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Abstract: Measuring the uncertainty of the lifetime of technical systems has become increasingly
important in recent years. This criterion is useful to measure the predictability of a system over
its lifetime. In this paper, we assume a coherent system consisting of n components and having
a property where at time t, all components of the system are alive. We then apply the system
signature to determine and use the Tsallis entropy of the remaining lifetime of a coherent system. It is
a useful criterion for measuring the predictability of the lifetime of a system. Various results, such
as bounds and order properties for the said entropy, are investigated. The results of this work can
be used to compare the predictability of the remaining lifetime between two coherent systems with
known signatures.
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1. Introduction

For engineers, the performance and quantification of uncertainties over the lifetime of
a system is critical. The reliability of a system decreases as uncertainty increases, and sys-
tems with longer lifetimes and lower uncertainty are better systems (see, e.g., Ebrahimi and
Pellery, [1]). It has found applications in numerous areas described in Shannon’s seminal
work, [2]. Information theory provides a measure of the uncertainty associated with a ran-
dom phenomenon. If X is a nonnegative random variable with an absolutely continuous
cumulative distribution function (CDF) F(x) and density function f (x), the Tsallis entropy
of order α, defined by (see [3]), is

Hα(X) = Hα( f ) =
1

1− α

[∫ ∞

0
f α(x)dx− 1

]
,

=
1

1− α
[E( f α−1(X))− 1] (1)

for all α > 0, α 6= 1, where E(·) denotes the expected value. In general, the Tsallis entropy
can be negative, but it can also be non-negative if one chooses an appropriate value for α. It
is obvious that H( f ) = limα→1 Hα( f ) and thus reduces to the Shannon differential entropy.
It is known that the Shannon differential entropy is additive in the sense that for two
independent random variables X and Y, H(X, Y) = H(X) + H(Y), where (X, Y) denotes
the common random variable. However, the Tsallis entropy is non-additive in the sense that
Hα(X, Y) = Hα(X) + Hα(Y) + (1− α)Hα(X)Hα(Y). Because of the flexibility of Tsallis en-
tropy compared to Shannon entropy, non-additive entropy measures find their justification
in many areas of information theory, physics, chemistry, and engineering.

If X denotes the lifetime of a new system, then Hα(X) measures the uncertainty of
the new system. In some cases, agents know something about the current age of the system.
For example, one may know that the system is in operation at time t and is interested
in measuring the uncertainty of its remaining lifetime, that is, Xt = X − t|X > t. Then
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Hα(X) is no longer useful in such situations. Accordingly, the residual Tsallis entropy is
defined as

Hα(Xt) =
1

1− α

[∫ ∞

0
f α
t (x)dx− 1

]
=

1
1− α

[∫ ∞

t

(
f (x)
S(t)

)α

dx− 1
]

, (2)

=
1

1− α

[∫ 1

0
f α−1
t (S−1

t (u))du− 1
]

, α > 0, (3)

where

ft(x) =
f (x + t)

S(t)
, x, t > 0,

is the probability density function (PDF) of Xt, S(t) = P(X > t) is the survival function
of X and S−1

t (u) = inf{x; St(x) ≥ u} is the quantile function of St(x) = S(x + t)/S(t),
x, t > 0. Various properties, generalizations and applications of Hα(Xt) are investigated
by Asadi et al. [4], Nanda and Paul [5], Zhang [6], Irshad et al. [7], Rajesh and Sunoj [8],
Toomaj and Agh Atabay [9], Mohamed et al. [10], among others.

Several properties and statistical applications of Tsallis entropy have been studied
in the literature, which you can read in Maasoumi [11], Abe [12], Asadi et al. [13] and
the references therein. Recently, Alomani and Kayid [14] investigated some additional
properties of Tsallis entropy, including its connection with the usual stochastic order, as well
as some other properties of the dynamical version of this measure and bounds. Moreover,
they investigated some properties of Tsallis entropy for the lifetime of a coherent and mixed
system. It is suitable to study the behavior of the uncertainty of the new system in terms
of Tsallis entropy. For other applications and researchers concerned with measuring
the uncertainty of reliability systems, we refer readers to [15–18] and the references therein.
In contrast to the work of Alomani and Kayid [14], the aim of this work is to study
some uncertainty properties of a coherent system consisting of n components and having
the property that at time t, all components of the system are alive. In fact, we generalize
the results of the work published in the literature. To this end, we use the concept of system
signature to determine the Tsallis entropy of the remaining lifetime of a coherent system.

The results of this paper are organized as follows: In Section 2, we provide an expres-
sion for the Tsallis entropy of a coherent system under the assumption that all components
have survived to time t. For this purpose, we used the concept of system signature when
the lifetimes of the components in a coherent system are independent and identically dis-
tributed. The ordering properties of the residual Tsallis entropy of two coherent systems are
studied in Section 3 based on some ordering properties of system signatures even without
simple calculations. Section 4 presents some useful bounds. Finally, Section 5 gives some
conclusions and further detailed remarks.

Throughout the paper, “≤st”, “≤hr”, “≤lr” and “≤d” stand for stochastic, hazard rate,
likelihood ratio and dispersive orders, respectively; for more details on these orderings,
we refer the reader to Shaked and Shanthikumar [19].

2. Tsallis Entropy of the System in Terms of Signature Vectors of the System

In this section, the concept of system signature is used to define the Tsallis entropy
of the remaining lifetime of a coherent system with an arbitrary system-level structure,
assuming that all components of the system are functioning at time t. An n-dimensional
vector p = (p1, . . . , pn) whose i-th element pi = P(T = Xi:n), i = 1, 2, . . . , n; is the sig-
nature of such a system where Xi:n is the i-th order statistic of the n independent and
identically distributed (i.i.d.) component lifetimes X = (X1, . . . , Xn), that is, the time of
the i-th component failure, and T is the failure time of the system; (see Samaniego [20]).
Consider a coherent system with independent and identically distributed component life-
times X1, . . . , Xn and a known signature vector p = (p1, . . . , pn). If T1,n

t = [T − t|X1:n > t],
represents the remaining lifetime of the system under the condition that at time t, all com-
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ponents of the system are functioning, then from the results of Khaledi and Shaked [21]
the survival function of T1,n

t can be expressed as

P(T1,n
t > x) =

n

∑
i=1

piP(Xi:n − t > x|X1:n > t),

=
n

∑
i=1

piP(Tt
1,i,n > x), (4)

where T1,i,n
t = [Xi:n − t|X1:n > t], i = 1, 2, · · · , n, denotes the remaining lifetime of an i-out-

of-n system under the condition that all components at time t. The survival and probability
density functions of T1,i,n

t are given by

P(Tt
1,i,n > x) =

i−1

∑
k=0

(
n
k

)
(1− St(x))k(St(x))n−k, x, t > 0, (5)

and

fTt
1,i,n(x) =

Γ(n + 1)
Γ(i)Γ(n− i + 1)

(1− St(x))i−1(St(x))n−i ft(x), x, t > 0, (6)

respectively, where Γ(·) is the complete gamma function. It follows that

fT1,n
t
(x) =

n

∑
i=1

pi fTt
1,i,n(x), x, t > 0. (7)

In what follows, we focus on the study of the Tsallis entropy of the random variable T1,n
t ,

which measures the degree of uncertainty contained in the density of [T − t|X1:n > t],
in terms of the predictability of the remaining lifetime of the system in terms of Tsallis
entropy. The probability integral transformation V = St(T1,n

t ) plays a crucial role in our
goal. It is clear that Ui:n = St(T1,i,n

t ) follows from a beta distribution with parameters
n− i + 1 and i with the PDF

gi(u) =
Γ(n + 1)

Γ(i)Γ(n− i + 1)
(1− u)i−1un−i, 0 < u < 1, i = 1, · · · , n. (8)

In the forthcoming proposition, we provide an expression for the Tsallis entropy of Tt
1,n by

using the earlier transformation formulas.

Theorem 1. The Tsallis entropy of Tt
1,n can be expressed as follows:

Hα(Tt
1,n) =

1
1− α

[∫ 1

0
gα

V(u) f α−1
t (S−1

t (u))du− 1
]

, t > 0, (9)

for all α > 0.

Proof. By using the change of u = St(x), from (2) and (6) we obtain

Hα(Tt
1,n) =

1
1− α

[∫ ∞

0

(
fTt

1,n(x)
)α

dx− 1
]

=
1

1− α

[∫ ∞

0

(
n

∑
i=1

pi fTt
1,i,n(x)

)α

dx− 1

]

=
1

1− α

[∫ 1

0

(
n

∑
i=1

pigi(u)

)α(
ft(S−1

t (u))
)α−1

dx− 1

]

=
1

1− α

[∫ 1

0
gα

V(u)
(

ft(S−1
t (u))

)α−1
du− 1

]
.
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In the last equality gV(u) = ∑n
i=1 pigi(u) is the PDF of V denotes the lifetime of the system

with independent and identically distributed uniform distribution.

In the specail case, if we consider an i-out-of-n system with the system signature
p = (0, . . . , 0, 1i, 0, . . . , 0), i = 1, 2, · · · , n, then Equation (9) reduces to

Hα(T1,i,n
t ) =

1
1− α

[∫ 1

0
gα

i (u)
(

ft(S−1
t (u))

)α−1
du− 1

]
, (10)

for all t > 0.
The next theorem immediately follows by Theorem 1 from the aging properties of their

components. We recall that X has increasing (decreasing) failure rate (IFR(DFR)) if St(x) is
decreasing (increasing) in x for all t > 0.

Theorem 2. If X is IFR (DFR), then Hα(Tt
1,n) is decreasing (increasing) in t for all α > 0.

Proof. We just prove it when X is IFR where the proof for the DFR is similar. It is easy
to see that ft(S−1

t (u)) = uλt(S−1
t (u)), 0 < u < 1. This implies that Equation (9) can be

rewritten as

(1− α)Hα(Tt
1,n) + 1 =

∫ 1

0
gα

V(u)u
α−1
(

λt(S−1
t (u))

)α−1
du, (11)

for all α > 0. On the other hand, one can conclude that S−1
t (u) = S−1(uS(t))− t, for all

0 < u < 1, and hence we have

λt(S−1
t (u)) = λ(S−1

t (u) + t) = λ(S−1(uS(t))), 0 < u < 1. (12)

If t1 ≤ t2, then S−1(uS(t1)) ≤ S−1(uS(t2)). Thus, when F is IFR, then for all α > 1(0 < α ≤ 1),
we have∫ 1

0
gα

V(u)u
α−1
(

λt1(S
−1
t1

(u))
)α−1

du =
∫ 1

0
gα

V(u)u
α−1
(

λ(S−1(uS(t1)))
)α−1

du

≤ (≥)
∫ 1

0
gα

V(u)u
α−1
(

λ(S−1(uS(t2)))
)α−1

du

=
∫ 1

0
gα

V(u)u
α−1
(

λt2(S
−1
t2

(u))
)α−1

du,

for all t1 ≤ t2. Using (11), we obtain

(1− α)Hα(Tt1
1,n) + 1 ≤ (≥)(1− α)Hα(Tt2

1,n) + 1,

for all α > 1(0 < α ≤ 1). This implies that Hα(Tt1
1,n) ≥ Hα(Tt2

1,n) for all α > 0 and this
completes the proof.

The next example illustrates the results of Theorems 1 and 2.

Example 1. Consider a coherent system with system signature p = (0, 1/2, 1/4, 1/4). The
exact value of Hα(Tt

1,4) can be calculated using the relation (9) given the lifetime distributions of
the components. For this purpose, let us assume the following lifetime distributions.

(i) Consider a Pareto type II with the survival function

S(t) = (1 + t)−k, k, t > 0. (13)

It is not hard to see that

Hα(Tt
1,4) =

1
1− α

[(
k

1 + t

)α−1 ∫ 1

0
u

(α−1)(k+1)
k gα

V(u)du− 1

]
, t > 0.
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It is obvious that the Tsallis entropy of Hα(Tt
1,4) is an increasing function of time t. Thus,

the uncertainty of the conditional lifetime Tt
1,4 increases as t increases. We recall that this

distribution has the DFR property.
(ii) Let us suppose that X has a Weibull distribution with the shape parameter k with the survival

function
S(t) = e−tk

, k, t > 0. (14)

After some manipulation, we have

Hα(Tt
1,4) =

1
1− α

[
kα−1

∫ 1

0

(
tk − log u

)(1− 1
k )(α−1)

uα−1gα
V(u)du− 1

]
, t > 0.

It is difficult to find an explicit expression for the above relation, and therefore we are forced
to calculate it numerically. In Figure 1 we have plotted the entropy of Tt

1,4 as a function of
time t for values of α = 0, 2 and α = 2 and k > 0. In this case, it is known that X is DFR
when α = 0, 1. As expected from Theorem 2, it is obvious that Hα(Tt

1,4) is increasing in t for
α = 0, 1. The results are shown in Figure 1.
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Figure 1. The exact values of Hα(Tt
1,4) with respect to t for the Weibull distribution for values of

α = 0.2 and α = 2 when k > 0.

Below, we compare the Tsallis entropies of two coherent systems from their lifetimes
and their residual lifetimes.

Theorem 3. Consider a coherent system with independent and identically distributed IFR(DFR)
component lifetimes. Then Hα(Tt

1,n) ≤ (≥)Hα(T) for all α > 0.

Proof. We prove it when X is IFR where the proof for DFR property is similar. Since X is
IFR, Theorem 3.B.25 of Shaked and Shanthikumar [19] implies that X ≥d Xt, that is

ft(S−1
t (u)) ≥ f (S−1(u)), 0 < u < 1,

for all t > 0. If α > 1 (0 < α < 1), so we have∫ 1

0
gα

V(u) f α−1
t (S−1

t (u))du ≥ (≤)
∫ 1

0
gα

V(u) f α−1(S−1(u))du, t > 0. (15)
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Thus, from (9) and (15), we obtain

Hα(Tt
1,n) =

1
1− α

[∫ 1

0
gα

V(u) f α−1
t (S−1

t (u))du− 1
]

≤ 1
1− α

[∫ 1

0
gα

V(u) f α−1(S−1(u))du− 1
]
= Hα(T).

Therefore, the proof is completed.

Theorem 4. If X is DFR, then a lower bound for Hα(T1,n
t ) is given as follows:

Hα(Tt
1,n) ≥ Hα(T)

S(t)
+

1
1− α

(
1

S(t)
− 1
)

,

for all α > 0.

Proof. Since X is DFR, then it is NWU (i.e., St(x) ≥ S(x), x, t ≥ 0.) This implies that

S−1
t (u) + t ≥ S−1(u), t ≥ 0,

for all 0 < u < 1. On the other hand, it is known that when X is DFR, the PDF f is
decreasing which implies that

f α−1(S−1
t (u) + t) ≤ (≥) f α−1(S−1(u)), 0 < u < 1,

for all α > 1 (0 < α < 1). From (9), one can conclude that

Hα(Tt
1,n) =

1
1− α

[∫ 1

0
gα

V(u)
f α−1(S−1

t (u) + t)
S(t)

du− 1

]

≥ 1
1− α

[∫ 1

0
gα

V(u)
f α−1(S−1(u))

S(t)
du− 1

]

=
1

1− α

[
(1− α)Hα(T) + 1

S(t)
− 1
]

,

for all α > 0, and this completes the proof.

3. Entropy Ordering of Two Coherent Systems

Given the imponderables of two coherent systems, this section discusses the par-
tial ordering of their conditional lifetimes. Based on various existing orderings between
the component lifetimes and their signature vectors, we find some results for the entropy
ordering of two coherent systems. The next theorem compares the entropies of the residual
lifetimes of two coherent systems.

Theorem 5. Let TX,1,n
t = [T − t|X1:n > t] and TY,1,n

t = [T − t|Y1:n > t] denote the resid-
ual lifetimes of two coherent systems with the same signatures and n i.i.d component lifetimes
X1, . . . , Xn and Y1, . . . , Yn from cdfs F and G, respectively. If X ≤d Y and X or Y is IFR, then
Hα(TX,1,n

t ) ≤ Hα(TY,1,n
t ) for all α > 0.

Proof. As a result of the relation (9), it is sufficient to demonstrate that Xt ≤d Yt. Due to
the assumption that X ≤d Y and X or Y is IFR, the proof of Theorem 5 of Ebrahimi and
Kirmani [22] means that Xt ≤d Yt, and this concludes the proof.

Example 2. Let us assume two coherent systems with residual lifetimes TX,1,4
t and TY,1,4

t with
the common signature p = ( 1

2 , 1
4 , 1

4 , 0). Suppose that X ∼ W(3, 1) and Y ∼ W(2, 1), where
W(k, 1) stands for the Weibull distribution with the survival function given in (14). It is easy to see
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that X ≤d Y. Moreover, X and Y are both IFR. Thus, Theorem 5 yields that Hα(TX,1,4
t ) ≤ Hα(TY,1,4

t )
for all α > 0. The plot of the Tsallis entropies of these systems is displayed in Figure 2.

−1.0

−0.5

0.0

0.5

0 2 4 6 8
t

R
es

id
ua

l T
sa

lli
s 

E
nt

ro
py

k=2 k=3

α = 0.2

−150

−100

−50

0

0 2 4 6 8
t

R
es

id
ua

l T
sa

lli
s 

E
nt

ro
py

k=2 k=3

α = 2

Figure 2. The exact values of Hα(TX,1,4
t ) (blue color) and Hα(TY,1,4

t ) (red color) with respect to t for
values of α = 0.2 and α = 2.

Next, we compare the residual Tsallis entropies of two coherent systems with the same
component lifetimes and different structures.

Theorem 6. Let T1,n
1,t = [T1 − t|X1:n > t] and T1,n

2,t = [T2 − t|X1:n > t] represent the residual
lifetimes of two coherent systems with signature vectors p1 and p2, respectively. Assume that
the system’s components are independent and identically distributed according to the common CDF,
F. Additionally, let p1 ≤lr p2. Then,

(i) if ft(S−1
t (u)) is increasing in u for all t > 0, then Hα(T1,n

1,t ) ≥ Hα(T1,n
2,t ) for all α > 0.

(ii) if ft(S−1
t (u)) is decreasing in u for all t > 0, then Hα(T1,n

1,t ) ≤ Hα(T1,n
2,t ) for all α > 0.

Proof. (i) First, we note that the Equation (9) can be rewritten as follows:

(1− α)Hα(Tti
1,n) + 1 =

∫ 1

0
gα

Vi
(u)du

∫ 1

0
g?Vi

(u)
(

ft(S−1
t (u))

)α−1
du, (i = 1, 2), (16)

where V? has the PDF as

g?V(u) =
gα

V(u)∫ 1
0 gα

V(u)du
, 0 < u < 1.

Assumption s1 ≤lr s2 implies V1 ≤lr V2, and this means that V?
1 ≤lr V?

2 , which means that

g?V2
(u)

g?V1
(u)

∝
(

gV2(u)
gV1(u)

)α

is increasing in u for all α > 0, and hence, V?
1 ≤st V?

2 . When α > 1(0 < α < 1), we obtain

∫ 1

0
g?V1

(u)
(

ft(S−1
t (u))

)α−1
du ≤ (≥)

∫ 1

0
g?V2

(u)
(

ft(S−1
t (u))

)α−1
du, (17)

where the inequality in (17) is obtained by noting that the conditions V?
1 ≤st V?

2 imply
E[π(V?

1 )] ≤ E[π(V?
2 )] for all increasing (decreasing) functions π. Therefore, relation (16) gives

(1− α)Hα(Tt1
1,n) + 1 ≤ (≥)(1− α)Hα(Tt2

1,n) + 1,
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or equivalently, Hα(T1,t
1,n) ≥ Hα(T2,t

1,n) for all α > 0. Part (ii) can be similarly obtained.

The next example gives an application of Theorem 6.

Example 3. Let us consider the two coherent systems of order 4 displayed in Figure 3 with residual
lifetimes T1,4

1,t = [T1 − t|X1:4 > t] (left panel) and T1,4
2,t = [T2 − t|X1:4 > t] (right panel). It is

not hard to see that the signatures of these systems are p1 = ( 1
2 , 1

2 , 0, 0) and p2 = ( 1
4 , 1

4 , 1
2 , 0),

respectively. Assume that the component lifetimes are independent and identically distributed
according to the following survival function,

S(t) = (1 + t)−2, t > 0.

1 2

3

4

1 3

2

4

Figure 3. Two coherent systems with the likelihood ration ordered signature.

After some calculation, one can obtain ft(S−1
t (u)) = 2u

√
u

1+t , t > 0. This function is increasing
in u for all t > 0. Hence, due to Theorem 6, it holds that Hα(T1,4

1,t ) ≥ Hα(T1,4
2,t ) for all α > 0.

4. Some Useful Bounds

When the complexity is high and the number of components is large, it is difficult to
compute the Hα(T1,n

t ) of a coherent system. This situation is frequently encountered in practice.
Under such circumstances, a Tsallis entropy bound can be useful to estimate the lifetime of
a coherent system. To see some recent research on bounds on the uncertainty of the lifetime of
coherent systems, we refer the reader, for example, to Refs. [15,16,23] and the references there.
In the following theorem, we provide bounds on the residual Tsallis entropy of the lifetime of
the coherent system in terms of the residual Tsallis entropy of the parent distribution Hα(Xt).

Theorem 7. Let T1,n
t = [T − t|X1:n > t] represent the residual lifetime of a coherent system

consisting of n independent and identically distributed component lifetimes having the common
CDF F with the signature p = (p1, · · · , pn). Suppose that Hα(T1,n

t ) < ∞ for all α > 0. It
holds that

Hα(T1,n
t ) ≥ (Bn(p))

α Hα(Xt) +
(Bn(p))

α − 1
1− α

, (18)

for all α > 1 and

Hα(T1,n
t ) ≤ (Bn(p))

α Hα(Xt) +
(Bn(p))

α − 1
1− α

, (19)

for 0 < α < 1 where Bn(p) = ∑n
i=1 pigi(pi), and pi =

n−i
n−1 .

Proof. It can be clearly verified that the mode of the beta distribution with parameters
n− i + 1 and i is pi =

n−i
n−1 . Therefore, we obtain

gV(v) ≤
n

∑
i=1

pigi(pi) = Bn(p), 0 < v < 1.
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Thus, for α > 1 (0 < α < 1), we have

1 + (1− α)Hα(T1,n
t ) =

∫ 1

0
gα

V(v) f α−1
t (S−1

t (v))dv

≤ (Bn(p))
α
∫ 1

0
f α−1
t (S−1

t (v))dv

= (Bn(p))
α[(1− α)Hα(Xt) + 1].

The last equality is obtained from (3), from which the desired result follows.

The bounds given in (18) and (19) are very valuable when the number of components
is large or the structure of the system is complicated. Now, we obtain a public lower bound
using properties of the Tsallis information measure and mathematical concepts.

Theorem 8. Under the requirements of the Theorem 7, we have

Hα(T1,n
t ) ≥ HL

α (T
1,n
t ), (20)

where HL
α (T

1,n
t ) = ∑n

i=1 pi Hα(Tt
1,i,n) for all α > 0.

Proof. Recalling Jensen’s inequality for the convex function tα (it is concave (convex) for
0 < α < 1 (α > 1)), it holds that(

n

∑
i=1

pi fT1,i,n
t

(x)

)α

≥ (≤)
n

∑
i=1

pi f α
T1,i,n

t
(x), t > 0,

and hence, we obtain(∫ ∞

0
f α
T1,n

t
(x)dx

)
≥ (≤)

(
n

∑
i=1

pi

∫ ∞

0
f α
T1,i,n

t
(x)dx

)
. (21)

Since 1− α > 0 (1− α < 0), by multiplying both sides of (21) in 1/(1− α), we obtain

Hα(T) ≥
1

1− α

[
n

∑
i=1

pi

∫ ∞

0
f α
T1,i,n

t
(x)dx− 1

]

=
1

1− α

[
n

∑
i=1

pi

∫ ∞

0
f α
T1,i,n

t
(x)dx−

n

∑
i=1

pi

]

=
n

∑
i=1

pi

[
1

1− α

(∫ ∞

0
f α
T1,i,n

t
(x)dx− 1

)]
=

n

∑
i=1

pi Hα(Tt
1,i,n),

and this completes the proof.

Notice that the equality in (20) holds for i-out-of-n systems in the sense that we have
pj = 0, for j 6= i, and pj = 1, for j = i, and then Hα(T1,n

t ) = Hα(T1,i,n
t ). When the lower

bounds for 0 < α < 1 in both parts of Theorems 7 and 8 can be computed, one may use
the maximum of the two lower bounds.

Example 4. Let T1,5
t = [T − t|X1:5 > t] represent the residual lifetime of a coherent system

with the signature p = (0, 3
10 , 5

10 , 2
10 , 0) consisting of n = 5 independent and identically

distributed component lifetimes having a uniform distribution in [0, 1]. It is easy to ver-
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ify that B5(p) = 2.22. Thus, by Theorem 7, the Tsallis entropy of T1,5
t is bounded for

α > 1 (0 < α < 1), as follows:

Hα(T1,n
t ) ≥ 2.22α(1− t)1−α − 1

1− α
,

for all α > 1 and

Hα(T1,n
t ) ≤ 2.22α(1− t)1−α − 1

1− α
,

for 0 < α < 1. Moreover, the lower bound given in (20) can be obtained as follows:

Hα(T1,3
t ) ≥ 1

1− α

[
(1− t)1−α

n

∑
i=1

pi

∫ 1

0
gα

i (u)du− 1

]
, t > 0, (22)

for all α > 0. Assuming uniform distribution for the component lifetimes, we computed
the bounds given by (19) (dashed line), as well as the exact value of Hα(T1,3

t ) obtained
directly from (9), and also the bounds given by (22) (dotted line). The results are displayed
in Figure 4. As we can see, regarding the lower bound in (22) (dotted line) for α > 1, it is
better than the lower bound given by (19).
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Figure 4. Exact value of Hα(T1,3
t ) (solid line), as well as the corresponding lower bounds (18) (dashed

line) and (19) (dotted line) for the standard uniform distribution concerning time t.

5. Conclusions

Intuitively, it is better to have systems that work longer and whose remaining life is
less uncertain. We can make more accurate predictions when a system has low uncertainty.
The Tsallis entropy of a system is an important measure for designing systems based on
these facts. If we have some information about the lifetime of the system at time t, for
example, that the system will still function at age t, then we may be interested in quantifying
the predictability of the remaining lifetime. In this work, we presented a simple assertion
for the Tsallis entropy of the system lifetime for the case where all components contained
in the system are in operation at time t. Several properties of the proposed measure were
discussed. In addition, some partial stochastic orderings between the remaining lifetimes
of two coherent systems were discussed in terms of their Tsallis entropy using the concept
of a system signature. Numerous examples were also given to illustrate the results.
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