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Abstract: Censored data are frequently found in diverse fields including environmental monitoring,
medicine, economics and social sciences. Censoring occurs when observations are available only for
a restricted range, e.g., due to a detection limit. Ignoring censoring produces biased estimates and
unreliable statistical inference. The aim of this work is to contribute to the modelling of time series of
counts under censoring using convolution closed infinitely divisible (CCID) models. The emphasis
is on estimation and inference problems, using Bayesian approaches with Approximate Bayesian
Computation (ABC) and Gibbs sampler with Data Augmentation (GDA) algorithms.

Keywords: Bayesian estimation; censored time series; convolution closed infinitely divisible; Poisson
INAR(1) model

1. Introduction

Observations collected over time or space are usually correlated rather than indepen-
dent. Time series are often observed with data irregularities such as missing values or
detection limits. For instance, a monitoring device may have a technical detection limit
and it records the limit value when the true value exceeds/precedes the detection limit.
Such data is called censored (type 1) data and are common in environmental monitoring,
physical sciences, business and economics. In particular, in the context of time series of
counts, censored data arise in call centers. In fact, the demand measured by the number of
calls is limited by the number of operators. When the number of calls is higher than the
number of operators the data is right censored and the call center incurs under-staffing and
poor service to the costumers.

The main consequence of neglecting censoring in the time series analysis is the loss
of information that is reflected in biased and inconsistent estimators and altered serial
correlation. These consequences can be summarized as problems in inference that lead to
model misspecification, biased parameter estimation, and poor forecasts.

These problems have been solved in regression settings (i.i.d.) and partially solved
for Gaussian time series (see for instance [1–7]). However, the problem of modelling time
series under censoring in the context of time series of counts has, as yet, received little
attention in the literature even though its relevance for inference. Count time series occur
in many areas such as telecommunications, actuarial science, epidemiology, hydrology
and environmental studies where the modelling of censored data may be invaluable in
risk assessment.

In the context of time series of counts, Ref. [8] deal with correlated under-reported data
through INAR(1)-hidden Markov chain models. A naïve method of parameter estimation
was proposed, jointly with the maximum likelihood method based on a revised version of
the forward algorithm. Additionally, Ref. [9] propose a random-censoring Poisson model
for under-reported data, which accounts for the uncertainty about both the count and the
data reporting processes.
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Here, the problem of modelling count data under censoring is considered under a
Bayesian perspective. In this paper, we consider a general class of convolution closed
infinitely divisible (CCID) models as proposed by [10].

We investigate two natural approaches to analyse censored convolution closed in-
finitely divisible models of first order, CCID(1), using the Bayesian framework: the Ap-
proximate Bayesian Computation (ABC) methodology and the Gibbs sampler with Data
Augmentation (GDA).

Since the CCID(1) under censoring presents an intractable likelihood, we resort to the
Approximate Bayesian Computation methodology for estimating the model parameters.
The presupposed model is simulated by using sample parameters taken from the prior dis-
tribution, then a distance between the simulated dataset and the observations is computed
and when the simulated dataset is very close to the observed, the corresponding parameter
samples are accepted as part of the posterior.

In addition, a widely used strategy to deal with censored data is to fill in censored
data in order to create a data-augmented (complete) dataset. When the data-augmented
posterior and the conditional pdf of the latent process are both available in a tractable form,
the Gibbs sampler allows us to sample from the posterior distribution of the parameters of
the complete dataset. This methodology is called Gibbs sampler with Data Augmentation
(GDA). Here, a modified GDA, in which the data augmentation is achieved by multiple
sampling of the latent variables from the truncated conditional distributions (GDA-MMS),
is adopted.

The Poisson integer-valued autoregressive models of first-order, PoINAR(1), is one
of the most popular classes of CCID models. It was proposed by [11,12] and extensively
studied in the literature and applied to many real-world problems because of its ease of
interpretation. To motivate the proposed approaches, we present in Figure 1 a synthetic
dataset with n = 350 observations generated from a PoINAR(1) process with parameters
α = 0.5 and λ = 5 (Xt, blue line) and the respective right-censored dataset (Yt, red line), at
L = 11, corresponding to 30% of censoring. If we disregard the censoring, the estimates
for the parameters (assuming an PoINAR(1) model without censoring) present a strong
bias. For instance, in the frequentist framework, the conditional maximum likelihood
estimates are α̂CML = 0.6174 and λ̂CML = 3.4078, while in the Bayesian framework, the
Gibbs sampler gives α̂Bayes = 0.6242 and λ̂Bayes = 3.3297. On the other hand, if we assume
a PoINAR(1) model under censoring, the parameter estimates given by the proposed
approaches described in this work are, respectively, α̂ABC = 0.4623 and λ̂ABC = 5.2259, and
α̂GDA = 0.4834 and λ̂GDA = 4.9073. Therefore, it is important to consider the censoring in
data in order to avoid some inference issues that lead to a poor time series analysis.

α=0.5, λ=5, L=11 (30%)
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Figure 1. Synthetic dataset with n = 350 observations generated from a PoINAR(1) process with parameters
α = 0.5 and λ = 5 (Xt, blue line) and the respective right censored dataset (Yt, red line), at L = 11.
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The remainder of this work is organized as follows. Section 2 presents a general
class of convolution closed infinitely divisible (CCID) models under censoring. Two
Bayesian approaches proposed to estimate the parameters of the censored CCID(1) model
are described in Section 3. The proposed methodologies are illustrated and compared with
synthetic data in Section 4. Finally, Section 5 concludes the paper.

2. A Model for Time Series of Counts under Censoring

This section introduces a class of models adequate for censored time series of counts
based on the convolution closed infinitely divisible (CCID) models as proposed by [10].

2.1. Convolution Closed Models for Count Time Series

First we introduce some notation. Consider a random variable X with a distribution
Fµ, µ > 0, belonging to the convolution closed infinitely divisible (CCID) parametric
family [10]. This means, in particular, that the distribution Fµ is closed under convolution,
Fµ1 ∗ Fµ2 = Fµ1+µ2 , where ∗ is the convolution operator. Let R(·) denote a random operator
on X such that R(X) ∼ Fαµ, 0 < α < 1 and the conditional distribution of R(X) given
X = x is Gαµ,(1−α)µ,x, R(X)|X = x ∼ Gαµ,(1−α)µ,x. As an example, consider a Poisson
random variable, X ∼ Po(µ) and a binomial thinning operation, R(X) = α ◦ X = ∑X

i=1 ξi,
ξi ∼iid Ber(α). Then Fµ is the Poisson distribution with parameter µ, R(X) ∼ Po(αµ) and
R(X)|X = x ∼ Bi(x, α), Gαµ,(1−α)µ,x is the Binomial distribution with parameters x and α.

A stationary time series, {Xt; t = 0,±1,±2, . . .} with margin Fµ, Xt ∼ Fµ, is called
a convolution closed infinitely divisible process of order 1, CCID(1), if it satisfies the
following equation

Xt = Rt(Xt−1) + et, (1)

where the innovations et are independently and identically distributed (i.i.d.) with distri-
bution F(1−α)µ and {Rt(·) : t = 0,±1,±2, . . .} are independent replications of the random
operator R(·) [10]. Note that the above construction leads to time series with the same
marginal distribution as that of the innovations.

Model (1) encompasses many AR(1) models proposed in the literature for integer
valued time series. In particular, the Poisson INAR(1), PoINAR(1), the negative binomial
INAR(1), NBINAR(1), and the generalised Poisson INAR(1), GPINAR(1) [13], summarized
in Table 1 (marginal distribution, random operation and its pmf g(·|·), set of parameters θ),
have been widely used in the literature to model time series of counts, see inter alia [14,15],
among others.

Table 1. Methods for constructing integer valued AR(1) models with specified marginals Fµ and

innovations et
iid
= Fλ, λ = µ(1− α). B(·, ·) denotes the beta function.

Marginal Distribution Random Operator g(s|Xt−1; α) Innovations θ

Poison Po(µ) binomial thinning (Xt−1
s )αs(1− α)Xt−1−s Po(λ) (µ, α)

Negative binomial NB(µ, ξ) beta binomial thinning (Xt−1
s )αs(1− α)Xt−1−s NB(λ, ξ) (µ, α, ξ)

Generalised Poisson GP(µ, ξ) quasi binomial thinning (Xt−1
s )α(α + s(ξ/µ))s−1

(1− α− s(ξ/µ))Xt−1−s GP(λ, ξ) (µ, α, ξ)

If one chooses F(1−α)µ as Poisson((1− α)µ), and the random operation as the usual
binomial thinning operation (based on underlying Bernoulli random variables) Rt(Xt−1) =

α ◦ Xt−1 = ∑
Xt−1
i=1 ξti, ξti ∼iid Ber(α), then Fµ is Poisson(µ) and the Poisson integer-valued

autoregressive model, PoINAR(1), as proposed by [11,12], is recovered with the familiar
representation

Xt = α ◦ Xt−1 + εt. (2)

Since model (1) is Markovian [10], given a time series x = (X1, . . . , Xn), the conditional
likelihood is as follows
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L(θ) =
n

∏
t=2

fXt |Xt−1
(xt|xt−1), (3)

with

fXt |Xt−1
(k|l) = P(Xt = k|Xt−1 = l) =

min{k,l}

∑
j=0

g(j|l)P(et = k− j). (4)

2.2. Modelling Censoring in CCID(1) Time Series

Given a model as in (1), a basic question is whether it properly describes all the
observations of a given time series, or whether some observations have been affected by
censoring. Here, we describe a model for dealing with censored observations in CCID(1)
processes and study some of its properties.

Exogenous censoring can be modelled assuming (1) as a latent process and
Yt = min{L, Xt} as the observed process, where L is a constant that is assumed to be
known. For simplicity of exposition we assume exogenous right censoring but all the
results are easily extended to left-censoring or interval censoring. Hence, for right exoge-
nous censoring

Yt = min{Xt, L} =
{

Xt, if Xt < L,
L, if Xt ≥ L,

(5)

Xt = Rt(Xt−1) + et.

Although Xt, a CCID(1) process is Markovian, the exogenous censoring implies that
Yt is not Markovian because Yt depends on Xt and L. Furthermore, Yt is not CLAR (Condi-
tionally Linear AutoRegressive). In fact,

E[Yt|Yt−1 = yt−1] = E[Yt|Yt−1 = yt−1]I{yt−1<L} + E[Yt|Yt−1 = L]I{yt−1=L}

=

(
E[Xt|Xt−1 = yt−1]−

+∞

∑
j=0

jP[Xt = L + j|Xt−1 = yt−1]

)
I{yt−1<L}

+

(
E[Xt|Xt−1 ≥ L]−

+∞

∑
j=0

jP[Xt = L + j|Xt−1 ≥ L]

)
I{yt−1=L}

The authors Zeger and Brookmeyer [1] established a procedure to obtain the likelihood
of an observed time series under censoring, y = (Y1, . . . , Yn), which becomes infeasible
when the proportion of censoring is large. To overcome this issue, this work considers a
Bayesian approach.

3. Bayesian Modelling

The Bayesian approach to the inference of an unknown parameter vector θ is based on
the posterior distribution π(θ|y), defined as

π(θ|y) ∝ L(y|θ)π(θ),

where L(y|θ) is the likelihood function of the observed data y and π(θ) is the prior distri-
bution of the model parameters.

When the likelihood is computationally prohibitive or even impossible to handle,
but it is feasible to simulate samples from the model (bypass the likelihood evaluation),
as is the case of censored CCID(1) processes, Approximate Bayesian Computation (ABC)
algorithms are an alternative. This methodology accepts the parameter draws that produce
a match between the observed and the simulated sample, depending on a set of summary
statistics, a chosen distance and a selected tolerance. The accepted parameters are then used
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to estimate (an approximation of) the posterior distribution (conditioned on the summary
statistics that afforded the match).

On the other hand, the idea of imputation arises naturally in the context of censored
data. The Gibbs sampler with Data Augmentation (GDA) allows us to obtain an augmented
dataset from the censored data by using a modified version of the Gibbs sampler, which
samples not only the parameters of the model from its complete conditional but also
the censored observations. The usual inference procedures may then be applied to the
augmented data set.

3.1. Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) is based on an acceptance–rejection algo-
rithm. ABC is used to compute a draw from an approximation of the posterior distributions,
based on simulated data obtained from the assumed model in situations where its likeli-
hood function is intractable or numerically difficult to handle. Summary statistics from the
synthetic data are compared with the corresponding statistics from the observed data and
a parameter draw is retained when there is a match (in some sense) between the simulated
sample and the observed time series observation.

Recently, Ref. [16] provided the asymptotic results pertaining to the ABC posterior,
such as Bayesian consistency and asymptotic distribution of the posterior mean.

Let y0 = (Y0
1 , . . . , Y0

n) be the fixed (observed) data and η(·) the model from which the
data is generated. The most basic approximate acceptance/rejection algorithm, based on the
works of [17,18], is as follows:

1. draw a value θ from the prior distribution, π(θ),
2. simulate a sample y = (Y1, . . . , Yn) from the model η(.|θ),
3. accept θ if d(S(y), S0)) ≤ δ for some distance measure d(., .) and some non-negative

tolerance value δ, where S(·) is a summary statistic and S0 = S(y0) is a fixed value.

It is well known that, if we use a proper distance measure, then as δ tends to zero,
the distribution of the accepted values tends to the posterior distribution of the parameter
given the data. When the summary statistics are sufficient for the parameter, then the
distribution of the accepted values tends to the true posterior as δ tends to zero, assuming
a proper distance measure on the space of sufficient statistics. The latent structure of the
thinning operator means that the reduction to a sufficient set of statistics of dimension
smaller than the sample size is not feasible and, therefore, informative summary statistics
are often used [19].

In this work, given the characteristics of the data under study to compare the observed
data (y0) and the synthetic (simulated ) data (y), we consider two distinctive characteristics
of CCID(1) time series which are affected by the censoring: (i) the empirical marginal
distribution and (ii) lag 1 auto-correlation.

To measure the similarity between the empirical marginal distributions the Kullback-
Leibler (Note that Kullback-Leibler distance measures the dissimilarity between two proba-
bility distributions.) distance is calculated as

S1(y) = dKL( p̂0, p̂) = ∑
j

ln

(
p̂0

j

p̂j

)
p̂0

j , (6)

where p̂0
j and p̂j denote the empirical marginal distribution of the observed time series

and that of the simulated time series, respectively, estimated by the corresponding sam-

ple proportions,
(

p̂0
j =

1
n ∑n

j=1 I{Y0
j =j} and p̂j =

1
n ∑n

j=1 I{Yj=j}

)
. Whenever p̂0

j is zero, the

contribution of the jth term is interpreted as zero because limp→0 p ln(p) = 0.
On the other hand, lag 1 sample autocorrelations, S2(y0) = ρ̂Y0(1) and S2(y) = ρ̂Y(1),

are compared by their squared difference.
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Additionally, we estimated the censoring rates, S3(y0) = 1
n ∑n

t=1 I{y0
t =L} and

S3(y) = 1
n ∑n

t=1 I{Yt=L}, which are also compared by their squared difference.

Thus, for each set of parameters, θ(k), a time series x(k) is generated from the model
CCID(1) and right censored at L, yielding y(k) = (Y(k)

1 , . . . , Y(k)
n ) and the above statistics,

S1(y(k)), S2(y(k)) and S3(y(k)) are computed. Combining these statistics in a metric leading
to the choice of the parameters θ requires scaling. Thus, we propose the following metric

d(k)S =
S1(y(k))2

V(S1(y))
+

3

∑
i=2

[Si(y0)− Si(y(k))]2

V(Si(y0)− Si(y))
(7)

where Si(y0) and Si(y(k)) are the ith statistics obtained respectively from the observed
and kth simulated data and V(S1(y)) and V(Si(y0)− Si(y)) are the corresponding sample
variances across the replications.

In summary, we propose Algorithm 1 for ABC approach based on [20]:

Algorithm 1 ABC for censored CCID(1)

For k = 1, ..., N
Sample θ(k) from the prior distribution π(θ)

Generate a time series with n observations, x(k) from the CCID(1) model
Right truncate at L x(k) to obtain the simulated data y(k)

Compute S1(y(k)), S2(y(k)) and S3(y(k))

Compute d(k)S =
S1(y(k))2

V(S1(y))
+ ∑3

i=2
[Si(y0)− Si(y(k))]2

V(Si(y0)− Si(y))
, k = 1, . . . , N

Select the values θ(k) corresponding to the 0.1% quantile of d(k)S , k = 1, . . . , N

Implementation issues regarding the prior distributions and the number of draws N
for the CensPoINAR(1) model are addressed in Sections 3.3 and 4.1.

3.2. Gibbs Sampler with Data Augmentation

Gibbs sampling is a Markov chain Monte Carlo (MCMC) algorithm that can generate
samples of the posterior distribution from their full conditional distributions [21]. When the
data are under censoring or there are missing values, both cases leading to an incomplete
data set, Ref. [22] proposed to combine the Gibbs sampler with data augmentation. This
methodology implies imputing the censored (or missing) data, thus obtaining a complete
dataset, and then dealing with the posterior of the complete data through the iterative
Gibbs sampler. Therefore, the Gibbs sampler is modified in order to sample not only the pa-
rameters of the model from their complete conditionals but also the censored observations,
obtaining an augmented (complete) dataset z = (z1, . . . , zn) where

zt =

{
Yt, if Yt < L
zt ∼ Fµ(x|x ≥ L), if Yt = L

(8)

where Fµ(x|x ≥ L) is the truncated marginal distribution of the CCID(1) model with
support in [L,+∞[. Furthermore, we consider a modified sampling procedure for the
imputation, designated as Mean of Multiple Simulation (MMS), proposed by [23] consisting
in sampling from Fµ(x|x ≥ L) multiple times, say m, and then imputing with the (nearest
integer value) median of the m samples. This procedure is designated by GDA-MMS .

The augmented dataset can be considered as a CCID(1) time series and with a conditional
likelihood function given by Equation (3). The posterior distribution of θ is given by

p(θ|z) ∝ L(z|θ) π(θ) (9)

where π(θ) is the prior distribution of the parameters. In CCID(1) models the complexity of
p(θ|z) requires resorting to Markov Chain Monte Carlo (MCMC) techniques for sampling
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from the full conditional distributions. The procedure is summarized in Algorithm 2 and
detailed for the CensPoINAR(1) case in Sections 3.3 and 4.1.

Algorithm 2 GDA-MMS for censored CCID(1)

Initialize with y = (Y1, . . . , Yn), θ(0) = (θ
(0)
1 , . . . , θ

(0)
p ), L ∈ R, and n, m, N ∈ N

Set z(0) = y
For k = 1, ..., N

Sample θ
(k)
i ∼ π(θi|θ

(k−1)
(−i) , z(k−1)) (x(−i) represents the vector x with the ith element

removed.), i = 1, . . . , p
For t = 1, ..., n

If Yt = L
For j = 1, ..., m

Sample z(j)
t ∼ F(x|θ(k), x ≥ L)

z(k)t := 1
m ∑m

j=1 z(j)
t

Else
z(k)t := Yt

Return θ = [θ(1), . . . , θ(N)]′ and z(N).

3.3. The Particular Case of CensPoINAR(1)

This section details the ABC and GDA-MMS procedures to estimate a censored CCID(1)
with the binomial thinning operation and Poisson marginal distribution, the censored
Poisson INAR(1), CensPoINAR(1), model.

Consider the censored observations y = (Y1, . . . , Yn) from a PoINAR(1) time series
x = (X1, . . . , Xn) defined as

Yt = min{Xt, L} =
{

Xt, if Xt < L
L, if Xt ≥ L

(10)

Xt = α ◦ Xt−1 + et,

with α ◦ Xt−1 = ∑
Xt−1
i=1 ξti, ξti ∼iid Ber(α), et ∼ Po(λ) and Xt ∼ Po( λ

1−α ). Then θ = (α, λ)
and given x, the conditional likelihood function is given by

L(θ) =
n

∏
t=2

fXt |Xt−1
(xt|xt−1) (11)

=
n

∏
t=2

min{xt ,xt−1}

∑
j=0

(
xt−1

j

)
αj(1− α)(xt−1−j) e−λλxt−j

(xt − j)!
.

Under a Bayesian approach, we need a prior distribution for θ. In the absence of prior
information, we use weakly informative prior distributions for θ detailed below.

3.3.1. ABC for Censored PoINAR(1)

The ABC procedure described in Algorithm 1 is now implemented for the censored
PoINAR(1). For the parameter 0 < α < 1, we choose a non-informative prior U(0, 1), while
for the positive parameter λ, we choose a non-informative U(0, 10). The former allows us
to explore all the support space for α. The choice of U(0, 10) as a prior for λ > 0 allows us
to explore a restricted support for the parameter that is in accordance with small counts.

3.3.2. GDA-MMS for Censored PoINAR(1)

Under the GDA-MMS approach, we first need to obtain a complete data set
z = (z1, . . . , zn) by imputing the censored observations, see (8). In this work, we draw
m = 10 replicates of the right truncated at L Poisson distribution with parameter λ

1−α ,

wi ∼ Po
(

λ
1−α

)
× I(wi≥L) and set zt = dmedian(w)e (dce represents the integer ceiling of c),
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w = (w1, . . . , wm), if Yt = L. Figure 2 shows an augmented dataset (Zt, black line) from the
synthetic data presented in Figure 1.

α=0.5, λ=5, L=11 (30%)

Time

0 50 100 150 200 250 300 350

0
5

10
15

20
Censored  (Yt)
Uncensored  (Xt)
Data  Augmented  (Zt)

Figure 2. Synthetic dataset with n = 350 observations generated from a PoINAR(1) process with
parameters α = 0.5 and λ = 5 (Xt, blue line), the respective right-censored dataset (Yt, red line), at
L = 11, and an example of data augmentation (Zt, black line).

As remarked above, given the complexity of the posterior distribution, Markov Chain
Monte Carlo techniques are required for sampling from the full conditional distributions.
Thus, the Adaptive Rejection Metropolis Sampling (ARMS) is used inside the Gibbs sam-
pler [24]. Also in this approach, in the absence of prior information, we use weakly
informative prior distributions for (α, λ). Thus, for the parameter 0 < α < 1, we choose a
non-informative beta prior, conjugate of the binomial distribution, with parameters (a, b),
while for the positive parameter µ, we choose a non-informative Gamma (shape, rate) prior,
conjugate of the Poisson distribution, with parameters (c, d). The full conditional of λ is
given by

p(λ|α, z) =
p(λ, α|z)

p(α|z) ∝ exp[−(d + (n− 1))λ]λc−1
n

∏
t=2

min{zt ,zt−1}

∑
i=0

C(t, i)λ(zt)−i, (12)

where

C(t, i) =
1

((zt)− i)!

(
zt−1

i

)
αi(1− α)(zt−1)−i and λ > 0.

The full conditional distribution of α is given by

p(α|λ, z) =
p(λ, α|z)
p(λ|z) ∝ αa−1(1− α)b−1

n

∏
t=2

min{zt ,zt−1}

∑
i=0

K(t, i)αi(1− α)(zt−1)−i, (13)

where

K(t, i) =
λ(zt)−i

((zt)− i)!

(
Xt−1

i

)
0 < α < 1.

The parameters α and λ are computed as the posterior mean.
The GDA-MMS procedure to estimate a censored PoINAR(1) process is detailed in

Algorithm 3.
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Algorithm 3 GDA-MMS for CensPoINAR(1)

Initialize with y, θ(0) = (α(0), λ(0)), L ∈ R, and N, m ∈ N
Set z(0) = y
For k = 1, ..., N

Using ARMS
Sample λ(k) ∼ p(λ|α(k−1), z(k−1))

Sample α(k) ∼ p(α|λ(k), z(k−1))
For t = 1, ..., n

If Yt = L
For j = 1, ..., m

Sample w(j) ∼ Po
(

λ(k)

1−α(k)

)
× I(w(j)≥L)

z(k)t := dmedian(w)e, w = (w(1), . . . , w(m)),
Else

z(k)t := Yt
Return θ = [θ(1), . . . , θ(N)]′ and z(N).

4. Illustration

This section illustrates the procedures proposed above to model CCID(1) right-censored
time series in the particular case of Poisson distribution and binomial thinning operation.

4.1. Illustration with CensPoINAR(1)

In this section, the performance of the Bayesian approaches previously proposed is
illustrated via synthetic data. Thus, realizations with n = 100, 350, 1000 observations of
CensPoINAR(1) models were simulated, with parameters θ = (0.2, 3) and θ = (0.5, 5),
considering for each case two levels of censorship, namely 30% and 5%.

For the ABC estimates, we run N = 106 replications and choose the pairs (α, λ)

corresponding to the 0.1% lower quantile of d(k)S , Equation (7), in total of 1000 values
from which the estimates are computed as the mean value. Software R [25] was used to
implement the ABC algorithm.

To implement GDA-MMS algorithm we consider the initial values θ(0) = (α(0), λ(0))
given by the Conditional Least squares estimates of α and λ [24]. The hyper-parameters
for the prior distributions of α and λ are the following α ∼ Beta(a = 2, b = 2) and
λ ∼ Gamma(c = 0.1, d = 0.1). In this work, the function armspp was used from the package
armspp [26] in R to sample from the full conditional distributions. Several experiments were
carried out to analyse the size that the chain should have in order to be stable and, thus,
the number of Gibbs sampler iterations used in this work is N = 15,000. Among these, we
ignored the first 5000 simulations as burn-in time and, to reduce autocorrelation between
MCMC observations, we considered only simulations from every 30 iterations. Therefore,
we use a simulated sample with size 323 to obtain the Bayesian estimates. A convergence
analysis with the usual diagnostic tests was performed with the package coda [27] in R [25].

Tables 2 and 3 summarize ABC and GDA-MMS results for the several scenarios
described above: point estimates, α̂ and λ̂, obtained as sample means, the corresponding
bias, standard deviation and the coefficient of variation. The results indicate that the bias
tends to decrease for large sample sizes and small censoring rates. The results also indicate
that overall ABC presents estimates with smaller bias but larger variability when compared
with GDA-MMS.
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Table 2. ABC and GDA-MMS results for parameter α (sample mean, and the corresponding bias, standard
deviation and coefficient of variation) for synthetic data generated from CensPoINAR(1) models.

ABC GDA-MMS

α λ L n α̂ Bias(α̂) s.d.(α̂) CV(α̂) α̂ Bias(α̂) s.d.(α̂) CV(α̂)

0.2 3 4 (30%) 100 0.2571 0.0571 0.0911 0.3544 0.3155 0.1155 0.0323 0.1024

350 0.2067 0.0067 0.0579 0.2803 0.2274 0.0274 0.0178 0.0783

1000 0.1793 −0.0207 0.0398 0.2217 0.2025 0.0025 0.0157 0.0775

0.2 3 6 (5%) 100 0.2268 0.0268 0.0760 0.3350 0.2738 0.0738 0.0270 0.0986

350 0.2302 0.0302 0.0511 0.2221 0.2309 0.0309 0.0140 0.0606

1000 0.1931 −0.0069 0.0327 0.1692 0.1915 −0.0085 0.0112 0.0585

0.5 5 11 (30%) 100 0.5304 0.0304 0.0800 0.1508 0.5596 0.0596 0.0170 0.0304

350 0.4637 −0.0363 0.0535 0.1153 0.4834 −0.0166 0.0124 0.0257

1000 0.5115 0.0115 0.0320 0.0626 0.5050 0.0050 0.0072 0.0143

0.5 5 14 (5%) 100 0.5230 0.0230 0.0815 0.1559 0.5363 0.0363 0.0175 0.0326

350 0.4671 −0.0329 0.0461 0.0987 0.4796 −0.0204 0.0107 0.0223

1000 0.4992 −0.0008 0.0291 0.0584 0.5008 0.0008 0.0070 0.0140

Table 3. ABC and GDA-MMS results for the parameter λ (sample mean, and the corresponding bias,
standard deviation and coefficient of variation) for synthetic data generated from CensPoINAR(1) models.

ABC GDA-MMS

α λ L n λ̂ Bias(λ̂) s.d.(λ̂) CV(λ̂) λ̂ Bias(λ̂) s.d.(λ̂) CV(λ̂)

0.2 3 4 (30%) 100 2.6623 −0.3377 0.3699 0.1389 2.3265 −0.6735 0.1144 0.0492

350 2.8530 −0.1470 0.2353 0.0825 2.6639 −0.3361 0.0672 0.0252

1000 3.1398 0.1398 0.1668 0.0531 2.9757 −0.0243 0.0603 0.0203

0.2 3 6 (5%) 100 2.7918 −0.2082 0.3203 0.1147 2.5719 −0.4281 0.1007 0.0392

350 2.9507 −0.0493 0.2173 0.0736 2.7846 −0.2154 0.0579 0.0208

1000 3.1342 0.1342 0.1448 0.0462 3.0417 0.0417 0.0460 0.0151

0.5 5 11 (30%) 100 4.3432 −0.6568 0.7504 0.1728 3.9528 −1.0472 0.1600 0.0405

350 5.2315 0.2315 0.5265 0.1006 4.9073 −0.0927 0.1177 0.0240

1000 4.9102 −0.0898 0.3247 0.0661 4.8974 −0.1026 0.0720 0.0147

0.5 5 14 (5%) 100 4.4488 −0.5512 0.7828 0.1760 4.2574 −0.7426 0.1682 0.0395

350 5.1333 0.1333 0.4286 0.0835 4.9877 -0.0123 0.1088 0.0218

1000 5.0613 0.0613 0.2826 0.0558 4.9964 −0.0036 0.0708 0.0142

Additionally, Figures 3 and 4 represent the corresponding posterior densities. The
plots show unimodal and approximately symmetric distributions, with a dispersion that
clearly decreases with increasing sample size and smaller censoring rate. The posterior
densities indicate that the ABC approach produces posteriors that are flatter but with
modes very close to the true value, while the corresponding GDA-MMS approach, despite
producing posteriors which are more concentrated also evidence higher bias. However, the
behaviour of GDA-MMS estimates varies with the parameters and even the sample sizes.
These results are representative of the properties of GDA-MMS estimates across a large
number of experiments, not reported here for conciseness.
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Figure 3. ABC and GDA-MMS posterior densities of the parameters for a realization of 100, 350 and
1000 observations of a CensPoINAR(1) model with θ = (0.2, 3), considering two levels of censoring.
Note that the scale of x-axis of the six plots are different.
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Figure 4. ABC and GDA-MMS posterior densities of the parameters for a realization of 100, 350 and
1000 observations of a CensPoINAR(1) model with θ = (0.5, 5), considering two levels of censoring.
Note that the scale of x-axis of the six plots are different.

4.2. Simulation Study for GDA-MMS

This section presents the results of a simulation study designed to further analyse the
sample properties of GDA-MMS, in particular the bias of the resulting Bayesian estimates.

For that purpose, realizations with sample sizes n = 100 and n = 350 of Cen-
sPoINAR(1) models with parameters θ = (0.2, 3) and θ = (0.5, 5), are generated, con-
sidering two levels of censorship, namely 30% and 5%. To analyse the performance of the
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procedure, the sample posterior mean, standard deviation and mean squared error were
calculated over 50 repetitions.

Boxplots of the sample bias for the 50 repetitions of GDA-MMS methodology are
presented in Figures 5 and 6. The bias increases with the rate of censoring and the variability
decreases with the sample size. Furthermore, in general, the estimates for α presents
positive sample mean biases, indicating that α is overestimated, whilst the estimates for λ
shows negative sample biases, indicating underestimation for λ. Both bias and dispersion
seem larger for λ.
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Figure 5. Boxplots of bias for GDA-MMS estimates of α, when θ = (0.5, 5).
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Figure 6. Boxplots of bias for GDA-MMS estimates of λ, when θ = (0.5, 5).

Tables 4 and 5 present the sample posterior measures for α̂ and λ̂, respectively. We
can see improvement of the estimation methods performance when the sample size in-
creases. Additionally, the higher the censoring percentage, the worse the behavior of the
proposed methods.
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Table 4. Sample posterior mean, standard errors (in brackets) and root mean square error for GDA-
MMS estimates of α.

α λ L n α̂ (s.e.(α̂)) RMSE(α̂)

0.2 3 4 (30%) 100 0.2918 (0.0977) 0.1341

350 0.2385 (0.0698) 0.0797

0.2 3 6 (5%) 100 0.2739 (0.0680) 0.1004

350 0.2229 (0.0487) 0.0538

0.5 5 11 (30%) 100 0.5404 (0.0632) 0.0750

350 0.5156 (0.0344) 0.0378

0.5 5 14 (5%) 100 0.5142 (0.0626) 0.0642

350 0.5066 (0.0386) 0.0392

Table 5. Sample posterior mean, standard errors (in brackets) and root mean square error for GDA-
MMS estimates of λ.

α λ L n λ̂ (s.e.(λ̂)) RMSE(λ̂)

0.2 3 4 (30%) 100 2.5283 (0.3077) 0.5632

350 2.7842 (0.2462) 0.3274

0.2 3 6 (5%) 100 2.6814 (0.2984) 0.4365

350 2.8934 (0.1843) 0.2129

0.5 5 11 (30%) 100 4.4861 (0.6710) 0.8452

350 4.7976 (0.3357) 0.3920

0.5 5 14 (5%) 100 4.7593 (0.6391) 0.6829

350 4.9229 (0.4177) 0.4248

5. Final Comments

This work approaches the problem of estimating CCID(1) models for time series
of counts under censoring from a Bayesian perspective. Two algorithms are proposed:
one is based on ABC methodology and the second a Gibbs Data Augmentation modified
with multiple sampling. Experiments with synthetic data allow us to conclude that both
approaches lead to estimates that present less bias than those obtained neglecting the
censoring. Moreover, the GDA-MMS approach allows us to obtain a complete data set,
making it a valuable method in other situations such as missing data.

In this study, we focus on the most popular CCID(1) model, the Poisson INAR(1).
However, if the data under study present over- or under-dispersion, other CCID(1) models
with appropriate distributions for the innovations, such as Generalised Poisson or Negative
Binomial, can easily be entertained. Furthermore, one can consider different models for time
series of counts under censoring, based on INGARCH models, ([28,29] using a switching
mechanism) if they are more suitable to the data set to be modeled. These issues are beyond
the scope of this paper and are a topic for a future research project.
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