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Abstract: Deep neural networks (DNN) try to analyze given data, to come up with decisions regard-
ing the inputs. The decision-making process of the DNN model is not entirely transparent. The
confidence of the model predictions on new data fed into the network can vary. We address the
question of certainty of decision making and adequacy of information capturing by DNN models
during this process of decision-making. We introduce a measure called certainty index, which is
based on the outputs in the most penultimate layer of DNN. In this approach, we employed iEEG
(intracranial electroencephalogram) data to train and test DNN. When arriving at model predictions,
the contribution of the entire information content of the input may be important. We explored the
relationship between the certainty of DNN predictions and information content of the signal by
estimating the sample entropy and using a heatmap of the signal. While it can be assumed that the
entire sample must be utilized for arriving at the most appropriate decisions, an evaluation of DNNs
from this standpoint has not been reported. We demonstrate that the robustness of the relationship
between certainty index with the sample entropy, demonstrated through sample entropy-heatmap
correlation, is higher than that with the original signal, indicating that the DNN focuses on informa-
tion rich regions of the signal to arrive at decisions. Therefore, it can be concluded that the certainty
of a decision is related to the DNN’s ability to capture the information in the original signal. Our
results indicate that, within its limitations, the certainty index can be used as useful tool in estimating
the confidence of predictions. The certainty index appears to be related to how effectively DNN
heatmaps captured the information content in the signal.

Keywords: certainty; information entropy; iEEG

1. Introduction

Previous studies have shown that various information measures can be used for
analysis of biomedical signals [1]. The complexity and noise ridden nature of the biomedical
signals often make them harder to analyze with standard signal processing tools. This
is especially true in the case iEEG, which is a complex signal arising from billions of
interactions between neurons, occurring simultaneously. Presurgical evaluation of the
patients with epilepsy involves classification of brain regions into epileptogenic or non-
epileptogenic based on iEEG signals, so that appropriate clinical recommendations can
be made. Information entropy measures including approximate entropy, has been used
previously in the classification iEEG signals [2]. Recently, deep learning strategies have been
used in classification of the iEEG to that arising from epileptogenic vs. non-epileptogenic
regions [3,4] or for identifying interictal epileptiform discharges [5]. In all these scenarios,
while classifying data, it is important to capture the entirety of the information present in a
signal to arrive at the correct conclusions.

We employ the sample entropy of the signal [6,7] to estimate how well the heatmaps of
DNN capture the information content of the signals. The information entropy is a measure
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of the amount of uncertainty or randomness in a set of data [8,9] and can be effectively used
for evaluating the total information, in that system. Ever since Shannon [10] introduced the
idea of information entropy, this measure has been employed in estimating the complexity
of the signals. Later, approximate entropy was introduced which in addition takes into
account the regularity in the data, employing the idea of pseudo-phase [11]. A larger value
of the approximate entropy corresponds to higher complexity of the signal along with low
number of repeated patterns. While approximate entropy helps in evaluating the nature of
the data generating system, it does heavily depend on the length of the records and can
underestimate for shorter signal lengths. Subsequently, sample entropy was introduced
which excludes the self-matches, which in the case of approximate entropy introduce a
bias suggesting more regularity than reality. Moreover, sample entropy has comparatively
reduced dependence on the signal length and has higher relative consistency [1,6].

While both approximate entropy and sample entropy has been used in analysis of
neural respiratory signals [12] the sample entropy showed more consistent results. Further,
exploration of the various embedding dimension and data lengths of phrenic nerve dis-
charge data in this study revealed the critical role of exploring the parameter space in both
types of entropy measurements. Another study which explored the role of embedding a
dimension in the calculation of various forms of entropy in the cardiac signal also demon-
strated that the results can vary based on the embedding dimension [12]. Keeping these
concerns in mind, in this study, we have explored the parameter space for calculation of
sample entropy.

In the field of deep learning, the question of the relevance of data captured by the
DNN, is addressed through evaluation of heatmaps. Once a DNN model is trained on
a dataset, the reliability of information capturing capacity of DNN can be assessed by
evaluating heatmaps, which help in explaining what the DNN has identified as significant
components of the data, in arriving at a particular decision. Heatmaps are a method for
visualizing which specific parts of a signal or image are most relevant for a prediction
made by the model. They are generated by analyzing the activations of the DNN, and in
the case of convolutional neural networks, typically the activations of last convolutional
layer, which is presumed to contain the most abstract and high level features of the input,
that were most important for the DNN’s decision [13]. For this purpose, heatmaps can be
calculated using different methods, which includes, 1. sensitivity analysis [14], 2. simple
Taylor decomposition [15], 3. layer-wise relevance propagation [16], and 4. gradient class
activation maps (Grad-CAM) [17]. The method of Grad-CAM has been effectively used in
visualization of the relevant regions of the images [18] or signals [19,20] that lead to the
decisions of DNN. In the context of this study, heatmaps were calculated using Grad-CAM
for evaluating the iEEG signal, which identified the important regions that contributed to
the decision of whether the signal belong to either epileptogenic or non-epileptogenic class.

Another aspect of deep learning involves the uncertainty related to individual predic-
tions. Given any trained DNN model, the prediction of any newly presented data will be
associated with some level of uncertainty. These types of uncertainty include, uncertainty
caused by model, data uncertainty, or distributional uncertainty [21]. Model (epistemic)
uncertainty can be reduced by increasing size of training data. On the other hand, data
uncertainty or aleatoric uncertainty can be irreducible as it is related to the complexity
of the data. Distributional uncertainty is related to mismatch between the training and
test distributions. The use of softmax measures has been described, especially as a mea-
sure of epistemic uncertainty (certainty measure against samples from out of distribution
data) [22]. While this study explored the possibility of using softmax confidence as a proxy
of epistemic uncertainty, they do stress that it is an imperfect measure.

In general, uncertainty approaches try to give an overall estimate of the uncertainty
of predictions. While they are helpful in estimating the confidence one can have in the
outcomes of the model, there is no specific score on the reliability of an individual prediction,
for example, on the classification of a particular iEEG signal. We introduce a score, for the
reliability of an individual prediction, called certainty index. It is an index measuring how
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certain the given model is about a specific classification. This certainty of the prediction
is assessed through the differences in the outputs prior to softmax layer. This method
was motivated by the following two ideas: 1. In the case of biological neural networks,
the decision of a subsequent neuronal firing is partly dependent on the summation of the
post-synaptic action potentials (both excitatory and inhibitory), which is similar to the
inputs to DNN’s last layer. Broadly, we can consider the “decision” of the neuron to fire and
transmit the information to the next layer as a surrogate of certainty. Therefore, intuitively,
we can consider that the biological neurons are considering the positive and negative inputs
in arriving at the decision and possibly at assessing the certainty of predictions. 2. The
Grad-CAM algorithm used in the heatmap generation is based on the gradients of scores
for individual classes (before the softmax layer) [17], explained in detail in the methods
section. Therefore, using a certainty measure based on the same score was considered
appropriate when evaluating the relationship between heatmap and information measures
such as sample entropy used in this study.

Taking the approaches of information estimation, as noted above (sample entropy),
this work aims to establish the relationship between certainty of decision of DNN and
efficacy of model in capturing the information content in the signal. The regions of heatmap
with higher values is considered to be the more relevant regions of the signal, from where
model captured important information. We were able to demonstrate that the certainty
of the predictions of trained DNN model is directly proportional to how well the DNN
captures the information content in the signal.

Summary of Contributions

Exploring the information processing in the DNN, with the help of sample entropy,
we addressed the following.

1. How to use the outputs of the DNN (at penultimate layers) as a measure of certainty
of individual decisions.

2. Evaluate the correlation between heatmap of DNN and sample entropy of the signal
3. Examine relationship between heatmap-sample entropy correlation and the certainty

of individual decision.

In this study we introduce the measure of certainty index which estimates the confi-
dence of an individual prediction by a DNN model. We establish a method for correlating
sample entropy signal with the heatmap and estimate that a high correlation between these
two time series indicates a higher certainty of the DNN prediction. This result was noted to
be valid even with changes in the parameters of the estimation of sample entropy.

2. Materials and Methods

This study was based on intracranial EEG data acquired from patients undergoing
monitoring for possible epilepsy surgery. Briefly, intracranial EEG data from 10 patients
undergoing epilepsy surgery evaluation were recorded using intracranial electrodes, contin-
uously for several days using Nihon Kohden (NK) software at a sampling rate of 2000 Hz.
The electrode placement was decided based on pre-surgical evaluation. For the purpose
of analysis in this study, data of one minute duration from interictal periods (when the
patients did not have any identified seizures) were used. Signals were filtered between
60–600 Hz, processed in bipolar montage, and exported to the EDF format from NK soft-
ware. The deep neural network implemented using Tensorflow package from Google. Inc.,
Mountain View, CA, USA, shown in Figure 1A was trained with one second data at a time.
The data from all the 10 patients was shuffled before training the network, to minimize the
bias due to contribution from individual patients. The DNN was used for classification of
the data to epileptogenic vs. non-epileptogenic zone. After the model was developed with
the initial data, the model was retested using data from 7 additional patients, acquired in
the same way as noted above. The true values on whether an electrode location belong to
epileptogenic or non-epileptogenic was decided based on successful surgery outcome. The
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data was processed using high performance computing facility with GPUs. The study was
approved by Adventhealth Orlando IRB.
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Figure 1. DNN model: The schematic of the model along with the confusion matrix which gives an
estimate of the accuracy of predictions. (A) The scheme of the model used in the study, the input and
output sizes are shown in the brackets. (B) Confusion matrix for the test samples (1000) represented
as percentages with predictions by the model.

2.1. Estimation of Uncertainty

As noted in the introduction, the certainty of model predictions has been a major
challenge in the field of deep learning. We introduce a method of assessment of certainty in
the neural network predictions.

This is a measure of how certain, DNN is about each of the individual predictions.
This is different from accuracy which is a measure of overall accurate predictions. The
certainty in the outputs of n-th layer is estimated as follows:

Cn
i = yn

i −
1
N ∑N−1

j=I;j 6=i yn
j (1)

where certainty index, Cn
i is the certainty that the i-th prediction in the n-th layer is correct,

yn
i is the i-th DNN output at n-th layer, N is the total number of nodes. In this study, the

n-th layer is chosen to be the penultimate layer (immediately prior to the softmax). The
second summation term indicates the average of all the other DNN predictions other than
the i-th DNN output. For comparison between layers and different DNN’s certainty value
can be normalized to standard deviation. This will provide an individual value for each of
the sample signals in the EEG data.

Since the total number of nodes in the current study for classification is only two,
(epileptogenic vs.. non-epileptogenic), the certainty index calculated based on the outputs
in the penultimate layer will be equal to: yi − yj, which is used in the subsequent analysis.

2.2. Heatmap Estimation

Different methods have been described for the estimation of heatmap of a DNN
prediction, and Grad-CAM has been commonly applied in the case of signals. Class-
discriminator map defined as Grad-CAM is evaluated for any class c, as follows [17]. The
gradient of the DNN output score, yc for class c, with respect to the feature map activation

Ak of a convolutional layer is given by ∂yC

∂Ak
i
. This value is calculated through successive

matrix products of weight matrices and gradient with respect to activation functions.
The GradientTape algorithm of Tensorflow was used to record the operations (activation
functions) in forward flow, which was later used in performing automatic differentiation to
calculate the gradients. The k in this case, indexes the different feature maps of a particular
convolutional layer. The i indexes the individual elements in the feature map, given the fact
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that the feature maps are obtained by one dimensional convolution. These gradients can be
global-average pooled, which gives weights (αc) of neurons based on their significance in
decision making for a specific input [17,19].

αC
k =

1
N ∑N

i=1
∂yC

∂Ak
i

(2)

yC is the DNN output for a particular class c (before softmax).
αC

k indicates the importance weight of k-the filter for class c.
Ak

i is the i-the element in k-th activation map.
N is the number of elements in feature map.

With the gradient weighted class activation map (grad-CAM) for a layer obtained as

gc = ΣkαC
k Ak (3)

The ReLU function was not used, given the fact that we are working on one dimen-
sional signal and similar approach was used in acoustic signal based studies [19]. Also,
incorporating negative values in heatmaps was considered to be important when calculat-
ing correlations with information measures of the signal. This approach helps in generating
the heatmap for any layer. Since the concern that the Grad-CAM maps can progressively
worsen in the earlier layers, in this study, the heatmap was only calculated based on the
last convolutional layer of the model.

To estimate the similarity between the heatmap (gc) and the original data X (with a
series of x1, . . . , xn), a cross correlation was performed as

zk = ∑gC−1
l=0 gC

l ∗ x∗l−k+N−1 (4)

where ||gc|| is the length of gc, which is the heatmap for signal X; N= max (||gc||,||X||)
and xm is 0 when m is outside the range of X. The maximal values of the correlations (max
(z)) were used for plotting against the certainty index.

2.3. Sample Entropy Calculation

The information in a collection of data X can be defined as

H(x) = −∑x∈x p(x) log p(x) (5)

where X is taking values x1, . . . , xn and p(x) is the probability associated with those values
for all x1, . . . , xn. Compared to a random set of data, the iEEG signals are characterized
by repeatable patterns which also carry a component of information content of the signal.
That would suggest that a regular entropy estimation may not appropriately capture the
information content in a time series like iEEG. To address this concern, the sample entropy in
the individual data was calculated as follows. Given a sequence of numbers x1, x2, . . . , xn
of length N, a non-negative integer m ≤ N and a positive integer r, block u(i) can be defined
as x(i), x(I + 1) . . . , x(i + m − 1) and block u(j) as x(j), x(j + 1) . . . , x(j + m − 1). The distance
between them is defined as d[u(i), u(j)] = maxk=1,2, . . . m(|x(i + k − 1) − x(j + k − 1)|).

The sample entropy, which helps in better capturing the recurring nature of data
elements in a signal, is defined as [7]

SampEn(m, r, N) = − log
∑N−m

i=1 ∑N−m
i=1,j 6=i

∑N−m
i=1 ∑N−m

i=1, j 6=i

[number o f times that d[|um+1(j)− um+1(i)|] < r]
[number o f times that d[|um(j)− um(i)|] < r ]

(6)

where m represents the embedding dimension based on which the data is split, r the
scaling parameter, usually measured as multiples of standard deviations of the signal, and
N the length of sample considered. For signal of length n, the sample entropy series SE
is calculated for n moving windows of size N to produce a linear vector. The algorithm
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used for implementation of the sample entropy for a time series is shown in Algorithm 1.
The cross correlation between the heatmap and sample entropy is calculated similar to the
method described in Equation (4), with the original data (x) replaced by SE, a series of the
same length as the original signal.

Algorithm 1 Sample Entropy for a time series

Sample entropy of signal s of length SN for embedding dimension m, scaling parameters d and
sample entropy calculation length N
Input: s1, s2, . . . ..sSN
Output: SE1, SE2 . . . SEN (series of sample entropy)
1: SE← [01, ——0SN]
2: N← length(s)
3: m← embedding dimension
4: r← scaling parameter
5: for <si in range of SN> do sigsi ←<split s into SN segments of length N> end for
6: for <i in range of N-m> do xmi←<split sigi into segments of length m> end for
7: for <i in range of N-m+1> do xmj← <split sigi into segments of length m> end for
8: B←<total of the modulus (xmi-xmj) <r> [xmi-xmj indicates the distances between the
segments]
9: m←m+1
10: for <i in range of N-m+1> do xmk←<split sigi into segments of length m> end for
11: A← <total of the modulus (xmk-xmk)> [xmk-xmk indicates the distances between
segments]
12: SEsi ←−log (A/B)

The maximal value of cross correlation value was plotted against the certainty values
for the same data obtained through DNN model. The R-squared values and F-values for
each these plots were estimated with regression analysis and tabulated. To further validate
the robustness of the results, sample entropy for each signal was calculated at various
embedding dimensions (m = 4, 8, 16, 32), scaling parameters (r = 1.5, 2, 2.5) and sample
lengths (50, 100, 200, 400).

2.4. k-Fold cross Validation

A ten-fold cross-validation was employed for assessing the consistency of accuracy
of the model [23]. Initially, the iEEG data were randomly divided into ten equal portions.
Nine out of ten portions of iEEG signals were used to train the DNN and the remaining
one-tenth of the iEEG signals was used to test the model. The above strategy is repeated
ten times by shifting the test and training dataset. The average accuracy along with the
standard error was reported.

3. Results
3.1. Model Accuracy

A convolutional network model was implemented as described in Figure 2. The model
consisted of three convolutional layers and additional dense and dropout layers. A dense
layer was added before the softmax layer to get the outputs prior to the softmax function.
The iEEG data lasting one second from each channel were fed into the input layer. The
model was trained with 9000 samples and tested with 1000 samples. The accuracy of the
model was noted to be 93%. The confusion matrix which depicts the percentage of positive
and negative predictions is shown in the Figure 2B.
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Figure 2. The certainty indexes in classification of data to epileptic or non-epileptic locations. (A). The
actual certainty index values plotted as histogram. The negative value for the epileptic group is given
for demonstration purpose only (B). The certainty indexes normalized to their standard deviation
(separate standard deviation for either class).

The model was further validated with a 10-fold cross validation, with the data split
into 10 separate folds. This yielded an accuracy score of: 91 ± 0.2% (standard error). To
further validate this model, additional data from seven patients was evaluated with same
model architecture and a similar 10-fold analysis was performed on that data. A similar
accuracy of 95 ± 1% was noted in this analysis.

3.2. Certainty in Individual Predictions

The confidence in the prediction of each data element was estimated as noted by the
measure of certainty as described in the methods section. The absolute value of certainty,
for signals from non-epileptic electrodes ranged between 0 and 200 and that for the epileptic
electrodes ranged from 0 to 60 (for representational purpose in figure, the more negative the
value, the higher the certainty that the data is from epileptic regions) (Figure 2). For better
comparison, the data were also plotted after normalizing with the standard deviation.

3.3. Certainty and Correlation between Heatmap and Signal

To estimate how the decision-making process of the DNN model is related to the
certainty index, we calculated the correlation between the heatmap and the original signal
(using Equation (4)). The maximal correlation values were plotted against the certainty
index for that signal (Figure 3). The R-square values are given in the Table 1. A similar
range of correlation value was obtained when the epileptic and non-epileptic data were
evaluated separately.

Table 1. Regression values: certainty index vs. correlation between heatmap and original signal.

Statistical Values Whole Data Non-Epileptic Epileptic

R-squared 0.76 0.77 0.69
F-statistic 3190 2714 450
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Figure 3. The certainty index and its relationship with the correlation between heatmap and original
signal. (A). Original signal (upper) and the corresponding heatmap (lower) (B). Scatter plot: Certainty
index vs. correlation between heatmap and original signal (C). Cross-correlation between the heatmap
and original signal plotted for non-epileptic data. (D). Cross-correlation between the heatmap and
original signal plotted for epileptic data.

3.4. Relationship between Heatmap and Sample Entropy of Signal

The sample entropy was calculated based on the Equation (6). For this purpose, following
parameters were used: embedding dimension, m = 8, scaling parameter, r = 2 × standard
deviation of the signal, signal length, N = 100. The fact that the EEG signal has frequency
components which range from 60 to 600 hz was considered in choosing the embedding
dimensions and signal length. Further analysis based on variations in these parameters are
noted in sections below. A cross-correlation was calculated between the sample entropy and
the heatmap and the maximal value of this cross correlation was plotted against the certainty
index for individual data as shown in Figure 4. The R-squared values for the regression
analyses are given in the Table 2. It may be noted that the R-squared values in the case of the
cross correlations between the sample entropy and heatmap appear to be higher compared to
that between original signal and heatmap.

Table 2. Regression values: certainty index vs. correlation between heatmap and sample entropy.

Statistical Values Whole Data Non-Epileptic Epileptic

R-squared 0.89 0.90 0.95
F-statistic 8303 6850 4197
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3.5. Relationship between Heatmap and Sample Entropy at Various Embedding Dimensions

The Equation (6) shows that the sample entropy depends on the embedding dimension
m, scaling parameter r, and signal length N. A too high value of m can potentially reduce the
template matches performed in the algorithm. On the other hand, if m selected is too small,
there will be more template matches but the predictive information will be reduced, and
the probability of forward match can be underestimated. This is especially true in the case
of EEG which may have repeating patterns. To evaluate the impact of these parameters on
the relationship between sample entropy, heatmap, and certainty index, those parameters
were varied, and the relationship was estimated. The sample entropy, m, was calculated at
embedding dimensions 4, 8, 16, and 32 (while keeping r = 2, N =100). The certainty index
vs. maximal correlation between the sample entropy and heatmap at various embedding
dimensions is plotted in Figure 5. The corresponding regression values are presented
in Table 3.

Table 3. Regression values: certainty index vs. correlation between heatmap and sample entropy at
various embedding dimensions.

Statistical Values 4 8 16 32

R-squared 0.91 0.91 0.83 0.63

F-statistic 11,333 10,402 5201 1705
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3.6. Sample Entropy Calculated at Different Standard Deviations

Similarly, if a high scaling parameter (r) value is selected, most of the templates will
look like each other and they will fall below threshold and therefore the algorithm will
have reduced efficiency. If r is too small, too many templates will fail to match. To address
the effect of these variations, the sample entropy was calculated at various r values while
keeping m = 8 and N = 100. Plots for the variations in the standard deviations (at 1.5, 2,
and 2.5) are shown in Figure 6 and corresponding regression values are noted in Table 4.

Entropy 2023, 25, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 5. Sample entropy calculated for varying embedding dimensions: 4,8,16 and 32. The labels 
for the figures correspond to the individual embedding dimensions. 

Table 3. Regression values: certainty index vs. correlation between heatmap and sample entropy at 
various embedding dimensions. 

Statistical Values 4 8 16 32 
R-squared 0.91 0.91 0.83 0.63 
F-statistic 11333 10402 5201 1705 

3.6. Sample Entropy Calculated at Different Standard Deviations 

Similarly, if a high scaling parameter (r) value is selected, most of the templates will 
look like each other and they will fall below threshold and therefore the algorithm will 
have reduced efficiency. If r is too small, too many templates will fail to match. To address 
the effect of these variations, the sample entropy was calculated at various r values while 
keeping m = 8 and N = 100. Plots for the variations in the standard deviations (at 1.5, 2, 
and 2.5) are shown in Figure 6 and corresponding regression values are noted in Table 4. 

 
Figure 6. Sample entropy calculated for different scaling parameters where (r =1.5, 2 and 2.5 × SD). 
The labels for the figures correspond to the individual scaling parameter × SD. 
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Table 4. Regression values: certainty index vs. correlation between heatmap and sample entropy at
various scaling parameter (SD).

Statistical Values 1.5 2 2.5

R-squared 0.93 0.93 0.93

F-statistic 14,016 13,796 14,346
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3.7. Sample Entropy Calculated at Different Sample Lengths

Another parameter considered in the calculation of sample entropy is length of the
signal (N). This is the moving window of the original signal. Given the different frequency
components in the EEG signal which will span different lengths of signal for each frequency,
the signal length N was varied to calculate the sample entropy. Sample entropy was
calculated at various N values while keeping m = 8 and r = 2. Plots for the variations in the
standard deviations (at 1.5, 2 and 2.5) are shown in Figure 7 along with the corresponding
regression values in Table 5.
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Table 5. Regression values: certainty index vs. correlation between heatmap and sample entropy at
various signal lengths.

Statistical Values 50 100 200 400

R-squared 0.93 0.93 0.93 0.93

F-statistic 13,509 13,796 14,039 13,611

A high correlation (as noted in regression-based R-squared- values) between the
certainty index and the maximal correlation between sample entropy and heatmap continue
to be present in the various parameter spaces considered.

4. Discussion

Our study evaluated how the ability of the DNN model to capture the information
content of the signal influences the certainty about the predictions. For this purpose, we
introduced certainty index as a measure of confidence of individual DNN predictions,
which is based on the outcomes prior to softmax layer. Given the fact that the heatmaps
towards the final convolutional layers are representative of the highest-level abstractions
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of the information in the signal that the DNN is using to arrive at the decisions about
sample classes, we used a measure of the correlation between that heatmap in the final
convolutional layer and original signal to evaluate how effectively the DNN captured the
information in the signal. Sample entropy measure was used as measure of information
content in the signal (which was calculated independent of the DNN model), and we were
able to demonstrate that the certainty index of each sample is proportional to the correlation
between sample entropy and heatmap.

We would like to point out that the model that we developed for this purpose was
comparable to the previous DNN models reported using intracranial EEG data (noted in
Table 6). As noted previously, the main aim of this study was to explore the certainty of
predictions of DNN with the help of heatmap and information content of the signal. The
fact that the model we used was comparable to the reported models in accuracy suggests a
potential applicability of the approaches currently employed in other models. It may be
noted that the seizure detection studies usually demonstrate higher accuracy compared
to the classification of data to epileptogenic or non-epileptogenic classes from inter-ictal
periods (time periods when there was no seizures recorded).

Table 6. Existing DNN models on iEEG, exploring epileptogenic zones/ epileptic activity compared
with the current model.

Study Deep Learning
Strategy Input Formulation

Frequency Range
(FR)/Sampling
Rate (SR)

Task Accuracy

[3]
CNN(Convolutional
neural network) with
STFT(short term
Fourier transform)

Data from 5 patients.
20 s of data SR: 512 Hz

Differentiate focal
and non-focal
epileptogenic signal

91.8%

[4]
1D-CNN with
data augmentation
strategies

24 patients, 916 h data;
& 18 patients,
2565 h data.

SR:256 Hz Seizure detection 99%

[5] CNN Data from 12 patients. NA (not available) Interictal epileptic
discharge detection 79–87%

[24]
CNN + LSTM (long
short-term memory
attention machine)

Three data samples
SR:1–512 Hz,
1–173 Hz or
2048 Hz

Epileptogenic vs.
non-epileptogenic 97.6%

[25] 1-CNN, 2-CNN,
3-CNN, 4-CNN

2016 Kaggle
competition; Data from
5 dogs and 2 patients

SR: 400 Hz Seizure
classification 76–95%

[26] CNN
2016 Kaggle
competition; Data from
5 dogs and 2 patients

SR: 400 Hz Seizure prediction
87.85% sensitivity
in seizure
prediction

[27] CNN
Responsive neural
stimulator data from
22 patients

SR: 250 Hz
FR: 4–125 Hz

Seizure
identification 84%

Current study CNN Data from 17 patients;
1 min data

SR: 2000 Hz;
FR:60–600 Hz

Epileptogenic vs.
non-epileptogenic 91–95%

4.1. Certainty Index as a Measure of Confidence in Individual Decision of DNN

Confidence measures for DNN predictions has been evaluated in the past, particularly
using outputs of softmax layer. Logits from the softmax layers give a range of values
that appears to give a confidence of predictions, but previous studies have also cautioned
that this can be erroneous [28], especially given the discontinuous nature of input-output
mappings, and should be used judiciously. Softmax confidence was further evaluated and
has been considered an imperfect measure of uncertainty [22], especially for evaluating
epistemic uncertainty. That study analyzed the softmax function and defined regions
of softmax layers where an out of distribution input must fall to be correctly labelled
as out of distribution. Statistics derived from softmax distributions were effective in
determining whether a sample is misclassified or from a different distribution from the
training data, suggesting its potential as a measure of certainty [29]. This study showed
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potential applications of this approach in diverse experimental data, including computer
vision and natural language processing.

The method of certainty measurement that we are proposing, Incorporate the scores of
the network (with values prior to the softmax layer), that favor a particular prediction and
un-favor the other options, further enhancing the reliability of this measure. It may be noted
that limitations attributed to the softmax based confidence measure may be present in this
approach as well, but the improvisation incorporating the negative prediction outputs will
hopefully make it more robust. As discussed in the introduction, we preferred to use the
values prior to the softmax layer for certainty index calculation, taking cues from biological
neural networks. The other reason was that, given the approach of Grad-CAM which used
the gradients of DNN outputs, prior to the softmax layer, estimation of certainty based on
those values appeared more appropriate. While this may improve the reliability of this
measure, further studies with different datasets may be needed for further ascertaining the
wider applicability of this approach.

While the measures of confidence have been addressed in various ways (Table 7),
a rigorous evaluation of this measure from the standpoint of heatmaps and information
content of the samples has not been reported. Our main objective in this study was
to establish how strongly this kind of confidence measure relates to the measures of
information content in the signal. To the best of our knowledge, this is the first study
addressing the relationship between confidence of prediction (as measured by certainty
index), heatmap, and information content of the signal.

Table 7. Existing literature compared with our approach for evaluation of the certainty of the network
and assessment of the certainty measure.

Publication Employed Method
Assessment of
the Confidence
Measures

Comparison to Our
Approach

Hendrycks et al. [29] Softmax prediction
probability

Correctly classified examples
tend to have greater
maximum softmax
probabilities

Did not assess for the
relationship between
information content in
the samples.

Jha et al. [30] Attribution based
confidence measure

Studied effect of changing the
labels of features away from
the sample studied and
conformance of
model predictions.

Established attribution based.
dimensionality reduction

Smith et al. [31] Mutual information and
softmax variance

Mutual information, expected
Kullback-Leibler Divergence
and predictive variance help
in computing the divergence
between softmax and
expected softmax.

Considered softmax variance
as a measure of
mutual information

Pearce et al. [22] Analytically studied
softmax layer

Studied the effectiveness of
softmax outputs as proxy for
epistemic uncertainty in
non-adversarial, out of
distribution examples

Suggested partial capture of
uncertainty. Did not not
explore relationship with
heatmaps or information
content of samples

Lakshminarayanan et al. [32] Ensembles of neural networks
Used 1. scoring system as
training criterion, 2.
adversarial training

Evaluated entropy of
predictive distributions to
evaluate quality of uncertainty
estimates; Evaluated
performance compared to
Baysian networks
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4.2. Relationship between Heatmap and Original Signal

Heatmaps calculated using various algorithms demonstrate the focal regions in the
signal which the DNN identified for arriving at the decisions. By estimating the correlation
between the heatmap and original signal, we aimed at capturing how much the features of
the original signal match with the heatmap. The fact that the convolutional layers generate
the heatmaps which specifically pay attention to specific regions of the signal suggests that
there may be regions of the signal that do not significantly contribute to the decisions.

4.3. Use of Correlation between Heatmap and Sample Entropy

To estimate the information content of the signal, we used the method of sample
entropy, modified in this study, for time series. A higher correlation coefficient in the case
of sample entropy and heatmap vs. certainty index suggests that the information captured
with the sample entropy is significant in the decision making of DNN.

It may be noted that the sample entropy is calculated from the original signal with
a completely independent algorithm (than DNN or heatmap generation), which helps in
capturing the information content in the signal. Sample entropy has been studied in the
past to assess the regularity in the iEEG signal [33]. This study addressed the variations
in the sample entropy in sleep states, demonstrating that the information in iEEG signals
can be captured using sample entropy. Another study with vibration signals employed
sample entropy based DNN to successfully diagnose faults in automobile systems [34]. It
may be noted that this study did not assess the DNN based on sample entropy, but rather
used it to modify the input to DNN to improve the outcome. A regional perturbation based
method of assessing a heatmap was employed [13] which can compare the various heatmap
performances. While this method allows for assessing which heatmap is most informative,
it did not directly address the question of how effectively the heatmap is capturing data in
the input signal.

We have tried to correlate the reliability of DNN predictions to one of the fundamental
features of the signals- the information content, by using sample entropy. We have demon-
strated that the relationship between the heatmap and sample entropy is better correlated
with the certainty of predictions of DNN. The fact that the certainty index shows a higher R-
squared statistic with heatmap–sample entropy correlation compared to heatmap–original
signal correlation suggests that the sample entropy may be a potential tool in assessing
whether the DNN model is capable of capturing the entire information in the signal.

4.4. Variations in the Estimation Parameters Demonstrated Robust Relation between Certainty
Index and Correlations

To further evaluate the robustness of the above-described relationships, further analy-
sis was carried out across the parameter space of sample entropy calculations. Previous
studies have shown that the estimation of sample entropy can be affected by variations of
the embedding dimension (m), scaling parameter (r), and sample length (N) [12]. We were
able to show that the trend of the correlation between the sample entropy-heatmap and the
certainty index will remain robust even at various parameter spaces. In this study, the vari-
ation of sample entropy was estimated in the range 8–32 for embedding dimensions, and
50–400 for sample length, both in a logarithmically increasing size, to maximize variability.

4.5. Limitations

The certainty index that we introduced, cannot be taken as a perfect measure of confi-
dence. Small variations in the signal could change this index significantly and therefore
should be corroborated with the rest of the data. Our study did not rigorously examine
the use of certainty index on all types of networks or data. In this study, the main pur-
pose of certainty index was to have a measure with reasonable confidence to correlate
with the information content in the signal. Moreover, our study did not evaluate out of
distribution examples.
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It may be noted that the certainty measure is not a general estimate of the confidence
of the network, but rather an estimate in the individual predictions. It is possible that the
average of certainty measure over multiple samples of data may be used as a mean certainty.

We have not explored additional information measures, which may have potential
applications or better outcomes in terms of correlation with information parameters. In
addition, the data we used were limited to one type of signal (iEEG), which raises a question
concerning the applicability of this approach to other kinds of data.

4.6. Future Studies

The certainty index introduced may be evaluated for different types of networks (RNN,
LSTM etc.) and different types of datasets (e.g., images). Other measures of information,
e.g., fuzzy entropy, can be used as an alternative to sample entropy to evaluate the certainty
index further. Another aspect that needs to be explored is the relationship of the gradients
of the network with the certainty index. This will potentially help in deciding the optimal
number of layers in a network.

5. Conclusions

Exploring the information capturing capacity of the DNN with the help of heatmap-
ping and sample entropy in iEEG signals, we were able make the following contributions.

• Introduced certainty index as a measure of confidence of individual predictions of DNN
using the outputs of the penultimate layers.

• Modified an algorithm for measuring sample entropy of a time series.
• Evaluated the relationship between the heatmap–sample entropy correlation and the

certainty index.
• Established that the trend of relation between the certainty index and heatmap-sample

entropy correlation is robust across different parameters of sample entropy calculation.

The results from this study suggest that the certainty measure as described can be
used judiciously as an estimate of the confidence that the DNN has in the prediction of
particular data. We are able to show that the certainty index is more strongly correlated
with the correlation between the heatmap and sample entropy compared to that between
heatmap and original signal. This would be expected given the fact that the sample entropy
is the measure of the information in the signal and the heatmap is a depiction of the DNN’s
ability to capture the relevant information.
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Abbreviations
The following abbreviations are used in this manuscript:

EEG Electro encephalogram
iEEG Intracranial electro encephalogram
DNN Deep neural network
RNN Recurrent neural network
LSTM Long short-term memory
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