
Citation: Zeng, J.; Qu, Z.; Cai, B.

Structure and Sequence Aligned

Code Summarization with Prefix and

Suffix Balanced Strategy. Entropy

2023, 25, 570. https://doi.org/

10.3390/e25040570

Academic Editor: Boris Ryabko

Received: 30 January 2023

Revised: 15 March 2023

Accepted: 24 March 2023

Published: 26 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Structure and Sequence Aligned Code Summarization with
Prefix and Suffix Balanced Strategy
Jianhui Zeng, Zhiheng Qu and Bo Cai *

Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education,
School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China
* Correspondence: caib@whu.edu.cn

Abstract: Source code summarization focuses on generating qualified natural language descriptions
of a code snippet (e.g., functionality, usage and version). In an actual development environment,
descriptions of the code are missing or not consistent with the code due to human factors, which
makes it difficult for developers to comprehend and conduct subsequent maintenance. Some existing
methods generate summaries from the sequence information of code without considering the struc-
tural information. Recently, researchers have adopted the Graph Neural Networks (GNNs) to capture
the structural information with modified Abstract Syntax Trees (ASTs) to comprehensively represent
a source code, but the alignment method of the two information encoder is hard to decide. In this
paper, we propose a source code summarization model named SSCS, a unified transformer-based
encoder–decoder architecture, for capturing structural and sequence information. SSCS is designed
upon a structure-induced transformer with three main novel improvements. SSCS captures the
structural information in a multi-scale aspect with an adapted fusion strategy and adopts a hierar-
chical encoding strategy to capture the textual information from the perspective of the document.
Moreover, SSCS utilizes a bidirectional decoder which generates a summary from opposite direction
to balance the generation performance between prefix and suffix. We conduct experiments on two
public Java and Python datasets to evaluate our method and the result show that SSCS outperforms
the state-of-art code summarization methods.

Keywords: source code summarization; deep learning; program comprehension

1. Introduction

Source code summarization is a popular research task in the code comprehension field
which aims to generate natural language descriptions of code for developers to rapidly
comprehend the functionality or usage. With the increasing volume of software code, nearly
90% of the development cost is spent on software maintenance, (e.g., version iteration,
program comprehension and bug fixing) [1]. High-quality code summaries undoubtedly
can effectively reduce the cost on program comprehension. Nowadays, in a practical
developing environment, most of the code summaries are likely to be missing or lacking, or
the summaries do not match the code due to a series of human mistakes or the large volume
of code. Developers’ effort in writing qualified summaries determines whether code can be
effectively comprehended by other developers. Recently, researchers are devoted to source
code summarization tasks to generate high-quality code summaries automatically instead
of hand-writing, and it is still challenging.

Early studies on code summarization tasks mainly generated a summary from tem-
plates [2] or retrieved a summary from a similar code snippet based on information retrieval
(IR) techniques [3]. Whether the template-based approaches or the IR-based approaches,
the quality of the summaries is far from satisfactory.

Recently, due to the remarkable achievement in neural machine translation tasks
utilizing deep learning techniques, studies on automatic code summarization based on

Entropy 2023, 25, 570. https://doi.org/10.3390/e25040570 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25040570
https://doi.org/10.3390/e25040570
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-5261-0191
https://doi.org/10.3390/e25040570
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25040570?type=check_update&version=2

Entropy 2023, 25, 570 2 of 18

a sequence-to-sequence architecture that contains an encoder for code representation
and a decoder for the summary generation attracts researchers devoted in this area.
Researchers [4–6] only consider the code as plain text data, which is called sequential
information (e.g., token sequence, API sequence) and generate summaries based on it with
an RNN (Recurrent Neural Network) or CNN (Convolutional Neural Network) sequence-
to-sequence model. Further, transformer [7] architecture shows great potential in the
Natural Language Processing (NLP) area providing a breakthrough for all language-related
tasks. As a result, works such as [8,9] on using transformers to generate summaries,
achieved better results than the RNN-based or CNN-based methods. Ahmad et al. [8] first
proposed a transformer-based method on the code summarization task, which achieved
excellent performance and leads the code summarization area into the transformer-based
model stage. Because of the popularization and performance of transformers, almost
all recent works [9–12] are conducted based on the transformer architecture and achieve
high scores in each evaluation metric. However, only considering sequence information
without considering the structure of code leads to a incomplete representation of code.
Thus, researchers utilized the structural information of code (e.g., Abstract Syntax Tree
(AST), Control Flow Graph (CFG), Data Flow Graph (DFG), Program Dependence Graph
(PDG)) to represent code more comprehensively. Specifically, a part of code summarization
research [13–15] used ASTs as the input to generate code summaries. Shido et al. [16]
proposed an LSTM-based (Long Short-term Memory Network) tree structure model to
directly capture AST features that enable a traditional NLP model to apply to tree-structural
data. Alon et al. [15] extracted multiple tree paths from root node to terminal node based
on ASTs as the code representations as structural information for summary generation.
Currently, Graph Neural Networks (GNNs) achieve great performance on graph data (e.g.,
protein prediction, knowledge graph), so researchers [17,18] consider constructing AST
into a graph by adding additional edge relations and utilizing GNNs to capture structural
information achieving great results.

Generally, to comprehensively represent source code and achieve great generation
performance, it is undoubtedly that we must consider both structure and sequence infor-
mation, thus leading to the two motivations for our work. The first motivation of this paper
is to capture the sequence information in a hierarchical view while almost all the works
consider code sequence as plain text, despite the fact that codes are a kind of document
data containing hierarchical structure. Code is not only a composition of tokens but also a
composition of statement sentences, which also means that code contains document prop-
erty. Thus, to better capture the sequence information, we propose a hierarchical sequence
encoder adopting a hierarchical encoding strategy from token-level to sentence-level. For
the second motivation, code ASTs or graphs often contain large scale nodes and edges for
which the GNNs do not have the parallel computation ability unless we combine batches
of code ASTs or graphs into a larger graph, leading to low computational efficiency. Thus,
we utilize the high parallel computation ability of transformers to encode a batch of code
graphs with a special mask technique. Furthermore, for natural language generation (NLG)
tasks, the decoder is an auto-regressive module which generates sentences from left to
right, suffering from an exposure bias issue that error will be accumulated and passed to
the following step. In conclusion, this leads to an unbalanced performance between prefix
and suffix. The prefix denotes the first m tokens in a generated sentence and the suffix
denotes the last n tokens. Thus, we adopt a bidirectional decoding strategy to balance the
performance between prefix and suffix. We will detail the above designs in Section 3.

Contributions:

• We propose a structure and sequence-aligned code summarization method called SSCS,
which can not only capture both types of information in a way superior to the previous
works but also balances the generating performance between prefix and suffix.

• We design a transformer-based AST encoder to explicitly encode the structural informa-
tion in a multi-perspective format and aggregate it with an adapted fusion strategy.

Entropy 2023, 25, 570 3 of 18

• A hierarchical sequence encoder is proposed to capture the document property of
code, which enables the model to understand sequence information from fine grain
(token-level) to coarse grain (sentence-level).

• We conduct experiments on two public datasets on Java and Python to evaluate the
effectiveness of our proposed SSCS. Furthermore, the results show that our approach
outperforms exiting state-of-the-art code summarization methods on BLEU, METEOR
and ROUGE metrics.

2. Related Work

In early periods of code summarization task, researchers generated natural language
descriptions of code based on the Software Word Usage Model (SWUM) by analyzing
the signatures of Java methods [2]. Subsequently, Information Retrieval (IR) techniques
emerged and were widely used in code summarization tasks. Haiduc et al. [3] proposed IR-
based techniques for automatic code summarization, which searches similar code snippets
or keywords in the code database and extracts the summary from similar ones as the
summary of the original code. These methods generate code summaries with low flexibility.
Recently, researchers utilized deep-learning techniques to represent code and adopt the
encoder–decoder framework to generate a more flexible summary. To our best knowledge,
recent methods can be broadly divided into three categories: sequence-only methods,
structure-aligned methods and pre-trained methods.

As the encoder–decoder framework achieves great success in Neural Machine Transla-
tion (NMT), which is able to generate sentences of arbitrary length, researchers consider
code summarization as a translation task that translates program language (PL) into natural
language (NL). Thus, studies generate summaries with sequence information of the code
(e.g., code plain text, API sequence). Iyer et al. [4] were the first to propose CODE-NN, an
RNN-based encoder–decoder framework equipped with an attention mechanism, gener-
ating a summary from plain text. Allamanis et al. [5] utilized a Convolutional Attention
Neural Network (CNN) to generate a function-name-level short summary for specific
code. Hu et al. [6] designed a method which utilizes API sequences as complementary
information for the code sequence, adding an extra API sequences encoder to represent
the API sequence. Wei et al. [19], who regarded code summarization and code gener-
ation as complementary tasks, proposed a dual learning model to learn both code and
summaries simultaneously, improving the performance of each task. The emergence of
transformers [7] brought huge progress in the natural language generation (NLG) field,
becoming the mainstream architecture for the subsequent works. Ahmad et al. [8] first
proposed a transformer-based method to generate code summaries which add a copy
mechanism and relative positional encoding strategy to strengthen the absolute position
encoding strategy. Moreover, Wan et al. [1] utilized reinforcement learning strategy, adding
an extract actor–critic module to conduct the generation performance. The above methods
generated summaries with sequence information only and demonstrated the potential of
deep-learning techniques in the code summarization field.

Only considering the source code as a sequence ignores the structural property of the
code and leads to an incomplete representation of the code, thus the performance of the
code summarization task encounters a bottleneck. To overcome the bottleneck caused by
incomplete representation, researchers constructed a more comprehensive representation
by adding structure information from ASTs. Hu et al. [13] proposed a transformation
algorithm that transforms tree-structure data from AST into sequence data SBT (structure-
based traversal) and adopted the RNN-based encoder–decoder framework to generate
the summary. LeClair et al. [14] utilized both AST sequence and code sequence with
two separate encoders to capture the different kinds of information. Liang and Zhu [20]
proposed a tree-based recursive neural network to directly capture AST data instead of
transforming the AST into a sequence. Shido et al. [16] proposed tree-LSTM to capture the
structural information. Fernandes et al. [21] constructed sequence graphs of code and used
Gated Graph Neural Networks (GGNN) [22] as the encoder that can capture the distance

Entropy 2023, 25, 570 4 of 18

relationship in the sequence graphs. Alon et al. [15] extracted multiple paths from the AST,
constructing a path-based sequence to represent the structure of code. LeClair et al. [23]
proposed a graph-based neural network which uses an RNN-based network to capture the
sequence information and GCN for the structural information. Wang et al. [24] generated
code summary by aggregating source code sequence information, ASTs and a control-flow
graph with reinforce learning strategy. In general, by integrating sequence information
and structural information, code summarization has made great progress but there is still a
barrier to satisfy the needs of industry.

Recently, due to great improvement provided by pre-trained models (e.g., BERT [25],
T5 [26]), some researchers designed pre-trained models specifically for code representation.
Feng et al. [27] proposed pre-trained model CodeBert which considers the representation
of the data flow of code, achieving promising results in the code summarization task.
Furthermore, Wang et al. [28] proposed CodeT5 based on T5 [26] considering the token
type of code and utilizing a denoising sequence-to-sequence pre-training strategy. The
above code pre-trained models generally understand deeper relationship within codes by
feeding large enough data, and the results are pretty impressive.

3. Proposed Approach
3.1. Overview

The overview of our proposed method(SSCS) is shown in Figure 1.

Target summaryCode

</>

AST Encoder

Hierarchical
Sequence Encoder

L2R Decoder

R2L Decoder

C
r
o
s
s

E
n
t
r
o
p
y

0:static int add (int a , int
 b)
1:{
2:sum = a + b ;
3:return Sum ;
4:}

method
declaration

Integral
type

modifiers identifier block
formal

parameters

add expression
statement

assignment
expression

binary
expression

formal
parameter

formal
parameter

return
statement

identifieridentifier
Integral
type

Integral
type

identifier

identifier

identifier identifier

a b

a b

sum

sum

Fusion

Code Sequence

Code AST

Code

</>

Training Stage

Inference Stage

Generated summary

AST Encoder

Hierarchical
Sequence Encoder

L2R Decoder

R2L Decoder

Beam Search
Strategy

Fusion

Code AST

Code
Sequence

Parse

Parse

Encoder Decoder

static int add (int a ,int b)
{
 sum = a + b ;
 return sum ;
}

Original Code

Return the sum of two int numbers.

Data Preprocess

Figure 1. Overall process of SSCS. A model with two unique encoders for sequence information and
structure information is followed by a bidirectional decoding module for left-to-right decoding and
right-to-left decoding.

To detail our proposed method, we separate the whole process into two stages, training
stage and inference stage. We can clearly see that SSCS contains three main components
encoder, fusion module and decoder, which will be detailed in the following section.

As shown in Figure 1, code and ground-truth summary are both utilized in the training
stage, while only code will be utilized in the inference stage. First the code will be processed
into AST and lines of code sequence for the AST encoder and hierarchical sequence encoder,
respectively, followed by a fusion module. Later the fusion output will be used by the
decoder. The main difference between the training stage and inference stage is the process
of the decoder. In the training stage, the ground-truth summary will be fed into the decoder
and computes the loss with the decoder output for backward propagation, while the input
is the generated token from the last step in the inference stage.

Entropy 2023, 25, 570 5 of 18

3.2. Data Preprocessing

The dataset we use for our work contains large <code, summary> pairs. We simply
tokenize the summary into a list of tokens. Furthermore, to reduce out-of-vocabulary
issues caused by a large scale of unique tokens, we tokenize any CamelCase or snake_case
defined by developers. The process of acquiring sequence information for code is same as
the summary but we maintain the document property of code. Thus, the code sequence
information consists of multiple tokenized lines of code sub-sequence.

Knowing that SSCS is a structure and sequence aligned model, we also need to parse
code into an AST to obtain structural information. In this paper, we evaluate our method on
two public Java and Python datasets. We generate Abstract Syntax Trees (ASTs) with open-
source tool tree-sitter (https://tree-sitter.github.io/ (accessed on 15 July 2022)) for Java
code and ast (https://github.com/python/cpython/blob/master/Lib/ast.py (accessed on
26 July 2022)) module for Python code. Moreover, we also add extra data flow information
to strengthen the structural information. As shown in Figure 1, the variable sum is com-
puted from addition of a and b, and we can see in the Code AST that the leaf node sum has
data relationships with variable a and variable b, respectively. Finally, we obtain the node
sequence by pre-order traversal and its adjacency as the AST encoder inputs.

3.3. Token and Node Embedding

Before sending the node and token into the model, we need to vectorize the token
and node. We first create a dictionary to calculate the total number of tokens and nodes
separately, and use numtoken and numnode to represent them. Thus, we are able to vectorize
the token or node as one-hot vector, which is a numtoken or numnode size vector consisting
of a unique “1”, and “0”s for the rest of the positions. To accelerate the computation, we
usually embed the discrete one-hot vector into dense vector of size dim. The most simple
way is to multiply a matrix with a size of numxdim, and we are able to transform the vector
space Rnum into dense vector space Rdim.

3.4. AST Encoder

Wu et al. [9] proposed the SiT model which used transformer architecture to directly
capture the structural information instead of using Graph Neural Networks that inspired
our work. Inspired by SiT, we designed a transformer-based AST encoder capturing the
structural information in multi-view. From the last section, we know that two inputs will be
imported into the AST encoder, so we first define each input. Given an AST with L nodes
N = {n1, n2, n3, . . . , nl}, where nj ∈ Rdim denotes each node vector and dim denotes the
dimension of node vector in vector space R. A denotes the adjacency matrix in the shape of
LXL, the computation process of the AST encoder can be split into three blocks: multi-view
attention computation, adapted weight fusion and feed-forward network. Figure 2 shows
the overview of an AST encoder.

Global Self-Attention The computation of the global self-attention is based on the
vanilla self-attention in transformers [7]. We treat the AST of the source code as an undi-
rected complete graph, which means a node ni can learn the relation from the whole tree
without any blocking. Therefore, we are able to capture the global AST representation. The
global self-attention mechanism is denoted as follows:

SAN(N) = so f tmax(
QKT
√

dk
)V (1)

Q, K, V = NWQ, NWK, NWV (2)

where N = {n1, n2, . . . , nl} denotes the input sequence of nodes, l denotes the node se-
quence length and dk is the dimension of K. WQ, WK and WV , WQ, WK, WV ∈ Rdim×dim are
three learnable matrices using as projection to transform the vector space into a different
vector space. NWQ, NWK and NWV represent matrix multiply operation (matrix N dot
matrix W).

https://tree-sitter.github.io/
https://github.com/python/cpython/blob/master/Lib/ast.py

Entropy 2023, 25, 570 6 of 18

Structure-induced Self-Attention We follow the previous work by Wu et al. [9] to
represent the structure information using transformer architecture equipped with a special
attention mechanism. The structure-induced self-attention network (Si-SAN) is able to
capture the structural information instead of using Graph Neural Networks (GNNs). The
computation of the Si-San is to multiply the adjacency matrix by key-query pairs:

SiSAN(N) = so f tmax(
A ·QKT
√

dk
)V (3)

Ai,j =

{
1, i f edge(i, j)
−in f , else

(4)

where A denotes the adjacency matrix of the code. edge(i, j) denotes there is an edge
between ni and nj. The attention score between ni and nj will be dropped out when
ai,j = −in f in A.

Local Self-Attention To further capture the structural information, we also adopt a
local attention network to capture the local information. By adding a window mask, we
can initialize a window which can slide through the whole tree to learn the local relation.

LSAN(N) = so f tmax(
Mwin ·QKT
√

dk
)V (5)

where Mwin denotes the window matrix for constraining the computation of node pairs in
window distance.

Adaptive Weight Fusion Layer In SiT [9], the process of the encoder module is a global
self-attention network followed by a structure-induced self-attention network, where the
global information will be diluted by the Si-SAN. Thus, we adopt a superior fusion strategy
for the different views of information by using an adaptive weight fusion layer, which is
shown in Figure 2.

Structure
induce

Attention

Global
Attention

Local
Attention

Input Vector

Si Feature

Global Feature

Local Feature

Output Vector

Adapted Fusion Layer

Figure 2. Overview of AST encoder. A encoder with three blocks, multi-view attention computation,
adapted weight fusion and feed-forward network.

Given the outputs G, S, L from the SAN, SiSAN and LSAN, we first use a Mean
Pooling Module to condense G, S, L ∈ Rdim×dim into G′, S′, L′ ∈ R1×dim.

G′, S′, L′ = MeanPooling(G, S, L) (6)

Entropy 2023, 25, 570 7 of 18

For vector G′, G′ obtains the relation weights by summing up the vectors after matrix
multiplication with the rest of the two dense vectors and S′ and L′ repeat the same process.
To simplify the computation, we join G′, S′ and L′ and compute the dot value between the
joint matrix and its transpose matrix. We sum up the relation weights and normalize as the
adaptive weight for G′. S′ and L′ repeat the same process to obtain the adaptive weight for
themselves. The computation process is shown below.

sG, sS, sL = Sum([G′ : S′ : L′]× [G′ : S′ : L′]T) (7)

α, β, γ = σ(sGWG, sSWS, sLWL) (8)

where WG, WS, WL ∈ R1×1,α, β, γ ∈ R1×1 are the adaptive for G, S and L. σ refers to
the sigmoid(z) = 1

1+e−z activation function for normalizing the weight. “:” denotes the
joint operation.

The final AST encoder output is the weighted sum of G, S and L followed by a Feed-
Forward network.

Outputast = FFN(α · G + β · S + γ · L) (9)

FFN(x) = ReLU(xW1 + b1)W2 + b2 (10)

where x denotes the output from the adaptive weight fusion layer, W1, W2 are two learnable
matrices. For activation function ReLU, ReLU(x) = max(0, x).

During attention computation stage, the QKT operation creates a square matrix, so
we can utilize mask strategy to control the reception field. To better understand why the
mask matrices are able to control the receptive field allowing the AST encoder to capture
multi-view information, we visualize three kinds of mask matrix, two are human-defined
(global mask and window mask) and one (structure-induced mask) is from the AST in
Figure 3. The global mask (Figure 3a) is a matrix filled with “1”, allowing the node sequence
to construct a fully connected graph to capture global information (can be omitted). Each
node is able to study from the rest of them. For the structure-induced mask (Figure 3b),
each node studies according to the adjacency extracted from the AST and only studies from
the node with an edge connection. The window mask is a special mask simulating the
sliding window. As shown in Figure 3c, we take a window with size 2 as example. As the
window is sliding forward, we are able to capture local information at each window.

1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

2 3

4 5 1
0
1
0
1

1
1
1
1
0

0
0
1
1
1

1
1
0
1
0

1
1
0
1
1

0
0
0
0
1

0
0
0
1
1

0
0
1
1
0

0
1
1
0
0

1
1
0
0
0

(a) (b)

(c)

5
4
3
2
1

1 2 3 4 5

5
4
3
2
1

1 2 3 4 5

5
4
3
2
1

1 2 3 4 5
1

2 3

4 5

1

2 3

4 5

Figure 3. Three kinds of mask for capturing multi-view information. (a) Global mask for capturing
global information. (b) Structure-induced mask for capturing structural information. (c) Window
mask for capturing local information.

Entropy 2023, 25, 570 8 of 18

3.5. Hierarchical Sequence Encoder

A code snippet is some kind of document which consists of several statement se-
quences. To maintain the document property instead of treating a code snippet as a single
sequence, we adopt a hierarchical encoding strategy which captures the code sequence
information from token-level to sentence-level.

Given lines of code sub-sequences S = {s1, s2, s3, . . . , sn}, si ∈ Rm×dim, where m
denotes the max sequence length between all the sub-sequences and n denotes the line
number, we are able to capture the hierarchical information using a hierarchical sequence
encoder. The procedure is shown in Figure 3.

First, we use the self-attention mechanism to capture the relation between the tokens
in each sub-sequence. The first step output oi can be formulated as follows:

REPtoken = {SAN(s1), SAN(s2), ..., SAN(sn)} (11)

where si = {s1, s2, ..., sm}, sj ∈ Rdim is the token representation.
Second, to obtain the sentence-level representation, we send the first step output into

a long short-term memory network (LSTM), which is able to condense the token-level
representation into the sentence-level representation and capture the position information.
The final layer of the hidden state in each sub-sequence computation stage is used as the
sentence-level representation for each sub-sequence.

hi = LSTM(Repi
token) (12)

REPsent = {h1, h2, ..., hn} (13)

where Repi
token ∈ Rm×dim, hi ∈ R1×dim is the final layer hidden state in the mth time step

generated by LSTM.
Then, in the same way as step one, we adopt the self-attention mechanism to capture

the relation between sub-sequences.
Finally, the second LSTM network has the same effect as the first LSTM network. We use

all the final layer hidden states generated in each time step as the code sequence representation.
In Figure 4, we also represent the change of the vector shape in each step to better

represent the hierarchical encoding process. At first, the shape of input lines sequence
vector is 3D, which has three dimensions ([Line, Length, Dim]), and after the word-level
self-attention and LSTM, the vector is compressed into 2D ([Line, Dim]). The final shape
remains 2D after the sentence-level self-attention and LSTM modules. Thus, we transform
3D lines of sequence vector into a 2D vector for later combination.

Lines of
sequence vector

Shape:[Line,Length,Dim]

Shape:[Line,Length,Dim]

Shape:[Line,Dim]

Output vector

Shape:[Line,Dim]

Shape:[Line,Dim]

Figure 4. Detail of the hierarchical code sequence encoder.

Entropy 2023, 25, 570 9 of 18

3.6. Encoder Output Fusion

In above section, we utilized two encoders for capturing structural information and
sequence information. We define the output from the AST encoder as EncoderAST(N, A)
and EncoderS(S) from the hierarchical sequence encoder.

The SSCS encoder output is obtained by jointing the outputs from the AST encoder
and hierarchical code sequence encoder. The computation is as follows:

Encoderout = [EncoderAST(N, A) : EncoderS(S)] (14)

where EncoderAST denotes the AST encoder and EncoderS denotes the hierarchical code
sequence encoder. N refers to the input node vector and A is adjacency. S refers to the lines
of code sequence.

The encoder output will be utilized in the decoding stage for generating the summary.

3.7. Bidirectional Decoder

Liu et al. [29] found that the quality of the prefixes of translation hypotheses is much
higher than that of the suffixes in machine translation tasks. Furthermore, in order to
produce more balanced translations, Liu et al. adopted a simple strategy for joint training
the forward decoder and the backward decoder.

Inspired by the previous work of Liu et al., we adopt the same strategy to produce
more balanced predictions. We simultaneously generate sequence in the Left-to-Right (L2R)
direction and Right-to-Left (R2L) direction. Both directions guide each other by optimizing
the shared parameters which are learnable. We define the input vector for the L2R decoder
as
−→
Y L2R = {−→y 1,−→y 2,−→y 3, ...,−→y n} and

←−
Y R2L = {←−y 1,←−y 2,←−y 3, ...,←−y n} for the R2L decoder.

The L2R decoder and R2L decoder can be regarded as two sub-tasks. By optimizing the
shared parameters, one task can guide the other one. The details are presented below.

The L2R decoder and R2L decoder share the same Embedding Layer, which converts
the one-hot vector of the token into a dense vector:

emb_L2R = Embedder(
−→
Y L2R + PE(

−→
Y L2R)) (15)

emb_R2L = Embedder(
←−
Y R2L + PE(

←−
Y R2L)) (16)

where Embedder(x) = xW, W is a learnable matrix, a converting discrete vector into a con-
tinuous vector. PE denotes position encoding operation, used for capturing sequence order.

We define Query, Key, Value in different directions as (
−→
Q ,
←−
Q), (

−→
K ,
←−
K), (

−→
V ,
←−
V). The

two directions’ multi-head attention outputs can be computed as below:

−−−→
MSAL2R = MultiHead(

−→
Q ,
−→
K ,
−→
V) (17)

←−−−
MSAR2L = MultiHead(

←−
Q ,
←−
K ,
←−
V) (18)

After the attention computation, the outputs will be sent into a Feed-Forward network,
which contains two linear transformations and a ReLU activation function.

FFN(x) = ReLU(xW1 + b1)W2 + b2 (19)

By using the So f tmax function, we can obtain the probability of the generated token.
In the training stage, the bidirectional guiding decoder generates two directions’

outputs. Our goal is to find the parameter θ which can maximize the likelihood of success.
For a training data pair {xn,−→y n,←−y n}N

t=1, xn is the encoder output, −→y n and←−y n are the
decoder inputs. The generation procedure is auto-regressive which means the generation

Entropy 2023, 25, 570 10 of 18

for the next token is based on the previous all generated tokens. We compute the likelihood
as follows:

P(Y|X) =

{
∏n

t=1 P(−→y t|−→y <t−1, X) i f L2R

∏n
t=1 P(←−y t|←−y <t−1, , X) i f R2L

(20)

The final likelihood function is the joint of the likelihood functions of two sub-tasks:

J (θ) =
1
N

N

∑
n=1

J

∑
j

λ log p(−→y j|−→y n
<j,
←−y n

<j, xn, θ)

+(1− λ) log p(←−y j|←−y n
<j,
−→y n

<j, xn, θ)

(21)

where λ is the weight to balance the guidance of the two sub-tasks. λ decides the training
purpose to focus on which direction task more. j denotes the time step and J denotes the
whole generating step length.

Different from the training stage, we adopt a beam search strategy for the summary
generation. Beam search strategy expands the searching area reserving the best top k token
(k denotes the beam size) instead of shrinking the best one as in a greedy search. For
each inference step, we generate beam-size candidate sequences and reserve k-best at last.
The final sequence is chosen between the two outputs from the L2R decoder and the R2L
decoder. Furthermore, we can regard greedy search as a beam search strategy when beam
size is 1.

4. Experiments and Results
4.1. Datasets

Two widely used public datasets are taken into consideration to ensure the perfor-
mance and generalization ability of SSCS. The Java dataset provided by Hu et al. [6]
consists of 87,136 <code, summary> pairs, which is able to test the generation performance
on Java language. Furthermore, we also test on a Python dataset provided by Wan et al. [1]
containing 92,545 <code, summary> pairs. We follow the procedures of Hu et al. and Wan
et al. and divide the datasets into training set, valid set and test set. Table 1 shows the
statistics of both datasets including the size for each set and the average length of code and
summary in each program language.

Table 1. Statistics of the experimental datasets.

Dataset Java Python

Train 69,708 55,538
Validation 8714 18,505

Test 8714 18,502

Avg. tokens in code 120.16 47.98
Avg. tokens in summary 17.7 9.49

4.2. Metrics

We evaluate the performance of summarization with BLEU [30], METEOR [31] and
ROUGE [32], which are widely used for testing the sentence generation performance in
natural language generation (NLG) tasks.

BLEU metric is used to calculate the number of n-gram matches between the gener-
ated sequence and the reference sequence and calculate the average, n = 1, 2, ..., N. The
calculation formula is as follows:

Entropy 2023, 25, 570 11 of 18

Pn =
∑gramn∈c match(gramn)

N(gramn)
(22)

BLEU = ρ(∏
n

Pn)
1/N (23)

where ∑gramn∈s match(gramn) denotes the number of n-grams matches in the generated
sequence and the reference sequence c. N(gramn) denotes the total number of n-grams in
the reference sequence, and ρ is the brevity penalty.

ROUGE is a recall-based evaluation metric. We use ROUGE-LCS (Longest Common
Sequence, ROUGE-L) as our ROUGE evaluation metric in our experiments. ROUGE-LCS
takes the longest common sub-sequence between the generated sequence and the reference
sequence as the starting point for calculation. The calculation formula is shown below:

RecallLCS =
LCS(g, c)

len(c)
(24)

PrecisionLCS =
LCS(g, c)

len(g)
(25)

ROUGELCS =
(1 + β2)RecallLCSPrecisionLCS

RecallLCS + β2PrecisionLCS
(26)

where LCS(g, c) denotes the longest common sub-sequence between the generated se-
quence g and the reference sequence c. The size of β determines whether to focus on the
Recall rate or Precision rate.

METEOR is proposed to solve some inherent defects of BLEU. It uses Word Net to
compute specific sequence matches, synonyms, root words and affixes, and paraphrases to
make them more relevant to manual judgment.

4.3. Hyper Parameters

For the hyper parameter settings, we follow the previous works by Ahmad et al. [8]
and Wu et al. [9]. We set embedding size of source code and summary to 512. The layer for
the AST encoder is set to 3 and 6 for the summary decoder. We initialize the learning rate
as 1× 10−4 and use a 4000 step warm-up schedule. The maximum training epoch is set to
200 with an early stop mechanism. The maximum length for code is set to 300 and 100 for
the summary. Adam optimizer is used for the optimization of the learning rate. We detail
the parameter in Table 2. The experiments are conducted in a server with 4 Nvidia 2080ti
GPUs and Ubuntu 18.04 OS (https://www.ubuntu.org.cn/, accessed on 29 January 2023).

Table 2. Hyper Parameter Settings.

Param. Number

max training epoch 200
early stop 20

train batchsize 16
test batchsize 64

max code length 300
max summary length 100

learning rate 0.0001
warm-up step 4000

AST encoder layer 3
decoder layer 6

head 8
embedding size 512

LSTM layer 1
dropout 0.1

optimizer Adam
beam size 4

https://www.ubuntu.org.cn/

Entropy 2023, 25, 570 12 of 18

4.4. Baselines

We compare SSCS with the recent code summarization models and the description of
each model is shown as below.

• RL+HybridSeq [1] using a critic network with the BLEU score as the reward to
conduct the learning of the model.

• DeepCom [13] using SBTs traversed from ASTs and code sequence as inputs and
using a hybrid attention mechanism to fuse these features.

• API+CODE [6] utilizing the API sequence to enhance the representation of code that
improved the performance of generating the summary.

• Dual Learning [19] utilizing the duality between code generation task and code
summarization task and training both tasks simultaneously.

• Transformer [8] using a transformer with a copy mechanism and relative positional
encoder to generate code summaries.

• SiT [9] constructing a multi-view adjacent matrix to represent the relationships be-
tween the tokens in the code guiding the self-attention computation.

• M2TS [10] constructing a multi-view AST feature at multiple local and global levels
and proposing a fusion method to combine sequential information and structural
information.

• SCRIPT [11] introducing the structural relative positions between nodes of the AST
to better capture the structural relative dependencies.

• CodeScribe [12] introducing a novel triplet position for AST which is represented by
GNNs and using a pointer-generator network to copy tokens from code tokens and
tree nodes to summarize.

4.5. Results and Analysis

To represent the performance of SSCS, we compare it with eight state-of-the-art base-
lines. The baseline results are mainly from Ahmad et al. [8] and Wu et al. [9] and the others
are from the original papers. The overall result is illustrated in Table 3.

Table 3. Comparison of our proposed approach with the baselines on Java and Python datasets.
Greater values denote better performance.

Model
Java Python

BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L

RL+Hybrid2Seq (2018) 38.22 22.75 51.91 19.28 9.75 39.34
DeepCom (2018) 39.75 23.06 52.67 20.78 9.98 37.35

API+CODE (2018) 41.31 23.73 52.25 15.36 8.57 33.65
Dual Model (2019) 42.39 25.77 53.61 21.80 11.14 39.45
Transformer (2020) 44.58 26.43 54.76 32.52 19.77 46.73

Si-Transformer (2021) 45.70 27.55 55.54 33.46 20.28 47.50
M2TS (2022) 46.84 28.93 57.87 33.84 21.83 47.92

SCRIPT (2022) 46.89 28.48 56.69 34.00 20.84 48.15

SSCS 49.78 31.12 60.34 37.48 23.39 52.39

We split the baselines into two groups, one group is the RNN-based baselines, while
the others are the transformer-based baselines. Compared with the RNN-based baselines
(RL+Hybrid, Deepcom, API+CODE, Dual Model), SSCS is much more superior to them in
all evaluation metrics on the Java and Python datasets. Although the recent transformer-
based baselines have achieved excellent performance in the code summarization task, SSCS
can still perform better than these approaches. Compared with M2TS, SSCS improves the
performance of BLEU, METEOR and ROUGE-L by 2.94%, 2.19% and 2.47% on the Java
dataset, respectively. Meanwhile, SSCS also exceeds M2TS by 3.64%, 1.56% and 4.43% on
the Python dataset. We also conduct a comparison between SSCS and SCRIPT and the
result also demonstrates the effectiveness of the SSCS. SSCS improves the performance of

Entropy 2023, 25, 570 13 of 18

BLEU, METEOR and ROUGE-L by 2.89%, 2.64% and 3.65% on the Java dataset and 3.48%,
2.55% and 4.24% on the Python dataset.

Due to the different summary processing strategy between CodeScribe and the other
baselines, we compare SSCS with CodeScribe in isolation. CodeScribe replaces all the
numerical tokens with a unified symbol ‘< number >’ and removes all the lexical forms
(e.g., -s, -es, -ed). The result is shown in Table 4. In the same preprocessing method for
the summary, we can see that SSCS still performs better than CodeScribe on the Java and
Python datasets. SSCS improves results by 1.36%, 0.96% and 2.91% in BLEU, METEOR and
ROUGE-L scores on the Java dataset and 2.20%, 1.22% and 3.39% on the Python dataset.

Table 4. Comparison of our proposed approach with CodeScribe. * refers to experiment on the
summary processed by Guo et al. [12]. Compared with SSCS, SSCS * takes a cleaner summary which
removes all the lexical forms as decoder input.

Model
Java Python

BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L

CodeScribe (2022) 49.19 32.27 59.59 35.11 23.48 50.46
SSCS * 50.55 33.23 62.50 37.31 24.70 53.85

From the above experiment results, our approach outperforms the current state-of-
the-art methods. To better understand the main reasons of the improvement for SSCS,
we conduct an ablation study to present the strength of each module we propose in the
following section.

4.6. Ablation Study

To better understand why our proposed SSCS can achieve such a great performance,
the ablation study is necessary for disclosing the main reasons for such improvement.

We first conduct two ablation experiments that remove the important components in
SSCS. Thus, the full SSCS model degenerates into the extended Si-Transformer model. By
studying the ablation of components, we can directly see the change of scores.

As shown in Table 5, we first remove the bidirectional decoder, which means we
only generate the summary from a single direction.Based on this, the performance drops
about 2%, 1.2% and 1.4% in BLEU, METEOR and ROUGE-L. Then we remove the sequence
encoder and the generation of summary only depends on the structural information. The
performance drops about 0.6%, 1% and 1.1% in BLEU, METEOR and ROUGE-L. The abla-
tion study on components illustrates the effectiveness of each component. Furthermore, the
bidirectional decoder contributes much in generating better summaries. The hierarchical
encoder provides a view at document level, which helps to represent the code comprehen-
sively. IO the left side of Table 5 “w/o” denotes “without” and also means we remove this
component in our model. The top row is the full model, so we remove each component
step by step.

Table 5. Ablation study on Java and Python Datasets.

Model
Java Python

BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L

SSCS 49.78 31.12 60.34 37.48 23.39 52.39
-w/o Bi-decoder 46.70 28.50 57.75 35.24 22.14 50.82
-w/o Hi-encoder 46.10 27.75 57.20 34.64 21.13 49.72

Entropy 2023, 25, 570 14 of 18

Moreover, we also conduct experiments of the different fusion strategies for the fusion
of the global information, structural information and local information in the AST encoder.
The fusion strategies are addition, element-wise dot-product, average and adaptive weight
fusion. The result is shown in Table 6, the adaptive weight fusion achieves the best score
compared with the other strategies. The element-wise dot-product achieves the lowest
score, while performance of the addition strategy is close to the average strategy. It can be
obviously seen from the results that the adaptive weight fusion strategy does improve the
generation performance.

Table 6. Performance on different fusion methods on Java and Python Datasets.

Model
Java Python

BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L

addition 49.20 30.40 59.70 36.70 22.01 50.46
element-wise dot 47.50 29.10 58.60 34.25 20.10 48.82

average 48.83 30.10 59.42 36.90 22.40 50.82
adaptive weight 49.78 31.12 60.34 37.48 23.39 52.39

4.7. Validation Performance

To demonstrate the superiority of SSCS, we visualize the validation curve of BLEU and
ROUGE scores compared with several baseline. Our approach is based on the transformer
architecture; thus, we choose Si-transformer and vanilla transformer as contrasts. The results also
contain the generation performance on different generating direction. L2R denotes generating
the summary from left-to-right (normal writing order) and R2L denotes the opposite. It is
obvious that SSCS achieves a higher score of both languages in the validation set from the first
epoch to the last one, which also demonstrates the superiority of SSCS.

4.8. Case Study

Figure 5 shows the qualitative examples of SSCS, SiT, Transformer-L2R (Left-to-Right)
and Transformer-R2L (Right-to-Left). It can be observed that Transformer-L2R can generate
prefixes well but suffixes poorly, while Transformer-R2L achieves the opposite performance.
By utilizing the potential of encoder and decoder, SSCS can generate summaries with
balanced prefixes and suffixes. Compared with the SiT, our approach achieves better
performance in both Java and Python languages. In general, SSCS is able to generate a more
complete and accurate summary. We can clearly see from example 1 (upper left), suffering
from exposure bias, L2R and R2L stop generating the summary almost in the middle of the
summary, which means the stop symbol ‘<EOS>’ comes up early. However, our proposed
approach can overcome the generation hindrance, preventing the stop symbol coming up
early, and allowing it to generate the whole summary.

Entropy 2023, 25, 570 15 of 18

public final Sector union (Sector that) {

if (that == null)

return this ;

Angle minLat = this . minLatitude ;

Angle maxLat = this . maxLatitude ;

Angle minLon = this . minLongitude ;

Angle maxLon = this . maxLongitude ;

if (that . minLatitude . degrees < this . minLatitude . degrees)

 minLat = that . minLatitude ;

if (that . maxLatitude . degrees > this . maxLatitude . degrees)

maxLat = that . maxLatitude ;

if (that . minLongitude . degrees < this . minLongitude . degrees)

 minLon = that . minLongitude ;

if (that . maxLongitude . degrees > this . maxLongitude . degrees)

 maxLon = that . maxLongitude ;

return new Sector (minLat , maxLat , minLon , maxLon) ;

}

public void test_getPutByteArray () {

final int capacity = _NUM ;

final ByteArrayBuffer buf = new ByteArrayBuffer (capacity) ;

assertEquals ((byte) _NUM , buf . getByte (_NUM)) ;

assertEquals ((byte) _NUM , buf . getByte (capacity - _NUM)) ;

final int pos = _NUM ;

 for (int i = _NUM ; i < LIMIT ; i ++)

{ final byte [] expected = new byte [r . nextInt (capacity - _NUM)] ;

 r . nextBytes (expected) ; buf . put (pos , expected) ;

assertEquals (_NUM , BytesUtil . compareBytesWithLenAndOffset (

_NUM , expected . length , expected , pos , expected . length , buf . array ())) ;

final byte [] actual = new byte [expected . length] ;

buf . get (pos , actual) ;

assertTrue (BytesUtil . bytesEqual (expected , actual)) ; }

assertEquals ((byte) _NUM , buf . getByte (_NUM)) ;

assertEquals ((byte) _NUM , buf . getByte (pos + capacity - _NUM)) ;

}

Reference: returns a new sector whose angles are the extremes of the this sector and another .

the new sector ' s minimum latitude and longitude will be the minimum of the two sectors .

the new sector ' s maximum latitude and longitude will be the maximum of the two sectors .

the sectors are assumed to be normalized to + / - 90 degrees lati tude and + / - 180 degrees

longitude . the result of the operation is undefined if they are not .

L2R:returns a new sector whose angles are the extremes of the this sector and another . the

new sector ' s minimum latitude and longitude will be the minimum of the two sectors . the

new sector ' s maximum lati tude and longitude will be the maximum of the two

R2L:sector' ' s maximum lat itude and longitude wil l be the maximum of the two sectors . the

sectors are assumed to be normalized to + / - 90 degrees lati tude and + / - 180 degrees

longitude . the resul t of the operation is undefined if they are not .

SiT: returns a new sector whose angles are the extremes of the this sector and another . the

new sector ' s maximum lati tude and longitude will be the maximum of the two

EASCS: returns a new sector whose angles are the extremes of the this sector and another .

the new sector ' s minimum latitude and longitude will be the minimum of the two sectors .

the new sector ' s maximum latitude and longitude will be the maximum of the two sectors .

the sectors are assumed to be normalized to + / - 90 degrees lati tude and + / - 180 degrees

longitude . the result of the operation is undefined if they are not .

Reference: test bulk get / put byte [] methods .

Transformer-L2R: test bulk get / put byte [] methods with offset and length .

Transformer-R2L: test bulk get / put byte [] methods with offset and length .

SiT: test bulk get / put string [] methods with offset and length .

EASCS: test bulk get / put byte [] methods .

def upgrade_available(name):

 version = None

 cmd = 'pkg\tlist\t-Huv\t{0}'.format(name)

 lines = __salt__['cmd.run_stdout'](cmd).splitlines()

 if (not lines):

 return {}

 ret = {}

 for line in l ines:

 ret[_ips_get_pkgname(line)] = _ips_get_pkgversion(l ine)\n\treturn ret\n"

Reference: search for al l the python related files .

Transformer-L2R: search for al l the files .

Transformer-R2L: all the all the python related fi les .

SiT: search for al l the pythonzip related fi les .

EASCS: search for al l the python related files .

def getPathByKey(key, xmlElement):

 if (key not in xmlElement.attributeDictionary):

 return []

 word = str(xmlElement.attributeDictionary[key]).strip()

 evaluatedLinkValue = getEvaluatedLinkValue(word, xmlElement)

 if (evaluatedLinkValue.__class__ == lis t):

 return getPathByList(evaluatedLinkValue)

 xmlElementObject = getXMLElementObject(evaluatedLinkValue)

 if (xmlElementObject == None):

 return []

 return xmlElementObject.getPaths()[0]

Reference: get path from prefix and xml element .

Transformer-L2R: get the evaluated by key .

Transformer-R2L: get transformed path from prefix and xml element .

SiT: get path from prefix .

EASCS: get path from prefix and xml element .

Java Java

PythonPython

Example2Example1

Example3 Example4

Figure 5. Case example on Java and Python datasets.

5. Conclusions

In this paper, we propose a structure and sequence aligned code summarization
model named SSCS which can achieve excellent performance compared with several code
summarization baselines. SSCS extends the previous work and utilizes both structural
information and sequence information. We design a multi-view mask strategy which
enables transformer architecture to capture the AST more comprehensively. Inspired by the
works on NMT, we first introduce bidirectional decoding into the code summarization task
to release the exposure bias issue, which can generate better summary with both prefixes
and suffixes. However, the performance of the automatic code summarization is far from
satisfactory; it is still a tough mission to generate high-quality summaries. In future work,
we will be devoted to exploring the potential of the encoder and the decoder for the code
summarization task. For example, we plan to consider to transform SSCS into a large
pre-trained language model. With the great performance achieved by the pre-training
strategy, we believe the results will be more satisfying. Furthermore, there is still a long
journey for automatically generating a high-quality summary of code.

6. Limitations

We have identified the following limitations to our work that may threaten the validity
of our work:

• Baselines Reproduction. Due to hardware limitations, we cannot reproduce all the
baseline methods (e.g., CodeScribe, M2TS). Thus, we process the data using their
released tools or use their processed data, and set most of the hyperparameters (e.g.,
max source length, max target length, max epoch) the same as theirs.

Entropy 2023, 25, 570 16 of 18

• Language Type. We only conduct our experiments on Java and Python, but it is
necessary to experiment on other popular languages (e.g., C++, C#, SQL, Rust). We do
not know whether the SSCS can achieve the same promotion as on Java and Python.

• Evaluation Metrics There are no particular evaluation metrics for code summarization
tasks. We follow the previous works on this task evaluating our approach using the
metrics in the machine translation task or text summarization task. It is necessary to
propose a metric particular for code summarization tasks.

Author Contributions: Conceptualization, J.Z.; methodology, J.Z.; software, J.Z.; validation, J.Z., Z.Q.
and B.C.; formal analysis, J.Z.; writing—original draft preparation, J.Z.; writing—review and editing,
J.Z., Z.Q. and B.C.; visualization, J.Z.; supervision, B.C.; project administration, B.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable for this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AST Abstract Syntax Tree
MSA Multi-head Self-Attention
SSCS Structure and Sequence aligned Code Summarization
GNN Graph Neural Network

References
1. Wan, Y.; Zhao, Z.; Yang, M.; Xu, G.; Ying, H.; Wu, J.; Yu, P.S. Improving automatic source code summarization via deep

reinforcement learning. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering,
ASE 2018, Montpellier, France, 3–7 September 2018; pp. 397–407. [CrossRef]

2. Hill, E.; Pollock, L.L.; Vijay-Shanker, K. Automatically capturing source code context of NL-queries for software maintenance and
reuse. In Proceedings of the 31st International Conference on Software Engineering, ICSE 2009, Vancouver, BC, Canada, 16–24
May 2009; pp. 232–242. [CrossRef]

3. Haiduc, S.; Aponte, J.; Moreno, L.; Marcus, A. On the Use of Automated Text Summarization Techniques for Summarizing Source
Code. In Proceedings of the 17th Working Conference on Reverse Engineering, WCRE 2010, Beverly, MA, USA, 13–16 October
2010; IEEE Computer Society: Beverly, MA, USA, 2010; pp. 35–44.

4. Iyer, S.; Konstas, I.; Cheung, A.; Zettlemoyer, L. Summarizing Source Code using a Neural Attention Model. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, Berlin, Germany, 7–12 August 2016; The
Association for Computer Linguistics: Barcelona, Spain, 2016. [CrossRef]

5. Allamanis, M.; Peng, H.; Sutton, C. A Convolutional Attention Network for Extreme Summarization of Source Code. In
Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, 19–24 June 2016;
Volume 48, pp. 2091–2100.

6. Hu, X.; Li, G.; Xia, X.; Lo, D.; Lu, S.; Jin, Z. Summarizing Source Code with Transferred API Knowledge. In Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden, 13–19 July 2018;
pp. 2269–2275. [CrossRef]

7. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. In
Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008.

8. Ahmad, W.U.; Chakraborty, S.; Ray, B.; Chang, K. A Transformer-based Approach for Source Code Summarization. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, 5–10 July 2020; Association for
Computational Linguistics: Barcelona, Spain, 2020; pp. 4998–5007. [CrossRef]

9. Wu, H.; Zhao, H.; Zhang, M. Code Summarization with Structure-induced Transformer. In Proceedings of the Findings of the
Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event, 1–6 August 2021; Association for Computational
Linguistics: Barcelona, Spain, 2021; pp. 1078–1090. [CrossRef]

10. Gao, Y.; Lyu, C. M2TS: Multi-Scale Multi-Modal Approach Based on Transformer for Source Code Summarization. arXiv 2022,
arXiv:2203.09707. https://doi.org/10.48550/arXiv.2203.09707.

http://doi.org/10.1145/3238147.3238206
http://dx.doi.org/10.1109/ICSE.2009.5070524
http://dx.doi.org/10.18653/v1/p16-1195
http://dx.doi.org/10.24963/ijcai.2018/314
http://dx.doi.org/10.18653/v1/2020.acl-main.449
http://dx.doi.org/10.18653/v1/2021.findings-acl.93

Entropy 2023, 25, 570 17 of 18

11. Gong, Z.; Gao, C.; Wang, Y.; Gu, W.; Peng, Y.; Xu, Z. Source Code Summarization with Structural Relative Position Guided
Transformer. In Proceedings of the IEEE International Conference on Software Analysis, Evolution and Reengineering, SANER
2022, Honolulu, HI, USA, 15–18 March 2022; pp. 13–24. [CrossRef]

12. Guo, J.; Liu, J.; Wan, Y.; Li, L.; Zhou, P. Modeling Hierarchical Syntax Structure with Triplet Position for Source Code Summariza-
tion. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, 22–27 May 2022; Association for Computational Linguistics: Barcelona, Spain, 2022; pp. 486–500.

13. Hu, X.; Li, G.; Xia, X.; Lo, D.; Jin, Z. Deep code comment generation. In Proceedings of the 26th Conference on Program
Comprehension, ICPC 2018, Gothenburg, Sweden, 27–28 May 2018; pp. 200–210. [CrossRef]

14. LeClair, A.; Jiang, S.; McMillan, C. A neural model for generating natural language summaries of program subroutines. In
Proceedings of the 41st International Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, 25–31 May 2019;
IEEE/ACM: Montreal, QC, Canada, 2019; pp. 795–806. [CrossRef]

15. Alon, U.; Brody, S.; Levy, O.; Yahav, E. code2seq: Generating Sequences from Structured Representations of Code. In Proceedings
of the 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019.

16. Shido, Y.; Kobayashi, Y.; Yamamoto, A.; Miyamoto, A.; Matsumura, T. Automatic Source Code Summarization with Extended
Tree-LSTM. In Proceedings of the International Joint Conference on Neural Networks, IJCNN 2019, Budapest, Hungary, 14–19
July 2019; IEEE: Budapest , Hungary, 2019; pp. 1–8. [CrossRef]

17. Wang, Y.; Dong, Y.; Lu, X.; Zhou, A. GypSum: Learning Hybrid Representations for Code Summarization. arXiv 2022,
arXiv:2204.12916. https://doi.org/10.48550/arXiv.2204.12916.

18. Choi, Y.; Bak, J.; Na, C.; Lee, J. Learning Sequential and Structural Information for Source Code Summarization. In Proceedings of
the Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event, 1–6 August 2021; pp. 2842–2851.
[CrossRef]

19. Wei, B.; Li, G.; Xia, X.; Fu, Z.; Jin, Z. Code Generation as a Dual Task of Code Summarization. In Proceedings of the Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
Vancouver, BC, Canada, 8–14 December 2019; pp. 6559–6569.

20. Liang, Y.; Zhu, K.Q. Automatic Generation of Text Descriptive Comments for Code Blocks. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, LA, USA, 2–7 February
2018; AAAI Press: 2018; pp. 5229–5236.

21. Fernandes, P.; Allamanis, M.; Brockschmidt, M. Structured Neural Summarization. In Proceedings of the 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019.

22. Li, Y.; Tarlow, D.; Brockschmidt, M.; Zemel, R.S. Gated Graph Sequence Neural Networks. In Proceedings of the 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016.

23. LeClair, A.; Haque, S.; Wu, L.; McMillan, C. Improved Code Summarization via a Graph Neural Network. In Proceedings of the
ICPC ’20: 28th International Conference on Program Comprehension, Seoul, Republic of Korea, 13–15 July 2020; ACM: Seoul,
Republic of Korea, 2020; pp. 184–195. [CrossRef]

24. Wang, W.; Zhang, Y.; Sui, Y.; Wan, Y.; Zhao, Z.; Wu, J.; Yu, P.S.; Xu, G. Reinforcement-Learning-Guided Source Code Summarization
Using Hierarchical Attention. IEEE Trans. Softw. Eng. 2022, 48, 102–119. [CrossRef]

25. Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019; Association for Computational Linguistics:
Barcelona, Spain, 2019; pp. 4171–4186. [CrossRef]

26. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer. J. Mach. Learn. Res. 2020, 21, 140:1–140:67.

27. Feng, Z.; Guo, D.; Tang, D.; Duan, N.; Feng, X.; Gong, M.; Shou, L.; Qin, B.; Liu, T.; Jiang, D.; et al. CodeBERT: A Pre-
Trained Model for Programming and Natural Languages. In Proceedings of the Findings of the Association for Computational
Linguistics: EMNLP 2020, Online Event, 16–20 November 2020; Association for Computational Linguistics: Barcelona, Spain,
2020; pp. 1536–1547. [CrossRef]

28. Wang, Y.; Wang, W.; Joty, S.R.; Hoi, S.C.H. CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code
Understanding and Generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event/Punta Cana, Dominican Republic, 7–11 November 2021; Association for Computational Linguistics:
Barcelona, Spain, 2021; pp. 8696–8708. [CrossRef]

29. Liu, L.; Utiyama, M.; Finch, A.M.; Sumita, E. Agreement on Target-bidirectional Neural Machine Translation. In Proceedings of
the NAACL HLT 2016, The 2016 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, San Diego, CA, USA, 12–17 June 2016; pp. 411–416. [CrossRef]

30. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W. Bleu: a Method for Automatic Evaluation of Machine Translation. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 6–12 July 2002; pp. 311–318.
[CrossRef]

http://dx.doi.org/10.1109/SANER53432.2022.00013
http://dx.doi.org/10.1145/3196321.3196334
http://dx.doi.org/10.1109/ICSE.2019.00087
http://dx.doi.org/10.1109/IJCNN.2019.8851751
http://dx.doi.org/10.18653/v1/2021.findings-acl.251
http://dx.doi.org/10.1145/3387904.3389268
http://dx.doi.org/10.1109/TSE.2020.2979701
http://dx.doi.org/10.18653/v1/n19-1423
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.139
http://dx.doi.org/10.18653/v1/2021.emnlp-main.685
http://dx.doi.org/10.18653/v1/n16-1046
http://dx.doi.org/10.3115/1073083.1073135

Entropy 2023, 25, 570 18 of 18

31. Banerjee, S.; Lavie, A. METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments.
In Proceedings of the Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summariza-
tion@ACL 2005, Ann Arbor, MI, USA, 29 June 2005; Association for Computational Linguistics: Barcelona, Spain, 2005;
pp. 65–72.

32. Lin, C.Y. ROUGE: A Package for Automatic Evaluation of Summaries. In Proceedings of the Text Summarization Branches Out;
Association for Computational Linguistics: Barcelona, Spain, 2004; pp. 74–81.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Proposed Approach
	Overview
	Data Preprocessing
	Token and Node Embedding
	AST Encoder
	Hierarchical Sequence Encoder
	Encoder Output Fusion
	Bidirectional Decoder

	Experiments and Results
	Datasets
	Metrics
	Hyper Parameters
	Baselines
	Results and Analysis
	Ablation Study
	Validation Performance
	Case Study

	Conclusions
	Limitations
	References

