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Abstract: In order to reduce the errors caused by the idealization of the conventional analytical model
in the transient planar source (TPS) method, a finite element model that more closely represents
the actual heat transfer process was constructed. The average error of the established model was
controlled at below 1%, which was a significantly better result than for the analytical model, which
had an average error of about 5%. Based on probabilistic optimization and heuristic optimization
algorithms, an optimization model of the inverse heat transfer problem with partial thermal conduc-
tivity differential equation constraints was constructed. A Bayesian optimization algorithm with
an adaptive initial population (BOAAIP) was proposed by analyzing the influencing factors of the
Bayesian optimization algorithm upon inversion. The improved Bayesian optimization algorithm is
not affected by the range and individuals of the initial population, and thus has better adaptability
and stability. To further verify its superiority, the Bayesian optimization algorithm was compared
with the genetic algorithm. The results show that the inversion accuracy of the two algorithms is
around 3% when the thermal conductivity of the material is below 100 Wm−1K−1, and the calculation
speed of the improved Bayesian optimization algorithm is three to four times faster than that of the
genetic algorithm.

Keywords: the transient plane source method; thermal conductivity; the Bayesian optimization
algorithm; the genetic algorithm

1. Introduction

The thermophysical properties of a substance are observed to characterize its heat
transport and heat carrying capacity, which is an important basis for material selection
and thermal process analysis. The transient planar source (TPS) method is one of the most
important general methods for testing the thermal conductivity and thermal diffusion
coefficients, which are widely used in testing of the thermophysical properties of various
materials such as, fluids [1–3], solids [4–6], powders [7,8], and thin films [9,10]. TPS
provides a double helix probe (for heating and temperature sensing) and an idealized heat
transfer analysis model. During the test, the thermal conductivity and thermal diffusion
coefficient of the test material are obtained via iterative least squares fitting based on the
transient average temperature response of the probe [11,12]. Limited by the difficulty of
obtaining the analytical solution of the heat transfer model, the analytical model used
for data analysis ignores the influences of probe heat capacity, thickness, thermal contact
resistance, and other factors on measurement accuracy. Even with corrections made using
various methods, it is difficult to achieve better breakthroughs in terms of technology,
accuracy, and theory [13–15]. In this regard, this paper proposes combining probabilistic
and heuristic optimization algorithms with the thermal conductivity differential equation
as a constraint, in order to build an optimization model for the inverse problem of thermal
conductivity via TPS and improve the test accuracy.

The first task in parameter inversion with a numerical technique is to establish the
forward problem model in relation to the inverse process. Even though the analytical model
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can be used for this process, its strong idealization limits its effectiveness in characterizing
thermal properties [15]. Nowadays, numerical heat transfer technology is widely used
because it can meet the challenges brought about by complex problems [16–18]. For the TPS
method, Mihiretie [19] used the finite element method to build a 3D Hot Disk model, which
achieved a good match between the simulated temperature increase and the experimental
results. Zhang [9] and Wang [20] et al. used the software Fluent to conduct numerical
studies on the TPS used to measure thin film and translucent materials. In addition,
Bording [21] and Castillo [22] et al. applied a numerical simulation to a study using a
hot-wire method and obtained good test results. In order to reduce the error of the TPS
model, a mathematical model that more closely represents the actual heat transfer process
is established in this paper by considering the thickness and heat capacity of the probe.
The model is discretized using the finite element method to solve the transient average
temperature of the heater in the probe.

The forward problem model cannot directly identify parameters; thus, using the in-
verse heat transfer theory and the optimization algorithm, it is necessary to find the optimal
parameter solution corresponding to the minimum difference between the analytical re-
sponse of the forward problem and the known data. In contrast to the forward problem,
the inverse problem is usually ill-posed and ill-conditioned [23,24]. Some regularization
methods [25,26], such as the Levenberg–Marquardt [27] method and the conjugate gradient
method [28,29], are commonly used to deal with such problems. However, it is difficult to
obtain gradient information using these methods, and they easily lead to the dilemma of
local optimization [30]. Different from the above deterministic methods, Bayesian reasoning
technology has attracted much attention in the study of the reverse heat transfer problem
due to its use of prior information and its ability to evaluate uncertainty [24]. Khan [31]
and Xu [32] used Bayesian inference for the parameter estimation of steam box and textile
materials and validated the effectiveness of the method. Somasundharam [33] compared
three sampling techniques (Metropolis–Hastings Markov Chain Monte-Carlo, Parallel
Tempering, and Evolutionary Monte-Carlo) under different noises. Helcio [24] focused
on methods for solving inverse problems under Bayesian inference and the application
of Markov Chain Monte-Carlo (MCMC). The core aim of Bayesian inference is to ensure
that the sampling mean converges to the MCMC’s expectation of the posterior probabil-
ity distribution under a large number theorem. The sampling volume of this process is
huge, requiring the frequent mobilization of expensive numerical models and high com-
putational costs. Different from Bayesian inference, the intelligent random optimization
algorithm transforms parameter identification into an optimization problem that globally
seeks the optimal solution of the objective function. These algorithms include the genetic
algorithm [34,35], particle swarm optimization [36–38], social spider optimization [30],
the artificial bee colony algorithm [39], Bayesian optimization [40,41], etc., all of which
have achieved good results in the research on the inverse heat transfer problem. Among
them, the genetic algorithm is a classic population-based heuristic algorithm that measures
the goodness of fit of individuals based only on the fitness function, which can obtain a
global optimal solution and is widely used in complex optimization problems [42,43]. The
probability-based Bayesian optimization algorithm combines approximate metamodel tech-
nology with sampling criteria based on prior information, which enables it to carry out fast
convergence. In this regard, in this paper, both methods are applied to the inverse problem
model for optimizing thermal conductivity, and a comparative analysis is carried out.

The rest of the paper is arranged as follows. First, based on the principles of the
TPS method and the intelligent random optimization algorithm, mathematical models
of the forward and backward problems are established. Next, the correctness of the
developed finite element numerical model (FENM) is verified by comparing the results
with computational fluid dynamics (CFD) software using the same model. The analytical
model and FENM are compared and analyzed using the calculated temperature of the
CFD as the standard. The validated FENM and CFD are used simultaneously on the
optimization model of the inverse thermal conductivity problem. The thermal conductivity
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of the solid specimen is determined using the Bayesian optimization algorithm (BOA) by
employing the transient temperature response data of the probe, and the influencing factors
of the inversion results are discussed. A Bayesian optimization algorithm with an adaptive
initial population (BOAAIP) is proposed in the inverse architecture and compared with the
genetic algorithm.

2. Numerical Calculation Model
2.1. Transient Heat Conduction of TPS

The etched double helix probe was the core element of the TPS, and it provided heat
and temperature feedback during the measurements [44]. When measuring solid materials
using the TPS method, the probe was sandwiched between two identical pieces of the
measured material, as shown in Figure 1a. The traditional analytical model ignored the
actual structure of the probe, while we considered factors such as the heat capacity of
the probe in the simulation model. Because the model was strictly based on cylindrical
coordinate symmetry, only 1/4 of the model was used for this research, and Figure 1b
shows the simplified 2D axisymmetric heat transfer model. The relevant dimensions of the
probe were constructed according to the standard Hot Disk probe [12], and Table 1 lists the
relevant parameters of each component of the probe in this study.

Figure 1. Schematic of the physical and computational domain for the TPS measurement system. (a) a
3D physical model demonstrates the actual measurement structure; (b) 2D numerical computational
domain model used in this study, where the number of the rings in the nickel heater is 15 [15].

Table 1. Calculation parameters of the TPS probe.

Parameter Unit Value

WNi / BNi / HNi / RNi / HKap / RKap mm 0.21/0.21/0.01/6.40/0.02/10
CNi/ CKap MJm−3K−1 4.10/1.56
λNi / λKap Wm−1K−1 91.74/0.50
κNi / κKap mm2s−1 22.30/0.32

2.2. Governing Equations

Based on the above 2D axisymmetric model, the transient thermal conductivity process
of TPS is calculated numerically. When the internal heat source is considered, the governing
equation of heat conduction in a cylindrical coordinate system is shown in Equation (1) [45]:

ρcv
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∂t
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1
r

∂

∂r
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∂
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where λ is the thermal conductivity Wm−1K−1; ρ is the density kgm−3; cv is the volume-
specific heat capacity Jkg−1K−1; ∂
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are the temperature gradients in

the r and z directions, respectively; and Θ is the source item.
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The finite element method is used to discretize Equation (1) to obtain the backward
difference format as shown in Equation (2) [46]:(

Mλ +
1

∆t
MC

)
T(tn+1) = Q(tn+1) +

1
∆t

MCT(tn) (2)

where Mλ is the thermal conductivity matrix of the calculation units; MC is the heat
capacity matrix of the calculation units; ∆t is the time step s; T(tn+1) and T(tn) are the
node temperatures at moments tn+1 and tn, respectively, K; and Q(tn+1) is the heat load
generated by the internal heat in the unit at time tn+1 W. In order to consider the influence
of mesh and time on accuracy, the irrelevance of both is verified using a ceramic material
(λ = 1.50 Wm−1K−1, κ = 0.59 mm2s−1). Figure 2 shows that the calculated temperature
increase in the heat source at 100 s tends to stabilize and no longer fluctuates significantly
when the number of nodes for the mesh reaches 160,411 and the time step is less than 0.1 s.
Considering the accuracy and cost of the calculation, the mesh node and time step are set
at 160,411 and 0.01 s, respectively.

Figure 2. Numerical accuracy verification. (a) Mesh independence verification; (b) time step indepen-
dence verification.

2.3. Boundary and Setting Conditions

The model’s boundary settings and conditions were as follows. The left side and
bottom of the whole model: the symmetry axis and symmetry plane for the bottom surface,
respectively. The outer boundaries of the solid specimen and the right side of the Kapton
layer: thermal isolation. In the transient heat transfer process of TPS, the solid specimen
is large enough that the heat will not penetrate the sample material during the heating
time, thus this part of the boundary can be used for thermal isolation; a study by Zheng
et al. [15] found that convection and radiation have little effect on the test system. In the
simulation process, the power of the heater was given, and the initial ambient temperature
was 293.15 K.

3. Thermal Conductivity Identification Based on an Optimization Algorithm

The process of identifying thermal conductivity using the optimization algorithm is
shown in Figure 3. In the identification process, the real thermal conductivity of the sample
is input into CFD software, and the obtained transient temperature responses TCFD are
taken as the real data. The developed finite element numerical model (FENM) is used
as a temperature solver, and its simulated temperature TFENM is used as the prediction
data (consider all simulation data to be obtained within 0–10 s). The objective function
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is established according to the mean square error of the real data TCFD and the predicted
data TFENM:

f (x) =
1
N

N

∑
i=1

(TFENM,i(x)− TCFD,i)
2 (3)

where x represents the parameter variable, i.e., the thermal conductivity of the specimen; i
denotes a measuring point; and N is the total number of measuring points. The parameter
identification process is transformed into an optimization problem that seeks the global
optimal solution of the objective function [41]:

x∗ = argminx∈χ⊆Rd f (x) (4)

where x has the same meaning as above; χ is the observation space; f (x) is the above
objective function; f : Rd → R ; and x∗ is the current optimal estimate.

Figure 3. Flow chart of thermal conductivity identification by optimization algorithm.

Although the objective function can be defined, the corresponding objective function
value can only be calculated according to the discrete independent variable. The opti-
mization of the objective function is known as a “black box” optimization problem, from
which it is difficult to obtain effective gradient information, and the evaluation of objective
function is expensive. In this paper, the optimization models for the inverse heat transfer
problem are investigated using Bayesian optimization and the genetic algorithm based on
the gradient-free stochastic optimization theory.

3.1. Bayesian Optimization Algorithm

The Bayesian optimization framework is used to establish and update the probabilistic
surrogate model based on previous evaluations of the objective function [47], and to ac-
tively select the evaluation points with the most global “potential” through the acquisition
function. Bayesian optimization can effectively use prior information to judge the uncer-
tainty of the unknown region and obtain the optimal solution within a few evaluations.
This study develops a probabilistic agent model for the objective function f (x) based on
the Gaussian process.

The Gaussian process is a paradigm of a multivariate Gaussian probability distribution
and is mainly composed of the mean function m and covariance function k [48]:

f (x) ∼ GP
(
m(x), k

(
x, x′

))
(5)

m(x) = E[ f (x)] (6)

k
(
x, x′

)
= E

[
( f (x)−m(x))

(
f
(
x′
)
−m

(
x′
))]

(7)

where x is the thermal conductivity. When there is observation noise, the observed values
(objective function values with noise) are y = f (x) + ε, and we can suppose that the noise
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ε satisfies p(ε) = N
(
0, σ2) [49]. In this regard, according to the definition of the Gaussian

process, the joint distribution of Gaussian variables can be obtained as follows [50]:

[
Y

f (x∗)

]
∼ N




m(x1)
...

m(xt)
m(x∗)

,
[

K + σ2 I k(x∗, X)

k(x∗, X)T k(x∗, x∗)

] (8)

where X is the training input set x1:t, Y is the training output set y1:t, K is the matrix of
covariance functions k(x, x′), and I is the unit matrix. To obtain the posterior predictive
distribution of f (x∗), the test point x∗ and training dataset D are set as follows [51]:

p( f (x∗)|x∗, D) =
p( f (x∗), Y|X, x∗)

p(Y|X)
(9)

The mean and variance define the conditional posterior Gaussian distribution, accord-
ing to Equation (8), the following distribution can be obtained [52]:

µ( f (x∗)|x∗, D) = m(x∗) + k(x∗, X)T
(

K + σ2 I
)−1

(Y− [m(X:,1)], . . . , m(X:,nD)) (10)

var( f (x∗)|x∗, D) = k(x∗, x∗)− k(x∗, X)T
(

K + σ2 I
)−1

k(x∗, X) (11)

The k(x, x′) is defined using various kernel functions. The squared exponential kernel
function chosen in this study is infinitely differentiable, can be derived infinitely, is always
continuous, and has two hyperparameters θ1 and θ2 [51]:

k
(

x− x′
)
= θ1

2exp
(
−‖ x− x′ ‖2

2θ22

)
(12)

There are many types of acquisition function, and, in this study, the expected improve-
ment is used [53]:

EI(x) =
{

( f (x∗)− µt(x)− ξ)Φ(Z) + σt(x)φ(Z), σt(x) > 0
0 , σt(x) = 0

(13)

Z =
f (x∗)− µt(x)− ξ

σt(x)
(14)

where f (x∗) is the objective function value of the current evaluation point; Φ(·) and
φ(·) are the standard Gaussian probability density and cumulative density functions,
respectively; µt(x) and σt(x) are the expectation and variance of the Gaussian distribution
at x, respectively; ξ is the equilibrium parameter (used to balance the relationship between
the local and global search).

3.2. Optimization Validation

The developed Bayesian optimization algorithm (BOA) was verified via the six-hump
camel back problem on the MATLAB website. The six-hump camel back function has
multiple extremums in the region [−3,3], and its expression is shown below [54]:

sinmin = 4x1
2 − 2.1x1

4 +
x1

6

3
+ x1x2 − 4x2

2 + 4x2
4 (15)

The developed BOA, together with the Bayesian optimizer bayesopt and the global
optimizer GlobalSearch in MATLAB (MathWorks, Natick, MA, USA), will jointly search
for the global minimum solution of this function in the region [−3,3] simultaneously.
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In the study, all of the GlobalSearch settings were kept consistent with the official case,
and its optimization results were used to check the correctness of the BOA and bayesopt
settings [55]. The initial population of both BOA and bayesopt was 30, and the maximum
number of iterations was 50. The difference is that the acquisition function of BOA was
“expected-improvement”, while that of bayesopt was “expected-improvement-plus” [56].
Table 2 shows the optimization results of the three methods used for this case. Figure 4
shows the comparison curves of the observed minimum objective function values for the
BOA and bayesopt within 30 iterations. It can be seen from Table 2 that the optimization
results of the developed BOA were the same as those of GlobalSearch; the minimum
function value optimized via bayesopt was close to that of GlobalSearch, but there was
a certain gap between the optimized variable x1 and the real solution. As can be seen in
Figure 4, the minimum objective function value in the initial sample of bayesopt is higher
than that of BOA, and the overall minimum objective function values of both are observed
to approach the true minimum. The comprehensive comparison of BOA with bayesopt and
GlobalSearch was sufficient to verify the correctness of the developed BOA.

Table 2. Optimization results of different methods.

Methods Optimal Variable x1 Optimal Variable x2
Minimum Function

Value

BOA −0.089 0.712 −1.031
bayesopt −0.016 0.776 −0.968

GlobalSearch −0.089 0.712 −1.031

Figure 4. Minimum function values and iterations.

3.3. A Bayesian Optimization Algorithm with an Adaptive Initial Population

Every evaluation of the target function requires the mobilization of the expensive
FENM, which can take a lot of time when the initial range of parameters is too large. In
the inversion process, reducing the initial range of parameters can effectively improve
operational efficiency. The temperature response of the TPS probe is affected by a variety
of thermophysical properties of solid specimens. In this study, only a single-parameter
inversion of thermal conductivity was performed. Under this model, the transient average
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temperature of the probe decreases with the increasing thermal conductivity of the speci-
men when the experimental conditions are the same [57]. Therefore, the range evaluation
function is defined as follows:

g(x) =
1
N

N

∑
i=1

(TFENM,i(x)− TCFD,i) (16)

When the initial range [xmin, xmax] is given, the range evaluation function satisfies
g(xmin)g(xmax) < 0. For this property, a Bayesian optimization algorithm with an adaptive
initial population (BOAAIP) is proposed based on the dichotomous method. Figure 5
shows the complete framework of the algorithm, in which the difference between BOAAIP
and the traditional BOA lies in the “dichotomous strategy”, as shown in the yellow box.

Figure 5. Flowchart of the BOAAIP algorithm.

The specific process is as follows:

(1) Input the initial range, the accuracy ζ1 of the range evaluation function, the accuracy
ζ2 of the objective function, and other initial conditions.

(2) Calculate the middle value xmid of the given range and input the range evaluation
model g(x) to update the range. The updated logic is as follows: if g(xmid) < 0 then
xmax = xmid; otherwise, xmin = xmid.

(3) Determine whether |xmin − xmax| satisfies the precision ζ1 (ζ1 = 10), and, if so, output
the new range; otherwise, return to step (2).

(4) Perform random sampling in the new range and bring the samples into the forward
problem model to obtain the training input set X and the training output set Y.

(5) Build and update the agent model based on the Gaussian process.
(6) Maximize the EI acquisition function, obtain the next prediction point x∗, and calculate

the objective function value f (x∗).
(7) Determine whether the value of the objective function satisfies precision ζ2 (ζ2 = 0.001);

if so, output the optimization result. Otherwise, return to step (5).

3.4. Genetic Algorithm

In order to study the performance of probability and heuristic algorithms in the
optimization of inverse thermal conductivity problems, the genetic algorithm is used as
a scheme for comparison with Bayesian optimization. The genetic algorithm is a classic
population-based heuristic algorithm that starts with any initial population and evolves
it to improve the quality of the results through continuous evolution [42]. In this study,
secondary development was carried out based on the source code provided by [58]; in
this case, 20 to 100 individuals were randomly selected within the range given by the
dichotomy strategy, and the individuals in the population were binary-coded to form the
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initial population. To guarantee the optimization direction, we selected the reciprocal of
the objective function as the fitness function:

f it(x) =
1

1
N ∑N

i=1(TFENM,i(x)− TCFD,i)
2 (17)

The roulette selection method is used as the selection operator, and the single-point
cross method is used to update the chromosomes. With binary coding, the variation
ranges from 0 to 1 or 1 to 0. In the inverse problem optimization model, global optimiza-
tion is achieved by continuously evaluating the fitness function value of the individual
populations.

4. Analysis and Discussion
4.1. Correctness Verification and Accuracy Comparison

For the forward problem, the unstructured meshing of the 2D model was performed
using MATLAB based on DistMesh [59] (a simple mesh generator), and a numerical study
was carried out using the finite element method. Before carrying out the inversion study, it
was necessary to verify the correctness of the FENM. The four materials in Table 3 were
used as test specimens, and the simulation results obtained using the FENM and CFD
software were compared under the same settings. Figure 6 shows a comparison of the
simulation results obtained using each method. It can be seen that the difference between
the two calculation results is small, with a maximum relative error below 2%, which verifies
the reliability of the FENM.

Table 3. Calculation parameters of solid specimens.

Parameter Unit Sample (Granite/Aluminum
Oxide/Iron/Aluminum)

RS mm 70
HS mm 70
CS MJm−3K−1 2.21/3.51/3.46/2.43
λS Wm−1K−1 2.90/27.00/76.20/238.00
κS mm2s−1 1.30/7.69/22.00/97.90

Figure 6. Cont.
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Figure 6. Comparison of simulation results of solid specimens. (a) Comparison of simulation results
for granite; (b) comparison of simulation results for aluminum oxide; (c) comparison of simulation
results for iron; (d) comparison of simulation results for aluminum.

The analytical model for solving thermal conductivity using the TPS method is shown
in Equation (18) [60]:

∆TNi(τ) =
P0

π3/2RNiλS
H(τ) (18)

where τ is the dimensionless time; H(τ) is the dimensionless time function; P0 is the
heating power of the probe W; λS is the thermal conductivity of the specimen Wm−1K−1;
RNi is the radius of the probe m; and ∆TNi(τ) is the average temperature increase in the
probe K. In order to compare the analytical accuracy of the model, the temperature data
of the CFD software were brought into the self-developed analytical model identification
program (AMIP). The analytical solution of the response temperature was calculated by
fitting the obtained H(τ) and the slope parameter. Using the temperature data of CFD
as the standard, the calculation relative errors of FENM and AMIP were compared and
analyzed, and the comparison results are shown in Figure 7. As can be seen in Figure 7,
regarding the four different specimens, the maximum relative errors of AMIP and CFD are
9.42%, 8.51%, 8.34%, and 13.31%, respectively; the average relative errors are 5.72%, 5.69%,
5.62%, and 4.11%, respectively. Regarding these four different specimens, the maximum
relative errors of FENM and CFD are 1.43%, 1.31%, 1.32%, and 1.33%, respectively, and the
average relative errors are 0.71%, 0.59%, 0.47%, and 0.41%, respectively. It can be seen that
the average calculation error of FENM is below 1%, which is a much better result than that
of the traditional analysis model (5%).

4.2. Bayesian Optimization Results

A hypothetical solid specimen HS (λHS = 5.00 Wm−1K−1, κHS = 1.15 mm2s−1) was
chosen to analyze the factors affecting the inversion results of the BOA algorithm. The meth-
ods and conditions described in the positive problem model above were used for the simula-
tion, and the corresponding prediction data TFENM and real data TCFD were obtained. In this
study, three initial population ranges (Rip1 = 1− 10 Wm−1K−1, Rip2 = 1− 30 Wm−1K−1,
and Rip3 = 1− 50 Wm−1K−1) were selected, and three groups of population individuals
(5, 10, and 15) were set.

Figure 8 shows the effect of different initial population ranges and individuals on the
inversion results. It can be seen that the relative error tends to decrease as the number of
individuals in the population increases when the initial population range is Rip3; when the
initial population range is Rip1 and Rip2, the change in population individuals does not
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significantly affect the relative error; moreover, there is no evident effect of variation in the
initial population range on relative error with the same population individuals.

Figure 7. Comparison of relative errors of FENM and AMIP. (a) Comparison results of granite;
(b) comparison results of aluminum oxide; (c) comparison results of iron; (d) comparison results
of aluminum.

Figure 8. Effect of different initial population ranges and individuals on inversion results.
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Figure 9 shows the effect of different initial population ranges with individuals on the
number of iterations. It can be seen that the number of iterations increases as the initial
population range increases when the initial population has the same individuals; moreover,
for the same initial population range, the number of iterations decreases as the number of
individuals in the initial population increases.

Figure 9. Effect of different initial population ranges and individuals on the number of iterations.

4.3. Optimization Results after Algorithm Improvement

In order to study the optimization results after the algorithm’s improvement, simu-
lations were performed in the BOAAIP framework with the solid specimen HS assumed
above (the initial population of individuals was set to 5).

The data containing five individuals in BO were selected for analysis and comparison
with the research results of BOAAIP. Figure 10 compares the inversion results of the two
algorithms at different initial population ranges. The inversion results of BOA showed
irregular fluctuations, and there were evident differences in the inversion results under
different initial population ranges; moreover, the inversion results of BOAAIP were sta–ble,
and the average error was controlled at below 4%. Figure 11 shows a comparison of the
number of iterations of the two algorithms at different initial population ranges. It can
be seen that there is a clear increasing trend in the number of iterations of BOA with an
increase in the initial population range. However, the number of iterations of BOAAIP
decreases slightly with an increase in the initial population range, the overall performance
is stable, and it converges within five iterations.

4.4. Algorithm Comparison

In order to further verify the feasibility of the proposed optimization framework,
BOAAIP and GA were used to compare the inversion results of the solid specimens, and
the results are shown in Table 4. The population range in the GA was determined in the
same way as in the BOAAIP. The number of individuals in the population was set to 30,
binary coding was used, and the encoding length was set to 10. The selection method was
a roulette selection method with a crossover probability of 0.5, a variance probability of
0.05, and a maximum number of iterations of 1000.
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Figure 10. Comparison of inversion results under different initial population ranges.

Figure 11. Comparison of the number of iterations under different initial population ranges.

Table 4. Calculation parameters of solid specimens.

Parameter Unit Sample
(SS1/SS2/SS3/SS4/SS5)

RS mm 70
HS mm 70
CS MJm−3K−1 2.21/3.50/3.64/3.23/3.43
λS Wm−1K−1 2.90/25.60/63.04/107.60/209.40
κS mm2s−1 1.31/7.31/17.30/33.30/61.10

Note: among the solid specimens listed in Table 4, the range of the initial population for SS1 (granite), SS2
(common cupronickel B30), and SS3 (carbon steel 10) was 0-100 Wm−1K−1; for SS4 (common brass H62) and SS5
(common cupronickel B1), the range was 0-500 Wm−1K−1.

Figure 12 compares the inversion results of five solid specimens using both BOAAIP
and GA. According to the comparison of relative errors, the inversion accuracies of these
two algorithms are relatively close, with no significant differences. The thermal conductivity
levels of the five solid specimens selected for the study show an increasing trend, and the
relative errors of both algorithms are around 3% when the thermal conductivity of the
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specimens is below 100 Wm−1K−1; when the thermal conductivity of the specimen exceeds
100 Wm−1K−1, the relative errors of both algorithms are close to 6%. This shows that the
two algorithms have the same accuracy, and the proposed algorithm model is more suitable
for materials with thermal conductivity below 100 Wm−1K−1.

Figure 12. Comparison of the inversion results of five solid specimens using the two algorithms.

Figure 13 compares the convergence time of the inversion of five solid specimens for
both BOAAIP and GA. According to the time comparison of each specimen, the conver-
gence time of BOAAIP is significantly shorter than that of GA, and its operating speed
is about three to four times faster than that of GA. Additionally, the magnitude of the
thermal conductivity of the specimen has no significant effect on the calculation speed of
either algorithm.

Figure 13. Comparison of inversion convergence time of five solid specimens using the two algo-
rithms. Note: the operating environments of the two inversion algorithms are the same, with the
CPU model being a 3.79 GHz AMD Ryzen 5 3600X 6-Core Processor, with MATLAB accounting for
9.5% of the CPU memory during the running process.

5. Conclusions

In order to improve the measurement accuracy of the TPS method, a complete inver-
sion framework was developed to identify the thermal conductivity of solid specimens by
combining numerical calculations and optimization algorithms. The main conclusions are
as follows:
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(1) The finite element numerical model of TPS, established by comprehensively consider-
ing the thickness and heat capacity of the probe, had high computational accuracy.
The test results for the four materials showed that the average relative error of FENM
was below 1%, and its accuracy was much higher than that of the analytical model,
which had an average error of over 5%.

(2) The number of iterations of the Bayesian optimization algorithm (BOA) was suscepti-
ble to changes in the range and individuals of the initial population. However, the
Bayesian optimization algorithm with an adaptive initial population (BOAAIP) was
not affected by the initial population range and individuals, and its calculation results
were more stable. The test results of HS (a hypothetical material) showed that the
average error of BOAAIP was below 4% and that the algorithm can reach convergence
within five iterations, possessing a faster computational speed compared to BOA.

(3) The computational speed of BOAAIP was much faster than that of the genetic algo-
rithm (GA), and both models had the same accuracy. When the thermal conductivity
of the solid specimens was below 100 Wm−1K−1, the relative error of both algorithms
was about 3%, but the calculation speed of BOAAIP was three to four times faster
than that of GA.
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Nomenclature

BNi Spacing of the nickel heater: mm
cv Volumetric specific heat capacity, Jkg−1K−1

C Volume-specific heat capacity, Jm−3K−1

d Dimensions of variables
D Training dataset
f (·) Objective function
f it(·) Fitness function
g(·) Range evaluation function
H Thickness of a layer, mm

H(τ) Dimensionless time function
i A measuring point
I Unit matrix
k Covariance function
K Matrix of covariance functions k(x, x′)
m Mean function
MC Heat capacity matrix
Mλ Thermal conductivity matrix
N The total number of measuring points
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p Probability distribution
P0 Heating power of the probe, W
Q Heat load generated, W
(r, ϕ, z) Cylindrical coordinates
Rip1, Rip2, Rip3 Three initial population ranges, Wm−1K−1

RKap Outer radius of the Kapton layer, mm
RNi Outer radius of the last nickel heater, mm
RS Outer radius of the specimen, mm
R Real number field
t Moment, s
∆t Time step, s
∆TNi Transient average temperature increase in the probe, K
T Temperature, K
TCFD Transient average temperature obtained using the CFD software, K
TFENM Transient average temperature obtained using the FENM, K
var(·) Covariance function
WNi Width of the nickel heater, mm

x
The parameter variable, i.e., the thermal conductivity of the specimen,
Wm−1K−1

x∗ Current optimal estimate
xmin Lower limit of the variable (thermal conductivity), Wm−1K−1

xmax Upper limit of the variable (thermal conductivity), Wm−1K−1

xmid Middle of the range of the variable (thermal conductivity), Wm−1K−1

X Training input set
y Objective function values with noise
Y Training output set
Greek symbols
ε Observation noise
ζ1 The accuracy of the range evaluation function
ζ2 The accuracy of the objective function
θ1, θ2 Two hyperparameters
Θ Source item
κ Thermal diffusivity, mm2s−1

λ Thermal conductivity, Wm−1K−1

µt(x) The expectation of the Gaussian distribution at x
ξ Equilibrium parameter
ρ Density, kgm−3

σ Variance
σt(x) The variance of the Gaussian distribution at x
τ Dimensionless time
φ(·) The cumulative density function
Φ(·) The standard Gaussian probability density function
χ Observation space
Subscripts
HS A hypothetical solid specimen
Kap Kapton layer
Ni Nickel heater
S Solid specimen
Abbreviations
AMIP Analytical model identification program
BOA Bayesian optimization algorithm
BOAAIP Bayesian optimization algorithm with an adaptive initial population
CFD Computational fluid dynamics software
FENM Finite element numerical model
GA Genetic algorithm
MCMC Markov Chain Monte-Carlo
TPS Transient planar source
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