications, for example, is the non-gradient based constrained
optimization by linear approximation (COBYLA) method. Due to these previous findings
and the complexity of including the objective function gradients, the COBYLA method was
used for all applications herein, and gradient-based methods were not investigated.

5. Applications
5.1. Application 1: The Poisson Equation

For the first application, the QVA was used to solve the Dirichlet problem for the 1D
Poisson equation, given in strong form by

−4u(x) = f (x), u(x) ∈ Ω, (5)

where u(0) = uL and u(1) = uR. The equivalent weak representation of this equation
is obtained by taking Equation (5) and multiplying it by an arbitrary test function in the
appropriate function space, followed by integrating by parts [65] to give∫ uR

uL

dφ

dx
du
dx

dx =
∫ uR

uL

φ f (x) dx ∀φ ∈ H1
0(Ω) (6)

Here, φ(x) is the arbitrary test function in the appropriate Hilbert space, and the
boundary term from integrating by parts vanishes since the test space H1

0 has 0 trace.
To discretize this equation, the standard Galerkin approximation with linear Lagrange
polynomials is used on a uniform 1D grid of N points, where the ith nodal location is given
by xi = ih. Here, h = 1/(N − 1) and 0 ≤ i ≤ (N − 1). Additionally, we define n = N − 2
as the internal node count. This discretization results in the linear system

K~u = ~f (7)

where for linear, Lagrangian basis function support, K is the typical tridiagonal “stiff-
ness” matrix, ~u is the solution vector, and ~f is the right-hand side. When applying non-
homogeneous Dirichlet boundary conditions, it is essential to manipulate this linear system
to force the specified solution values on the domain endpoints, giving the following RHS:

~f =



∫ 1
0 φ1 f (x) dx +

∫ 1
0

∂φ1
∂x

∂φ0
∂x uL dx∫ 1

0 φ2 f (x) dx∫ 1
0 φ3 f (x) dx

...∫ 1
0 φn f (x) dx +

∫ 1
0

∂φn
∂x

∂φn+1
∂x uRdx

 (8)

For Dirichlet boundary conditions, a reduced system can be solved without the end-
points, since these are known. The reduced matrices were used for all applications herein to
increase the grid resolution, since the qubit count was extremely limited. While obtaining
the quantum wavefunction for the RHS of the homogeneous Poisson equation is relatively
straightforward, heterogeneous boundaries or time-dependent solutions require more
complex ways of calculating the RHS wavefunction on the fly. As mentioned, this was
accomplished using Qiskit’s Isometry package. An example for creating a wavefunction
from an arbitrary vector U is as follows:

qc = QuantumCircuit ( 4 )
U = [ 0 . 1 , 2 , 2 , 2 , 2 , 2 , 2 , 0 . 1 ]
U /= np . l i n a l g . norm (U)
qc . isometry (U, [ 0 , 1 , 2 ] , [ ] )
qc = t r a n s p i l e ( qc , b a s i s _ g a t e s = [ ’ u3 ’ , ’ cx ’ ] , o p t i m i z a t i o n _ l e v e l =3)

This circuit is shown in Figure 2.
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Figure 2. A quantum circuit representing ~f T = [ 0.1, 2, 2, 2, 2, 2, 2, 0.1 ] found using Qiskit’s Isometry
command.

5.1.1. Poisson Case 1: Parabolic Solution with Homogeneous Boundary Conditions

For the first Poisson test, a manufactured quadratic solution for Equation (5) was used
to simplify the RHS preparation. The solution was given by

u(x) = a + b(x− x0)
2 (9)

where a = g− b(−x0)
2, u(0) = u(1) = g and x0 = 1/2. The RHS of Equation (5) then

simplifies to a constant −2b. For homogeneous boundary conditions, where g = 0, the
reduced RHS of Equation (7) can be written as

~f = h[−2b − 2b − 2b − 2b − 2b − 2b]T (10)

where h is the uniform grid spacing and T is the transpose.
This linear system was solved using the fixed-ansatz VQLS as described with the

Pauli decomposition given in Appendix A and the right-hand side preparation detailed in
Section 2.3. For the quantum simulator results without shot noise, errors arose only from
discretization of spatial derivatives and the VQLS optimization. The number of qubits m in
the VQLS determines the grid resolution such that the total number of nodes is N = 2m + 2.
Our attempts at optimization for anything greater than three qubits (eight nodes) took too
long to simulate on a serial machine. This low qubit count leads to very coarse grids and
noticeable discretization errors. To properly converge the discrete problem, finer grids
were needed. All ansatz parameters were initialized randomly between −π <= θk <= π,
default optimizer tolerances of 10−4 were used, and the initial change to the variables in
the COBYLA optimizer was set to rhobeg = π.

For the two-qubit homogeneous Poisson application, there were four internal and six
total finite element nodes. The convergence results for the VQLS for a range of ansatz layers
can be seen in Figure 3. These results were averaged over 20 runs, with solid lines indicating
the average and variances shown with vertical bars. The two-qubit linear system’s stiffness
was a 4× 4 matrix. This figure shows that 2 layers were sufficient to successfully capture
the solution to the default tolerance within 100 optimization steps. Note that the total
number of optimization parameters Nθ varied as Nθ = m + 2(m− 1)(nlayers− 1), so for a
two-qubit and two-layer network, there were four parameters to span the solution space.
This figure shows that as the number of layers or parameters increased, the optimization
converged slower, though still relatively fast when compared with the three-qubit problem.
This was expected, however, since the solution test space dimensionality was increasing,
and the variational algorithm had to span this space. For all layer cases, full solution
convergence was achieved within the COBYLA tolerance using the statevector simulator in
less than 100 iterations. Figure 4 plots the wall clock time in seconds versus the number of
layers averaged over the 20 runs for the 2 qubit problem. From this figure, it is seen that
the time it took to converge the solution was linearly proportional to the number of layers
used in the variational ansatz.
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Figure 3. Two-qubit VQLS cost function results for the reduced Poisson problem with homogeneous
Dirichlet boundary conditions. The results were averaged over 20 trial runs. Variances are shown by
respective bars.

Figure 4. Wall clock time in seconds versus the number of layers for the two-qubit VQLS reduced
Poisson problem with homogeneous Dirichlet boundary conditions.

Figure 5 displays the cost function of the 3 qubit statevector solution averaged over
10 runs. For this case, there were 8 internal nodes and 10 total, and the linear system
stiffness was an 8× 8 matrix. While the two-qubit results converged relatively fast for a
small number of layers, this was not the case for the three-qubit application. Additionally, it
took 4 or more layers for the cost function to converge within 1000 iterations. An interesting
note from this figure is that the even-numbered layers performed notably better than the
odd layers, with six layers converging in the least amount of time and most accurately.
This can be seen more clearly in Figures 6 and 7, which display solution results and the
grid root mean square errors averaged over all runs for each layer, respectively. Lastly,
Figure 8 displays the time in seconds averaged over all 10 runs for each layer. Since the
three-layer run never fully converged within the COBLYA default tolerance, it took the
longest. All layers greater than three once again showed a linear increase in time as the
layers were incremented.
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Figure 5. Three-qubit VQLS cost function results for the reduced Poisson problem with homogeneous
Dirichlet boundary conditions. The results were averaged over 10 trial runs. Variances are shown by
respective bars.

Figure 6 displays the VQLS versus the classical discrete solution for the three-qubit,
eight-internal node problem. In this figure, we see the VQLS solution growing in accuracy
as the number of ansatz layers is increased, as expected. In the right column, the VQLS
solutions are plotted along with the analytic system solution. Note that the VQLS solution
here is being compared to the discrete finite-element solution, and thus both include
discretization errors which are not shown.

Figure 6. Three-qubit (eight-node) VQLS results (filled circles with dashed lines) for reduced Poisson
problem with homogeneous Dirichlet boundary conditions. The classical discrete solution is shown
with a solid black line.

For the VQLS results in Figures 3–8, a Qiskit statevector simulator was used so that
the full wave function was known, eliminating measurement and sample errors from the
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convergence figures. For a quantum calculation, however, measurements are necessary, and
sampling errors can affect the classical optimizer convergence. Measurements occurred in
the Hadamard tests of the cost calculations. Figure 9 shows the COBYLA cost convergence
as the number of shots was increased. It was found that to achieve accurate and smooth
convergence, at least 100,000 shots were needed for the 2 qubit VQLS system.

Figure 7. The root mean squared solution error versus the number of layers for the three-qubit VQLS
reduced Poisson problem with homogeneous Dirichlet boundary conditions. Here, the errors were
averaged over all 10 runs for each layer.

Figure 8. Wall clock time in seconds versus the number of layers for the three-qubit VQLS re-
duced Poisson problem with homogeneous Dirichlet boundary conditions. The three-layer run does
not converge.
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Figure 9. The COBYLA cost convergence for a range of shots in the two-qubit VQLS reduced Poisson
problem with homogeneous Dirichlet boundary conditions.

5.1.2. Poisson Case 2: Cubic Solution with Non-Homogeneous B.C.

Next, we consider a non-symmetric cubic Poisson solution with non-homogeneous
boundaries, which will further complicate the RHS vector as it modifies f to be

fi = ah2(6ih− 2) + ui i = 1, n (11)

In this case, ui = uL for i = 1, and ui = uR for i = n. Note that normally, the RHS
addition to the 1D case would be uD/h, but both sides are multiplied by h in the discrete
matrix solution.

The following cubic manufactured solution is used:

u(x) = a(−x3 + x2 + x + 1) (12)

where a = 1 so that uL = 1 and uR = 2. The two-qubit Qiskit wavefunction simulator
was used to calculate the discretized, finite-element VQLS results for 2–6 ansatz layers to
investigate the layer count sensitivities to accuracy and convergence. For each layer count,
five runs were executed, and the mean and standard deviation of the runs were calculated.
Once again, all ansatz parameters were initialized randomly between −π <= θk <= π,
default tolerances of 10−4 were used, and the initial change to the variables in the COBYLA
optimizer was set to rhobeg = π. Using these parameters, it was found that only two ansatz
layers were needed to fully capture the solution, as can be seen in Figure 10. The best cost
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convergence was also seen for two layers, shown in Figure 11. The cost curve variances did
not show any obvious trend with the layer count.

Figure 10. Two-qubit, two-layer solution (filled circles) along with the analytic solution (solid line) of
Case 2: the cubic Poisson problem.

Figure 11. VQLS mean cost versus iteration or optimization count over a range of layers for the cubic
Poisson problem. Variances are shown as curve error bars.
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5.2. Application 2: The Heat Equation

The Poisson test cases were time-independent and required only one linear solve
for the solution. In this section, however, the VQLS results are presented for the 1D
time-dependent heat equation

∂t − ∂xxu = 0 x ∈ (0, 1)

u(xL, t) = uL

u(xR, t) = uR

u(x, 0) = u0

(13)

where xL and xR are the 1D domain endpoints. The weak form of this equation is∫ xR

xL

∂tu φ dx +
∫ xR

xL

uxφx dx = 0 ∀φ ∈ H1
0(0, 1) (14)

Discretizing in time with uniform time steps ∆t and using the backward Euler approx-
imation for the time derivative gives∫ xR

xL

uk+1 φ dx−
∫ xR

xL

uk φ dx + ∆t
∫ xR

xL

uk+1
x φx dx = 0 (15)

where k is the discrete time step index such that k = 1, nt and nt is the total number
of time steps. This equation is made to hold for all test functions, giving the following
finite-element (FE) backward Euler matrix equation:

(M + ∆tK)~u k+1 = M~u k (16)

For linear basis functions on a uniform grid of a spacing h, the matrix operators are

M =


2h
3

1h
6 0 0 ....

1h
6

2h
3

1h
6 0 ...

0 1h
6

2h
3

1h
6 0...

...
. . . . . . . . .

 (17)

K =


2
h − 1

h 0 0 . ...
− 1

h
2
h − 1

h 0 ...
0 − 1

h
2
h − 1

h 0 ...
...

. . . . . . . . .

 (18)

This equation gives a linear system A~x =~b at each time step such that

A =


2h
3 + 2∆t

h
1h
6 + −1∆t

h 0 0 ....
1h
6 + −1∆t

h
2h
3 + 2∆t

h
1h
6 + −1∆t

h 0 ...
0 1h

6 + −1
h

2h
3 + 2∆t

h
1h
6 + −1∆t

h 0...
...

. . . . . . . . .

 (19)

and~b = M~u k.
For verification of the FE-VQLS algorithm, a nonlinear solution was fabricated of

the form

u(x, t) =
1√
4πt

exp(− (x− 0.5)2

4t
) (20)

on the domain [0 ≤ x ≤ 1]× [1 ≤ t ≤ 3]. A uniform grid was created with n = 2m internal
spatial grid points, N = n + 2 total spatial grid points, and nt = 11 time points. Figure 12
shows the two-qubit results (dashed lines and open circles) plotted against the analytic
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solution (solid line). For these results, three layers were used, and rhobeg in the COBYLA
method was set to π/100.

Figure 12. Analytic solution (solid line) versus two-qubit VQLS-based finite element results (dashed
line with open circles) for the time-dependent heat equation at each time step.

The results in this figure show excellent agreement between the FE-VQLS and the
analytic solution. It should be noted, however, that in order to obtain these results, the
FE-VQLS solution had to be scaled appropriately at each time step, since the quantum
results were only proportional to the solution. This could be accomplished by using the
boundary conditions if they were non-homogeneous, and the system was not solved in a
reduced way. However, since the reduced systems were used herein, the non-homogeneous
boundaries were not included, and the ratio of the analytic and FE-VQLS solution of the
first internal point was used for the scaling.

At each time step, the previous VQLS ansatz parameters were used to initialize the
minimization procedure and speed up convergence. Ideally, the number of COBYLA
iterations should decrease in time. This was seen for the two-qubit solution, as shown
in Figure 13.
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Figure 13. The COBYLA iteration count over time for the two-qubit solution of the heat equation.

5.3. Application 3: The Wave Equation

For the last application, we present the VQLS results for a 1D wave equation of
the form

∂ttu− ∂xxu = 0 x ∈ (0, 1)

u(xL, t) = uL

u(xR, t) = uR

u(x, 0) = u0

(21)

where xL and xR are the endpoints of the 1D domain. The weak form of this equation is∫ xR

xL

∂ttu φ dx +
∫ xR

xL

uxφxdx = 0 ∀φ ∈ H1
0(0, 1) (22)

Discretizing in time with uniform time steps ∆t and using a second-order difference
approximation for the time derivative gives∫ xR

xL

uk+1 φ dx− 2
∫ xR

xL

uk φ dx +
∫ xR

xL

uk−1 φ dx + ∆t2
∫ xR

xL

uk+1
x φx dx = 0 (23)

Note here that we have treated the diffusion term implicitly. When applied to all test
functions, this yields the matrix equation

(M + ∆t2K)~u k+1 = M(2~u k + ~u k−1) (24)

where A = M + ∆t2K and~b = M(2~u k + ~u k−1).
To test the VQLS, a non-separable solution of

u(x, t) = sin(x + t) (25)

was used on the domain [0 ≤ t ≤ 1]× [0 ≤ x ≤ 1]. A total of m = 2 qubits (n = 4 internal
points) were used for the matrix-reduced internal solve with three ansatz layers. The time
step was set to ∆t = 0.1s. As can be seen in Figure 14, the VQLS results agreed well with the
analytic solution, and it is noted that a majority of the differences came from discretization
and not from the VQLS procedure. The time-dependent COBLYA iteration count, which
essentially represents the time evolution regularity of the ansatz parameters, can be seen in
Figure 15. This figure shows a large initial iteration count associated with random sampling
and a decrease in iteration count for each linear solve as the solution converged over time.
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Figure 14. Analytic solution (solid line) versus two-qubit VQLS-based finite element results (dashed
line with open circles) for the time-dependent wave equation at each time step.

Figure 15. The COBYLA iteration count over time for the two-qubit solution of the wave equation.

6. Discussion

In this study, the variational quantum linear solver recently proposed by Bravo-Prieto
et al. [60,61] was used to solve the linear systems obtained from finite-element discretization
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of the time-independent Poisson and time-dependent heat and wave equations. Although
the results presented focused on these equations, the tools of this effort can generally be
used to solve any discretization of a partial differential equation that leads to a matrix
solution. The key findings of this effort are that (1) the Qiskit Isometry command can be
used to generate wavefunctions for arbitrary vectors, a vital component for solving time-
dependent right-hand sides, (2) the quantum/classical hybrid variational solver can be
used as a potential “accelerator” for discrete finite-element problems, (3) the large number
of sampling shots and N2 matrix gate Hadamard test evaluation requirements greatly
affects qubit scalability and thus the finite element grid resolution, and (4) the minimization
iteration count decreases over time as the solution converges, reflecting an ansatz parameter
regularity. The latter point is particularly useful for initial value problems, where a set of
initial ansatz parameters need only be found once and used thereafter.

Regarding scalability of the VQLS, although it was previously found in [61] that this
method was scalable for up to 1024× 1024 (10 qubit)-sized systems, that was certainly not
the case for the practical linear systems herein, where the matrix and RHS required deeper
circuits. Since each term in the stiffness Pauli decomposition requires a Hadamard test
against the other terms, this size of the linear combination (circuit depth) directly affects
the efficiency of the VQLS algorithm. For the 2 qubit, 6 node systems, the scalability more
closely resembled that presented in Bravo-Prieto’s analysis, but the 4 qubit, 18 node systems
required 16 Pauli terms in the linear combination, and the VQLS results converged too
slowly to be practical.

Future work will include further investigation of (1) new ansatz and optimization
options, (2) more efficient methods for creating arbitrary RHS vectors specifically for use in
finite-element methods, and (3) the quantum hardware scalability and effect of quantum
noise for applications of the FE-VQLS.

Author Contributions: Conceptualization, C.J.T.; Methodology, C.J.T. and M.L.; Validation, M.L.;
Investigation, C.J.T., M.L., N.D. and E.E.; Data curation, E.E.; Writing—original draft, C.J.T. and M.L.;
Writing—review & editing, C.J.T., M.L. and N.D.; Visualization, C.J.T.; Supervision, C.J.T.; Project
administration, C.J.T.; Funding acquisition, C.J.T. All authors have read and agreed to the published
version of the manuscript.

Funding: N.D. would like to acknowledge support from the Applied Research Laboratories at the
University of Texas at Austin.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Preparation of the Stiffness Matrix

A crucial bottleneck of methods that simulate linear algebra computations with the
amplitudes of quantum states is state preparation, which often requires one to initialize
a quantum system in a state whose amplitudes reflect the features of the entire dataset.
Although efficient methods for state preparation are known for specific cases [66,67], this
step easily hides the complexity of the task [68,69].

In order to solve the linear system either directly or variationally on a quantum
computer, the stiffness matrix K must be represented as a linear combination of Hermitian
unitary operators, K = ∑i ci Ui, representing a system Hamiltonian where Ui represents the
unitaries and ci represents the complex coefficients. Additionally, we assume that the matrix
condition number κ < inf and ‖A‖ ≤ 1 and that the Ai unitaries can be implemented with
efficient quantum circuits. Typically, this decomposition consists of a linear combination of
Kronecker products of the Identity and Pauli matrices, as these gates are widely used and
recognized. These matrices and gates are defined as follows:
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I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(A1)

To find this linear combination, the tridiagonal matrix can be expressed recursively. Ignor-
ing the diagonal component I2m , suppose that we have an expression for the off-diagonal
elements in the m qubit case

Am =
2m−2

∑
i=0

(|i〉 〈i + 1|+ |i + 1〉 〈i|) (A2)

which gives an expression such as

|0〉 〈1|+ |1〉 〈2|+ ... + |2m − 2〉 〈2m − 1|+ h.c. (A3)

Now, we write

I2 ⊗Am =
(
|0〉 〈0|+ |1〉 〈1|

)
⊗Am (A4)

=
2m−2

∑
i=0

(
|i〉 〈i + 1|+ |i + 1〉 〈i|

)
+

2m+1−2

∑
i=2m

(
|i〉 〈i + 1|+ |i + 1〉 〈i|

)
= Am+1 −

(
|2m − 1〉 〈2m|+ |2m〉 〈2m − 1|

)
and thus

Am+1 = I2 ⊗Am +
(
|2m − 1〉 〈2m|+ |2m〉 〈2m − 1|

)
(A5)

In the second line of Equation (A4), tensoring |1〉 〈1| with the second sum puts a “1”
bit ahead of every bit string, which shifts every index in the summand by 2m. Then, by
comparison with Equation (A2), this line is simply Am+1 but missing a term connecting the
two tri-diagonal block submatrices of I2 ⊗Am.

As an m = 3 example, it is first easy to find the off-diagonal solution for m = 2,
given by

A2 = I⊗ X +
1
2
(X⊗ X + Y⊗ Y) (A6)

=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

+


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0



=


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


Using this result, Equation (A5) can be written as

A3 =

(
A2 0
0 A2

)
+ (|011〉 〈100|+ |100〉 〈011|) (A7)

Appendix A.1. Implementing the Recursion Using GHZ States

All that is needed now is an operator representing
(
|2m − 1〉 〈2m|+ |2m〉 〈2m − 1|

)
.

This turns out to be closely related to writing an m + 1 qubit GHZ state in terms of
Pauli operators. The GHZ state |ψ〉 = |0〉⊗(m+1) + |1〉⊗(m+1) operator |ψ〉 〈ψ| has two
off-diagonal elements: one in the top left and one in the top right of the corresponding
matrix. These elements can be permuting toward the center of the matrix with the operator
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Bm+1 = |0〉 〈2m+1 − 1|+ |2m+1 − 1〉 〈0| (A8)

= (|0〉 〈1|)⊗(m+1) + (|1〉 〈0|)⊗(m+1)

Thus, we have

(X⊗ I2m)Bm+1(X⊗ I2m) = (X⊗ I2m)
(
(|0〉 〈1|)⊗(m+1) + (|1〉 〈0|)⊗(m+1))(X⊗ I2m) (A9)

= (|10...0〉 〈01...1|+ |01...1〉 〈10...0|)
= |2m〉 〈2m − 1|+ |2m − 1〉 〈2m|

Now, using the results of (GUHNE 2007), the center shift operator can be written as

Bm = (|0〉 〈1|)⊗m + (|1〉 〈0|)⊗m (A10)

=
1

2m−1

bm/2c

∑
t=0

(−1)t ∑
π

Sπ(X⊗(m=2t) ⊗ Y⊗2t) (A11)

Here, the Sπ operator permutes m subsystems according to a permutation
π : {1, · · · , n} → {1, · · · , m}, and the sum runs over all unique permutations π on size m
sets. Using this formula along with Equation (A5) gives an analytic Pauli decomposition of
the stiffness matrix.

Appendix A.2. Preparation of the m = 3 Stiffness Matrix

For the m = 3 qubit stiffness matrix (with 2m = 8 finite element nodes), Equation (A10)
becomes

B3 =
1
4
(XXX− XYY− YXY− YYX) (A12)

and therefore

(X⊗ I4)B3(X⊗ I4) =
1
4
(XXX− XYY + YXY + YYX) (A13)

Substituting this into Equation (A5) and adding the diagonal factor 2III gives our final
three-qubit, eight-node stiffness matrix Pauli decomposition as follows:

2I8 −A3 = 2I8 −
[
I2 ⊗A2 + (X⊗ I4)B3(X⊗ I4)

]
(A14)

= 2III−
[
IIX +

1
2
(IXX + IYY) +

1
4
(XXX− XYY + YXY + YYX)

]
Appendix A.3. Preparation of a General m Qubit Stiffness Matrix

Generalization of the above procedure for an m qubit stiffness matrix gives the follow-
ing recursive procedure with A1 := x:

Am = I2 ⊗Am−1+ (A15)

(X⊗ I2m−1)
1

2m−1

bm/2c

∑
t=0

(−1)t ∑
π

Sπ(X⊗(m=2t) ⊗ Y⊗2t) + (X⊗ I2m−1)

The final finite-element stiffness matrix is then

Km = 2I2m −Am (A16)
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