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Abstract: This paper discusses the way that energy and entropy can be regarded as storage functions
with respect to supply rates corresponding to the power and thermal ports of the thermodynamic
system. Then, this research demonstrates how the factorization of the irreversible entropy production
leads to quasi-Hamiltonian formulations, and how this can be used for stability analysis. The
Liouville geometry approach to contact geometry is summarized, and how this leads to the definition
of port-thermodynamic systems is discussed. This notion is utilized for control by interconnection of
thermodynamic systems.

Keywords: macroscopic thermodynamics; dissipativity theory; Liouville geometry; homogeneous
Hamiltonian dynamics; interconnection; control

1. Introduction

Since the early 1970s [1] contact geometry has been recognized as underlying macro-
scopic thermodynamics, starting from Gibbs’ fundamental thermodynamic relation. This
has spurred a series of papers on the geometry of thermodynamics; including [2–27];
see [28] for an introduction and survey. Nevertheless, this literature points to major dif-
ferences with, for example, the geometric theory of classical mechanics (using symplectic
geometry), and hints at aspects which have not yet been addressed. First, the thermody-
namic phase space (which is formulated as a contact manifold) comprises the extensive and
intensive variables, and thus, its dimension is more than twice the minimal number of vari-
ables to describe the thermodynamic system at any moment of time. Second, most of the
theory is about thermostatics, and the proper geometric formulation of the dynamics is much
less clear. Third, the contact geometric approach to thermodynamics is usually based on the
energy representation of thermodynamic systems and its corresponding Gibbs one-form. On
the other hand, there is also the entropy formulation which corresponds to another (although
conformally equivalent) one-form. This led [29] to the use of homogeneous coordinates for
the intensive variables, and thus to extend the thermodynamic phase space by one more
degree of freedom. This was followed up in [25,26] by emphasizing the formulation of the
thermodynamic phase space as the projection of the cotangent bundle over the space of
extensive variables. Thus contact geometry is approached from the vantage point of the
geometry of cotangent bundles with their Liouville one-form. Fourth, until now, not much
work has been performed regarding the geometry of irreversible thermodynamics, based on
the factorization of the irreversible entropy production. Fifth, how to use these geometric
frameworks for the control of thermodynamic systems has not yet been addressed.

The present paper continues the investigation of all of these aspects. In Section 2,
a systems and control perspective on macroscopic thermodynamics is emphasized by
primarily regarding thermodynamic systems as systems interacting with their surround-
ings via heat, mechanical work, exchange of chemical species, etc. A classical example
is, of course, the heat engine. A summary of how dissipativity theory provides a natural
framework for interpreting and formulating the first and second laws of thermodynamics,
Clausius’ inequality, and eventually entropy is provided. Indeed, energy and entropy
reveal themselves to be the storage functions corresponding to two supply rates involving
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the thermal and mechanical ports of the thermodynamic system. Finally, this leads to Gibbs’
fundamental relation and to the definition of the thermodynamic phase space. Section 3
focuses on geometric descriptions of irreversible thermodynamic systems. The way that the
classical factorization of the irreversible entropy production suggests quasi-Hamiltonian
formulations (somewhat resembling GENERIC [30]) based on energy conservation and the
increase of entropy of the autonomous part of the dynamics are discussed. This paper also
indicates how such formulations may be used for stability analysis. Section 4 starts with
the geometry of the thermodynamic phase space from the point of view of the Liouville
geometry of the cotangent bundle over the space of extensive variables. Identifying the
constitutive relations (‘thermostatics’) of the thermodynamic system as a Liouville subman-
ifold, and the dynamics as homogeneous Hamiltonian dynamics lead to the definition of
a port-thermodynamic system. Such systems interact with their environment via power
ports and/or entropy flow ports. In Section 5, this is used for ‘control by interconnection’ of
port-thermodynamic systems, where the dynamics of the system are sought to be controlled
by interconnection with a suitable controller port-thermodynamic system. Finally, Section 6
contains conclusions and a discussion of venues for further research.

The sections are illustrated by three running examples: the gas-piston-damper system,
chemical reaction networks, and the heat exchanger. Overall, the paper heavily builds
upon previous papers [25,26,31–34], in which further details and background can be found.

2. The First and Second Law from the Point of View of Dissipativity Theory

The first law of thermodynamics expresses two fundamental properties: (1) the dif-
ferent types of interaction of a thermodynamic system with its surroundings (e.g., heat
flow, mechanical work, flow of chemical species, etc.) all result in an exchange of a com-
mon quantity called energy, (2) there exists a function of the macroscopic thermodynamic
variables that represents the energy stored in the system, and the increase of this function
during any time interval is equal to the sum of the energies supplied to the system during
this time interval by its surroundings (conservation of energy). Thus, energy manifests itself
in different physical forms, which are equivalent and to a certain extent exchangeable. ‘To
a certain extent’ because, as expressed by the second law of thermodynamics, there are
limitations to the conversion of heat to other forms of energy.

The first law can be mathematically formulated through the use of dissipativity theory
as formulated in [35]; see also [31,36,37]. Consider a simple thermodynamic system such
as a gas, described by three variables: volume V, pressure P, and temperature T. Then,
mechanical power (rate of mechanical work) provided by the surroundings to the thermo-
dynamic system is given by −PuV , where uV := V̇ is the rate of volume change. (In the
physics convention for the pressure P, PuV is the rate of mechanical work exerted by the
system on the surroundings). The second type of interaction with the surroundings comes
from heat delivered to the system (for instance, from a heat source). Let us denote, using q,
the heat flow (heat per second) from the heat source into the system. Then the first law is
expressed by the existence of a function E(x) of the thermodynamic state x (e.g., (V, P, T)
satisfying the equation of state), expressing the energy of the system and satisfying, at all
times, t

d
dt

E(x(t)) = q(t)− P(t)uV(t) (1)

That is, the increase of the total energy E of the thermodynamic system is equal to
the incoming heat flow (through the thermal port) minus the mechanical work performed
by the system on its surroundings (through the mechanical port). Equivalently, in the
terminology of dissipativity theory, the first law amounts to the system being cyclo-lossless
for the supply rate q − PuV , with storage function E. This is directly extended to more
involved thermodynamic systems. For example, suppose that apart from mechanical and
thermal interaction with the surroundings, there is additional mass inflow of chemical
species. Then, the supply rate q− PuV is extended to q− PuV + ∑k µkνk. Here, νk = dNk

dt ,
with Nk the mole number of the k-th chemical species, and µk its chemical potential.
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The first law emphasizes the role of thermodynamic systems as devices for energy
conversion; energy from one physical domain is converted into energy in another domain.
‘Optimal’ conversion of heat into mechanical work, motivated by the design of steam
engines in the beginning of the 19th century, was one of the starting points of thermody-
namic theory. Electro-chemical devices such as batteries, and electro-mechanical systems
including electrical motors and generators, are among the many other classical examples
of energy-converting devices [38]. On the other hand, almost from the very start of ther-
modynamic theory, it was realized that there are intrinsic limitations to energy conversion.
In particular, heat cannot just be converted into mechanical work. This is the origin of the
second law of thermodynamics. The second law also admits a dissipativity interpretation;
however, more involved than that of the first law. Let us start with the formulation of the
second law, as given by Lord Kelvin (see [39]):

A transformation of a thermodynamic system whose only final result is to transform into work
heat extracted from a source which is at the same temperature throughout is impossible.

Since the work done during a time interval [t1, t2] is equal to
∫ t2

t1
−P(t)dV(t) =∫ t2

t1
−P(t)uV(t)dt, Kelvin’s formulation immediately implies that for each constant temper-

ature T, any thermodynamic system is cyclo-passive with respect to the supply rate −PuV .
However, the second law is stronger than that. Namely, Kelvin’s formulation also forbids the
conversion into work of heat from a source at constant temperature for all transformations
in which the system interacts as well with a second heat source at another temperature, as
long as the net heat taken from this second heat source is zero. As demonstrated by Carnot,
the interaction with heat sources at different temperatures is crucial for the conversion of
heat into mechanical energy. This led to the famous Carnot cycle which can be described
as follows: consider a simple thermodynamic system, in particular, a fluid or gas in a
confined space of a certain volume. Control of the system functions in two ways: (1) via
isothermal transformations, where heat is supplied to, or taken from, the system at a constant
temperature (classically described as the interconnection of the thermodynamic system
with an infinite heat reservoir at the temperature of the isothermal process), (2) via adiabatic
transformations, where the only interaction with the surroundings is via work supplied to,
or taken from, the system (classically described by the movement of a piston that changes
the volume of the system, with a pressure equal to the pressure of the gas). A cycle consists
of two isothermal transformations and two adiabatic transformations: first, an isothermal
transformation at temperature Th (‘hot’) takes the system from an initial state to another
state, secondly, an adiabatic transformation lowers the temperature of the system to Tc
(‘cold’), thirdly, an isothermal transformation at temperature Tc takes the system to a state
from which, fourthly, an adiabatic transformation takes the system back to the original
initial state; see Figure 1.

V →

P
↑

Qh, Th

Qc, Tc

Figure 1. The Carnot cycle.

The cycle is called a Carnot cycle if it is reversible; i.e., can be traversed in the opposite
direction as well.

Remark 1. In the exposition of the Carnot cycle, often terminologies such as ‘infinitesimally slow’,
‘quasi-reversible’, ‘quasi-static’, etc., are used. This is largely with regard to the interaction of a



Entropy 2023, 25, 577 4 of 22

system with its surroundings as being implemented by actual physical devices. For example, an
isothermal transformation is viewed as the result of the ‘real’ physical action of a force exerted by
a piston on the gas (implying that the pressure delivered by the piston could be different from the
pressure of the gas). Furthermore, the system is considered to be in ‘real’ physical contact with a
heat reservoir at a certain temperature (which could differ from that of the gas). In contrast in, e.g.,
electrical network theory and control theory the concept of an ‘ideal’ control action is employed,
where, for instance, the pressure and the temperature are directly controlled.

The heat delivered to the system during the first isothermal at temperature Th is
denoted by Qh, and during the second isothermal at Tc by Qc (generally Qc is negative).
Then, by the first law, since the final state is equal to the initial state, Qh + Qc = W, where
W =

∫
PdV is the mechanical work that is done by the thermodynamic system on its

surroundings.
By an intricate reasoning from [39], see also [31], Kelvin’s formulation of the second

law yields for any cycle the fundamental inequality

Qh
Th

+
Qc

Tc
≤ 0, (2)

with equality in the case of a Carnot cycle. Furthermore, the reasoning can be extended to
complex cycles, consisting of n isothermals at temperatures Ti and absorbed heat quantities
Qi, i = 1, 2, · · · , n, interlaced by n adiabatics, leading to

n

∑
i=1

Qi
Ti
≤ 0, (3)

with equality in the case of reversibility. Finally, a slight extension (approximating continu-
ous heat flow time-functions q(·) by step functions with step values Q1, · · · , Qn) yields the
celebrated Clausius inequality ∮ q(t)

T(t)
dt ≤ 0 (4)

for all cyclic processes
(
q(·), T(·)

)
(where q is the heat flow into the thermodynamic system,

and T is the temperature of the system), with equality∮ q(t)
T(t)

dt = 0 (5)

holding for all reversible cyclic processes (see [31] for details and refinements).
From the point of view of dissipativity theory [31,35] the Clausius inequality (4) is the

same as cyclo-dissipativity of the thermodynamic system with respect to the supply rate − q
T .

Thus, assuming reachability from and controllability from some ground state x∗ this means,
see [40], that there exists a storage function F for the supply rate − q

T , that is d
dt F ≤ − q

T .
Hence S := −F satisfies

d
dt

S ≥ q
T

(6)

The function S was called ‘entropy’ by Clausius, from the Greek word τρoπη
for ‘transformation’.

From the point of view of dissipativity theory, the storage function F need not be
unique. In order to guarantee the uniqueness of F (modulo a constant), and therefore of
the entropy S, we additionally assume [31,40] that, given some ground state, for every
thermodynamic state there exists a reversible cyclic transformation through this state and
the ground state satisfying ∮ q(t)

T(t)
= 0 (7)
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This uniqueness of S is, explicitly or implicitly, always assumed in expositions of
macroscopic thermodynamics, and also in this paper.

Remark 2. The dissipativity theory formulation of the second law already appears in [35], but
under the additional assumption that F is nonnegative. In fact, in [35,37] there exists a nonnegative
storage function for the supply rate − q

T (and thus the system is dissipative instead of merely
cyclo-dissipative) if and only if for all initial conditions x

Fa(x) = sup
∫ τ

0
− q(t)

T(t)
dt < ∞, (8)

where the supremum is taken over all τ ≥ 0 and all heat flow functions q(·) on the time interval[0, τ],
and corresponding temperature profiles T(·) resulting from x(0) = x. Furthermore, if (8) holds,
then Fa ≥ 0 is minimal among all nonnegative storage functions. It follows that Sa = −Fa ≤ 0
given by

Sa(x) = inf
∫ τ

0

q(t)
T(t)

dt > −∞ (9)

is maximal among all nonpositive storage functions. Since an arbitrary constant may be added to S
while still satisfying (6), the assumption that S is nonpositive is equivalent to S being bounded from
above. However, in many thermodynamic systems the entropy is not bounded from above. Thus
thermodynamic systems are generally only cyclo-dissipative with respect to the supply rate − q

T , and
not dissipative.

The Thermodynamic Phase Space and Gibbs’ Relation

The next step is now to add the energy and entropy as extra extensive variables to the
description of the thermodynamic system. In order to illustrate this, consider a simple
thermodynamic system, with extensive variable V (volume) and intensive variables P, T
(pressure and temperature). The equation of state is an equation f (V, P, T) = 0 for some
scalar function f . (For example, for an ideal gas PV = RT with R the universal gas
constant.) Any (V, P, T) satisfying f (V, P, T) = 0 is called a state of the thermodynamic
system. Hence, under regularity conditions the set of states of the thermodynamic system
is a 2-dimensional submanifold M of R3. Then, consider the functions E : M→ R (energy)
and S : M→ R (entropy) as obtained from dissipativity theory. Then, we may equally well
represent the set of states M ⊂ R3 by the 2-dimensional submanifold L ⊂ R5 comprising
the total set of extensive and intensive variables R5:

L := {(E, S, V, T, P) | f (V, P, T) = 0, E = E(V, P, T), S = E(V, P, T)} (10)

(With some abuse of notation, the extra variables E, S, are denoted by the same letters as
used for the functions defined before.) The space R5 of all extensive and intensive variables
is called the thermodynamic phase.

Furthermore, by the first law d
dt E = −P d

dt V + q, while for any state there exists a path
through this state and the ground state such that d

dt E = −P d
dt V + T d

dt S. Taken together,
this implies that the Gibbs one-form on the thermodynamic phase space R5 defined as

dE− TdS + PdV, Gibbs one-form, (11)

is zero restricted to L. This is called Gibbs’ fundamental thermodynamic relation. The ther-
modynamic phase space, together with the Gibbs one-form, defines a contact manifold.
Furthermore, a submanifold of the thermodynamic phase space R5 restricted to which the
Gibbs one-form (11) is zero, and moreover has maximal dimension (in this case 2), is called
a Legendre submanifold. Gibbs’ fundamental relation implies that any Legendre submanifold
L is actually given as

L := {(E, S, V, T, P) | E = E(S, V), T =
∂E
∂S

(S, V),−P =
∂E
∂V

(S, V)} (12)
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for some energy functions E(S, V). Thus, L is completely described by expressing the
energy E as a function E(S, V) of the other two extensive variables S, V, hence the name
energy representation. Instead of relying on such an energy function (or its partial Legendre
transforms), there is still an alternative way of describing L. This is to start, not with
E(S, V), but instead with the expression of the entropy as a function S(E, V). For a simple
thermodynamic system this leads to the entropy representation of the submanifold L ⊂ R5

given as

L := {(E, S, V, T, P) | S = S(E, V),
1
T

=
∂S
∂E

(E, V),
P
T

=
∂S
∂V

(E, V)} (13)

3. Irreversible Thermodynamics

Clausius interpreted the term q
T in the inequality (6) as the part of the infinitesimal

transformation d
dt S that is compensated by the opposite rate of change − q

T of the entropy of
the surroundings; that is, of the reservoir supplying the heat to the thermodynamic system.
The remaining part

σ :=
d
dt

S− q
T
≥ 0 (14)

was called the ‘uncompensated transformation’ by Clausius, and later the irreversible entropy
production [38]. Irreversible thermodynamics is concerned with thermodynamics where σ
is different from zero, implying an autonomous (independent from external heat flow)
increase of the entropy S. Sometimes it is also referred to as non-equilibrium thermodynamics,
because the entropy increase is resulting from (internal) non-equilibrium conditions.

The standard postulate of irreversible thermodynamics (see e.g., [38]) is that σ can be
factorized as

σ =
s

∑
k=1

Fk Jk ≥ 0, (15)

where Fk are called the thermodynamic forces and Jk are the thermodynamic flows (or fluxes),
in such a way that

σ = 0 if and only if Fk = 0, k = 1, · · · , s (16)

In linear irreversible thermodynamics [38] it is furthermore assumed that the vectors F
and J with components Fk and Jk, k = 1, · · · , s, are related by a symmetric linear map

J = LF, L = L> (17)

These are the celebrated Onsager reciprocity relations [38], corresponding to the sym-
metric factorization σ = F>LF.

Example 1 (The heat exchanger). The perhaps simplest example of irreversible dynamics
and irreversible entropy production is offered by the heat exchanger. Consider two heat
compartments, having temperatures Th and Tc (‘hot’ and ‘cold’), connected by a heat-
conducting wall. In the absence of the conducting wall (and thus, without irreversible
entropy production), these are two separate systems with entropies Sh and Sc, each satisfy-
ing

d
dt

Sh =
qh
Th

,
d
dt

Sc =
qc

Tc
(18)

Due to the conducting wall, there is a heat flow q from the hot to the cold compartment,
which is given by Fourier’s law for heat conduction as q = λ(Th − Tc) for some positive
constant λ. Furthermore, in view of the first law q = −qh = qc. Hence, the total entropy
S := Sh + Sc satisfies

d
dt

S = − q
Th

+
q
Tc

=
( 1

Tc
− 1

Th

)
q (19)
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This yields the following expression for the irreversible entropy production σ = d
dt S

due to heat conduction (non-equilibrium conditions)

σ =
( 1

Tc
− 1

Th

)
λ(Th − Tc) = λ

(
Th − Tc

)2

ThTc
≥ 0 (20)

In this example the thermodynamic force is F = 1
Tc
− 1

Th
, while the thermodynamic

flow is J = q = λ(Th − Tc). Indeed σ = 0 if, and only if, F = 0. Despite its simplicity,
this is an example of nonlinear irreversible thermodynamics, since the thermodynamic
flow q = λ(Th − Tc) cannot be expressed as a linear function of the thermodynamic force
F = 1

Tc
− 1

Th
.

Example 2 (The gas-piston-damper system). Another simple example is the gas-piston-
damper system. Consider a cylinder containing a gas whose volume can be controlled by a
piston actuated by an external force u, and is subject to linear damping. The total energy E
of the system can be expressed as a function of the other extensive variables as

E(S, V, π) = U(S, V) +
π2

2m
, (21)

with S representing entropy, V volume, π momentum of the piston with mass m, and
U(S, V) representing the internal energy of the gas. Assuming that the heat as produced by
the damping of the piston is fully absorbed by the gas in the cylinder, the dynamics are
given as

V̇ = A π
m

π̇ = −A ∂U
∂V − dv + u

Ṡ = dv2

T

(22)

with v = π
m the velocity of the piston, A its area, d the damping constant, T = ∂U

∂S the
temperature, and u the external force on the piston. The thermodynamic force F is identified
as dv

T and the thermodynamic flow as J = v. Clearly Onsager relations J = LF are satisfied
with L = T

d .

Example 3 (Chemical reaction network). A third, more involved, example of irreversible
thermodynamics are the dynamics of chemical reaction networks [34,41]. Consider an isolated
(no incoming or outgoing chemical species, and no external heat flow) reaction network,
with m chemical species and r reactions. Disregarding volume and pressure, consider the
vector x ∈ Rm of concentrations of the chemical species. The dynamics take the form

ẋ = Nv(x), (23)

where v ∈ Rr is the vector of reaction fluxes. The m × r stoichiometric matrix N, which
consists of positive and negative integer elements, captures the structural balance laws
of the reactions. Chemical reaction network theory, as originating from [42–44], identifies
the edges of the underlying directed graph with the r reactions, and the nodes with the
c complexes of the chemical reactions, i.e., the different left- and right-hand sides of the
reactions in the network. This means that the stoichiometric matrix N is factorized as
N = ZB, with B denoting the c × r incidence matrix of the graph of complexes, and Z
denoting the m× c complex composition matrix (a matrix of nonnegative integers), whose
ρ-th column captures the expression of the ρ-th complex in the m chemical species. It is
shown in [45] that the dynamics ẋ = Nv(x) of a large class of chemical reaction networks
(including detailed-balanced mass action kinetics networks) can be written into the compact
form

ẋ = Nv(x) = −ZLExp
(

1
RT

Z>µ(x)
)

, (24)
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where Exp is the vector exponential mapping Exp(z) = (exp z1, · · · , exp zc)>, R is the gas
constant, T is the temperature, and µ is the m-dimensional vector of chemical potentials of
the chemical species (for which e.g., in the case of detailed-balanced mass action kinetics
explicit expressions are available). Furthermore, the matrix L := BKB> in (24) defines a
weighted Laplacian matrix for the graph of complexes, with the diagonal elements κ1, · · · , κr
of the diagonal matrix K, depending on the temperature T and the reference state. We have
the following fundamental property [45]

γ>LExp γ ≥ 0 for all γ ∈ Rc, γ>LExp γ = 0 iff B>γ = 0 (25)

Expressing the entropy S as a function of x and the total energy E, Gibbs’ fundamental
relation yields ∂S

∂x (x, E) = − µ
T , ∂S

∂E (x, E) = 1
T . This implies

d
dt

S =
1
T

µ>ZLExp(
Z>µ

RT
) =: σ ≥ 0, (26)

with equality if, and only if, B>Z>µ = N>µ = 0, i.e., if and only if the chemical affinities
N>µ of the reactions are all zero. Hence the equilibria of the system correspond to states
of minimal (i.e., zero) entropy production σ, in accordance with the theory of irreversible
thermodynamics [38].

The vectors of thermodynamic forces F and thermodynamic flows J are given as

F =
1
T

N>µ, J = KB> Exp
Z>µ

RT
, (27)

and indeed by (25) σ = 0 if and only if F = 0. Note that J cannot be expressed as a
linear function of F and thus, in general, chemical reaction networks define nonlinear
irreversible thermodynamics.

3.1. Quasi-Hamiltonian Formulation of Irreversible Thermodynamic Systems

Conservative mechanical systems are well-known to admit a Hamiltonian formulation.
The same holds for many other physical systems. The Hamiltonian formulation of the
dynamics of thermodynamic systems is, however, much more elusive. This has already
studied and elaborated upon in, e.g., [16,24,41,46]. The present formulation emphasizes
the factorization (15) of the irreversible entropy production.

Consider an isolated thermodynamic system with entropy S and energy E. Collect
all other extensive variables in a vector denoted by z. The energy E can be expressed
as a function E = E(z, S) of z and S. Now consider the irreversible entropy production
Ṡ = σ = J>F, with J the vector of thermodynamic flows and F the vector of thermodynamic
forces. Often (as illustrated by the examples to be discussed), the thermodynamic force F
can be expressed as C> ∂E

∂z for some matrix C, whose elements are possibly depending on
∂E
∂z , ∂E

∂S , as well as on z, S. Note that ∂E
∂z equals the vector of intensive variables associated

with the extensive variables z, while the intensive variable ∂E
∂S equals the temperature T.

Energy conservation d
dt E(z, S) = 0 together with d

dt S(z, E) = J>F suggests writing the
dynamics of z and S into the form[

ż

Ṡ

]
=

[
J −CJ

J>C> 0

]
︸ ︷︷ ︸

Je

[
∂E
∂z
∂E
∂S

]
, (28)

for some skew-symmetric matrix J , possibly depending on ∂E
∂z , ∂E

∂S and z, S. This implies
that the extended matrix Je is also skew-symmetric, and thus indeed d

dt E(z, S) = 0. Note
however, that since the matrix Je may depend on the intensive variables ∂E

∂z , ∂E
∂S , it does not
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define a Poisson bracket on the state space with coordinates z, S. Therefore (28) will be
called a quasi-Hamiltonian formulation.

This is illustrated by the previously discussed examples of the gas-piston-damper
system, chemical reaction network, and heat exchanger as follows.

Example 4 (Gas-piston-damper system continued). The dynamics of the gas-piston-damper
system (22) can be written into the quasi-Hamiltonian form as (see also [41])

V̇

π̇

Ṡ

 =


0 A 0

−A 0 −d v
T

0 d v
T 0


︸ ︷︷ ︸

Je


∂E
∂V
∂E
∂π

∂E
∂S

+


0

1

0

u (29)

with v = ∂E
∂π = π

m as the velocity of the piston and T = ∂E
∂S the temperature. The thermody-

namic flow and force are J = v and F = d
T v, respectively. Hence, Je is of the form as given

in (28) with C> =
[
0 d

T

]
. Je depends on the intensive variables T and v, therefore, it does

not define a Poisson bracket.

Example 5 (Chemical reaction network continued). In the case of chemical reaction net-
works, the vector of thermodynamic forces is given as F = 1

T N>µ = C> ∂E
∂x with C =

1
T N, and ∂E

∂x = µ the vector of chemical potentials. Furthermore, according to (27)

the vector of thermodynamic flows is given as J = KB> Exp Z>µ
RT . This leads to the

quasi-Hamiltonian representation[
ẋ

Ṡ

]
=

[
0 − 1

T NJ
1
T J>N> 0

][
∂E
∂x
∂E
∂S

]
(30)

Example 6 (Heat exchanger continued). The quasi-Hamiltonian formulation of the heat
exchanger is slightly different. This caused by the fact that, in this example, we have two
entropies, S1 and S2, corresponding to the two compartments (and not a total entropy
as in the previous two examples). In fact, the quasi-Hamiltonian formulation of the heat
exchanger is given as (see [41])

[
Ṡ1

Ṡ2

]
=

[
− q

T1
q

T2

]
=

 0 λ
(

1
T1
− 1

T2

)
−λ
(

1
T1
− 1

T2

)
0

[T1

T2

]
(31)

since ∂E
∂Si

= Ti, i = 1, 2, and the heat flow from compartment 1 to 2 is given by q =

λ(T1 − T2). Here, we recognize 1
T1
− 1

T2
as the thermodynamic force.

A further structured form of quasi-Hamiltonian modeling of irreversible thermody-
namic systems, called irreversible port-Hamiltonian systems, was introduced in [24]; see [41,
46,47] for more developments and references.

A special case occurs if the total energy E(z, S) splits as

E(z, S) = H(z) + U(S), (32)

for some thermal energy U(S) and remaining energy H(z). In this case, one obtains
the equations

ż = J ∂H
∂z

(z)− TCJ, Ṡ = J>C>
∂H
∂z

(z), F = C>
∂H
∂z

(z) (33)
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If, furthermore, J = LF with L = L> (Onsager’s reciprocity relations) then the dynamical
equations for the extensive variables z can be combined into

ż = J ∂H
∂z

(z)− TCLC>
∂H
∂z

(z) =
(
J − TCLC>

)∂H
∂z

(z) (34)

This is the standard internal dynamics of a port-Hamiltonian system with state vector
z; see e.g., [37,48,49]. In this case, irreversibility means that, even though the total energy
E(z, S) = H(z) + U(S) is preserved, the part of the energy given by H(z) is continuously
transformed (by the resistive power flow TṠ) into the thermal energy U(S). Conversely,
one can show [31] that any port-Hamiltonian system can be embedded into an energy-
conserving thermodynamic system.

Example 7 (Mass-spring-damper system). A simple example is the ubiquitous mass-spring-
damper system. Its dynamics are very similar to that of the gas-piston-damper system, the
difference being that the internal energy U(V, S) of the gas is replaced by the sum 1

2 kx2 +

U(S), where 1
2 kx2 is the potential energy of the spring (with x denoting the elongation

of the spring), and U(S) is the thermal energy of the system. This leads to the dynamics
(compare with (29)) 

ẋ

π̇

Ṡ

 =


0 1 0

−1 0 −d π
mT

0 d π
mT 0




kx
π
m

T

+


0

1

0

u, (35)

as well as the following port-Hamiltonian formulation of the mass-spring-damper system[
ẋ

π̇

]
=

[
0 1

−1 −d

][
kx
π
m

]
+

[
0

1

]
u (36)

3.2. Stability Analysis

The quasi-Hamiltonian formulation can be readily used for stability analysis. Note,
however, that the conditions ∂E

∂z = 0, ∂E
∂S = 0 for E having a minimum often do not

correspond to equilibria of interest. This is illustrated by the gas-piston-damper system,
where these conditions correspond to pressure, velocity, and temperature all being equal
to zero. Instead, in such cases it is of much more interest to consider the stability of steady
states (V̄, π̄ = 0, S̄) corresponding to a non-zero force ū delivered by the piston. In view
of (29) and the energy expression E(V, π, S) = π2

2m +U(V, S), this corresponds to the steady
state condition

A
∂U
∂V

(V̄, S̄) = ū (37)

(Note that Ṡ = 0 is ensured by π̄ = 0 implying that v̄ = π̄
m = 0, and thus corresponds

to a singularity in the skew-symmetric matrix Je, instead of a vanishing of all the partial
derivatives of E. In particular, the temperature T = ∂E

∂S at steady state will not be zero.)
Instead of using E(z, S) as a candidate Lyapunov function which leads to the consideration
of the availability function [50] (also called Bregman divergence or shifted Hamiltonian [37])

Ê(V, π, S) :=
π2

2m
+ U(V, S) + P̄(V − V̄)− T̄(S− S̄)− E(V̄, π̄, S̄), (38)

where P = − ∂U
∂V (S̄, V̄) and T̄ = ∂U

∂S (S̄, V̄) are the pressure and temperature at steady
state, for some arbitrary value S̄. Indeed, using the steady state condition (37), a direct
computation yields

d
dt

Ê = − T̄
T

dv2 ≤ 0 (39)
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for all values of the temperature T > 0 and the steady state temperature T̄ > 0. Further-
more, given that for thermodynamic systems the internal energy U(V, S) (and therefore
E(V, π, S)) is a convex function, Ê(V, π, S) is also convex with minimum at V̄, π̄ = 0, S̄.
Hence, if Ê(V, π, S) is strictly convex (which is often the case), then this proves the asymp-
totic stability of the steady state. The use of the availability function for stability analysis
and stabilization was already advocated for in [51]; see also, e.g., [47,52] for related work
using the availability function in the context of passivity-based control of irreversible
port-Hamiltonian systems.

This is extended to general quasi-Hamiltonian systems[
ż

Ṡ

]
= Je

[
∂E
∂z (z, S)
∂E
∂S (z, S)

]
+ Gu, (40)

where the skew–symmetric matrix Je and the input matrix G may both depend on the
extensive variables z, S and the intensive variables ∂E

∂z (z, S), ∂E
∂S (z, S) = T. The steady state

condition for u = ū is given as

J̄e

[
∂E
∂z (z̄, S̄)
∂E
∂S (z̄, S̄)

]
+ Ḡū = 0, (41)

where J̄e and Ḡ denote the values of Je and G at steady state, i.e.,

J̄e = Je
(
z̄, S̄,

∂E
∂z

(z̄, S̄),
∂E
∂S

(z̄, S̄)
)
, Ḡ = G

(
z̄, S̄,

∂E
∂z

(z̄, S̄,
∂E
∂S

(z̄, S̄)
)

(42)

Assuming the energy function E(z, S) to be convex (which is normally the case in
thermodynamic systems), then the availability function is given as the convex function

Ê(z, S) := E(z, S)− ∂E
∂z>

(z̄, S̄)(z− z̄)− ∂E
∂S

(z̄, S̄)(S− S̄)− E(z̄, S̄), (43)

having a minimum at (z̄, S̄). A key property of the availability function Ê is that

∇Ê(z, S) = ∇E(z, S)−∇E(z̄, S̄) (44)

where ∇Ê(z, S) denotes the gradient vector of Ê (written as a column vector). The compu-
tation of d

dt Ê(z, S) yields, exploiting the steady state condition (41),

d
dt

Ê(z, S) = (∇Ê(z, S))>
[
Je∇E(z, S)− J̄e∇E(z̄, S̄)

]
(45)

It follows that d
dt Ê(z, S) ≤ 0 if, and only if

(∇E(z, S)−∇E(z̄, S̄))>
[
Je∇E(z, S)− J̄e∇E(z̄, S̄)

]
≤ 0 (46)

(This condition is similar to the condition for asymptotic stability of steady states of port-
Hamiltonian systems as derived in [53]; see also [37].) Hence if (46) is satisfied and Ê(z, S)
is not only convex but even strictly convex, then Ê(z, S) serves as a Lyapunov function for
assessing the (asymptotic) stability of the steady state (z̄, S̄).

Instead of expressing the energy E as a function E(z, S) of the remaining extensive
variables z, S and writing the dynamics as a quasi-Hamiltonian system with Hamiltonian
given by E, one may also write the entropy S as a function S(z, E) and try to express the
dynamics as being generated by the gradient of this entropy function. However, since
(in the isolated case) d

dt S ≥ 0, this constitutes quite a different scenario. An example
where it is possible is a chemical reaction network as mentioned before. Instead of the
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quasi-Hamiltonian formulation (30), one rewrites the dynamics as (with z replaced by the
vector of concentrations x)[

ẋ

Ė

]
= T

[
0 −NJ

J>N> TJ>F

]
︸ ︷︷ ︸

Fe

[
∂S
∂x (x, E)
∂S
∂E (x, E)

]
, (47)

where ∂S
∂x (x, E) = − µ

T and ∂S
∂E (x, E) = 1

T . Consequently

Ė = −J>N>µ + TJ>F = 0, (48)

because of F = 1
T N>µ. Since d

dt S ≥ 0, the availability function corresponding to V(z) :=
−S(x, Ē), with Ē the constant total energy of the system, can be used as a Lyapunov
function for stability analysis; cf. [34] for details. Note that the matrix Fe, in the right-hand
of (47), is not a skew-symmetric matrix anymore. In fact, the formulation (47) resembles the
formulation of thermodynamic systems as used in the GENERIC formalism; see, e.g., [30].

Another interesting case are isothermal chemical reaction networks. In this case [45]
one considers the Gibbs free energy (Legendre transform of E(z, S) with respect to S)

G(z, T) = E(z, S)− TS, T =
∂E
∂S

(49)

for constant T. By the properties of the Legendre transform ∂G
∂z = ∂E

∂z = µ (the vector of
chemical potentials). Hence, in view of (47) one obtains for constant T

d
dt

G = µ> ż = −µ>NJ = TF> J = −Tσ (50)

with σ the irreversible entropy production. Alternatively expressed, whenever the temper-
ature T is constant, d

dt G = d
dt E− T d

dt S, while d
dt E = q (with q the heat flow needed to keep

the temperature constant) and d
dt S = q− σ. Taken together this indeed yields d

dt G = −Tσ.

4. Thermodynamic Phase Space and Liouville Geometry

A typical feature of thermodynamic systems modeling is the use of many more
variables than the minimal number of variables to describe the ‘state’ of the system. For
example, a simple thermodynamic system is described by a 2-dimensional submanifold
L of the 3-dimensional space of macroscopic quantities V, P, T; one extensive, and two
intensive. Then, based on the first and second laws of thermodynamics, two extra extensive
variables E, S are introduced. As a result, the system is described as a 2-dimensional
submanifold L of R5; the thermodynamic phase space is generated by the three extensive
variables E, S, V, and the two intensive variables T, P. This is immediately extended to the
general thermodynamic case, where L is an n-dimensional submanifold of the (2n + 1)-
dimensional thermodynamic phase space (comprising n + 1 extensive variables and n
intensive variables).

4.1. Constitutive Relations and Liouville Submanifolds

The Legendre submanifold L only defines the constitutive relations of the thermody-
namic system, i.e., its thermostatics. The first and second laws impose constraints on any
possible dynamics of the thermodynamic system, but do not define it. On the other hand,
two requirements for any dynamics on the full thermodynamic phase space are natural:
(1) the dynamics should respect the ‘structure’ of the thermodynamic phase space, (2) it
should respect the constitutive relations; i.e., should leave the submanifold L invariant.
The proper geometry to address this is contact geometry. However, in order to unify the
energy and entropy representation we will take one more abstraction step; from contact
geometry to Liouville geometry. This will have the additional benefit of making a clear
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separation between extensive and intensive variables, and of being computationally more
easy; see [25,26,54,55] for further details and ramifications.

For a simple thermodynamic system with extensive variables E, S, V and intensive
variables T,−P, the step from contact to Liouville geometry amounts to replacing the
intensive variables T,−P (in the energy representation) with their homogeneous coordinates
pE, pS, pV with pE 6= 0, i.e.,

T =
pS
−pE

, −P =
pV
−pE

, (51)

and thereby to express the intensive variables 1
T , P

T in the entropy representation as

1
T

=
pE
−pS

,
P
T

=
pV
−pS

(52)

In this way, the two Gibbs one-forms dE − TdS + PdV and dS − 1
T dE − P

T dV are
replaced by a single symmetric expression, namely by the Liouville one-form

pEdE + pSdS + pVdV, (53)

on the cotangent bundle T∗R3, with R3 the space of extensive variables E, S, V. By definition
of homogeneous coordinates, the vector (pE, pS, pV) is always different from the 0-vector.
Hence, the space {(E, S, V, pE, pS, pV)} is actually the cotangent bundle T∗R3 minus its zero
section. Using homogeneous coordinates, the 2-dimensional Legendre submanifold L is
now replaced by the 3-dimensional submanifold L ⊂ T∗R3, given as

L = {(E, S, V, pE, pS, pV) | (E, S, V,
pS
−pE

,
pV
−pE

) ∈ L, (pE, pS, pV) 6= 0} (54)

It turns out that L is a Lagrangian submanifold [56–58], which is moreover homogeneous,
in the sense that whenever (E, S, V, pE, pS, pV) ∈ L then also (E, S, V, λpE, λpS, λpV) ∈ L,
for any non-zero λ ∈ R. Such submanifolds are fully characterized as maximal manifolds
restricted to which the Liouville form pEdE + pSdS + pVdV is zero, and are therefore called
homogeneous Lagrangian submanifolds or Liouville submanifolds [25].

In general, one considers the (n + 1)-dimensional manifold Q of all the extensive
variables (including E and S), and its (2n + 2)-dimensional cotangent bundle without zero
section, denoted by T ∗Q. The constitutive properties of the thermodynamic system are
defined by a (n + 1)-dimensional Liouville submanifold L. Conversely, starting from T ∗Q
we may define a contact manifold in the following way [57]. For each q ∈ Q and cotangent
space T∗qQ consider the projective space P(T∗qQ), given as the set of rays in T∗qQ, that is, all
the non-zero multiples of a non-zero cotangent vector. Thus, the projective space P(T∗qQ)
has dimension n, and there is the canonical projection πq : T ∗q Q → P(T∗qQ), where T ∗q Q
denotes the cotangent space without its zero vector. The fiber bundle of the projective
spaces P(T∗qQ), q ∈ Q, over the base manifoldQwill be denoted by P(T∗Q). Furthermore,
the bundle projection obtained by considering πq : T ∗q Q → P(T∗qQ) for every q ∈ Q
is denoted by π : T ∗Q → P(T∗Q). As detailed in [26,57,58], P(T∗Q) defines a contact
manifold of dimension 2n + 1, and will serve as the canonical thermodynamic phase space
for the thermodynamic system with space of external variables Q. In the case of a simple
thermodynamic system the bundle projection π is given in coordinates as

(pE, pS, pV) 7→ (
pS
−pE

= T,
pV
−pE

= −P) (55)

whenever pE 6= 0 (energy representation), or as

(pE, pS, pV) 7→ (
pE
−pS

= − 1
T

,
pV
−pS

=
P
T
) (56)
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whenever pS 6= 0 (entropy representation). The cotangent bundle T∗Q, and therefore
also T ∗Q, are endowed with the natural one-form α, called the Liouville form, which in
natural cotangent bundle coordinates (q, p) = (q1, · · · , qn+1, p1, · · · , pn+1) is given as
α = ∑n+1

i=1 pidqi. A submanifold L ⊂ T ∗Q is a Liouville submanifold if α restricted to
L is zero, and furthermore L is maximal with respect to this property. It turns out that
maximality of L is equivalent to dimL = n + 1.

For any point in a Liouville submanifold L there exists a neighborhood of this point, a
splitting of the index set {1, · · · , n+ 1} = I ∪ J and a function F(qI , pJ) that is homogeneous
of degree 1 in pJ (in particular J 6= ∅), where qI denotes the vector of coordinates qi with
i ∈ I and pJ denotes the vector of coordinates pj with j ∈ J, such that on this neighborhood

L = {(q, p) ∈ T ∗Q | pi =
∂F
∂qi

, i ∈ I, qj = −
∂F
∂pj

, j ∈ J} (57)

By homogeneity of F in pJ it follows that for any j ∈ J we can write, whenever pj 6= 0,

F(qI , pJ) = −pj F̂(qI ,
p`
−pj

), ` ∈ J, ` 6= j) (58)

for some function F̂. The choice of j ∈ J corresponds to a choice of the coordinates for the
contact manifold P(T∗Q) (for example, corresponding to the energy or the
entropy representation).

The Liouville submanifoldL projects under π to a Legendre submanifold L ⊂ P(T∗Q),
and conversely any Legendre submanifold L ⊂ P(T∗Q) is the projection of a Liouville
submanifold L ⊂ T ∗Q. Furthermore, the function F̂ serves as a generating function for
the Legendre submanifold L. Although the close relation of contact geometry with the
Liouville geometry of cotangent bundles is well-known in differential geometry [57,58],
the use of homogeneous coordinates for thermodynamics was first advocated for in [29].

4.2. Homogeneous Hamiltonian Dynamics and Port-Thermodynamic Systems

The dynamics of the thermodynamic system should now satisfy the following two
basic requirements. First, it should respect the structure of T ∗Q, and therefore of the contact
manifoldP(T∗Q). Second, it should leave invariant the Liouville submanifold L specifying
the constitutive relations. The first requirement amounts to a requirement that the dynamics
are Hamiltonian on T ∗Q, with the additional property that the Liouville forms on T ∗Q is
preserved. This can be seen to correspond to Hamiltonian dynamics with a Hamiltonian K
that is homogeneous of degree 1 in the p-variables. Thus, if q are coordinates for Q and (q, p)
are corresponding cotangent bundle coordinates for T ∗Q (such that the Liouville form is
α = ∑n+1

i=1 pidqi), then we consider Hamiltonians K(q, p) satisfying K(q, λp) = λK(q, p) for
all λ ∈ R different from zero. Equivalently, by Euler’s theorem, the Hamiltonian K(q, p)
should satisfy

K(q, p) =
n+1

∑
i=1

pi
∂K
∂pi

(q, p), (59)

with the functions ∂K
∂pi

(q, p) homogeneous of degree 0 in p, i = 1, · · · , n + 1. The second
requirement is equivalent to K being such that K restricted to L is zero. Finally, we will
split K into two parts, i.e.,

Ka + Kcu, u ∈ Rm (60)

Here Ka : T ∗Z → R is the Hamiltonian corresponding to the autonomous dynamics
due to internal non-equilibrium conditions, while Kc = (Kc

1, · · · , Kc
m) is a row vector of

Hamiltonians corresponding to dynamics arising from interaction with the surroundings
of the system, parameterized by a vector u of control or input variables. (However, as we
will notice in the context of the damper system (81), there are cases where the dependence on
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u is not affine.) Thus all these Hamiltonians Ka, Kc
1, · · · , Kc

m are zero on L. This implies that
the dynamics of the extensive variables are given as

q̇i =
∂Ka

∂pi
(q, p) +

m

∑
j=1

∂Kcj

∂pi
(q, p), i = 1, · · · , n + 1, (61)

where the right-hand side is homogeneous of degree 0 in p. (Note that this does not mean
that the right-hand side is necessarily independent of p; it may depend on degree 0 variables

pi
−pE

; i.e., on the intensive variables!)
Finally, there are two important extra constraints on Ka (the Hamiltonian governing

the autonomous dynamics corresponding to u = 0) which are directly imposed by the
first and second laws. By the first law 0 = Ė = ∂Ka

∂pE
on L. Furthermore, by the second

law necessarily ∂Ka

∂pS
|L ≥ 0. In fact, using the postulate of factorization of the irreversible

entropy production as discussed in Section 3 one has

∂Ka

∂pS
|L = σ =

s

∑
k=1

Fk Jk ≥ 0 (62)

where σ = 0 if and only if Fk = 0, k = 1, · · · , s.
Such constraints do not hold for the control (interaction) Hamiltonians Kc. In fact, the

corresponding terms of the control Hamiltonians define natural outputs conjugated to the
inputs u. The first option is to define the m-dimensional row vector

yp =
∂Kc

∂pE
, (63)

with the subscript p in yp standing for power. Then, it follows that d
dt E = ypu, and thus,

yp is the vector of power-conjugate (passive) outputs corresponding to the input vector u.
Similarly, by defining the m-dimensional row vector

ye =
∂Kc

∂pS
(64)

it follows that d
dt S ≥ yeu. Hence ye is the output vector which is conjugate to u in terms of

entropy flow. This is summarized in the following definition of a port-thermodynamic system
as given in [25,26].

Definition 1. Consider a manifold Q of extensive variables. A port-thermodynamic system on Q
is defined by a Liouville submanifold L ⊂ T ∗Q specifying the constitutive relations of the system,
together with a Hamiltonian Ka + Kcu, u ∈ Rm, homogeneous of degree 1 in p, which is zero on L
for every u and satisfying ∂Ka

∂pE
= 0 on L, and ∂Ka

∂pS
≥ 0 on L. Its power port is defined by u together

with the output yp = ∂Kc

∂pE
, and its entropy flow port by u and ye =

∂Kc

∂pS
.

Remark 3. The Hamiltonian K generates the dynamics, but does not have an interpretation in
terms of energy. In fact, K is dimensionless; see [25,26] for further information.

Remark 4. Through the use of entropy flow ports, one could express the irreversible entropy
production σ = ∑s

k=1 Fk Jk ≥ 0 as being the result of the interconnection of the system with a
pure entropy producing element. This is especially clear if the vector of thermodynamic flows J
can be expressed as a function of the vector of thermodynamic forces F, like in Onsager’s relations
J = LF, L = L>. Namely, in this case one may consider u = J and entropy conjugate outputs
ye = F, and then ‘close’ the loop by setting u = Lye.
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Because of the homogeneity of the Liouville submanifold L and of the Hamiltonian
K, the port-thermodynamic system defined on T ∗Q, including its power and entropy
flow ports, projects to a system on the thermodynamic phase space P(T∗Q) with Legendre
submanifold L; see [25] for details. In fact, the resulting class of systems on P(T∗Q) is
very close to the classes of input–output contact systems and conservative control contact
systems on contact manifolds as introduced and studied in [7–9,59,60].

The definition of port-thermodynamic systems (Definition 1) is illustrated by the
examples of the gas-piston-damper system, chemical reaction network, and heat exchanger
as follows.

Example 8 (Gas-piston-damper system continued [26]). As discussed before, the exten-
sive variables are E (energy), S (entropy), V (volume), and π (momentum of the pis-
ton). For simplicity we will take A = 1. The constitutive properties are given by the
Liouville submanifold

L = {(E, S, V, π, pE, pS, pV , pπ) | E(S, V, π) = U(S, V) + π2

2m ,

pS = −pE
∂U
∂S , pV = −pE

∂U
∂V , pπ = −pE

π
m}

(65)

with generating function−pE

(
U(S, V) + π2

2m

)
. The dynamics are given by the Hamiltonian

(homogeneous of degree 1 in p)

K = pV
π

m
+ pπ

(
−∂U

∂V
− d

π

m

)
+ pS

d( π
m )2

∂U
∂S

+
(

pπ + pE
π

m

)
u, (66)

which obviously is zero on L. The power-conjugate output yp = π
m is the velocity of the

piston. One could also add an extra control Hamiltonian
( pS

T + pE
)
v, where T = ∂U

∂S is the
temperature, and v is the heat flow from an external heat source into the cylinder. The
corresponding entropy conjugate output is ye =

1
T .

Example 9 (Chemical reaction network continued [33]). Consider a chemical reaction
network in entropy representation, with the entropy S represented as a function S = S(E, x)
of the vector of chemical concentrations x and energy E. Then the Liouville submanifold
describing the state properties of the reaction network is given as

L = {(x, S, E, px, pS, pE) | S = S(E, x), px = −pS
∂S
∂x

(E, x), pE = −pS
∂S
∂E

(E, x)} (67)

with generating function −pSS(x, E) and ∂S
∂x (E, x) = − µ

T , ∂S
∂E (E, x) = 1

T . The internal
dynamics of the chemical reaction network are generated by the Hamiltonian

Ka = −p>x ZLExp
−Z>

R
∂S
∂x

(E, x) − pS
∂S

∂x>
(E, x)ZL Exp

−Z>

R
∂S
∂x

(E, x) (68)

Furthermore, the control Hamiltonian

Kc = pS
∂S
∂E

(E, x) + pE, (69)

corresponds to a heat flow input, and an entropy flow conjugate output ye = ∂S
∂E (x, E)|L

equal to the reciprocal temperature. Another possible choice is

Kc = pS
∂S
∂xi

(E, x) + pxi, (70)
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corresponding to material in/outflow of the i-th chemical species, with entropy flow
conjugate output ye = ∂S

∂xi
(E, x)|L equal to the chemical potential µi of the i-th chemical

species divided by the temperature T.

Example 10 (Heat exchanger continued [26]). The extensive variables are S1, S2 (entropies
of the two compartments), and E (total internal energy). The state properties are described
by the Liouville submanifold

L = {(S1, S2, E, pS1 , pS2 , pE) | E = E1(S1) + E2(S2), pS1 = −pEE′1(S1), pS2 = −pEE′2(S2)},
(71)

corresponding to the generating function −pE(E1(S1) + E2(S2)), with E1, E2 as the internal
energies of the two compartments. Denoting the temperatures T1 = E′1(S1), T2 = E′2(S2),
the internal dynamics corresponding to Fourier’s law is given by the Hamiltonian

Ka = λ(
1
T1
− 1

T2
)(pS1 T2 − pS2 T1), (72)

with λ Fourier’s conduction coefficient.

5. Control by Interconnection

Control by interconnection is the paradigm of controlling a system by interconnecting it
(through its inputs and outputs) to an additional controller system. The aim is to influence
the dynamics of the original system by shaping the dynamics of the interconnected system
by a proper choice of the controller system. Applied to port-thermodynamic systems,
this means that given a plant thermodynamic system we interconnect it to a controller
port-thermodynamic system such that in the closed-loop port-thermodynamic system the
plant states converge to the desired set-point values. Port-thermodynamic systems can
be interconnected, either by their power ports or by their entropy flow ports; cf. [26] for
details. For example, the power port interconnection of two systems with variables

(Ei, Si, qi, pEi , pSi , pi) ∈ T ∗Qi, i = 1, 2, (73)

is defined as follows. With the homogeneity assumption in p in mind, impose the
following constraint

pE1 = pE2 =: pE (74)

This leads to the summation of the Liouville one-forms α1 and α2 given by

αsum := pEd(E1 + E2) + pS1 dS1 + pS2 dS2 + p1dq1 + p2dq2 (75)

on the composed space T ∗Q1 ◦ T ∗Q2 defined as

T ∗Q1 ◦ T ∗Q2 := {(E, S1, S2, q1, q2, pE, pS1 , pS2 , p1, p2)} (76)

Let the constitutive relations of the two port-thermodynamic systems be defined by
the Liouville submanifolds Li ⊂ T ∗Qi, i = 1, 2. Then, the constitutive relations of the
interconnected system are defined by the composition

L1 ◦ L2 := {(E, S1, S2, q1, q2, pE, pS1 , pS2 , p1, p2) |

E = E1 + E2, (Ei, Si, qi, pEi , pSi , pi) ∈ Li, i = 1, 2}
(77)

Furthermore, consider the dynamics on Li defined by Hamiltonians Ki = Ka
i +

Kc
i ui, i = 1, 2, where Kc

i is the row vector of control Hamiltonians of system i, i = 1, 2.
Additionally assume that the functions Ki do not depend on the energy variables Ei, i = 1, 2.
Then K1 + K2 is well-defined on L1 ◦ L2 for all u1, u2. Next, consider the power conju-
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gate outputs yp1, yp2. By imposing interconnection constraints on the power port variables
u1, u2, yp1, yp2 satisfying the power preservation property

y>p1u1 + y>p2u2 = 0 (78)

one obtains an interconnected port-thermodynamic system with constitutive relations described
by L1 ◦ L2. Similarly, interconnecting the inputs u1, u2 to the entropy flow outputs ye1, ye2
in such a way that

y>e1u1 + y>e2u2 ≥ 0, (79)

leads again to a port-thermodynamic system.
A basic control problem concerns the stabilization of a system to a desired set-point

value (regulation). How can we use control by interconnection to address this problem?
Suppose we want to stabilize the system at some set-point value (z∗, S∗). If E(z, S) already
has a strict minimum at (z∗, S∗) then one may asymptotically stabilize (z∗, S∗) by the
interconnection with a damper system [32]. In fact, assume for simplicity of exposition that
m = 1 (scalar output yp). Then, consider an additional linear damper system (cf. [26]),
whose Liouville submanifold is given as

Ld = {(Ud, Sd) | Ud = Ud(Sd), pSd = −pUd U′d(Sd)}, (80)

with entropy as Sd, internal energy as Ud(Sd), and U′d(Sd) its temperature. The dynamics
of this damper system are generated by the Hamiltonian (see [26])

K = (pUd + pSd

1
U′d(Sd)

)du2
d (81)

(note the quadratic dependence on the input ud), with power conjugate output yd = dud
(damping force). Then interconnect the plant port-thermodynamic system (L, K = Ka +
Kcu) to this damper system by setting

u = −yd, ud = y (82)

This results (after setting pUd = pE) in the interconnected port-thermodynamic system
with total Hamiltonian given as

Ka(E, S, z, pE, pS, pz)− Kc(E, S, z, pE, pS, pz)dy + (pUd + pSd

1
U′(Sd)

)dy2 (83)

with total energy E(S, z) + Ud(Sd). This implies

d
dt

E(S, q) = − d
dt

Ud(Sd) = −U′d(Sd)Ṡd = −dy2 ≤ 0 (84)

Hence, by an application of LaSalle’s invariance principle, the system converges to
the largest invariant set within the set where the power conjugate output yp is zero. Note
that y = 0 corresponds to zero entropy production Ṡd = 0; in accordance with irreversible
thermodynamics. If the largest invariant set where y is zero equals the singleton (E∗, S∗, q∗)
then asymptotic stability of (E∗, S∗, q∗) results; for some limiting value S∗d of the entropy Sd
of the damper system; see also [32].

What can be done if E(S, z) does not have a strict minimum at (S∗, z∗) ? This can
be approached via the (generalized) Energy-Casimir method; similar to the theory of con-
trol by interconnection for port-Hamiltonian systems, see e.g., [37,61]. Consider a port-
thermodynamic system with Liouville submanifold L ⊂ T ∗Q with the generating function
(in the energy representation) −pEE(S, z). A classical tool in the stability analysis of ordi-
nary Hamiltonian dynamics is to consider additional conserved quantities; see e.g., [56–58].
In order to extend this idea to the present case, let us strengthen our assumption on Ka
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by requiring that ∂Ka

∂pE
= 0 everywhere on T ∗Q; i.e., not just on L. Next, consider additional

conserved quantities for the dynamics XKa that are only depending on the extensive vari-
ables S, z; i.e., functions C(S, z) such that {Ka, C} = 0, where {· , ·} is the standard Poisson
bracket on T ∗Q. Hence, also {Ka, E + C} = 0. Subsequently, note that [32]

α = pEdE + pSdS + pzdz = pEd(E + C(S, z)) + (pS − pE
∂C
∂S

)dS + (pz − pE
∂C
∂z

)dz (85)

Hence, the transformation

(E, S, z, pE, pS, pz) 7→ (E + C, S, z, pE, pS − pE
∂C
∂S

, pz − pE
∂C
∂z

) =: (Ẽ, S̃, z̃, p̃E, p̃S, p̃z) (86)

is a point transformation (that is, leaving the Liouville form invariant). Note that in the new
coordinates the intensive variables pS

−pE
, pz
−pE

are transformed into the new
intensive variables

p̃S
−pE

=
pS−pE

∂C
∂S

−pE
= pS
−pE

+ ∂C
∂S

p̃z
−pE

=
pz−pE

∂C
∂z

−pE
= p
−pE

+ ∂C
∂z

(87)

In these new coordinates the generating function for L in entropy representation is given by
Ẽ(S, z) = E(S, z) + C(S, z). Furthermore, since {Ka, E + C} = 0, the
transformed Hamiltonian

K̃a(Ẽ, S̃, q̃, p̃E, p̃S, p̃) := Ka(E, S, q, pE, pS, p) (88)

satisfies {K̃a, Ẽ} = 0. Hence, in the new coordinates we are back to the situation considered
before: if Ẽ(S, z) has a strict minimum at (S∗, z∗), then Ẽ is a Lyapunov function for the
dynamics restricted to L, and the equilibrium (E∗, S∗, z∗) with E∗ = E(S∗, z∗), is stable
with respect to the dynamics on L.

Finally, note that the row vector Kc in the new coordinates transforms to
K̃c(Ẽ, S̃, z̃, p̃E, p̃S, p̃z), leading to the transformed power conjugate outputs

ỹp :=
∂K̃c

∂ p̃E
, (89)

and the transformed entropy flow conjugate outputs

ỹe :=
∂K̃c

∂ p̃S
(90)

All this is illustrated by the stabilization of the gas-piston system in the
following example.

Example 11 (Regulation of gas-piston system). Consider the gas-piston system (without
a damper) with extensive variables (E, S, V, π), as before. The constitutive properties
of the system are given by the Liouville submanifold as in (65) with energy expression
Ep(S, V, π) := U(S, V) + π2

2m (‘p’ for plant). Without damping (d = 0) the dynamics are
generated by the Hamiltonian

K = pV
π

m
− pπ

∂U
∂V

+
(

pπ + pE
π

m

)
up, (91)
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with power conjugate output yp = π
m (velocity of the piston). A scalar controller system

with extensive variables (Ec, zc) is given by the port-thermodynamic system (Lc, Kc), with
energy Ec = Ec(zc), and dynamics

Kc =
(

pc + pEc E′c(zc)
)
uc (92)

with output yc = E′c(zc). The function Ec(zc) is a design parameter, specifying the
controller system.

The closed-loop system is obtained by the negative feedback (with v a new
external input)

up = −yc + v = −E′c(zc) + v, uc = yp =
π

m
, (93)

together with
E := Ep + Ec, pEp = pEc =: pE (94)

This leads to the closed-loop Hamiltonian

K = pV
π

m
− pπ

∂U
∂V

+
(

pπ + pEp

π

m

)(
−E′c(zc) + v

)
+
(

pzc + pEc E′c(zc)
)π

m
(95)

It is immediately seen that C(V, π, zc) = Φ(V − zc) for any function Φ : R → R
is a conserved quantity. This motivates a consideration of new canonical coordinates
(Ẽ, Ṽ, π̃, q̃c, p̃E, p̃V , p̃π , p̃c), where

Ẽ = E + Φ(w = V − zc), p̃V = pV − pE
∂Φ
∂w

, p̃zc + pE
∂Φ
∂w

, (96)

while Ṽ = V, π̃ = π, z̃c = zc, p̃E = pE, p̃π = pπ . In the new coordinates we compute K̃ as

K̃ =
(

p̃V + p̃E
∂Φ
∂w

)
π̃
m − p̃π

∂U
∂V −

(
p̃π + p̃E

π̃
m

)
Ē′c(z̃c)+(

p̃zc − p̃E
∂Φ
∂w + p̃EĒ′c(z̃c)

)
π̃
m +

(
p̃π + p̃E

π̃
m

)
v,

(97)

leading to the same power conjugate output ỹp = yp = π
m (velocity of the piston). For

any set-point V∗ the functions Φ and Ec should be chosen in such a way that the function
E(S, V, π, Φ(V − zc)) has a strict minimum at (S∗, V∗, π∗ = 0, z∗c ) for some value of S∗ and
state z∗c of the controller system. As discussed before, this can be turned into asymptotic
stabilization by additionally interconnecting the obtained closed-loop system with a damper
system through the power port (v, ỹp).

6. Conclusions and Outlook

Ever since the fundamental contributions of Gibbs and Maxwell to thermodynamics,
geometry has played an essential role. Nevertheless, the development of the geometric
theory of macroscopic thermodynamics still poses fundamental questions, especially when
it comes to thermodynamics instead of thermostatics. In this paper, the focus has been
on quasi-Hamiltonian formulations based on the factorization of the irreversible entropy
production, and on the contact-geometric approach using Liouville geometry. The first topic
is intimately related to the GENERIC framework, as well as to the theory of irreversible
port-Hamiltonian systems. With respect to the second topic, Liouville geometry offers a
versatile framework for dealing with the general thermodynamic phase space, in particular
by providing a unification of the energy and entropy representation. Although in this
approach the necessary conditions for the dynamics on the thermodynamic phase space
are clear, natural specifications of the dynamics are still somewhat lacking. In this regard,
a combination of the quasi-Hamiltonian and GENERIC formulations with contact and
Liouville geometry should be promising.
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Finally, it should not be forgotten that thermodynamics started as an engineering
subject (dealing with the efficiency of the steam engine). The interaction of thermodynamic
systems with their surroundings is key to the theory. This has been demonstrated in this
paper through a discussion of the definitions of the energy and entropy as storage functions
with respect to supply rates corresponding to the thermal and the (mechanical) power port,
and through the definition of port-thermodynamic systems. Furthermore, it naturally leads
to control of thermodynamic systems, including the theory of ‘control by interconnection’.
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