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Abstract: In this manuscript, we investigate the cosmological and thermodynamic aspects of the
Brans–Dicke theory of gravity for a spatially flat FRW universe. We consider a theoretical model
for interacting Kaniadakis holographic dark energy with the Hubble horizon as the infrared cutoff.
We deal with two interaction scenarios (Q1 and Q2) between Kaniadakis holographic dark energy
and matter. In this context, we study different possible aspects of cosmic evolution through some
well-known cosmological parameters such as Hubble (H), deceleration (q), jerk (j), and equation of
state (ωd). For both interaction terms, it is observed that the deceleration parameter exhibits early
deceleration to the current accelerating universe and also lies within the suggested range of Planck
data. The equation of state parameter shows quintessence behavior (for the first interaction term)
and phantom-like behavior (for the second interaction term) of the universe. The jerk parameter
represents consistency with the ΛCDM model for both interaction terms. In the end, we check
the thermodynamic behavior of the underlying model. It is interesting to mention here that the
generalized second law of thermodynamics holds for both cases of interaction terms.

Keywords: Brane-Dicke theory; KHDE; cosmological parameters; thermodynamics

1. Introduction

The most mysterious and persistent problem in today’s cosmology is the current
accelerated expansion of the universe. It is widely recognized that the universe underwent
a late-time transition from the epoch of matter to the phase of accelerated expansion.
Well-known observational data, such as gravitational lensing [1], Ia supernovae [2,3] and
cosmic microwave background radiation [4,5], provide authentic evidence that we are in
this transition phase. Dark energy (DE) [6–8] plays a prominent role in this expansion
due to its negative pressure. The first candidate to describe this repulsive force is a
cosmological constant, whose equation of state parameter is -1. Unfortunately, this simplest
candidate has faced well-known problems, such as fine-tuning and the cosmological
constant problems [9,10]. Therefore, researchers are trying to identify the candidate for DE
that not only explains the current accelerated expansion of the universe but also addresses
the above-mentioned problems.

The theory of dark energy (DE) with negative pressure has received much recogni-
tion among the existing theories that attempt to explain the accelerated expansion of the
universe. There are two basic ways to account for the universe’s late-time accelerated
expansion. The first choice is the dynamical DE theories, which are proposed by modifying
the matter part of the Einstein-Hilbert action. Several dynamic DE models have been
proposed, including quintessence [11,12], k-essence [13,14], phantom [15,16], Chaplygin
gas [17,18] and holographic DE (HDE) [19]. These models are designed to explore the
nature of DE and resolve issues such as cosmic coincidence and fine-tuning. A second
approach is alternative theories of gravity that are obtained from the geometrical part of the
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Einstein-Hilbert action and include some extra degrees of freedom that can drive the uni-
verse’s accelerated expansion [20–25]. The basic alternative theories of gravity include f (R)
(where R denotes the Ricci scalar) [26], f (T) (T denotes the torsion scalar) [27], f (G) (G is
the Gauss-Bonnet term) [28], Dynamical Chern-Simons Modified Gravity [29], Brans–Dicke
(BD) theory [30,31], and others.

The BD theory (more generally the scalar-tensor theory) is considered the best can-
didate, alternative to general relativity. In this natural modification, the non-minimal
coupled scalar field is replaced by Newtons gravitational constant [32,33]. This theory
addressed major cosmological issues such as inflation, quintessence and the cosmic ex-
pansion of the universe. Well-known braneworld scenario has been investigated in the
context of this higher dimensional theory. Moreover, BD theory concerns the geometrical
nature of the scalar field which is considered an attractive feature of this theory. In this
BD theory with a chameleon scalar field, the scalar potential and the matter field emerge
from the geometry of the extra dimensions rather than some ad hoc assumptions, is an
appropriate and fundamental alternative to the standard BD theory [34–38]. Wesson and
Ponce de Leon [39] induced matter theory, where contends that the additional parametric
terms resulting from the added dimension Einstein’s 5D equations can also be connected
with an efficient energy tensor in 4D theory was inspired by this disparity between a fine
marble of geometrical as well as the low-grade wood of matter. They observed that the 4D
non-vacuum universe is similar to the 5D vacuum universe, geometrically seen by [39].
By using the induced matter theory, a modified BD theory is defined as a 4D BD theory
with a self-interacting potential and an efficient matter field.

Further, Rasouli et al. [40] also established a modified BD (MBDT) theory in which
the matter and and potential are entirely emerge from geometry rather than being intro-
duced into the action via ad hoc assumption. In [41], authors investigated the cosmological
aspects of Barrow HDE in the framework of BD cosmology. They Considered both in-
teraction and non-interaction scenarios and checked the stability analysis. They found
the consistency of the underlying model. Amani and Halpern [42] checked the energy
conditions in a modified BD gravity. Ghaffari [43] studied the cosmological consequences
of non-interaction Kaniadakis HDE (KHDE) in the context of BD gravity. He found some
cosmological parameters and obtained the ranges that are compatible with observations.

Among several DE models, the HDE model and its modified families as Tsallis
HDE [44], Rényi HDE [45] and Barrow HDE [46] are used in literature to illustrate how
the cosmos is expanding. Initially, Li [19] developed the energy density of HDE model to
describe the accelerated expansion, which is driven with help of the holographic princi-
ple [18,47–49]. The HDE model is a viable method for resolving DE issues. The holographic
theory is based on the system that expresses the scale for a system’s number of degrees of
freedom is primarily determined by the area that was taken into consideration. The interest-
ing cosmic implications of HDE are also confirmed to be in line with observations [50–53].
The basic concept for the formation of HDE is the relationship between the entropy of the
system and geometric factors such as its radius. The common entropy is the Bekenstein-
Hawking entropy, which is used in cosmology and black holes and is obtained from the
fundamental Boltzmann-Gibbs entropy.

The Boltzmann-Gibbs entropy, however, has been generalized by Kaniadakis into
a one-parameter concept known as Kaniadakis entropy [54,55]. It is the consequence
of a coherent and self-consistent dynamical statistical theory, that maintains the funda-
mental characteristics of conventional statistical principles. The distribution functions in
this expanded statistical theory is a one-parameter continuous distortion of the standard
Maxwell-Boltzmann models. The arguments in [56] led us to apply the HDE structure to
the Kaniadakis problem from the perspective of complex quintessence and the BD theory.
In [57] authors used the holographic fundamentals with Kaniadakis entropy and developed
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the energy density of KHDE model. This energy density for Hubble horizon as infrared
cutoff is given as [58]

ρd = 3c2φ2H2 +
u2φ2

H2 , (1)

where H = ȧ
a is the Hubble parameter (where a denotes the scale factor and “.” expresses

the derivative w.r.t time t), c denotes the model parameter and u is the Kaniadakis entropy
parameter that is defined as −1 < u < 1. Furthermore, we consider the relation φ ∝ an [59].
From this relation, we can obtained the following expressions

φ̇ = nφH, (2)

φ̈ = H2n2φ + φnḢ. (3)

Few early attempts in the literature regarding this framework [60,61] the models that
came out of those efforts were interesting. The authors choose Hubble horizon rather
than a future event horizon in a fundamental holographic representation was a different
experiment. The goal and inspiration for this study is to assess the existing view of the
cosmos using cosmological and thermodynamic methods about to with concerning the BD
and the BD theory with a chameleon scalar field, utilizing the KHDE model.

This paper is organized as follows: In Section 2, we discuss the interaction between
the dark sectors in the contexts of the standard BD theory and the BD theory with a
chameleon scalar field Or Chameleon BD theory. In Section 3, we describe the effects
of the Q1 interaction term about to with concerning the standard BD and the BD theory
with a chameleon scalar field and determine a few cosmological parameters. Similarly,
in Section 4, we analyze the effects of a Q2 interaction term to discuss the cosmography in
the context of BD and the BD theory with a chameleon scalar field. In Section 5, we examine
the thermodynamics with interaction terms Q1 and Q2 in the context of Kaniadakis entropy.
In Section 6, we conclude our findings.

2. Basic Formalism

In this section, we discuss the basic equations of standard BD theory and the BD theory
with a chameleon scalar field.

2.1. Standard Brans–Dicke Theory of Gravity

Now, we discuss one of the viable theories of gravity named BD theory of grav-
ity. In the BD theory gravitational constant (G) is replaced with the BD scalar field ϕ(

G(ϕ) = 1
ϕ

)
. Before starting the DB action, first we consider non-flat Friedmann-Robertson-

Walker (FRW) universe, which is given as

ds2 = dt2 − a2(t)
(

dr2

1− kr2 + r2dθ2 + r2sin2θdφ2
)

, (4)

where the curvature of the space is represented by k with k = −1, 0 and 1 refers to open,
flat and closed universe. The action for the BD theory of gravity in the Jordan frame is
defined as [30]

S =
∫ √

g
[
− ϕR + ω

gαβ ϕ,α ϕ,β

ϕ
+ Lm

]
d4x, (5)

where R is the Ricci scalar, ω and ϕ stand for the BD coupling parameter and the BD scalar
field, respectively. Lm denotes the Lagrangian for matter fields, which does not depend

on the scalar field. The above action can be transformed ϕ → φ2

8ω , where the scalar field
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ϕ is redefined by a new scalar field φ. In such a way, the new action in canonical form is
obtained as [32]

S =
∫ √

g
[
− φ2

8ω
R +

gαβφ,αφ,β

2
+ Lm

]
d4x, (6)

the above action is obtained by replacing non-minimal coupling term φ2R instead of the

Einstein-Hilbert term R
G (where G−1 = 2πφ2

ω ) and φ is defined as the power law of a scale
factor (φ ∝ an). The acceleration of the cosmos at the current time cannot be described
by either the basic theory of general relativity or the BD theory without the inclusion
of a cosmic constant term or another source term functioning similarly into the field
equations [62,63]. Varying the action (6) (for flat FRW spacetime) with respect to (w.r.t)
metric tensor by considering the universe filled with dust and KHDE, one can obtain the
field equations for as follow [64]

3φ2H2

4ω
+

3Hφφ̇

2ω
− φ̇2

2
= ρd + ρdm, (7)

− φ2

4ω

(
2ä
a
+ H2

)
− Hφφ̇

ω
− φφ̈

2ω
− φ̇2

2

(
1 +

1
ω

)
= Pd, (8)

φ̈ + 3Hφ̇− 3
2ω

(
ä
a
+ H2

)
φ = 0, (9)

where ρd and ρdm are the densities of DE and dark matter (DM) while Pd expresses the
pressure of DM. In this work, we consider the KHDE as the energy density of the universe.
Equation (7) can also be written in form of fractional energy density by defining the critical

density 3φ2 H2

4ω . Hence, Equation (7) can be written for flat FRW universe as

Ωd + Ωdm = 1 + Ωφ, (10)

where the dimensionless density parameters are presented by Ωdm = 4ωρdm
3φ2 H2 , Ωd =

4ωρd
3φ2 H2 , Ωφ = 2n

(
nω
3 − 1

)
.

2.2. The BD Theory with a Chameleon Scalar Field

Let us consider the BransDicke action with a chameleon scalar field [65]

S =
∫ (

f (φ)Lm −
φR
2

+ V(φ) +
ω

2φ
gαβφ,αφ,β

)
√

gd4x, (11)

where V(φ) is a scalar field potential, f (φ) denotes an arbitrary function of φ. If we
replace f (φ) = 1 = constant, then it gives the usual BD theory [65]. From the variation of
Equation (11) and by using the metric tensor gµν and φ the following field equations are
obtained as

φGµν = Tφ
µν + f (φ)Tm

µν, (12)

(2ω + 3)∇µ∇µφ + 2(2V −V′φ) = Tm f − 2 f ′φm, (13)
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where Gµν denotes the Einstein tensor, Tm = gµνTm
µν, V′ = dV

dφ and f ′ = d f
dφ . In Equation (12),

Tφ
µ ν and T(m)

µ ν and were defined as

Tφ
µν =

ω

φ
(∇µφ∇νφ− 1

2
gµν∇αφ∇αφ)−V(φ)gµν + (∇µ∇νφ (14)

− gµν∇µ∇µφ),

Tm
µν =

−2δ(Lm
√−g)√−g(δgµν)

. (15)

Hence, we have the following field equation for flat FRW metric

3H2 =
f
φ

ρ +
ωφ̇2

2φ2 − 3H
φ̇

φ
+

V
φ

, (16)

here ρ = ρdm + ρd. In this paper, we consider V = V0φβ and f = f0φγ [66] where V0, f0, β
and γ are constants.

3. Interaction between Dark Sector

It has been observed [67] that most of the universe contained DM and DE. The DE is
responsible for the accelerated expansion universe while DM is the hypothetical form of
matter which cannot absorb, reflect or emit light. One cannot see it directly but observe its
effects through gravitational attraction. Well-known observational data suggested that DE
and DM occupied 68.3% and 26.8% respectively of our universe and the remaining 4.9%
consists of regular matter that is seen by the human eye. The formation of a structure is
effected due to the interaction between DE and DM at distinct scales and times. The cosmic
coincidence problem is considered as a well-known puzzle within this perspective. This
problem is elaborated that the densities of DM and DE are of the same order of magnitude,
given that they evolve very differently with redshift? One can alleviate this problem
through appropriate coupling between the DM and DE. This coupling is justified from a
phenomenological point of view, or give a covariant prescription for it and then let the data
be the judge of its viability. In this scenario, the energy conservation equations become as

ρ̇d + 3Hρd(1 + ωd) = −Q, (17)

ρ̇dm + 3Hρdm = Q, (18)

where ωd is the EoS parameter and Q is the interaction term. This interaction term plays
a very important term as it expresses the rate of energy exchange between DE and DM.
It is interesting to mention here that if Q > 0 shows the energy exchange from KHDE
to DM while if Q < 0 leads to an energy transfer from DM to KHDE. If Q = 0, this
corresponds to non-interaction scenario. The interaction scenario is considered a more
general and comprehensive way to investigate cosmic evolution. Various linear and non-
linear interaction terms have been proposed in literature [68]. These interaction terms are
the function of ρd, ρdm, H and their linear combinations. In this work, we discuss two types
of interaction terms that are defined as follow [69–75]

Q1 = 3Hbρd + γ̂ρ̇d, (19)

Q2 = 3Hbρdm + γ̂ρ̇dm. (20)

In these interactions terms b and γ̂ are constants and bounded between −1 ≤ b ≤ 1 and
−1 ≤ γ̂ ≤ 1. These kinds for the interaction terms have a minimal impact on the evolution
of the universe’s overall energy budget. In fact, these terms may be understood as a first
order Taylor expansion. Furthermore, they are predicated on the idea that the dark particle
propagator depends on energy. These interactions have been proven to be a useful method
for resolving the coincidence issue [76].
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4. Q1 Interaction Term

Furthermore, we consider the interaction (Q1) and investigate the cosmic evolution of
the KHDE model for both standard BD and the BD theory with a chameleon scalar field.

4.1. For Standard BD Theory

In this section, we study the global dynamics of the universe through some very
important cosmological parameters in the framework of Standard BD theory. Hence, we
find the Hubble parameter, deceleration parameter, equation of state (EoS) parameter and
jerk parameter by using the KHDE model.

• Hubble Parameter: This parameter sets the scale of our universe at present time.
The Hubble constant (H0) is called the current value of Hubble parameter which lies
in the range 65–75 km/s/Mpc. Now, taking the derivative of Equation (7) w.r.t cosmic
time and by substituting the values of φ̇, φ̈, ρ̇d and ρ̇dm, we obtain

Ḣ
H2 =

Ωd(9b + 6nγ + 9 + 6n)− (9 + 6n)( 2n
3 (nω− 3) + 1)

6 + 12n− 4ωn2 − 24ωc2 + 2(3Ωd − 12ωc2)− 24ωγc2 + 2γ(3Ωd − 12ωc2)
. (21)

Next, we convert the above expression of Hubble parameter in term of redshift
parameter z. This relation is defined as

H′ =
−Ḣ

H(1 + z)
. (22)

where H′ = dH
dz . Using above expression, Equation (21) become

H′ =
(−H)(Ωd(9b + 6nγ + 9 + 6n)− (9 + 6n)( 2n

3 (nω− 3) + 1))
(1 + z)(6 + 12n− 4ωn2 − 24ωc2 + 2(3Ωd − 12ωc2)− 24ωγc2 + 2γ(3Ωd − 12ωc2))

. (23)

The Hubble parameter H versus redshift function z by selecting H(z = 0) = 72.3 is
plotted in the Figure 1. We take three different values of c = 0.0003, 0.0004, 0.0005 and
b = −0.1. This plot is showing that the current value of Hubble parameter H0 = 74
which is compatible with observational bounds [77]. Additionally, the range of this
parameter lies in H = 107.5± 92.5.

c = 0.0003

c = 0.0004

c = 0.0005

-0.5 0.0 0.5 1.0

0

50

100

150

200

z

H

Hubble parameter

Figure 1. Plot of H versus z by choosing three different values of c for interacting KHDE model in
the standard BD theory.
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• Deceleration Parameter: This important parameter is denoted by q. It differentiates
the decelerated as well as the accelerated phase of the universe. The mathematical
form of this parameter as the function of the Hubble parameter is given as follows

q = − ä
aH2 = −1− Ḣ

H2 . (24)

The different phases of the universe corresponding to different values of this parameter
is defined as follows

q =


Decelerated expansion if q > 0,

Constant expansion if q = 0,
Acceleration with power law expansion if − 1 < q < 0,

Exponential expansion if q = −1,
Expension is super exponential if q < −1.

(25)

We obtain the expression of q by inserting the value of Ḣ
H2 from Equation (21) into

Equation (24) as

q = −1−
Ωd(9b + 6nγ + 9 + 6n)− (9 + 6n)( 2n

3 (nω− 3) + 1)
6 + 12n− 4ωn2 − 24ωc2 + 2(3Ωd − 12ωc2)− 24ωγc2 + 2γ(3Ωd − 12ωc2)

. (26)

In Figure 2, the deceleration parameter q is plotted against redshift z for the three
different values of c. It has been noted that the universe is showing the early decel-
erated phase to current accelerated phase. For z > −0.6, the trajectories show the
decelerated phase while z < −0.6 these trajectories indicate the accelerated expansion
of the universe [77].

c = 0.0003

c = 0.0004

c = 0.0005

-0.5 0.0 0.5

-1.0

-0.5

0.0

0.5

z

q

Deceleration Parameter

Figure 2. Plot of q against z for interacting KHDE model in the standard BD theory.

• Jerk Parameter: This parameter provides a convenient and alternative way to describe
cosmological methods close to concordance ΛCDM model. If j = 1 (constant) it
corresponds to ΛCDM model. Mathematically, this parameter is defined as the third
derivative of a scale factor w.r.t time t as [78–80]

j =
d3a
dt3

aH3 = q(2q + 1) +
dq
dz

(1 + z). (27)

Using Equation (26) in Equation (27), it results
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j =

(
− 1−

[
Ωd(9b + 6nγ + 9 + 6n)− (9 + 6n)(

2n
3
(nω− 3) + 1)

]
×

[
6 + 12n− 4ωn2 − 24ωc2 + 2(3Ωd − 12ωc2)− 24ωγc2 + 2γ(3Ωd

− 12ωc2)

]−1)
×
(

2q + 1
)
+

dq
dz

(1 + z). (28)

Figure 3 represents the plot of a jerk parameter j against the redshift z. From the graph,
it can be seen that all the trajectories of the jerk parameter show positive behavior in
the past, present and future era and all the trajectories converge to 1 which corresponds
to ΛCDM model.

c = 0.0003

c = 0.0004

c = 0.0005

-0.5 0.0 0.5

1.0

1.2

1.4

1.6

1.8

2.0

z

j

Jerk Parameter

Figure 3. Plot of jerk parameter j against redshift parameter z for interacting KHDE model in the
standard BD theory.

• Equation of State Parameter: This parameter is denoted by ωd is defined as the
ratio of pressure to DE ωd = p

ρ . The EoS parameter is a powerful tool to define the
accelerated and decelerated phases of the universe. Its different features related to
phase transition are given in the following table:

Accelerated Phase −1 < ωd < − 1
3

ωd = −1
ωd < −1

Quintessence
Cosmological Constant

Phantom-Dominated Era

Decelerated Phase
ωd = 1
ωd = 1

3
ωd = 0

Stiff Fluid
Radiation-Dominated

Dust Matter-Dominated

Using Equation (17), we obtained the expression of EoS parameter as

ωd = −1− b− (γ + 1)
2n
3
−
[
(γ + 1)(72ωc2 − 6(3Ωd − 12ωc2))(Ωd(9b + 6nγ

+ 9 + 6n)− (9 + 6n)(
2n
3
(nω− 3) + 1))

][
(36Ωd)(6 + 12n− 4ωn2 − 24ωc2

+ 2(3Ωd − 12ωc2)− 24ωγc2 + 2γ(3Ωd − 12ωc2))

]−1

. (29)
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The equation of state EoS parameter is plotted in the Figure 4 versus redshift z. It has
been observed that the ωd lies within the range −1 < ωd < − 1

3 so it indicates the
quintessence era [77].

c = 0.0003

c = 0.0004

c = 0.0005

-0.5 0.0 0.5

-1.05

-1.00

-0.95

-0.90

-0.85

-0.80

-0.75

-0.70

z

ω
d

EoS parameter

Figure 4. Graphical presentation of EoS parameter ωd plot against z for interacting KHDE model in
the standard BD theory.

4.2. The BD Theory with a Chameleon Scalar Field

Now, we find the expression of the Hubble parameter, deceleration parameter, jerk
parameter and EoS parameter for the BD theory with chameleon scalar field by using the
interaction Q1.

• Hubble Parameter: To find the expression of H, we use (16) and obtain the following
differential equation

Ḣ
H2 =

[
12ω(nγ− n)H3 + 4ω2n2H3 − 4ω2n2H3(nγ + n)− 12n2H3ω + 12n2ωγH3

+ 4ωV0(nβ− nγ)Hanβ−n + 9 f0bH3Ωdanγ+n − 9 f0H3anγ+n
(

2n
3
(nω− 3)

+ 1−Ωd

)
+ 6 f0nH3(γ + 1)Ωdanγ+n

]
×
[

24ωH3 − 4ω2n2H3 + 24nωH3

− 4ωa2n(γ + 1)H3
(

6c2 − 3Ωd − 12ωc2

2ω

)]−1

. (30)

In Figure 5, the Hubble parameter H versus the redshift z is plotted by selecting the
initial value H(z = 0) = 72.3 for three distinct values of c = 0.0002, 0.0003, 0.0004.
Other parameters are b = 0.08, f0 = 5, V0 = 2 and β = 2. From plot it is clear that
the present value of Hubble parameter H0 = 72.35. Also the range of H lies in 73+1

−1
for selected value of z. It is interesting to mention here that all these values are well
matched with observational bounds [77].
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c = 0.03

c = 0.04

c = 0.05

-1.0 -0.5 0.0 0.5 1.0

72.0

72.5

73.0

73.5

74.0

z

H

Hubble parameter

Figure 5. Plot of Hubble parameter H versus z for interacting KHDE model in the BD theory with a
chameleon scalar field.

• Deceleration Parameter: For this theory, the expression of deceleration parameter
become

q = −1−
[

12ω(nγ− n)H3 + 4ω2n2H3 − 4ω2n2H3(nγ + n)− 12n2H3ω + 12n2ωγH3

+ 4ωV0(nβ− nγ)Hanβ−n + 9 f0bH3Ωdanγ+n − 9 f0H3anγ+n
(

2n
3
(nω− 3) + 1

− Ωd

)
+ 6 f0nH3(γ + 1)Ωdanγ+n

]
×
[

24ωH3 − 4ω2n2H3 + 24nωH3 − 4ωa2n(γ + 1)

× H3
(

6c2 − 3Ωd − 12ωc2

2ω

)]−1

. (31)

The graph of a deceleration parameter q is plotted in the Figure 6 along the redshift
z. It is observed that q lies between q < −1 which indicates the expansion is supper
exponential in the past, present and later eras.

c = 0.03

c = 0.04

c = 0.05

-1.0 -0.5 0.0 0.5 1.0

-1.00492

-1.00492

-1.00492

-1.00492

-1.00492

-1.00492

-1.00492

z

q

Deceleration Parameter

Figure 6. Plot of q against z for interacting KHDE model in the BD theory with chameleon scalar field.
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• Jerk Parameter: The expression of the jerk parameter for underlying BD theory with
a chameleon scalar field and interaction term yields

j =

(
− 1−

[
12ω(nγ− n)H3 + 4ω2n2H3 − 4ω2n2H3(nγ + n)− 12n2H3ω

+ 12n2ωγH3 + 4ωV0(nβ− nγ)Hanβ−n + 9 f0bH3Ωdanγ+n − 9 f0H3anγ+n

×
(

2n
3
(nω− 3) + 1−Ωd

)
+ 6 f0nH3(γ + 1)Ωdanγ+n

]
×
[

24ωH3 − 4ω2n2H3

+ 24nωH3 − 4ωa2n(γ + 1)H3
(

6c2 − 3Ωd − 12ωc2

2ω

)]−1)(
2q + 1

)
+

dq
dz

(1 + z).

(32)

The graph of a jerk parameter is shown in Figure 7 against the redshift parameter z.
For all different values of c, we obtained positive behavior of all the trajectories of the
jerk parameter that are converges to 1. This showing that the underlying model is
compatible with ΛCDM model [77].

c = 0.03

c = 0.04

c = 0.05

-1.0 -0.5 0.0 0.5 1.0

1.01481

1.01481

1.01481

1.01481

z

j

jerk Parameter

Figure 7. Plot of a jerk parameter j against redshift z of the KHDE model in the BD theory with a
chameleon scalar field.

• Equation of State Parameter: In this scenario, the expression of EoS parameter is
defined as

ωd = −1− b− (γ + 1)
2n
3
−
[
(γ + 1)(72ωc2 − 6(3Ωd − 12ωc2))(12ω(nγ− n)H3

+ 4ω2n2H3 − 4ω2n2H3(nγ + n)− 12n2H3ω + 12n2ωγH3 + 4ωV0(nβ− nγ)

× Hanβ−n + 9 f0bH3Ωdanγ+n − 9 f0H3anγ+n
(

2n
3
(nω− 3) + 1−Ωd

)
+ 6 f0nH3

× (γ + 1)Ωdanγ+n)

]
×
[
(36Ωd)

(
24ωH3 − 4ω2n2H3 + 24nωH3 − 4ωa2n(γ + 1)H3

×
(

6c2 − 3Ωd − 12ωc2

2ω

))]−1

. (33)

In Figure 8 ωd is plotted against redshift z for the three different values of c. Since ωd
occurs between −1 < ωd < − 1

3 , it indicates the quintessence era of a universe for all
three values of c [77].
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Figure 8. Plot of EoS parameter ωd against z of the KHDE model in the BD theory with a chameleon
scalar field for the interacting scenario.

5. Q2 Interaction Term

Next, we consider the interaction term Q2 and investigate the cosmic evolution of both
standard BD and the BD theory with chameleon scalar field theories of gravity. For this
interaction term, energy conservation equations become

ρ̇d + 3Hρd(1 + ωd) = −Q2, (34)

ρ̇dm + 3Hρdm = Q2, (35)

using Equation (35), we obtain the expressions of ρdm and its derivative as

ρdm = ρm0

(
a

3(1−b)
(γ−1)

)
, (36)

ρ̇dm = ρm0

(
3(1− b)
(γ− 1)

Ha
3(1−b)
(γ−1)

)
, (37)

where ρm0 is the constant of integration.

5.1. For Standard BD Theory

Moreover, we find the underlying cosmological parameters for interaction term Q2 in
the framework of standard BD theory.

• Hubble Parameter: The expression of H for Q2 yields

Ḣ
H2 =

[
−Ωd

(
9b− 9− 6n + 9γ

(
1− b
γ− 1

))
+ (2n(nω− 3) + 3)

(
3b− 3− 2n

+ 3γ

(
1− b
γ− 1

))]
×
[

6 + 12n− 4ωn2 − 24ωc2 + 2(3Ωd − 12ωc2)

]−1

.

(38)

The plot of H along z is given in Figure 9 by choosing H(z = 0) = 72.3. We take
three different values of c = 0.0003, 0.0004, 0.0005 and b = −0.8. The graph describes
that the present value of H0 = 75 which is very near to observational value [77].
Additionally the range of Hubble parameter lies in the range H = 105.5± 92.5.
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c = 0.0004

c = 0.0005

-0.5 0.0 0.5
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Figure 9. Plot of H against z for interacting KHDE model in the standard BD theory.

• Deceleration Parameter: The deceleration parameter for above mention interaction
term is

q = −1−
[
−Ωd

(
9b− 9− 6n + 9γ

(
1− b
γ− 1

))
+ (2n(nω− 3) + 3)

(
3b− 3− 2n

+ 3γ

(
1− b
γ− 1

))]
×
[

6 + 12n− 4ωn2 − 24ωc2 + 2
(

3Ωd − 12ωc2
)]−1

. (39)

Figure 10 elaborates the plot of a deceleration parameter versus redshift z for three
distinct values of c. For all values of c, q lies between −1 < q < 0 which constitute an
accelerated phase of a cosmos [77].

c = 0.0003

c = 0.0004

c = 0.0005

-0.90 -0.85 -0.80 -0.75

-1.00

-0.95

-0.90

-0.85

-0.80

-0.75

-0.70

-0.65

z

q

Deceleration Parameter

Figure 10. Plot of q against z for interacting KHDE model in the standard BD theory.
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• Jerk Parameter: In this case j will be

j =

(
− 1−

[
−Ωd

(
9b− 9− 6n + 9γ

(
1− b
γ− 1

))
+ (2n(nω− 3) + 3)

(
3b− 3− 2n

+ 3γ

(
1− b
γ− 1

))]
×
[

6 + 12n− 4ωn2 − 24ωc2 + 2(3Ωd − 12ωc2)

]−1)
×
(

2q + 1
)

+
dq
dz

(1 + z). (40)

In Figure 11 j is plotted along the redshift z. It is observed from the graphs that all the
trajectories from the past to future era exhibit the positive behavior and converge to 1
which leads to ΛCDM model [77].

c = 0.0003

c = 0.0004

c= 0.0005

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

1.0

1.2

1.4

1.6

1.8

z

j

jerk Parameter

Figure 11. Graph of jerk parameter j against z for interacting KHDE model in the standard BD theory.

• Equation of State Parameter: The expression of ωd of Q2 is

ωd = −1− 2n
3
−
(

b +
γ(1− b)

γ− 1

)( 2n
3 (nω− 3) + 1−Ωd

Ωd

)
−
[
−Ωd

(
9b− 9− 6n

+ 9γ

(
1− b
γ− 1

))
+ (2n(nω− 3) + 3)

(
3b− 3− 2n + 3γ

(
1− b
γ− 1

))]
×
[
(6 + 12n

− 4ωn2 − 24ωc2 + 2(3Ωd − 12ωc2))(9Ωd)

]−1

. (41)

The plot of EoS parameter ωd is given in Figure 12 against the redshift function z for
different values of c. It is shown from the graph that ωd occurs between−1 < ωd < − 1

3
which indicates the quintessence era from past to early future when z > −0.2. In the
future era, the graph goes quintessence to the phantom era and in the late future
approaches to −1 which indicates the cosmological constant. These results favor the
observational bounds [77].
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Figure 12. Plot of ωd against z for interacting KHDE model in the standard BD theory.

5.2. for the BD Theory with a Chameleon Scalar Field

Similarly, we calculate the above mentioned cosmological parameters for the BD
theory with a chameleon scalar field.

• Hubble Parameter: For this case, the expression of H becomes

Ḣ
H2 =

[
12ω(nγ− n) + 4ωn3 − 2ωn2(nγ + n)− 12ωn2(1 + γ) + 4ωV0(nβ− nγ)

× anβ−n

H2 + 9 f0anγ+n
(

b− 1 +
γ(1− b)

γ− 1

)
(

2n
3
(nω− 3) + 1−Ωd) + 6nanγ+nΩd

]
×

[
24ω− 4ω2n2 + 24ωn−

(
6c2 − 3Ωd − 12ωc2

2ω

)
4ωanγ+n

]−1

. (42)

We plot the Hubble parameter H versus z in Figure 13 by selecting initial condition
H(z = 0) = 72.3. We take three different values of c as c = 0.224, 0.225, 0.226 and
b = −0.008. The plot shows that the present value of Hubble parameter H0 = 72.30.
Additionally, this parameter H lies in the range H = 72.30+10

−10 which shows the
consistency with recent observation data [77].

c = 0.224

c = 0.225

c = 0.226

-0.5 0.0 0.5

72.20

72.25

72.30

72.35

72.40

z

H

Hubble parameter

Figure 13. Plot of H against z for three distinct values of c with KHDE model in BD theory with a
chameleon scalar field for the interacting scenario.
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• Deceleration Parameter: In this scenario, the expression of q is

q = −1−
[

12ω(nγ− n) + 4ωn3 − 2ωn2(nγ + n)− 12ωn2(1 + γ) + 4ωV0(nβ− nγ)

× anβ−n

H2 + 9 f0anγ+n(b− 1 +
γ(1− b)

γ− 1
)(

2n
3
(nω− 3) + 1−Ωd) + 6nanγ+nΩd

]
×

[
24ω− 4ω2n2 + 24ωn−

(
6c2 − 3Ωd − 12ωc2

2ω

)
4ωanγ+n

]−1

. (43)

In Figure 14, the deceleration parameter q is plotted against redshift z. It is observed
from the plot that all the trajectories from past to future lie between −1 < q < 0 which
corresponds to very fast accelerated expansion of the universe (power law expansion).

c = 0.224

c = 0.225

c = 0.226

-0.5 0.0 0.5

-0.9973

-0.9972

-0.9971

-0.9970

-0.9969

z

q

Deceleration Parameter

Figure 14. Plot q against z of the KHDE model in the BD theory with a chameleon scalar field for the
interacting scenario.

• Jerk Parameter: In BD theory with a chameleon scalar field, the expression of j is

j =

(
− 1−

[
12ω(nγ− n) + 4ωn3 − 2ωn2(nγ + n)− 12ωn2(1 + γ) + 4ωV0(nβ

− nγ)
anβ−n

H2 + 9 f0anγ+n
(

b− 1 +
γ(1− b)

γ− 1

)(
2n
3
(nω− 3) + 1−Ωd

)
+ 6nanγ+nΩd

]
×

[
24ω− 4ω2n2 + 24ωn−

(
6c2 − 3Ωd − 12ωc2

2ω

)
4ωanγ+n

]−1)
×
(

2q + 1
)

+
dq
dz

(1 + z). (44)

The jerk parameter j is plotted in Figure 15 versus z. It can be seen from the graph
that all trajectories give the positive behavior for all cases of c. In all cases, trajectories
favor the ΛCDM limit.
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Figure 15. Plot of j against z for KHDE model in BD theory with a chameleon scalar field for the
interacting scenario.

• Equation of State Parameter: The expression of ωd for this case will be

ωd = −1− 2n
3
−
(

b +
γ(1− b)

γ− 1

)( 2n
3 (nω− 3) + 1−Ωd

Ωd

)
−
[
(24ωc2 − 2(3Ωd − 12ω

× c2))(12ω(nγ− n) + 4ωn3 − 2ωn2(nγ + n)− 12ωn2(1 + γ) + 4ωV0(nβ− nγ)

× anβ−n

H2 + 9 f0anγ+n(b− 1 +
γ(1− b)

γ− 1
)(

2n
3
(nω− 3) + 1−Ωd) + 6nanγ+nΩd)

]
×

[
(36ωc2 + 3(3Ωd − 12ωc2))(24ω− 4ω2n2 + 24ωn−

(
6c2 − 3Ωd − 12ωc2

2ω

)
× 4ωanγ+n)

]−1

. (45)

The plot of EoS ωd against redshift function z is given in Figure 16. It is observed from
the graph that ωd lies between −1 < ωd < − 1

3 which indicates the quintessence era
of the universe. It is interesting to mention here that these results are compatible with
observational data [77].

c = 0.224

c = 0.225
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Figure 16. Plot of ωd against z for the KHDE model in BD theory with chameleon scalar field for the
interacting scenario.



Entropy 2023, 25, 576 18 of 25

6. Thermodynamics

Researchers examined the thermodynamical properties of various DE models of the
cosmos in the framework of a rapid universe expansion. These properties are driven by
the study of black hole physics and discovered a strong relationship between gravity and
thermodynamics [81–83]. According to thermodynamics, the rate of change in entropy
and heat capacity must be positive for an accelerated expansion of the universe. Thus,
thermodynamical axioms have become the key factor to check the stability of the model.
The thermodynamic and fluid-dynamic features of gravity provide us with other perspec-
tives to comprehend gravity in the absence of a quantum theory. Thermodynamics is a
physical science that is concerned with the concepts of energy, heat and temperature as
well as how they relate to radiation, energy, and the physical properties of matter. When
we consider observable macroscopic physical quantities like volume, pressure, internal
energy, temperature and entropy, the four thermodynamic properties provide a significant
explanation for the behavior of these values. In these properties, the generalized second
law of thermodynamics (GSLT) is very important. This law is defined as the total entropy
of an isolated system must be non-negative (Ṡtot) = Ṡu + Ṡint ≥ 0 (where Ṡint, Ṡu are the
rate of change of the internal and external entropies of the system). To check the validity
of GSLT, first we start with the Gibbs equation [84], in which the entropy of the universe
inside the horizon is represented by its energy and pressure as

TdSint = dE + pdV, (46)

that can be rewritten in following expression

Ṡint =
1
T
(Ė + pV̇), (47)

here V represents the volume which defined as V =
4πR3

A
3 (for flat FRW universe RA = 1

H ),
E is the total energy of the system that is E = ρV and T is the fluid’s temperature which
bounded by the horizon. To avoid non-equilibrium thermodynamic’s mathematical com-
plexity in that case. We also assume that there is no sudden energy exchange between the
fluid and the horizon. Therefore, it assumed that the cosmological fluid T within a horizon
is at the same degree as the bounded horizon Th that is T = Th. Now, we take derivatives
of V, E w.r.t time and then put these in Equation (47), we obtain

Ṡint =
8π2

H4

[
ρ̇

3
− (ρ + p)

Ḣ
H

]
. (48)

For external scenarios, the combination of Kaniadakis and Bekenstein Hawking entropies
is given as [54,55]

Su = SBH +
u2

6
S3

BH . (49)

By taking derivative of Equation (49) w.r.t time we get

Ṡu = −2πḢ
GH3 −

u2Ḣ
G3H7 , (50)

where SBH = A
4G and A = 4πR2

A. Using Equation (48) and (50), the total entropy of the
system become

Ṡtot =
8π2

H4

[
ρ̇

3
− (ρ + p)

Ḣ
H

]
−
(

2π

GH2 +
u2

G3H6

)
Ḣ
H

. (51)
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6.1. For Standard Brans–Dicke Theory of Gravity

For interaction Q1, we obtain the expression of total entropy dS
da by using Equation (51)

as the function of scale factor as

dS
da

= −
[(

Ωd(9b + 6nγ + 9 + 6n)− (9 + 6n)(
2n(nω− 3)

3
+ 1)

)(
6π2a2n(1 + ω)

ωH2

×
(

2n(nω− 3)
3

+ 1
)
+

2π

GH2 +
u2

G3H6 −
((

8π2a2n

3H2

)(
6c2 − 2u2

H4

))
(γ + 1)

)]
×

[
(a)
(

6 + 12n− 4ωn2 − 48ωc2 + 6Ωd − 24γωc2 + γ(6Ωd − 24ωc2)

)]−1

+
8π2

3H2a

×
[

a2nΩd
4ω

(9b + 6nγ + 9 + 6n)− 9a2n

4ω

(
2n(nω− 3)

3
+ 1
)]

. (52)

The plot of the total entropy dS
da versus a by selecting initial value H(a = 1) = 72.3 is shown

in Figure 17. It can be observed from the graph that dS
da > 0 for all the trajectories which

indicates that the GSLT is valid for the KHDE model in the framework of standard BD
theory. Similarly, for interaction Q2, the expression of dS

da will be

dS
da

= −
[(
−Ωd

(
9b− 9− 6n + 9γ

(
1− b
γ− 1

))
+ (2n(nω− 3) + 3)

(
3b− 3− 2n + 3γ

×
(

1− b
γ− 1

)))
×
(

6π2a2n(1 + ω)

ωH2

(
2n(nω− 3)

3
+ 1
)
+

2π

GH2 +
u2

G3H6 −
8π2a2n

3H2

(
6c2

− 2u2

H4

))][
(a)
(

6 + 12n− 4ωn2 − 24ωc2 + 2(3Ωd − 12ωc2)

)]−1

+
8π2

3H2a

(
a2n

4ω
Ωd

×
(
− 9b− 9γ(1− b)

γ− 1
+ 9 + 6n

)
+

9a2n

4ω

(
2n
3
(nω− 3) + 1

)(
b +

γ(1− b)
γ− 1

− 1
))

.

(53)
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Figure 17. Plot of ds
da against a of the interacting KHDE model in the standard BD theory.

In Figure 18, total entropy dS
da is plotted against the scale factor a by choosing initial

value H(a = 1) = 72.3. We can see that all trajectories are positive for all selected values of
c which provide the validity of GSLT.
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Figure 18. Plot of an entropy ds
da against a for the interacting KHDE in the standard BD theory.

6.2. for the BD Theory with a Chameleon Scalar Field

Now, we consider the interaction Q1 for the BD theory with a chameleon scalar field.
For this choice we obtain dS

da as follows

dS
da

= −
[(

12ω(nγ− n)H3 + 4ω2n2H3 − 4ω2n2H3(nγ + n)− 12n2H3ω + 12n2ωγH3

+ 4ωV0(nβ− nγ)Hanβ−n + 9 f0bH3Ωdanγ+n − 9 f0H3anγ+n
(

2n
3
(nω− 3) + 1−Ωd

)
+ 6 f0nH3(γ + 1)Ωdanγ+n

)(
6π2a2n(1 + ω)

ωH2

(
2n(nω− 3)

3
+ 1
)
+

2π

GH2 +
u2

G3H6

−
(
(

8π2a2n

3H2 )

(
6c2 − 2u2

H4

))
(γ + 1)

)]
×
[
(a)
(

24ωH3 − 4ω2n2H3 + 24nωH3 − 4ωa2n

× (γ + 1)H3
(

6c2 − 3Ωd − 12ωc2

2ω

))]−1

+
8π2

3aH2

[
a2nΩd

4ω
(9b + 6nγ + 9 + 6n)− 9a2n

4ω

×
(

2n(nω− 3)
3

+ 1
)]

. (54)

Figure 19 represents the plot of the total entropy dS
da versus the scale factor a by selecting

H(a = 1) = 72.3. It is clear from the graph that the GSLT is valid for the KHDE in the
BD theory with a chameleon scalar field, because all the trajectories are positive for three
different values of c. Again, by using the Q2 interaction, we obtain the expression of dS

da for
the BD theory with a chameleon scalar field as follows:

dS
da

= −
[(

12ω(nγ− n) + 4ωn3 − 2ωn2(nγ + n)− 12ωn2(1 + γ) + 4ωV0(nβ− nγ)
anβ−n

H2

+ 9 f0anγ+n(b− 1 +
γ(1− b)

γ− 1
)(

2n
3
(nω− 3) + 1−Ωd) + 6nanγ+nΩd

)(
6π2a2n(1 + ω)

ωH2

×
(

2n(nω− 3)
3

+ 1
)
+

2π

GH2 +
u2

G3H6 −
8π2a2n

3H2 (6c2 − 2u2

H4 )

)][
(a)
(

24ω− 4ω2n2

+ 24ωn−
(

6c2 − 3Ωd − 12ωc2

2ω

)
4ωanγ+n

)]−1

+
8π2

3aH2

(
a2n

4ω
Ωd

(
− 9b− 9γ(1− b)

γ− 1

+ 9 + 6n
)
+

9a2n

4ω

(
2n
3
(nω− 3) + 1

)(
b +

γ(1− b)
γ− 1

− 1
))

. (55)
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Figure 19. Plot of an entropy ds
da against a of a KHDE in the BD theory with a chameleon scalar field

for the interacting scenario Q1.

The plot of total entropy dS
da is plotted in Figure 20 against a by choosing the initial

value H(a = 1) = 72.3. All the curves showed positive behavior for three different values
of c, which gives the validity of the GSLT.
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Figure 20. Plot of an entropy ds
da against a for an interacting KHDE model in the BD theory with the

chameleon scalar field.

7. Conclusions and Comparison

Yang et al. [85] studied the correspondence between the tachyon, quintessence, dila-
ton scalar field, K-essence, and Chaplygin gas model with the non-interacting new HDE
model in the non-flat BD theory. They reconstructed the potentials and dynamics for these
models and found the accelerated expansion of the universe in the context of the BD theory.
In Ref. [66], the authors reconstructed a new HDE model with φ = φ0aα V = V0φβ and
f = f0φγ. They considered the chameleon BD cosmology and worked on the correspon-
dence between the quintessence, the DBI-essence, and the tachyon scalar field models
with the non-interacting new HDE model. They also found the expression of the Hubble
parameter and stability for the obtained solutions of the crossing of the phantom divide.
They found that the potential increases as the matter-chameleon coupling gets stronger
with the evolution of the universe.

The basic purpose of this paper was to explore the effects of interaction terms on the
cosmology of KHDE in the context of BD and the BD theory with a chameleon scalar field
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for the flat FRW universe. We have investigated the cosmographical parameters, such as
Hubble parameter H, the deceleration parameter q, the EoS parameter ωd, and the jerk
parameter j in the framework of BD and the BD theory with a chameleon scalar field for the
flat FRW universe. We also discussed the GSLT of KHDE for the standard BD and the BD
theory with a chameleon scalar field. We take the values of constant parameters for both
interaction terms in standard BD theory as u = −0.9, γ = −0.8, n = 0.0009. The values
of constants in the BD theory with a chameleon scalar field for Q1 term are taken as
u = 0.01, γ = 0.002, n = 0.0009, and for the Q2 term as u = −0.09, γ = −0.7, andn = 0.09.
Throughout the paper, the Brans–Dicke coupling constant is assumed to be ω = 40,000 [86].

We observed the effects of interaction term Q1 in the context of the standard BD theory
on the Hubble parameter H, which have shown the positive behavior that represents the
universe expanded, that q has gone from a decelerated phase to an accelerated phase
shown and that the expansion of the universe is accelerated, the jerk parameter j has shown
positive behavior, and EoS ωd is in the quintessence era. It has been found that the effects
of interaction term Q1 in the context of BD theory with a chameleon scalar field on the
Hubble parameter and the deceleration parameter gave us an accelerated expansion (see
Figures 5 and 6). Meanwhile, the jerk parameter j has shown positive behavior for all the
trajectories, and ωd indicated the quintessence era.

We examined the effects of the Q2 interaction term in the framework of standard BD
theory. It has been found that the Hubble parameter H and the deceleration parameter
q show the accelerated expansion of the universe. The jerk parameter indicated posi-
tive behavior and converged to −1 when z −→ −1, and the EoS parameter varies from
quintessence to the phantom region and approaches to −1. It has been observed that the
effects of interaction term Q2 are in the context of BD theory with a chameleon scalar field.
Here, we observed that the Hubble parameter H, as well as the deceleration parameter
q, shows the accelerated expansion of the universe. For this interaction term, the trajec-
tories of the jerk parameter and EoS parameter provide us the universe’s quintessence
phase. We also contrasted our results with observational data related to the EoS parameter.
We observed that the EoS parameter results are compatible with those from the Planck
collaboration [77]. The following are the observational data:

ωd Observational Schemes

−1.56+0.60
−0.48 Planck+TT+lowE

−1.58+0.52
−0.41 Planck+TT, TE, EE+lowE

−1.57+0.50
−0.40 Planck+TT, TE, EE+lowE+lensing

−1.40+0.10
−0.10 Planck+TT, TE, EE+lowE+lensing+BAO

We also examined the results of deceleration parameter q with observational data [87],
which demonstrates its compatible behavior. The following are the observational data for q:

deceleration parameter Observational Schemes

−0.644∓ 0.223 BAO+Masers+TDSL+Pantheon

−0.6401∓ 0.187 BAO+Masers+TDSL+Pantheon+H0

−0.930∓ 0.218 BAO+Masers+TDSL+Pantheon+Hz

−1.2037∓ 0.175 BAO+Masers+TDSL+Pantheon+H0 +Hz

We also observed that the GSLT for the KHDE in the Standard BD theory, as well as
the BD theory with a chameleon scalar field, shows increasing behavior ( dS

da > 0) for both
interaction terms Q1 and Q2, which ensures that the GSLT is valid for the selected range of
scale factor.
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