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Abstract: The Boltzmann–Gibbs additive entropy SBG = −k ∑i pi ln pi and associated statistical

mechanics were generalized in 1988 into nonadditive entropy Sq = k 1−∑i pq
i

q−1 and nonextensive
statistical mechanics, respectively. Since then, a plethora of medical applications have emerged. In
the present review, we illustrate them by briefly presenting image and signal processings, tissue
radiation responses, and modeling of disease kinetics, such as for the COVID-19 pandemic.

Keywords: medical applications; nonadditive entropies; nonextensive statistical mechanics; image
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1. Introduction

Throughout the history of the sciences, medical applications have emerged within
very diverse disciplines. In particular, physics has provided all kinds of such applications,
including X-rays, magnetic resonances, optical fibers, laser instruments, thermometers,
pressure devices, and radio therapies, among many others. In recent decades, new ap-
plications have emerged from statistical mechanics, one of the pillars of contemporary
physics, together with electromagnetism, classical and quantum mechanics, and others. The
processing of various medical images and signals, such as electroencephalograms (EEG),
magnetoencephalograms (MEG), as well as other important procedures, have benefited,
both in precision and in speed, from the thermostatistical concept of entropy, which, to-
gether with the concept of energy, provide the basis of classical thermodynamics [1]. More
precisely, the 1988 proposal [2] of so-called nonadditive entropies as a basis to generalize
the traditional Boltzmann–Gibbs (BG) theory led to many useful medical applications. We
review here selected examples.

BG statistical mechanics is constructed upon the following Boltzmann–Gibbs–von
Neumann–Shannon entropic functional:

SBG = −k
W

∑
i=1

pi ln pi

( W

∑
i=1

pi = 1
)

, (1)

where k is a conventional positive constant chosen once for ever (typically k = kB in physics,
and k = 1 in computational sciences). Its maximal value occurs for equal probabilities, i.e.,
pi = 1/W , ∀i, and is given by

SBG = k ln W , (2)

carved on the tombstone of Ludwig Boltzmann in Vienna. This relation constitutes an
inspired connection between the macroscopic and the microscopic descriptions of real sys-
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tems. The entropy (1) is additive [3]. Indeed, if A and B are two probabilistically independent
systems (i.e., pA+B

ij = pA
i pB

j , ∀(i, j)), we straightforwardly verify that

SBG(A + B) = SBG(A) + SBG(B) . (3)

In addition, for a system in thermodynamical equilibrium with a thermostat at temperature
T, the distribution which optimizes SBG is given by the celebrated BG weight

pi =
e−βEi

∑W
j=1 e−βEj

, (4)

where β = 1/kT and {Ei} are the possible energies of the system.
In 1988, a generalization of this theory was proposed [2] on the basis of the entropic

functional

Sq = k
1−∑W

i=1 pq
i

q− 1
(q ∈ R; S1 = SBG) . (5)

Its maximal value is given by the generalization of Equation (2), namely

SBG = k
W1−q − 1

1− q
≡ k lnq W . (6)

Equation (3) is generalized as follows:

Sq(A + B)
k

=
Sq(A)

k
+

Sq(B)
k

+ (1− q)
Sq(A)

k
Sq(B)

k
, (7)

hence
Sq(A + B) = Sq(A) + Sq(B) +

1− q
k

Sq(A)Sq(B) . (8)

And Equation (4) is generalized into

pi =
e
−βq(Ei−µq)
q

∑W
j=1 e

−βq(Ej−µq)
q

, (9)

where µq plays the role of a chemical potential, and eq(x) is the inverse function of lnq x, i.e.,

ex
q ≡ [1 + (1− q)x]

1
1−q
+ , (10)

[. . . ]+ being equal to [. . . ] if [. . . ] > 0 and zero otherwise.
Details related to this q-generalized statistical mechanics, currently referred to as

nonextensive statistical mechanics, are available at [4,5], and a full bibliography is available
at [6].

2. Medical Applications

The concept of entropy has more than once been useful in connection with medical
applications (see, for instance, [7–9]). In particular, nonadditive entropies have been
extensively used in image and signal processing in order to improve speed and clarity.
Illustrative examples are provided here, as well as applications in tissue radiation response.

2.1. Image Processing

The detection of possible pathological microcalcifications as revealed in mammograms
can be improved by using q-entropy with q 6= 1 [10] (see Figure 1).

Brain tissue segmentation using q-entropy improves the diagnosis of multiple sclerosis
in magnetic resonance images [11] (see Figure 2).

Detailed images of bronchus, colon, and blood vesse (Figure 3).
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Figure 1. Without q-entropy enhancement with q 6= 1, detection of microcalcifications is limited:
80.21% Tps (true positives) with 8.1 Fps (false positives), whereas upon introduction of the q-entropy,
the results surge to 96.55% Tps with 0.4 Fps. Detection results from the experiment: (a) mdb236,
(b) output with the Mcs enhanced, (c) output with the Mcs extracted; (d) mdb216, (e) output with the
Mcs enhanced, (f) output with the Mcs extracted. From [10].
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Figure 2. Image segmentation using Shannon (q = 1) and q-entropy with q 6= 1. From [11].

Figure 3. Detailed images of bronchus, colon, and blood vessel. From [12].

The images of computer tomography scans revealing fibrosis due to COVID-19 can be
improved by incorporating into the algorithm the q-entropy with q = 0.5 [13] (see Figure 4).

Figure 4. Sample scans from the dataset before and after enhancement showing infected lungs.
(a) Original computer tomography scans, with red circles highlighting some regions where fibrosis
can be seen; (b) enhanced computer tomography scans using q = 0.5. Further details can be seen in [13].



Entropy 2023, 25, 578 5 of 13

2.2. Signal Processing

As a critical element of cardiovascular research, in the examination of heart health an
electrocardiogram (ECG) represents a record of cardiac electrical activity whose sophisti-
cated analysis is highly relevant for diagnosing and preventing cardiovascular diseases.
The latter typically requires considerable human resources and expertise. To this end,
many powerful automated techniques and methodologies for ECG signal analysis have
been reported to date in the literature (see e.g. [14,15]; for recent reviews, see [16,17] and
references therein). Most advanced methods, in particular, utilise modern artificial in-
telligence approaches enabling rapid human-like interpretation of the ECG recordings
capable of recognising subtle patterns and details in the ECG signals typically inaccessi-
ble by human interpreters [18–20]. Such methods make ECG signal analysis a powerful,
non-invasive means of biomarking.

Another important method for monitoring and examining patient health is based on
electroencephalogram (EEG) recordings [21,22]. This method is particularly focused on
controlling disruptions in the functionality of neurons inside the brain, such as seizures in
epilepsy [23]. Existing conventional treatments for epilepsy cannot be efficiently applied
in the case of successive seizures, which are widespread and account for about 30% of
epilepsy patients [24]. A comprehensive visual analysis of EEG recordings by doctors is
cumbersome as it takes too much time and can be subjective and prone to human error.
Hence, an automated seizure detection approach is required to accelerate the analysis of
EEG recordings and obtain more accurate predictions [25–28].

Both ECG and EEG recordings are important ingredients of so-called medical time
series representing recorded electronic health datasets containing important information on
certain aspects of a patient’s health recorded over a given period of patient care, or over the
course of a patient’s entire lifetime [29]. Generic medical (or clinical) time series may capture
genetic and lifestyle health risks, indicate the emergence of possible diseases, and contain
information about the time and stage of diagnosis, as well as about the development
of treatment plans. A detailed and reliable analysis of medical time series is essential
for understanding clinical trajectories and progression in a wide range of diseases, such
as cancer, Alzheimer’s or cardiovascular disease, etc., as well as for enabling precise
forecasting of disease trajectories, correct and timely diagnosis, and the development of
appropriate treatment procedures [30].

Signal processing of the EEG for direct medical use has been proposed for brain
injury following serious events, such as cardiac arrest or asphyxia [31]. Typical results
are indicated in Figure 5 (where the highest sensitivity of the recovery EEG is achieved
for q ' 3) and Figure 6 (where artificial low-amplitude spikes become detectable after
(entropic) processing with q ≥ 3). Further biomedical applications are described in [32–44].

The analysis of the tonic–clonic transition of some types of epilepsy provides a typical
illustration [42]. The EEG during a crisis can be seen in Figure 7. At time 125 s, a clinically
dramatic transition occurs with the patient. However, nothing special can be seen in
the direct EEG at that moment. In contrast, as we verify in Figure 8, after appropriate
processing, the tonic–clonic transition becomes clearly visible. The discrimination becomes
even stronger if q < 1 is used. If no specialized medical agents are present at the precise
moment of the crisis of the patient, the existence of such a neat peak makes possible the
automatic start of computer-controlled administration of appropriate drugs during the
emergency.

The use of such algorithms is expected to enable improved analyses in mild cogni-
tive impairment, vascular dementia, Lewy body dementia, major depression, dementia
associated with Parkinson’s disease, Pick’s disease, Huntington’s chorea, and progressive
supranuclear palsy, among others.
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Figure 5. The goal is to distinguish between signals with different probability distributions, and
between EEG recordings for different physiological conditions. The optimal is achieved for q ' 3.
Further details can be seen in [31].

Figure 6. The goal is to detect the existence of three (artificially introduced) spikes which corrupt the
raw EEG. Even small spikes become detectable after processing with q ≥ 3. Further details can be
seen in [31].
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Figure 7. Electroencephalogram (including the contribution of muscular activity) during an epileptic
crisis, which starts at 80 s, and ends at 155 s. By direct inspection of the EEG, it is virtually impossible
to detect the (clinically dramatic) transition (at 125 s) between the tonic stage and the clonic stage of
the patient. Further details can be seen in [42].
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Figure 8. (Top panel) After processing (of the EEG signal), which includes the use of the entropic
functional Sq, the precise location of the tonic–clonic transition becomes very visible. (Bottom panel)
The effect is even more pronounced for values of q going below unity. Further details can be seen
in [42].

2.3. Tissue Radiation Response

Radio therapies are frequently used to aid recovery from serious diseases, such as
cancer. The application of such medical procedures is, however, quite difficult. Indeed,
healthy cells can be attacked together with sick ones.

From q-statistical arguments, it was obtained [45] that the cell survival fraction Fs is
given by the q-exponential form Fs = (1− D/D0)

γ, where D is the applied dose, D0 is the
minimal annihilation dose, and γ ≡ (2− q)/(1− q). Figure 9 shows the validation of this
expression with experimental data obtained for five different classes of cells; moreover,
a universal curve can be established through appropriate collapse. The superiority of
the D-dependence of Fs is illustrated in Figure 10. Indeed, the use of the current linear-
quadratic (LQ) exponential function (of the BG type) yields, for extreme values of D (such
as D = 16 Gy), a value for Fs which can be erroneous by a dangerous factor larger than two
in the survival fraction. Such an overdose can be fatal for healthy cells.
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Figure 9. (Top panel) Survival fraction Fs as a function of the rescaled radiation dose (1− D/D0)

for different tissues: intestinal stem cells, Chinese hamster cells, human melanoma, human kidney
cells, and cultured mammalian cells under different irradiation conditions. Various shapes represent
tissues, whereas each color highlights different radiation conditions. Five solid lines represent
fitting to experimental data. (Bottom panel) Collapsed survival fractions Fs for different tissues with
γ ≡ (2− q)/(1− q): intestinal stem cells (γ ' 30.5), Chinese hamster cells (γ ' 14.0), human
melanoma (γ ' 14.0), human kidney cells (γ ' 8.9), and cultured mammalian cells (γ ' 8.9) under
different irradiation conditions. Further details can be seen in [45].

Figure 10. Comparison between the current linear-quadratic (LQ) BG-like exponential model best fit
and the present q-exponential model fitted to γ = 5.0± 0.04 and D0 = (19.4± 0.4) Gy for the cell line
CHO AA8 under 250 k-Vp x rays. Further details can be seen in [45].
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3. Modeling of Disease Kinetics

The complexity of the propagation of diseases within a population makes these phe-
nomena strong candidates for the application of q-statistics. We mention here two such
applications for COVID-19, one of them being purely descriptive [46], the other one entering
into the dynamics of an epidemic or pandemic [47].

Let us briefly review the quite successful description advanced in [46] for the behaviour
of total cases and fatality curves. We will concentrate here on analysis of the active cases
and deaths per day. The inspection of public data, such as [48] (updated on a daily basis), in
particular, of the time evolution of the number N of active cases (surely a lower bound of
the unknown actual numbers) showed a rather intriguing similarity with the distributions
of the volumes of stocks. Along these lines, we adopt the following functional form for
each country or region:

N = C(t− t0)
αe−β (t−t0)

γ

q =
C(t− t0)

α

[1 + (q− 1)β (t− t0)γ]1/(q−1)
, (11)

with C > 0; α > 0; β > 0; γ > 0, q > 1 and t0 ≥ 0. The constant t0 indicates the first day of
appearance of the epidemic in that particular country (or region). The normalising constant
C reflects the total population of that particular country. For α = 0, if γ = 1, we recover
the standard q-exponential expression; if γ = 2, it is currently referred to in the literature
as q-Gaussian; for other values of γ, it is referred to as stretched q-exponential. Through
the inspection of the roles played by the four nontrivial parameters, namely (α, β, γ, q),
it became rather transparent that (α, β) depend strongly on the epidemiological strategy
implemented in that region, in addition to the biological behaviour of the coronavirus in
that geographical climate. In contrast, the parameters (γ, q) appear to be fairly universal
for COVID-19, mainly depending on the coronavirus itself. See Figure 11 for typical results
in May 2020.
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Figure 11. Pandemic evolution of COVID-19. From [46].Figure 11. Pandemic evolution of COVID-19. Further details can be seen in [46].

4. Final Remarks

The q-exponential function ex
q = [1 + (1 − q)x]

1
1−q is asymptotically universal for

x → 0, i.e., it does not depend on q for |x| → 0. In other words, in such a limit, we are
allowed to simply replace it by ex. But the discrepancy becomes dramatic as soon as |x|
grows. Since the index q generically reflects non-local space and/or time correlations which
are virtually always present in relevant properties of complex systems, it is no surprise
that nontrivial values of q can be usefully adapted in very many medical applications.
Indeed, human beings, and living organisms in general, are notoriously complex systems
and their properties frequently differ from the typical ones verified in simple systems, such
as those in, say, the standard thermal equilibrium. The practicality of q-statistical concepts
with regard to the usual Boltzmann–Gibbs concepts has been illustrated in the present
review with examples including the processing of medical images (e.g., mammograms,
computer tomography, magnetic resonance) and signals (e.g., EEG, MEG), tissue response
to radiation, and the modeling of pandemic disease kinetics, such as for COVID-19. It
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appears that the door is open for the development of new and more precise procedures
and algorithms that will be beneficial to human health.
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