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Abstract: Gene sets are being increasingly leveraged to make high-level biological inferences from
transcriptomic data; however, existing gene set analysis methods rely on overly conservative, heuristic
approaches for quantifying the statistical significance of gene set enrichment. We created Nonpara-
metric analytical-Rank-based Enrichment Analysis (NaRnEA) to facilitate accurate and robust gene
set analysis with an optimal null model derived using the information theoretic Principle of Max-
imum Entropy. By measuring the differential activity of ~2500 transcriptional regulatory proteins
based on the differential expression of each protein’s transcriptional targets between primary tumors
and normal tissue samples in three cohorts from The Cancer Genome Atlas (TCGA), we demon-
strate that NaRnEA critically improves in two widely used gene set analysis methods: Gene Set
Enrichment Analysis (GSEA) and analytical-Rank-based Enrichment Analysis (aREA). We show
that the NaRnEA-inferred differential protein activity is significantly correlated with differential
protein abundance inferred from independent, phenotype-matched mass spectrometry data in the
Clinical Proteomic Tumor Analysis Consortium (CPTAC), confirming the statistical and biological
accuracy of our approach. Additionally, our analysis crucially demonstrates that the sample-shuffling
empirical null models leveraged by GSEA and aREA for gene set analysis are overly conservative,
a shortcoming that is avoided by the newly developed Maximum Entropy analytical null model
employed by NaRnEA.

Keywords: gene set analysis; principle of maximum entropy; nonparametric statistics; protein
activity; regulatory networks

1. Introduction

Next-generation sequencing technologies and highly accurate annotations for prokary-
otic and eukaryotic genomes have transformed biology into a data-rich scientific disci-
pline [1]. Consequently, the field of computational biology has prioritized the development
of algorithms that enable researchers to accurately leverage large-scale, gene-level bio-
chemical measurements to make mechanistic inferences involving biological and cellular
processes [2,3], as well as to measure the activity of molecular pathways and proteins [4,5].
It is not surprising that gene set analysis methods, which were developed to integrate sta-
tistical information from groups of genes belonging to a common ontology (e.g., biological
process, metabolic pathway, regulatory network), have rapidly emerged as some of the
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most widely utilized tools in biomedical research. Most frequently, the differential expres-
sion of genes between two cellular states or phenotypes is used as the ranking criterion,
though various other procedures may be employed. See (Maleki et al., 2020 Frontiers in
Genetics) [6] and (Das et al., 2020 Entropy) [7] for recent reviews discussing the wide variety
of published gene set analysis methods as well as the statistical assumptions implicit to
each one.

While existing gene set analysis methods employ distinct mathematical approaches
for calculating the test statistic associated with a gene set’s enrichment, the field of gene
set analysis is uniquely dominated by the question of how to accurately evaluate the
statistical significance of gene set enrichment. The origins of this debate are alluded to by
Mootha et al. [8] in their analysis of DNA microarrays profiling the expression of genes
in skeletal muscle biopsy samples from patients with normal glucose tolerance (NGT) or
type 2 diabetes mellitus (DM2). Mootha et al. computed the differential expression of each
gene in the test phenotype samples (i.e., the DM2 patients) with respect to the reference
phenotype samples (i.e., the NGT patients) using the Signal-to-Noise Ratio (SNR). When
this analysis failed to identify any single gene with statistically significant differential
expression, Mootha et al. created a procedure they referred to as Gene Set Enrichment
Analysis (GSEA); this method was designed to test the null hypothesis that the rank
ordering of genes from a gene set in the differential gene expression signature (i.e., the
vector of SNR values computed between the test phenotype and the reference phenotype)
is random with regard to the diagnostic categorization of the samples.

Mootha et al. used a two-sample Kolmogorov–Smirnov test to compare the SNR values
for genes associated with oxidative phosphorylation (OXPHOS) with the SNR values for
all other genes. Rather than calculating the statistical significance of this enrichment score
using the existing analytical null model for the two-sample Kolmogorov–Smirnov test,
Mootha et al. chose to approximate the null model for their gene set enrichment score using
an empirical phenotype-based permutation test procedure. In this procedure, Mootha
et al. shuffled the phenotype label of each DM2 sample and NGT sample to produce two
new groups: a null test phenotype and a null reference phenotype. Each of these null
phenotypes consisted of samples from both the original test phenotype (i.e., patients with
DM2) and the original reference phenotype (i.e., patients without DM2). They recomputed
a null SNR for each gene based on its expression in the null test samples and the null
reference samples, producing a null differential gene expression signature; the same two-
sample Kolmogorov–Smirnov test statistic was then calculated as the null enrichment
score for the OXPHOS gene set in this null differential gene expression signature. Mootha
et al. repeated this procedure of permuting phenotype labels, calculating a null differential
gene expression signature and computing a null enrichment score 1000 times, allowing
them to estimate the statistical significance (i.e., two-sided p-value) of the OXPHOS gene
set enrichment.

The logic of this empirical phenotype-based permutation null model for GSEA was
more clearly described by Subramanian et al. [9] in their follow-up manuscript, in which
GSEA was modified to use a weighted two-sample Kolmogorov–Smirnov test statistic,
as follows:

“We estimate the statistical significance (nominal P value) of the [GSEA enrichment
score] by using an empirical phenotype-based permutation test procedure that preserves
the complex correlation structure of the gene expression data. Specifically, we permute
the phenotype labels and recompute the [GSEA enrichment score] of the gene set for the
permuted data, which generates a null distribution for the [GSEA enrichment score]. The
empirical, nominal P value of the observed [GSEA enrichment score] is then calculated
relative to this null distribution. Importantly, the permutation of class labels preserves
gene-gene correlations and, thus, provides a more biologically reasonable assessment of
significance than would be obtained by permuting genes”.

This justification for the empirical phenotype-based permutation null model of GSEA
was defended by Tamayo et al. [10] when they compared GSEA with an alternative gene



Entropy 2023, 25, 542 3 of 39

set analysis procedure, referred to by Tamayo et al. as Simple Enrichment Analysis (SEA),
which relied on a null model for gene set analysis that ignores correlations between genes
rather than the empirical phenotype-based permutation null model of GSEA. Tamayo et al.
made the following claim about their comparison of GSEA and SEA:

“We show, in agreement with earlier observations, that the gene independence assumption
is not realistic because gene correlations are non-trivial and produce a substantial amount
of variance inflation in the global statistic that in turn produces a large number of false
positive results”.

We can more clearly state the central claim underlying this procedure with symbolic
logic as follows:

A→ B
A: Genes in a gene set are correlated when the gene set
is not enriched in the gene expression signature.
B: A gene set analysis method that assumes independence between
genes will not control the Type I error rate of gene set analysis.

Tamayo et al. sought to prove their primary claim (i.e., statement A) by showing that
SEA produced a large number of false positives in their benchmark analyses (i.e., statement
B). Unfortunately, such a verification would only be valid if the converse of the statement
(i.e., B→ A) were true in general, and the converse of a statement and the statement itself
are not logically equivalent in general. However, the statement (A→ B) does prove useful
through its contrapositive, which may be stated as follows:

¬B→ ¬A
¬B: A gene set analysis method that assumes independence between
genes adequately controls the Type I error rate of gene set analysis.
¬A: Genes in a gene set are not correlated when the gene set
is not enriched in the gene expression signature.

Since the contrapositive of a statement and the statement itself are always logi-
cally equivalent, we find that the primary claim underlying the validity of the empirical
phenotype-based permutation null model for GSEA can be falsified if we are able to create
a gene set analysis method that assumes that genes in a gene set are independent when
the gene set is not enriched in a gene expression signature and subsequently show that
this method adequately controls the Type I error rate of gene set analysis. Additionally,
we note that the approach undertaken by Tamayo et al. as an attempt to defend GSEA
and falsify SEA is fundamentally flawed because the method that Tamayo et al. used to
evaluate the specificity of GSEA and SEA is the same empirical phenotype-based permu-
tation procedure that GSEA relies on to estimate the null model for gene set enrichment.
Tamayo et al. describe their benchmarking procedure as follows:

“For each dataset in the benchmark, we randomized the phenotype labels 1000 times and
ran both algorithms . . . The p values are computed using the areas under the empirical
null histograms from GSEA and areas under the normal distribution for SEA”.

We see this is the same description provided by Subramanian et al. [9] for the empirical
phenotype-based permutation procedure used to construct the null model for GSEA; thus,
Tamayo et al. have attempted to defend the sample-shuffling null model of GSEA by way
of tautology, rendering their argument invalid.

This discussion also serves to highlight the challenges intrinsic to accurately bench-
marking gene set analysis methods using experimental data; in particular, gene sets that are
frequently analyzed are often derived from the literature for biological processes or other
gene ontologies that are not amenable to systematic, experimental validation. However,
recent work in the field of cancer systems biology has shown that gene set analysis methods
can be used to measure the differential activity of transcriptional regulatory proteins [4,11];
in the same way that the Michaelis–Menten equation measures enzymatic activity based on
the conversion of biochemical substrates to metabolic products, we may interpret the dif-
ferential expression of a transcriptional regulator’s targets as an estimate of that regulator’s
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differential activity. More formally, we define the differential activity of a transcriptional
regulatory protein as the contribution of the regulator to the implementation of a specific
differential gene expression signature. Consistent with this definition, and akin to using a
highly multiplexed gene reporter assay, we previously introduced the Virtual Inference of
Protein Activity by Enriched Regulon Analysis (VIPER) algorithm to measure differential
protein activity based on the enrichment of each regulator’s transcriptional targets (i.e.,
regulon gene set) in a differential gene expression signature [4]. The tissue-specific regulon
gene sets required for these analyses can be effectively reverse-engineered using a variety
of methods [12]; in the context of this study, we use the ARACNe3 algorithm, which is
the newest implementation of the Algorithm for the Reconstruction of Accurate Cellular
Networks (ARACNe) [13,14]. Previous versions of this algorithm have been experimentally
validated, and the regulon gene sets created by ARACNe have been used extensively
to measure the differential activity of transcriptional regulatory proteins in combination
with VIPER, effectively identifying Master Regulator proteins representing mechanistic
determinants of tumor transcriptional states [11,15,16].

In this manuscript, we derive and benchmark Nonparametric analytical-Rank-based
Enrichment Analysis (NaRnEA), a novel gene set analysis method that leverages a fully
analytical null model for gene set enrichment created using the information theoretic
Principle of Maximum Entropy [17]. By virtue of its derivation, the null model for NaRnEA
assumes that genes in a gene set are independent when the gene set is not enriched in a gene
expression signature. We show that NaRnEA adequately controls the Type I error rate of
gene set analysis using gene expression data from the lung adenocarcinoma (LUAD), colon
adenocarcinoma (COAD), and head and neck squamous cell carcinoma (HNSC) cohorts
in The Cancer Genome Atlas (TCGA). Our finding that NaRnEA adequately controls the
Type I error rate of gene set analysis effectively falsifies the primary claim underlying the
empirical phenotype-based permutation null model of GSEA.

Furthermore, we demonstrate that NaRnEA is highly sensitive, identifying far more
statistically significantly enriched regulon gene sets in these TCGA cohorts than either
GSEA or analytical-Rank-based Enrichment Analysis (aREA), the gene set analysis method
originally developed as the computational engine of VIPER that also employs an empirical
phenotype-based permutation null model. Using independent proteomic data from the
Clinical Proteomic Tumor Analysis Consortium (CPTAC) for LUAD, COAD, and HNSC
cancer types, we demonstrate that the differential activity of transcriptional regulatory
proteins measured by NaRnEA in TCGA is significantly correlated with the differential
abundance of the same transcriptional regulatory proteins in CPTAC. Given that the
abundance and the activity of transcriptional regulatory proteins differ due to a number
of biochemical processes (e.g., post-translational modification, subcellular localization,
cofactor binding, chromatin accessibility), this agreement provides substantial biological
support for NaRnEA-inferred differential protein activity. Crucially, this comparative
analysis is not possible in a large-scale, systematic fashion for literature-curated gene
sets since the corresponding gene ontologies are infrequently amenable to independent,
experimental validation.

These findings demonstrate that NaRnEA is statistically robust, having greater sen-
sitivity than either GSEA or aREA without loss of specificity, and produces biologically
meaningful inferences. We also interrogated the statistical properties of the empirical
phenotype-based permutation procedure leveraged by GSEA and aREA and determined
that the resulting null gene expression signatures exhibit substantial correlation with the
true gene expression signature, thus providing a rigorous explanation for the reduced
sensitivity of any gene set analysis method that relies on this procedure to approximate
the null model for gene set enrichment. Finally, we identify systematic flaws in both
GSEA and aREA when these methods are applied using alternative null models for gene
set analysis while further highlighting the excellent performance of NaRnEA. NaRnEA
and ARACNe3, along with all the code necessary to reproduce these analyses, are freely
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available for research use on GitHub (https://github.com/califano-lab/NaRnEA (accessed
on 3 March 2023)).

2. Materials and Methods
2.1. Nonparametric Analytical-Rank-Based Enrichment Analysis (NaRnEA)

We begin our derivation of NaRnEA by first considering two phenotypes, which we
will refer to as the test phenotype (A) and the reference phenotype (B). Let us assume
that there is some gene (g) and that we may represent the expression of this gene using
the discrete random variable (Xg); biochemically speaking, this is a compositional discrete
random variable that represents the relative molar concentration of transcripts originating
from the gth genomic locus. If we would like to be more specific, we can say that we
are representing the expression of the gene in the test phenotype (A) with the discrete
random variable (XgA) and we are representing the expression of the gene in the reference
phenotype (B) with the discrete random variable (XgB). To perform gene set analysis, we
must first determine whether the gth gene is more highly expressed in the test phenotype
(A) or the reference phenotype (B); this calculation forms the basis of our differential gene
expression signature. To remain as general as possible, let us assume that we may represent
the differential gene expression signature value for the gth gene between the test phenotype
(A) and the reference phenotype (B) with the value (zgAB). We will assume in the following
derivation that (zgAB) has the following properties:

1. zgAB ε R
We assume that the differential gene expression signature value for the gth gene
between the test phenotype (A) and the reference phenotype (B) is a real number that
may be positive or negative.

2. zgAB > 0 i f f Pr
(
XgA > XgB

)
> 1

2
We assume that the differential gene expression signature value for the gth gene
between the test phenotype (A) and the reference phenotype (B) is greater than zero if
and only if the expression of the gth gene in the test phenotype (A) is greater than the
expression of the gth gene in the reference phenotype (B). More formally, this may be
expressed by stating that the discrete random variable that represents the expression
of the gth gene in the test phenotype (A) stochastically dominates the discrete random
variable that represents the expression of the gth gene in the reference phenotype (B).

3. zgAB < 0 i f f Pr
(
XgA > XgB

)
< 1

2
We assume that the differential gene expression signature value for the gth gene
between the test phenotype (A) and the reference phenotype (B) is less than zero
if and only if the expression of the gth gene in the test phenotype (A) is less than
the expression of the gth gene in the reference phenotype (B). More formally, this
may be expressed by stating that the discrete random variable that represents the
expression of the gth gene in the test phenotype (A) is stochastically dominated by
the discrete random variable that represents the expression of the gth gene in the
reference phenotype (B).

4. zgAB = −zgBA
We assume that the differential gene expression signature value for the gth gene
between the test phenotype (A) and the reference phenotype (B) will be equal in
magnitude and opposite in sign if the ordering of the phenotypes were reversed;
this follows naturally from the aforementioned definitions of positive differential
gene expression (i.e., upregulation) and negative differential gene expression (i.e.,
downregulation).

5.
∣∣zgAB

∣∣ > |zkAB| i f f
∣∣∣Pr
(
XgA > XgB

)
− 1

2

∣∣∣ > ∣∣∣Pr(XkA > XkB)− 1
2

∣∣∣ f or g 6= k
We assume that the magnitude of the differential gene expression signature value for
the gth gene between the test phenotype (A) and the reference phenotype (B) should
be greater than the magnitude of the differential gene expression signature value for
the kth gene between the test phenotype (A) and the reference phenotype (B) if and
only if the extent of differential expression for the gth gene is greater than the extent

https://github.com/califano-lab/NaRnEA
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of differential expression for the kth gene between the two phenotypes; we formalize
this notion here using the language of stochastic dominance as mentioned previously.

Having considered the differential gene expression signature, we may now turn our
attention to the gene set itself. So long as the gene set members are determined a priori, the
biological rationale underlying the gene set’s construction is irrelevant for the statistical
analysis of the gene set’s enrichment in the differential gene expression signature; however,
it plays a crucial role in the biological interpretation of the enrichment, if it is indeed
present. To formalize the notion of gene set analysis from first principles, we may select a
gene set for which the expression of each member exhibits a statistical dependency on a
common biochemical species; from this we may construct a conceptual rationale for gene
set analysis and derive an appropriate mathematical framework that will facilitate accurate
statistical inference.

We assume, for the sake of this derivation, that a transcriptional regulatory protein (r)
is responsible for regulating the expression of the gene (g). To formalize this relationship, let
us assume that we may represent the activity of the regulator (r) using the discrete random
variable (Yr); biochemically speaking, this is a compositional discrete random variable that
represents the relative molar concentration of the transcriptional regulatory holoenzyme.
Then, due to the statistical dependence induced by this biochemical relationship, the
random variables (Yr) and (Xg) form the following Markov Chain (Equation (1)):

Yr → Xg (1)

If the rth regulatory protein regulates many genes, it would be helpful to distinguish
between these different targets based on the strength of each regulatory relationship. We
can quantify the degree to which the expression of the gth gene depends on the activity of
the rth regulator using a parameter to which we refer as the Association Weight (AWrg).
We require the Association Weight to have the following properties:

1. AWrg ≥ 0
The Association Weight between the rth regulator and the gth gene is strictly non-negative.

2. AWrg > 0 i f f I
[
Yr; Xg

]
> 0

The Association Weight between the rth regulator and the gth gene is greater than
zero if and only if the expression of the gth gene exhibits a statistical dependency on
the activity of the rth regulator; this may be formalized by stating that the mutual
information between the discrete random variable representing the expression of the
gth gene and the discrete random variable representing the activity of the rth regulator
is nonzero.

3. AWrg > AWrk i f f I
[
Yr; Xg

]
> I[Yr; Xk] f or g 6= k

The Association Weight between the rth regulator and the gth gene is greater than
the Association Weight between the rth regulator and the kth gene if and only if the
expression of the gth gene exhibits a greater statistical dependency on the activity of
the rth regulator than the expression of the kth gene as measured using the mutual
information between the corresponding discrete random variables.

In addition to characterizing the regulatory relationships between the rth regulatory
protein and its targets based on their strength, we can describe them based on their direc-
tionality. In some cases, as the activity of a regulator increases, it may cause the expression
of some targets to increase; in other cases, an increase in the activity of the regulator may
cause the expression of some targets to decrease. We quantify the degree to which the
expression of the gth gene increases or decreases monotonically based on an increase in the
activity of the rth regulator using a parameter to which we refer as the Association Mode
(AMrg). We require the Association Mode to have the following properties:

1. AMrg ∈ [−1, 1]
The Association Mode between the rth regulator and the gth gene is a real number
less than or equal to one and greater than or equal to negative one.

2. AMrg > 0 i f f SCC
[
Yr, Xg

]
> 0
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The Association Mode between the rth regulator and the gth gene is greater than zero
if and only if there is a positive monotonic relationship between the activity of the rth
regulator and the expression of the gth gene; this may be formalized by stating that the
Spearman correlation coefficient between the discrete random variable representing
the expression of the gth gene and the discrete random variable representing the
activity of the rth regulator is positive.

3. AMrg < 0 i f f SCC
[
Yr, Xg

]
< 0

The Association Mode between the rth regulator and the gth gene is less than zero if
and only if there is a negative monotonic relationship between the activity of the rth
regulator and the expression of the gth gene; this may be formalized by stating that the
Spearman correlation coefficient between the discrete random variable representing
the expression of the gth gene and the discrete random variable representing the
activity of the rth regulator is negative.

4.
∣∣AMrg

∣∣ > |AMrk| i f f
∣∣SCC

[
Yr, Xg

]∣∣ > |SCC[Yr, Xk]| f or g 6= k
The magnitude of the Association Mode between the rth regulator and the gth gene is
greater than the magnitude of the Association Mode between the rth regulator and the
kth gene if and only if the Spearman correlation coefficient between the expression of
the gth gene and the activity of the rth regulator is greater in magnitude than the Spear-
man correlation coefficient between the expression of the kth gene and the activity of
the rth regulator quantified from the corresponding discrete random variables.

Given that we have now parameterized the relationship between the rth regulator
and its transcriptional targets using the Association Weight and Association Mode, we
can formalize the notion of regulon gene set enrichment in a differential gene expression
signature resulting from a change in the activity of the regulator. More specifically, let (YrA)
be the discrete random variable that represents the activity of the rth regulator in the test
phenotype (A), and let (YrB) be the discrete random variable that represents the activity of
the rth regulator in the reference phenotype (B). These discrete random variables may be
related in one of three ways:

1. Pr(YrA > YrB) >
1
2

In the first scenario, the activity of the rth regulator in the test phenotype (A) is greater
than the activity of the rth regulator in the reference phenotype (B). More formally,
this may be expressed by stating that the discrete random variable that represents
the activity of the rth regulator in the test phenotype (A) stochastically dominates
the discrete random variable that represents the activity of the rth regulator in the
reference phenotype (B).

2. Pr(YrA > YrB) <
1
2

In the second scenario, the activity of the rth regulator in the test phenotype (A) is less
than the activity of the rth regulator in the reference phenotype (B). More formally,
this may be expressed by stating that the discrete random variable that represents the
activity of the rth regulator in the test phenotype (A) is stochastically dominated by
the discrete random variable that represents the activity of the rth regulator in the
reference phenotype (B).

3. Pr(YrA > YrB) =
1
2

In the third scenario, the activity of the rth regulator in the test phenotype (A) is equal
to the activity of the rth regulator in the reference phenotype (B). More formally, this
may be expressed by stating that the discrete random variable that represents the
activity of the rth regulator in the test phenotype (A) neither stochastically dominates
nor is stochastically dominated by the discrete random variable that represents the
activity of the rth regulator in the reference phenotype (B).

We refer to scenario 1 as our positive alternative hypothesis (H+
a ), scenario 2 as our

negative alternative hypothesis (H−a ), and scenario 3 as our null hypothesis (Ho). As we
have stated previously, the primary statistical concern in the field of gene set analysis
has been correctly defining the joint sampling distribution of gene set members in the
differential gene expression signature when the null hypothesis is true. In order to construct
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the null model for NaRnEA, we begin by considering the joint sampling distribution of
the gene set members in the differential gene expression signature when each form of the
alternative hypothesis is true.

Under the positive alternative hypothesis (H+
a ), the activity of the rth regulator in

the test phenotype (A) is greater than the activity of the rth regulator in the reference
phenotype (B). It follows from our earlier discussion about the gene set parameters that
the genes with a nonzero Association Weight (AWrg) will exhibit differential expression
between the test phenotype (A) and the reference phenotype (B), such that zgAB will be
nonzero. Furthermore, a gene with a positive Association Mode (AMrg > 0) will have a
positive differential gene expression signature value (zgAB > 0), and a gene with a negative
Association Mode (AMrg < 0) will have a negative differential gene expression signature
value (zgAB < 0).

Under the negative alternative hypothesis (H−a ), the activity of the rth regulator
in the test phenotype (A) is less than the activity of the rth regulator in the reference
phenotype (B). It follows from our earlier discussion about the gene set parameters that
the genes with a nonzero Association Weight (AWrg) will exhibit differential expression
between the test phenotype (A) and the reference phenotype (B), such that zgAB will be
nonzero. Furthermore, a gene with a positive Association Mode (AMrg > 0) will have a
negative differential gene expression signature value (zgAB < 0), and a gene with a negative
Association Mode (AMrg < 0) will have a positive differential gene expression signature
value (zgAB > 0).

We find that either form of the alternative hypothesis implies that the joint sampling
distribution of the gene set members has greater probability density at the extremes of the
differential gene expression signature than near the center of the differential gene expression
signature; whether that increase occurs at the positive extreme or negative extreme for a
given gene depends on the version of the alternative hypothesis for its regulator and the
Association Mode for that gene. Additionally, the degree to which the probability mass
increases at the extremes for a particular gene depends on the Association Weight for the
gene as well as the magnitude of differential activity for its regulator.

Our analysis of the joint sampling distribution for the gene set members can be greatly
simplified if we apply a nonparametric transformation to the differential gene expression
signature, as follows (Equation (2)):{

zg
}

AB 7−→
{

rgsg
}

AB

rgAB = rank
(∣∣zgAB

∣∣)
sgAB = sign

(
zgAB

) (2)

As a result of the nonparametric transformation in Equation (2), we can instead
consider the discrete joint sampling distribution for the gene set members where the
domain of each marginal is {r1ABs1AB, . . . , rGABsGAB}. If we let

Nr =
G

∑
g=1

I
{

AWrg > 0
}

(3)

be the number of genes in the regulon gene set of the rth regulator, where I{·} is the
indicator function, then the discrete joint sampling distribution has the dimensionality
(Nr × G).

Subsequently, we recognize that from an information theoretic perspective, both
versions of the alternative hypothesis reduce the Shannon entropy [18] of the discrete joint
sampling distribution for the gene set members due to an increase in the probability mass
at extremes of the nonparametric differential gene expression signature. Furthermore, if we
consider the magnitude of the difference in the protein activity between the test phenotype
(A) and the reference phenotype (B), we conclude that a greater difference in the activity of
the rth regulator corresponds with a greater increase in probability mass at the extremes of
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the nonparametric differential gene expression signature and therefore a more substantial
reduction in the joint Shannon entropy of the discrete joint probability distribution. It
follows from this line of reasoning that when the magnitude of the difference in the activity
of the rth regulator between the test phenotype (A) and the reference phenotype (B) tends to
zero, the joint Shannon entropy of the discrete joint probability distribution for the members
of the corresponding regulon gene set in the nonparametric differential gene expression
signature will tend to its largest possible value. Therefore, we invoke the Principle of
Maximum Entropy to motivate our selection of the discrete joint sampling distribution with
the greatest Shannon entropy in the nonparametric differential gene expression signature
as the null distribution for the gene set members.

To derive the Maximum Entropy null model for the gene set members in the non-
parametric differential gene expression signature, we first consider the gene expression
marginals, each of which constitutes a discrete probability distribution over (G) elements.
Under the null hypothesis, the only information available to us is that each gene set member
is present somewhere in the nonparametric differential gene expression signature; beyond
this, we have no additional information about the expected value or higher moments
(e.g., variance, skewness) of the marginal distribution under the null hypothesis. Thus, it
follows from the log-sum inequality [19] that the entropy of each gene expression marginal
is maximized when we assign equal probability mass to all possible elements of the non-
parametric differential gene expression signature for each gene under the null hypothesis.
This is equivalent to assuming that each member of the gene set is uniformly distributed in
the nonparametrically transformed differential gene expression signature under the null
hypothesis of gene set analysis.

Furthermore, it follows from the log-sum inequality that for an ensemble of discrete
random variables, the entropy of the joint probability distribution is always less than or
equal to the sum of the univariate entropies with equality if and only if the discrete random
variables that compose the ensemble are statistically independent. Thus, to maximize the
joint entropy of the null model, we assume that the gene set members are independent
and uniformly distributed in the nonparametric differential gene expression signature
under the null hypothesis of gene set analysis. We note that this Maximum Entropy null
model for NaRnEA contradicts the primary claim underlying the validity of the empirical
phenotype-based permutation null model for GSEA (i.e., that genes in a gene set are
correlated when the gene set is not enriched in the differential gene expression signature).
Thus, to falsify this claim, it will be sufficient to demonstrate that NaRnEA is capable of
adequately controlling the Type I error rate of gene set analysis.

To quantify the extent to which the regulon gene set for the rth regulator is enriched
in the nonparametric differential gene expression signature computed between the test
phenotype (A) and the reference phenotype (B), NaRnEA leverages two complementary
test statistics—the Directed Enrichment Score (DESrAB) and the Undirected Enrichment
Score (UESrAB)—which are defined as follows (Equation (4)):

DESrAB = ∑
g

DESrgAB

DESrgAB =
(

AWrg
)(

AMrg
)(

rgABsgAB
)

UESrAB = ∑
g

UESrgAB

UESrgAB =
(

AWrg
)(

1−
∣∣AMrg

∣∣)(rgAB
)

(4)

Both the Directed Enrichment Score and Undirected Enrichment Score weight the
contribution of each gene toward the enrichment of the gene set based on the Association
Weight parameter since the differential expression of a gene whose expression depends
more strongly on the activity of the regulator is a better indicator of the change in the
regulator’s activity. However, these complementary test statistics differ in how each
incorporates the Association Mode. The Directed Enrichment Score considers both the
magnitude and sign of the differential expression for each gene set member, whereas



Entropy 2023, 25, 542 10 of 39

the Undirected Enrichment Score considers only the magnitude of differential expression.
It follows that gene set members that are monotonically regulated by the rth regulator
should contribute more to the Directed Enrichment Score since the sign of their differential
gene expression signature values will be important for determining whether the null
hypothesis of gene set analysis ought to be rejected in favor of the positive alternative
hypothesis or the negative alternative hypothesis. However, gene set members that are
non-monotonically regulated by the rth regulator should not contribute substantially to the
Directed Enrichment Score since the sign of their differential expression does not clearly
support one version of the alternative hypothesis over another. To that end, the formulation
of the Undirected Enrichment Score provides a mechanism by which the non-monotonically
regulated members of the regulon gene set may contribute to the enrichment.

Since the Directed Enrichment Score and Undirected Enrichment score for the regulon
gene set of the rth regulator are computed from the same gene set members, they form a
bivariate vector {DESrAB, UESrAB}. We recognize that each of these test statistics is equal
to the sum of independent random variables under the null hypothesis of gene set analysis,
allowing us to invoke the multivariate version of the Lindeberg Central Limit Theorem [20]
to derive the asymptotic null distribution of this bivariate vector. More formally, we define
the Normalized Directed Enrichment Score (NDESrAB) for the regulon gene set of the rth
regulator in the nonparametric differential gene expression signature computed between
the test phenotype (A) and the reference phenotype (B) as follows (Equations (5)–(7)):

NDESrAB =
DESrAB −E[DESrAB|Ho]√

Var[DESrAB|Ho]
(5)

E[DESrAB|Ho] =
G
∑

g=1
E
[

DESrgAB

∣∣∣Ho

]
E
[

DESrgAB

∣∣∣Ho

]
=
(

AWrg
)(

AMrg
)
E
[
rgABsgAB

∣∣∣Ho

]
E
[
rgABsgAB

∣∣∣Ho

]
=

G
∑

k=1
(rkABskAB)× Pr

(
rgABsgAB = rkABskAB

∣∣∣Ho

)
= 1

G

G
∑

k=1
rkABskAB

(6)

Var[DESrAB|Ho] =
G
∑

g=1
Var

[
DESrgAB

∣∣∣Ho

]
Var

[
DESrgAB

∣∣∣Ho

]
= E

[
DES2

rgAB

∣∣∣Ho

]
−E

[
DESrgAB

∣∣∣Ho

]2

E
[

DES2
rgAB

∣∣∣Ho

]
=
(

AWrg
)2(AMrg

)2E
[
r2

gAB

∣∣∣Ho

]
E
[
r2

gAB

∣∣∣Ho

]
=

G
∑

k=1

(
r2

kAB
)
× Pr

(
r2

gAB = r2
kAB

∣∣∣Ho

)
= 1

G

G
∑

k=1
r2

kAB =
(

1
6

)(
2G2 + 3G + 1

)
(7)

Then, if the condition

lim
G→∞

∑G
g=1 E

[ (
DESrgAB −E

[
DESrgAB

∣∣Ho
])2 × I

{∣∣DESrgAB −E
[
DESrgAB

∣∣Ho
]∣∣ > ε

√
Var[DESrAB|Ho]

} ∣∣∣ Ho

]
Var[DESrAB|Ho]

(8)

is satisfied for all (ε > 0) where I{·} is the indicator function, the Central Limit Theorem
holds such that

p(NDESrAB|Ho)
D→ N (0, 1) (9)

and the Normalized Directed Enrichment Score for the regulon gene set of the rth regulator
in the nonparametric differential gene expression signature computed between the test
phenotype (A) and the reference phenotype (B) converges in distribution to a standard
normal random variable under the null hypothesis of gene set analysis.

Similarly, we define the Normalized Undirected Enrichment Score (NUESrAB) for the
regulon gene set of the rth regulator in the nonparametric differential gene expression
signature computed between the test phenotype (A) and the reference phenotype (B) as
follows (Equations (10)–(12)):

NUESrAB =
UESrAB −E[UESrAB|Ho]√

Var[UESrAB|Ho]
(10)
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E[UESrAB|Ho] =
G
∑

g=1
E
[
UESrgAB

∣∣Ho
]

E
[
UESrgAB

∣∣Ho
]
=
(

AWrg
)(

1−
∣∣AMrg

∣∣)E[rgAB
∣∣Ho

]
E
[
rgAB

∣∣Ho
]
=

G
∑

k=1
(rkAB)× Pr

(
rgAB = rkAB

∣∣Ho
)
= 1

G

G
∑

k=1
rkAB =

(
1
2

)
(G + 1)

(11)

Var[UESrAB|Ho] =
G
∑

g=1
Var

[
UESrgAB

∣∣∣Ho

]
Var

[
UESrgAB

∣∣∣Ho

]
= E

[
UES2

rgAB

∣∣∣Ho

]
−E

[
UESrgAB

∣∣∣Ho

]2

E
[
UES2

rgAB

∣∣∣Ho

]
=
(

AWrg
)2(1− ∣∣AMrg

∣∣)2E
[
r2

gAB

∣∣∣Ho

]
E
[
r2

gAB

∣∣∣Ho

]
=

G
∑

k=1

(
r2

kAB
)
× Pr

(
r2

gAB = r2
kAB

∣∣∣Ho

)
= 1

G

G
∑

k=1
r2

kAB =
(

1
6

)(
2G2 + 3G + 1

)
(12)

Then, if the condition

lim
G→∞

∑G
g=1 E

[ (
UESrgAB −E

[
UESrgAB

∣∣Ho
])2 × I

{∣∣UESrgAB −E
[
UESrgAB

∣∣Ho
]∣∣ > ε

√
Var[UESrAB|Ho]

} ∣∣∣ Ho

]
Var[UESrAB|Ho]

(13)

is satisfied for all (ε > 0) where I{·} is the indicator function, the Central Limit Theorem
holds and

p(NUESrAB|Ho)
D→ N (0, 1)

such that the Normalized Undirected Enrichment Score for the regulon gene set of the rth
regulator in the nonparametric differential gene expression signature computed between
the test phenotype (A) and the reference phenotype (B) converges in distribution to a
standard normal random variable under the null hypothesis of gene set analysis.

We note that these sufficiency conditions, derived by Lindeberg, will be satisfied by
any gene set with enough members (i.e., at least 30 targets) for which the Association
Weight and Association Mode parameters are sufficiently well balanced; this ensures that
the variance of the summand is not dominated by the variance of any element of the
summand under the null hypothesis.

Thus, the vector that consists of the Normalized Directed Enrichment Score and the
Normalized Undirected Enrichment Score is a bivariate normal random vector under the
null hypothesis of gene set analysis; furthermore, the mean of each marginal is equal to zero,
and the variance of equal marginal is equal to one. We can also compute the covariance
of this bivariate normal random vector under the null hypothesis of gene set analysis as
follows (Equation (14)):

Cov[NDESrAB, NUESrAB|Ho] = ρ[NDESrAB, NUESrAB|Ho]

ρ[NDESrAB, NUESrAB|Ho] = ρ[DESrAB, UESrAB|Ho]

ρ[DESrAB, UESrAB|Ho] =
Cov[DESrAB ,UESrAB |Ho ]√

Var[DESrAB |Ho ] Var[UESrAB |Ho ]

Cov[DESrAB, UESrAB|Ho] =
G
∑

g=1
Cov

[
DESrgAB, UESrgAB

∣∣Ho
]

Cov
[
DESrgAB, UESrgAB

∣∣Ho
]
= E

[
DESrgABUESrgAB

∣∣Ho
]
−E

[
DESrgAB

∣∣Ho
]
E
[
UESrgAB

∣∣Ho
]

E
[
DESrgABUESrgAB

∣∣Ho
]
=
(

AWrg
)2(AMrg

)(
1−

∣∣AMrg
∣∣)E[r2

gABsgAB

∣∣∣Ho

]
E
[
r2

gABsgAB

∣∣∣Ho

]
=

G
∑

k=1

(
r2

kABskAB
)
× Pr

(
r2

gABsgAB = r2
kABskAB

∣∣∣Ho

)
= 1

G

G
∑

k=1
r2

kABskAB

(14)

where ρ[X, Y] is the Pearson product moment correlation between the random variables
(X) and (Y).

To determine how we should interpret the bivariate vector consisting of the Nor-
malized Directed Enrichment Score and the Normalized Undirected Enrichment Score as
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providing evidence for either positive or negative gene set enrichment in the nonparametric
differential gene expression signature, we return to our previous discussion regarding the
differential gene expression signature values for the members of the regulon gene set for
the rth regulator under each version of the alternative hypothesis. Since each gene in the
regulon gene set for the rth regulator with a positive Association Mode will have a positive
differential gene expression signature value under the positive alternative hypothesis, and
each gene in the regulon gene set for the rth regulator with a negative Association Mode
will have a negative differential gene expression signature value under the positive alterna-
tive hypothesis, it follows that both the Normalized Directed Enrichment Score and the
Normalized Undirected Enrichment Score will be positive under the positive alternative
hypothesis. Based on this rationale, we can combine the Normalized Directed Enrichment
Score with the Normalized Undirected Enrichment Score to produce a single test statistic
that will be strongly positive under the positive alternative hypothesis, which we refer to
as the positive Normalized Enrichment Score (Equation (15)):

NES+
rAB =

NDESrAB + NUESrAB√
2 + 2Cov[NDESrAB, NUESrAB|Ho]

(15)

Since each gene in the regulon gene set for the rth regulator with a positive Association
Mode will have a negative differential gene expression signature value under the negative
alternative hypothesis, and each gene in the regulon gene set for the rth regulator with
a negative Association Mode will have a positive differential gene expression signature
value under the negative alternative hypothesis, it follows that the Normalized Directed
Enrichment Score will be negative under the negative alternative hypothesis while the
Normalized Undirected Enrichment Score will be positive under the negative alternative
hypothesis. Based on this rationale, we can combine the Normalized Directed Enrichment
Score with the Normalized Undirected Enrichment Score to produce a single test statistic
that will be strongly negative under the negative alternative hypothesis, which we refer to
as the negative Normalized Enrichment Score (Equation (16)):

NES−rAB =
NDESrAB − NUESrAB√

2− 2Cov[NDESrAB, NUESrAB|Ho]
(16)

This biologically motivated change of variables is mathematically equivalent to an affine
transformation of the original bivariate vector {NDESrAB, NUESrAB} 7→

{
NES+rAB, NES−rAB

}
. It

is well established that an affine transformation of a multivariate normal random vector
produces a new multivariate normal random vector whose mean vector and covariance
matrix can be immediately calculated [21]. More formally, if (Y = BX + c) is an affine
transformation of the multivariate normal random vector (X) with a mean vector equal to
(µX) and a covariance matrix equal to (ΣX), then the random vector (Y) is a multivariate
normal random vector with a mean vector equal to (µY = Bµx + c) and a covariance matrix
equal to (ΣY = BΣXBT). Letting (ϕ = Cov[NDESrAB, NUESrAB|Ho]), we can calculate the
mean vector and covariance matrix of our new bivariate vector under the null hypothesis
of gene set analysis as follows (Equations (17)–(19)):

(
E
[
NES+

rAB

∣∣Ho
]

E
[
NES−rAB

∣∣Ho
]) =

 1√
2+2ϕ

1√
2+2ϕ

1√
2−2ϕ

−1√
2−2ϕ

(E[NDESrAB|Ho]
E[NUESrAB|Ho]

)
+

(
0
0

)
(
E
[
NES+

rAB

∣∣Ho
]

E
[
NES−rAB

∣∣Ho
]) =

 1√
2+2ϕ

1√
2+2ϕ

1√
2−2ϕ

−1√
2−2ϕ

(0
0

)
+

(
0
0

)
(
E
[
NES+

rAB

∣∣Ho
]

E
[
NES−rAB

∣∣Ho
]) =

(
0
0

)
(17)
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(
Var

[
NES+

rAB

∣∣Ho
]

Cov
[
NES+

rAB, NES−rAB

∣∣Ho
]

Cov
[
NES+

rAB, NES−rAB

∣∣Ho
]

Var
[
NES−rAB

∣∣Ho
] )

= . . . =

 1√
2+2ϕ

1√
2+2ϕ

1√
2−2ϕ

−1√
2−2ϕ

(1 ϕ
ϕ 1

) 1√
2+2ϕ

1√
2−2ϕ

1√
2+2ϕ

−1√
2−2ϕ


(

Var
[
NES+

rAB

∣∣Ho
]

Cov
[
NES+

rAB, NES−rAB

∣∣Ho
]

Cov
[
NES+

rAB, NES−rAB

∣∣Ho
]

Var
[
NES−rAB

∣∣Ho
] )

= . . . =

 1√
2+2ϕ

+ ϕ√
2+2ϕ

ϕ√
2+2ϕ

+ 1√
2+2ϕ

1√
2−2ϕ

− ϕ√
2−2ϕ

ϕ√
2−2ϕ

− 1√
2−2ϕ

 1√
2+2ϕ

1√
2−2ϕ

1√
2+2ϕ

−1√
2−2ϕ


Var

[
NES+

rAB

∣∣Ho
]
=

(
1√

2+2ϕ

)(
1√

2+2ϕ
+ ϕ√

2+2ϕ

)
+ . . . +

(
1√

2+2ϕ

)(
ϕ√

2+2ϕ
+ 1√

2+2ϕ

)
Var

[
NES+

rAB

∣∣Ho
]
=
(

1
2+2ϕ

)
+
(

ϕ
2+2ϕ

)
+
(

ϕ
2+2ϕ

)
+
(

1
2+2ϕ

)
Var

[
NES+

rAB

∣∣Ho
]
=
(

2+2ϕ
2+2ϕ

)
= 1

Var
[
NES−rAB

∣∣Ho
]
=

(
1√

2−2ϕ

)(
1√

2−2ϕ
− ϕ√

2−2ϕ

)
− . . .−

(
1√

2−2ϕ

)(
ϕ√

2−2ϕ
− 1√

2−2ϕ

)
Var

[
NES−rAB

∣∣Ho
]
=
(

1
2−2ϕ

)
−
(

ϕ
2−2ϕ

)
−
(

ϕ
2−2ϕ

)
+
(

1
2−2ϕ

)
Var

[
NES−rAB

∣∣Ho
]
=
(

2−2ϕ
2−2ϕ

)
= 1

(18)

Cov
[
NES+

rAB, NES−rAB

∣∣Ho
]
= . . . =

(
1√

2+2ϕ

)(
1√

2−2ϕ
− ϕ√

2−2ϕ

)
+

(
1√

2+2ϕ

)(
ϕ√

2−2ϕ
− 1√

2−2ϕ

)
Cov

[
NES+

rAB, NES−rAB

∣∣Ho
]
= . . . =

(
1√

2+2ϕ
√

2−2ϕ

)
−
(

ϕ√
2+2ϕ
√

2−2ϕ

)
+

(
ϕ√

2+2ϕ
√

2−2ϕ

)
− . . .−

(
1√

2+2ϕ
√

2−2ϕ

)
Cov

[
NES+

rAB, NES−rAB

∣∣Ho
]
=

(
1−1+ϕ−ϕ√
2+2ϕ
√

2−2ϕ

)
= 0

(19)

We find that
{

NES+
rAB, NES−rAB

}
is a bivariate standard normal random vector under

the null hypothesis of gene set analysis where the mean of each marginal is equal to zero,
the variance of equal marginal is equal to one, and the covariance is equal to zero. Moti-
vated by the previous discussion about the behavior of the positive Normalized Enrichment
Score under the positive alternative hypothesis and the behavior of the negative Normal-
ized Enrichment Score under the negative alternative hypothesis, we can calculate the
statistical significance of each element of this vector using the standard normal cumulative
distribution function as follows (Equation (20)):

p+rAB = 1−Φ
(

NES+
rAB
)

p−rAB = Φ
(

NES−rAB
) (20)

These p-values can be interpreted in a one-tailed manner as providing evidence against
the null hypothesis in favor of the positive or negative version of the alternative hypothesis,
respectively. Under the frequentist paradigm of null hypothesis significance testing, a
sufficiently small (p+rAB) would lead us to reject the null hypothesis in favor of the positive
alternative hypothesis, whereas a sufficiently small (p−rAB) would lead us to reject the null
hypothesis in favor of the negative alternative hypothesis. Furthermore, through an appeal
to the Neyman–Pearson lemma, we can motivate the use of the ratio between these two
one-sided p-values, which is equivalent to a likelihood ratio, to decide on the most likely
form of the alternative hypothesis in a manner that is uniformly most powerful.

In order to control the overall Type I error rate of NaRnEA, we recognize that selecting
the most likely form of the alternative hypothesis based on the minimum of these one-tailed
p-values constitutes a form of multiple hypothesis testing that must be corrected for in
a manner that accounts for the dependence between these one-tailed p-values under the
null hypothesis of gene set analysis. Since these one-tailed p-values are calculated from
the positive Normalized Enrichment Score and the negative Normalized Enrichment Score,
their statistical dependence under the null hypothesis of gene set analysis can be established
using the following Markov Chain (Equation (21)):

p+rAB ↔ NES+
rAB ↔ NES−rAB ↔ p−rAB (21)
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It follows from the Data Processing Inequality Theorem [19] that (I
[
p+rAB; p−rAB

∣∣Ho
]
≤

I
[
NES+

rAB; NES−rAB

∣∣Ho
]
). Since the positive Normalized Enrichment Score and the negative

Normalized Enrichment Score are jointly normally distributed under the null hypothesis
of gene set analysis, we can calculate the mutual information between them using the
following formula:

I
[
NES+

rAB; NES−rAB

∣∣Ho
]
=

(
−1

2

)
log
(

1− ρ
[
NES+

rAB, NES−rAB

∣∣Ho
]2)

We have already shown that, as a result of the affine transformation that produced
the positive Normalized Enrichment Score and the negative Normalized Enrichment Score,
the Pearson product moment correlation between these test statistics is equal to zero
under the null hypothesis of gene set analysis. Thus, it immediately follows that the
mutual information between the positive Normalized Enrichment Score and the negative
Normalized Enrichment Score is equal to zero under the null hypothesis of gene set analysis.
As a result, (p+rAB) and (p−rAB) are independent under the null hypothesis of gene set analysis.
Thus, we can correct for our multiple hypothesis testing to obtain the final p-value for
NaRnEA as follows (Equation (22)):

prAB = 1−
(
1−min

(
p+rAB, p−rAB

))2 (22)

We recognize that this is a two-sided p-value since it may be statistically significant
under either the positive alternative hypothesis or the negative alternative hypothesis. We
can use the magnitude of this final two-sided p-value and our knowledge of whether (p+rAB)
or (p−rAB) is smaller to calculate the final Normalized Enrichment Score for the regulon
gene set of the rth regulator in the nonparametric differential gene expression signature
computed between the test phenotype (A) and the reference phenotype (B) for NaRnEA as
follows (Equation (23)):

NESrAB =

{
Φ−1(1− prAB

2
)

i f p+rAB < p−rAB
Φ−1( prAB

2
)

i f p+rAB > p−rAB
(23)

By virtue of its construction, the NaRnEA Normalized Enrichment Score has the
following properties:

1. p(NESrAB|Ho)
D→ N (0, 1)

The final Normalized Enrichment Score for the rth regulator is a standard normal
random variable when the regulon gene set for the rth regulator is not enriched in
the nonparametric differential gene expression signature computed between the test
phenotype (A) and the reference phenotype (B). Formally, the rate of this asymptotic
convergence depends on the Association Weight and Association Mode values for the
gene set members in accordance with the Berry–Esseen Theorem for non-identically
distributed summands.

2. E[NESrAB|H+
a ] > 0

The expected value of the final Normalized Enrichment Score for the rth regulator
is positive when the regulon gene set for the rth regulator is positively enriched in
the nonparametric differential gene expression signature computed between the test
phenotype (A) and the reference phenotype (B).

3. E[NESrAB|H−a ] < 0
The expected value of the final Normalized Enrichment Score for the rth regulator
is negative when the regulon gene set for the rth regulator is negatively enriched in
the nonparametric differential gene expression signature computed between the test
phenotype (A) and the reference phenotype (B).

The asymptotic normality of the NaRnEA Normalized Enrichment Score under the
null hypothesis of gene set analysis follows from the Lindeberg Central Limit Theorem, for
which Lindeberg’s condition is sufficient. Since the Association Weight and Association
Mode parameters for the members of the gene set are the reason that the summands are not
necessarily identical, we require that these parameters do not exhibit extreme imbalance,
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which would violate Lindeberg’s condition; we show that a simple nonparametric proce-
dure for parameterizing regulon gene sets that have been inferred from context-specific
transcriptional regulatory networks produces sufficiently well-balanced gene sets that
fulfill Lindeberg’s condition, thus allowing NaRnEA to maintain adequate control of the
Type I error rate for gene set analysis. We also note that if NaRnEA is applied to gene
sets in which all members have equal Association Weight and Association Mode values,
such as literature-derived gene sets, the asymptotic normality of the NaRnEA Normalized
Enrichment Score under the null hypothesis of gene set analysis is guaranteed by the
classical Lindeberg–Lévy Central Limit Theorem [21].

The NaRnEA Normalized Enrichment Score is an optimal and robust test statistic
for gene set analysis due its nonparametric integration of differential gene expression
signature values, its nuanced ability to apply differential weighting to gene set members, its
flexibility regarding uncertainty in the monotonicity of transcriptional regulation, and the
derivation of its null model using the information theoretic Principle of Maximum Entropy.
However, since the NaRnEA two-sided p-value, which may be analytically calculated
from the NaRnEA Normalized Enrichment Score using the standard normal cumulative
distribution function, does not measure the magnitude of gene set enrichment, we also
provide an effect size for NaRnEA.

To derive an effect size for NaRnEA, we first consider the Wilcoxon signed-rank
test, another nonparametric null hypothesis significance test that returns the T-statistic.
Like the NaRnEA Normalized Enrichment Score, the T-statistic has a mean of (0) and is
approximately normally distributed under the null hypothesis of the Wilcoxon signed-rank
test. If the T-statistic is divided by its maximum possible value (i.e., the total sum of
ranks), the resulting effect size is known as the rank–biserial correlation; it has a maximum
value of (1) and minimum value of (−1). We can leverage a similar approach to calculate
the NaRnEA Proportional Enrichment Score (PES), which serves as the effect size for the
enrichment of the rth regulon in the nonparametric differential gene expression signature
computed between the test phenotype (A) and the reference phenotype (B), as follows
(Equation (24)):

PESrAB =

{ NESrAB
|max(NESrAB)|

i f NESrAB > 0
NESrAB

|min(NESrAB)|
i f NESrAB < 0

(24)

By virtue of its construction, the NaRnEA Proportional Enrichment Score has the
following properties:

1. PESrAB ∈ [−1, 1]
The Proportional Enrichment Score for the regulon gene set of the rth regulator is less
than or equal to (1) and greater than or equal to (−1).

2. E[PESrAB|Ho] = 0
The expected value of the Proportional Enrichment Score for the regulon gene set
of the rth regulator is equal to (0) when the regulon gene set of the rth regulator is
not enriched in the nonparametric differential gene expression signature computed
between the test phenotype (A) and the reference phenotype (B).

3. E[PESrAB|H+
a ] > 0

The expected value of the Proportional Enrichment Score for the regulon gene set of
the rth regulator is positive when the regulon gene set of the rth regulator is posi-
tively enriched in the nonparametric differential gene expression signature computed
between the test phenotype (A) and the reference phenotype (B).

4. E[PESrAB|H−a ] < 0
The expected value of the Proportional Enrichment Score for the regulon gene set of
the rth regulator is negative when the regulon gene set of the rth regulator is nega-
tively enriched in the nonparametric differential gene expression signature computed
between the test phenotype (A) and the reference phenotype (B).

The effect size for NaRnEA (i.e., Proportional Enrichment Score) is calculated from
the test statistic for NaRnEA (i.e., Normalized Enrichment Score) in the same way that the
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effect size for the Wilcoxon signed-rank test (i.e., rank–biserial correlation) is calculated
from the test statistic for the Wilcoxon signed-rank test (i.e., the T-statistic). Thus, the
Proportional Enrichment Score can be interpreted as type of nonparametric correlation
coefficient. A confidence interval for the NaRnEA Proportional Enrichment Score can be
estimated by applying the Fisher z-transformation to achieve approximate normality of
this effect size under the alternative hypothesis; the associated standard error of the Fisher
z-transformed NaRnEA Proportional Enrichment Score can be estimated by applying a
suitable resampling procedure such as bootstrapping members of the gene set [22].

If the two-sided p-value computed from the NaRnEA Normalized Enrichment Score
is statistically significant, we can reject the null hypothesis of gene set analysis in favor
of either the positive alternative hypothesis or the negative alternative hypothesis based
on the sign of the Normalized Enrichment Score. In a manner inspired by Subramanian
et al. [9], we can subsequently identify the members of the gene set that contribute most
significantly to the enrichment by calculating a Leading Edge Score for each gene set
member as follows (Equation (25)):

LESrgAB =

{ (
1−

∣∣AMrg
∣∣)(rgAB

)
+
(

AMrg
)(

rgABsgAB
)

i f NESrAB > 0(
1−

∣∣AMrg
∣∣)(rgAB

)
−
(

AMrg
)(

rgABsgAB
)

i f NESrAB < 0
(25)

If either the positive alternative hypothesis or the negative alternative hypothesis is
true, we would expect the gth gene to have a strongly positive Leading Edge Score with
respect to the rth regulator if the gth gene is contributing to the enrichment of the regulon
gene set of the rth regulator in the nonparametric differential gene expression signature
computed between the test phenotype (A) and the reference phenotype (B). Thus, we can
calculate the statistical significance of this Leading Edge Score for the gth gene with respect
to the rth regulator using the Maximum Entropy null model for gene set analysis as follows
(Equation (26)):

prgAB =


1
G

G
∑

k=1
I
{(

1−
∣∣AMrg

∣∣)(rkAB) +
(

AMrg
)
(rkABskAB) ≥ LESrgAB

}
i f NESrAB > 0

1
G

G
∑

k=1
I
{(

1−
∣∣AMrg

∣∣)(rkAB)−
(

AMrg
)
(rkABskAB) ≥ LESrgAB

}
i f NESrAB < 0

(26)

where I{·} is the indicator function. These post hoc, one-tailed Leading Edge p-values
may be adjusted for multiple hypothesis testing to identify those gene set members that
contribute most significantly to the gene set enrichment. Importantly, the Leading Edge
Score does not depend on the Association Weight of the gth gene with respect to the rth
regulator; this ensures that the selection of genes that belong to the leading edge of the
gene set a posteriori is not biased by any measure of gene set member importance that has
been determined a priori.

2.2. The Algorithm for the Reconstruction of Accurate Cellular Networks 3 (ARACNe3)

ARACNe3 is an updated implementation of the Algorithm for the Reconstruction of
Accurate Cellular Networks. The goal of ARACNe3 is to reverse-engineer a context-specific
transcriptional regulatory network that consists of bivariate interactions between a set of
predefined, putative transcriptional regulators and potential transcriptional targets.

ARACNe3 accepts properly normalized gene expression profiles that correspond
to independent samples from a single biological phenotype. Like previous versions of
the algorithm, ARACNe3 recommends that users reverse-engineer multiple estimates of
the transcriptional regulatory network topology and integrate these to form a consensus
network. Previously, ARACNe-AP recommended that the estimates of the transcriptional
regulatory network topology should be reverse-engineered in a decorrelated manner by
sampling from the original set of gene expression profiles with replacement (i.e., boot-
strapping). While this approach is commonly employed in the field of ensemble machine
learning (e.g., random forest bagging [23]), we find that sampling gene expression pro-
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files with replacement increases the bias and variance of the adaptive partitioning mutual
information (APMI) estimator; the increase in bias occurs when sampling with replace-
ment produces regions in the joint probability distribution with higher density due to
replicated data points, while the increase in variance occurs because these fluctuations in
the joint probability distribution occur stochastically between different iterations of the
bootstrapping procedure.

To avoid these pitfalls, ARACNe3 generates decorrelated individual networks by
sampling (1− 1

e ≈ 63.21%) of the gene expression profiles without replacement each time;
this is equal to the probability of a unique sample appearing in a single bootstrap and
thus achieves the same level of decorrelation between individual estimates of the context-
specific transcriptional regulatory network as bootstrapping without unduly increasing
the bias or variance of the APMI estimator. ARACNe3 estimates the null distribution
for mutual information by applying the APMI estimator to ~1,000,000 pairs of shuffled,
copula-transformed gene expression marginals (i.e., gene expression marginals are rank-
transformed and divided by the number of gene expression profiles plus one to ensure the
marginals are uniform). ARACNe3 then fits a piecewise null model to these null mutual
information estimates where an empirical cumulative distribution function is used for the
body of the null model up to the 95th percentile of the data and the tail of the null model
is fit analytically using robust linear regression applied to logarithmically transformed
tail probabilities past the 95th percentile with the mblm R package from CRAN [24]. The
ARACNe3 piecewise null model controls the Type I error rate for the APMI estimator more
accurately than the null model implemented in ARACNe-AP and allows ARACNe3 to
perform the first round of individual network pruning based on the control of the False
Discovery Rate (FDR), resulting in a substantial gain in power over previous versions of
the algorithm that performed the first round of individual network pruning based on the
control of the Family-Wise Error Rate (FWER).

ARACNe3 performs the second round of individual network pruning in a manner
nearly identical to previous versions of the algorithm; briefly, all three-gene cliques that
remain after the first round of individual network pruning are identified, and the weakest
edge of each three-gene clique is removed from the network. The edges that remain after
both rounds of pruning constitute an ARACNe3-inferred individual network. This proce-
dure is carried out until one of two stopping criteria is met: (1) a prespecified maximum
number of individual networks have been reverse-engineered, or (2) each putative tran-
scriptional regulator has been assigned a prespecified minimum number of unique targets.
The individual networks are then integrated to form an ARACNe3-inferred consensus
transcriptional regulatory network. The mutual information and Spearman correlation for
each putative transcriptional regulatory interaction in the ensemble network are estimated
a final time using all gene expression profiles for greater accuracy.

The ARACNe3-inferred regulon gene set for the rth transcriptional regulator is con-
structed by extracting all putative transcriptional regulatory interactions for the rth tran-
scriptional regulator from the ARACNe3-inferred consensus transcriptional regulatory
network. The Association Weight values are calculated by sorting all putative target genes
based on (1) the number of individual networks in which they appeared as targets of the
rth transcriptional regulator and (2) the final estimated mutual information between the
rth transcriptional regulator and target gene. A copula transformation is then applied to
the Association Weight values to ensure that the ARACNe3-inferred regulon gene sets are
sufficiently well balanced to meet Lindeberg’s condition and guarantee the asymptotic stan-
dard normality of the NaRnEA Normalized Enrichment Score under the null hypothesis of
gene set analysis. The Association Mode values are taken to be the Spearman correlation
coefficient between the rth transcriptional regulator and each regulon gene set member as
estimated from all gene expression profiles.

The lung adenocarcinoma (LUAD) context-specific transcriptional regulatory network
was reverse-engineered with ARACNe3 from 476 unpaired primary tumor gene expres-
sion profiles from TCGA using 2491 putative transcriptional regulators. Gene expression
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profiles were downloaded using the TCGAbiolinks R package from Bioconductor [25] and
normalized for sequencing depth prior to network reverse engineering (i.e., counts per
million). The first round of individual network pruning was carried out with a threshold
for mutual information calculated to control the FDR at 5%. Individual networks were
reverse-engineered until each putative transcriptional regulator had at least 50 unique tran-
scriptional targets; this was achieved after seven iterations. The final consensus ARACNe3-
inferred transcriptional regulatory network for LUAD consists of 2491 regulators, 19,350
targets, and 790,200 regulatory interactions.

The colon adenocarcinoma (COAD) context-specific transcriptional regulatory net-
work was reverse-engineered with ARACNe3 from 437 unpaired primary tumor gene
expression profiles from TCGA using 2491 putative transcriptional regulators. Gene ex-
pression profiles were downloaded using the TCGAbiolinks R package from Bioconductor
and normalized for sequencing depth prior to network reverse engineering (i.e., counts per
million). The first round of individual network pruning was carried out with a threshold
for mutual information calculated to control the FDR at 5%. Individual networks were
reverse-engineered until each putative transcriptional regulator had at least 50 unique tran-
scriptional targets; this was achieved after seven iterations. The final consensus ARACNe3-
inferred transcriptional regulatory network for COAD consists of 2491 regulators, 19,350
targets, and 675,373 regulatory interactions.

The head and neck squamous cell carcinoma (HNSC) context-specific transcriptional
regulatory network was reverse-engineered with ARACNe3 from 457 unpaired primary
tumor gene expression profiles from TCGA using 2491 putative transcriptional regulators.
Gene expression profiles were downloaded using the TCGAbiolinks R package from
Bioconductor and normalized for sequencing depth prior to network reverse engineering
(i.e., counts per million). The first round of individual network pruning was carried out
with a threshold for mutual information calculated to control the FDR at 5%. Individual
networks were reverse-engineered until each putative transcriptional regulator had at least
50 unique putative transcriptional targets; this was achieved after 12 iterations. The final
consensus ARACNe3-inferred transcriptional regulatory network for HNSC consists of
2491 regulators, 19,350 targets, and 812,199 regulatory interactions.

2.3. Gene Set Enrichment Analysis (GSEA)

GSEA accepts properly normalized gene expression profiles from samples representing
a test phenotype and a reference phenotype; the differential expression of each gene is then
estimated using the Signal-to-Noise Ratio (SNR). The enrichment of a gene set in this gene
expression signature is calculated with a weighted Kolmogorov–Smirnov-like statistic (i.e.,
the GSEA enrichment score). Subramanian et al. [9] recommended that the null distribution
of the GSEA enrichment score for a particular gene set should be approximated using an
empirical phenotype-based permutation procedure. Alternatively, if there are not enough
samples to generate the number of desired phenotype-based permutations, an empirical
gene-based permutation procedure may be used to approximate the null distribution of the
GSEA enrichment score.

Paired gene expression profiles from primary tumors and phenotype-matched nor-
mal tissue samples from TCGA were normalized using a blinded DESeq2 [26] variance-
stabilizing transformation prior to analysis with GSEA, which was performed as described
previously by Subramanian et al. [9] using the Java command line implementation of GSEA
from the Molecular Signatures Database (http://www.gsea-msigdb.org/gsea/downloads.
jsp (accessed on 1 October 2020)). The GSEA null model was estimated using 1000 sample-
shuffling permutations. Empirical two-sided p-values returned by GSEA were corrected
to a minimum of (1/1001), the smallest possible two-sided p-value for an empirical null
model constructed from 1000 sample-shuffling permutations [27].

http://www.gsea-msigdb.org/gsea/downloads.jsp
http://www.gsea-msigdb.org/gsea/downloads.jsp
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2.4. Analytical-Rank-Based Enrichment Analysis (aREA)

aREA accepts properly normalized gene expression profiles from samples representing
a test phenotype and a reference phenotype; the differential expression of each gene is
then estimated using Welch’s unpaired t-test [28]. The enrichment of a gene set in the
resulting differential gene expression signature is calculated using a three-tailed approach,
returning the aREA enrichment score test statistic. Alvarez et al. [4] recommended that
the null distribution of the aREA enrichment score for a particular gene set should also be
approximated using an empirical phenotype-based permutation procedure. Alternatively,
if there are not enough samples to generate the number of desired phenotype-based
permutations, an analytical approach may be used to approximate the null distribution of
the aREA enrichment score.

Paired gene expression profiles from primary tumors and phenotype-matched normal
tissue samples from TCGA were normalized using a blinded DESeq2 variance-stabilizing
transformation prior to analysis with aREA. The VIPER R package from Bioconductor
was used to run aREA, as described previously by Alvarez et al. [4]. The aREA empirical
null model was estimated using 1000 sample-shuffling permutations. Empirical two-sided
p-values returned by aREA were corrected to a minimum of (1/1001), the smallest possible
two-sided p-value for an empirical null model constructed from 1000 sample-shuffling
permutations.

2.5. Clinical Proteomic Tumor Analysis Consortium (CPTAC) Differential Protein Abundance

Log-ratio normalized protein abundance data for primary tumors and phenotype-
matched normal tissue samples were downloaded from CPTAC for the LUAD, COAD, and
HNSC cancer types (http://linkedomics.org (accessed on 1 October 2020)) [29]. Data were
loaded into R, and the differential abundance of each protein between primary tumors
and phenotype-matched normal tissue was estimated with a two-tailed Mann–Whitney
U test [30]. Gene name conversion was performed using the biomaRt R package from
Bioconductor [31].

2.6. Plotting and Visualization

All figures were created in R using the ggplot2 R package from CRAN [32].

2.7. Statistical Analysis

p-values were corrected for multiple hypothesis testing to control the FDR according
to the methodology of Benjamini and Hochberg or to control the FWER according to the
methodology of Bonferroni [33]. The 95% confidence intervals for the binomial test of
proportions were computed using the procedure of Clopper and Pearson [34].

3. Results
3.1. Evaluating the Sensitivity and Specificity of NaRnEA for Gene Set Analysis

We evaluated NaRnEA by performing gene set analysis using gene expression data
from The Cancer Genome Atlas (TCGA) for lung adenocarcinoma (LUAD), colon adeno-
carcinoma (COAD), and head and neck squamous cell carcinoma (HNSC); these cancer
types were selected because of (1) the availability of phenotype-matched primary tumor
and normal tissue RNA-Seq gene expression profiles in TCGA and (2) the availability of
phenotype-matched primary tumor and normal tissue mass spectrometry protein abun-
dance profiles in the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Crucially, the
differential protein abundance inferred from mass spectrometry data in CPTAC provides
orthogonal validation for the differential protein activity inferred from gene expression
data in TCGA. For each TCGA cohort, we separated the primary tumor gene expression
profiles into two groups based on whether each primary tumor was submitted with or
without an associated adjacent normal tissue sample; we refer to these as paired and un-
paired primary tumor gene expression profiles, respectively. From the unpaired primary
tumor gene expression profiles, we reverse-engineered a context-specific transcriptional

http://linkedomics.org
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regulatory network for each cancer type with ARACNe3 for 2491 putative transcriptional
regulatory proteins (i.e., transcription factors, co-transcription factors, epigenetic modifying
enzymes) [4]. From each context-specific ARACNe3-inferred transcriptional regulatory net-
work, we extracted all edges associated with each regulator, producing the tumor-specific
(TS) regulon gene sets.

Subsequently, we created an identical number of null model (NM) regulons by swap-
ping out the members of each TS regulon with an equal number of genes selected at random
from the complement of the corresponding TS regulon gene set. By virtue of their con-
struction, the NM regulons are biologically meaningless and therefore will not be enriched
in any differential gene expression signature. We used the gene expression profiles from
57 LUAD, 41 COAD, and 43 HNSC patient-matched primary tumor (i.e., test phenotype)
and adjacent normal tissue (i.e., reference phenotype) samples from TCGA to estimate
cohort-specific differential gene expression signatures. We then used NaRnEA to test for
the enrichment of the NM regulons in the corresponding differential gene expression sig-
natures. The number of statistically significantly enriched NM regulons was determined
from the NaRnEA two-sided p-values based on the control of the False-Positive Rate (FPR
< 0.05), False Discovery Rate (FDR < 0.05), or Family-Wise Error Rate (FWER < 0.05).

This analysis demonstrates that after correcting for multiple hypothesis testing, NaRnEA
did not find any of the NM regulons to be statistically significantly enriched in the differ-
ential gene expression signatures computed between primary tumor and adjacent normal
tissue samples from TCGA (Table 1). Crucially, this finding is demonstrated using biologi-
cally meaningless gene sets (i.e., NM regulons) and biologically meaningful differential
gene expression signatures that should not alter the complex higher-order dependencies
that Mootha et al. [8], Subramanian et al. [9], and Tamayo et al. [10] claim exist between
gene set members under the null hypothesis of gene set analysis. This finding that NaRnEA
maintains specificity while using a null model for gene set analysis that explicitly assumes
that gene set members are independent when the gene set is not enriched in the differential
gene expression signature effectively falsifies the primary claim underlying the validity of
the empirical phenotype-based permutation null model used by both GSEA and aREA.

Table 1. Proportion of NM regulons inferred to be statistically significantly enriched in differential
gene expression signatures computed between primary tumor and adjacent normal tissue samples in
TCGA LUAD, TCGA COAD, and TCGA HNSC by NaRnEA.

Type I
Error Rate

TCGA LUAD
NaRnEA-Inferred

NM Regulon
Enrichment

TCGA COAD
NaRnEA-Inferred

NM Regulon
Enrichment

TCGA HNSC
NaRnEA-Inferred

NM Regulon
Enrichment

FPR < 0.05 4.86%
[4.05%, 5.78%]

5.50%
[4.64%, 6.47%]

5.34%
[4.49%, 6.30%]

FDR < 0.05 0%
[0%, 0.15%]

0%
[0%, 0.15%]

0%
[0%, 0.15%]

FWER < 0.05 0%
[0%, 0.15%]

0%
[0%, 0.15%]

0%
[0%, 0.15%]

Having established the specificity of NaRnEA using the NM regulons, we subse-
quently evaluated the sensitivity of NaRnEA using the TS regulons. Given the substantial
differences in gene expression between malignant and benign phenotypes, we expected
that at least some fraction of the 2491 transcriptional regulatory proteins to which these
TS regulons correspond would exhibit differential activity between the primary tumor
and adjacent normal tissue samples from TCGA. However, we did not know a priori
which subset of transcriptional regulatory proteins would exhibit differential activity, since
no experimental methodology exists to measure the activity of transcriptional regulatory
proteins in a systematic, high-throughput manner in vivo. Instead, we used NaRnEA to
test for the enrichment of the TS regulons in the corresponding differential gene expression
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signatures computed between the primary tumor and adjacent normal tissue samples from
TCGA; then, we used independent mass spectrometry data from CPTAC to determine
whether the differential activity of the transcriptional regulatory proteins, inferred from
TCGA gene expression data using NaRnEA, was correlated with the differential abundance
of the transcriptional regulatory proteins, inferred from CPTAC proteomic data using a
Mann–Whitney U (MWU) test.

The statistical dependence between differential protein activity inferred by NaRnEA
from gene expression data in TCGA and differential protein abundance inferred by an
MWU test from mass spectrometry data in CPTAC can be expressed by the following
Markov Chain (Equation (27)):

NESrAB ← DRArAB ← DPArAB → MWUrAB (27)

where (NESrAB) is the NaRnEA Normalized Enrichment Score of the rth regulator be-
tween the test phenotype (A) and the reference phenotype (B), (DRArAB) is the differential
regulatory activity of the rth regulator between the test phenotype (A) and the reference
phenotype (B), (DPArAB) is the differential protein abundance of the rth regulator between
the test phenotype (A) and the reference phenotype (B), and (MWUrAB) is the result of the
MWU test inferring the differential protein abundance for the rth regulator between the
test phenotype (A) and the reference phenotype (B). It follows from the Data Processing
Inequality Theorem [19] that the mutual information between the NaRnEA-inferred differ-
ential protein activity from TCGA and the MWU-inferred differential protein abundance
from CPTAC is a lower bound on the mutual information between the NaRnEA-inferred
differential protein activity and the true differential protein activity; we expect this mutual
information to be reduced by several factors, both technical and biological. Since the activ-
ity of a transcriptional regulatory protein depends on numerous post-translational events
(e.g., nuclear localization, post-translational modification, cofactor binding, chromatin
accessibility), the activity of the regulator and the abundance of the regulator will differ,
thereby weakening the statistical dependency between random variables in the Markov
Chain. From a technical perspective, the extent to which the MWU-inferred differential
protein abundance from CPTAC agrees with the true differential protein abundance will
depend strongly on the accuracy of the mass spectrometry experimental analysis and the
accuracy of the MWU test. Similarly, the extent to which the NaRnEA-inferred differential
protein activity from TCGA agrees with the true differential protein activity will depend on
the accuracy of the gene expression profiling, the accuracy of the ARACNe3-inferred TS reg-
ulons, and the accuracy of NaRnEA as a statistical method. Taking into consideration this
myriad of confounders, any statistically significant correlation between NaRnEA-inferred
differential protein activity from TCGA- and MWU-inferred differential protein abundance
from CPTAC offers strong support for the sensitivity and biological validity of NaRnEA as
a gene set analysis method.

The number of TS regulons that were statistically significantly enriched in the differ-
ential gene expression signatures computed between primary tumor and adjacent normal
tissue samples in each of the cancer types from TCGA was determined from the NaRnEA
two-sided p-values based on the control of the False-Positive Rate (FPR < 0.05), False
Discovery Rate (FDR < 0.05), or Family-Wise Error Rate (FWER < 0.05).

This analysis demonstrates that after correcting for multiple hypothesis testing, many
of the TS regulons were inferred by NaRnEA to be statistically significantly enriched in
these differential gene expression signatures from TCGA (Table 2). To determine whether
this NaRnEA-inferred differential protein activity from TCGA agreed with MWU-inferred
differential protein abundance from CPTAC, we compared primary tumor (ntumor = 110,
97, 109) and phenotype-matched normal tissue (ntissue = 101, 100, 64) samples in the LUAD,
COAD, and HNSC cohorts from CPTAC, respectively. For each cancer type, we restricted
our analysis to the transcriptional regulatory proteins for which a TS regulon and mass
spectrometry data were available. We corrected the MWU test two-sided p-values from CP-
TAC for multiple hypothesis testing and classified each transcriptional regulatory protein
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as upregulated (UP, MWU test rank–biserial correlation > 0, FDR < 0.05), downregulated
(DOWN, MWU test rank–biserial correlation < 0, FDR < 0.05), or not statistically signifi-
cantly differentially abundant (NS, FDR ≥ 0.05). Similarly, we also corrected the NaRnEA
two-sided p-values from TCGA for multiple hypothesis testing and classified each tran-
scriptional regulatory protein as activated (UP, NaRnEA PES > 0, FDR < 0.05), deactivated
(DOWN, NaRnEA PES < 0, FDR < 0.05), or not statistically significantly differentially acti-
vated (NS, FDR ≥ 0.05). We tested for an association between NaRnEA-inferred differential
protein activity from TCGA- and MWU-inferred differential protein abundance from CP-
TAC using a three-by-three contingency table for LUAD (Table 3), COAD (Table 4), and
HNSC (Table 5). The agreement between the rows and columns was evaluated using
Kendall’s Tau-B correlation coefficient, which adjusts for tied values within each of the
three marginal categories; the statistical significance of this dependence was calculated
with a Chi-Squared Test.

Table 2. Proportion of TS regulons inferred to be statistically significantly enriched in differential
gene expression signatures computed between primary tumor and adjacent normal tissue samples in
TCGA LUAD, TCGA COAD, and TCGA HNSC by NaRnEA.

Type I
Error Rate

TCGA LUAD
NaRnEA-Inferred

TS Regulon
Enrichment

TCGA COAD
NaRnEA-Inferred

TS Regulon
Enrichment

TCGA HNSC
NaRnEA-Inferred

TS Regulon
Enrichment

FPR < 0.05 59.86%
[57.90%, 61.79%]

54.11%
[52.13%, 56.09%]

55.56%
[53.58%, 57.52%]

FDR < 0.05 58.53%
[56.57%, 60.47%]

50.62%
[48.64%, 52.60%]

52.83%
[50.85%, 54.81%]

FWER < 0.05 42.83%
[40.88%, 44.80%]

32.78%
[30.92%, 34.64%]

34.40%
[32.54%, 36.31%]

Table 3. Three-by-three contingency table comparing NaRnEA-inferred differential protein activity
from TCGA LUAD (rows) with MWU-inferred differential protein abundance from CPTAC LUAD
(columns). Each cell in the table displays the number of proteins observed (Obs), the number of
proteins expected under the null hypothesis that the rows and columns are independent (Exp), a
Z-score computed from the standardized residual between the observed and expected values in the
cell (Z), and a Bonferroni-corrected estimate of the cell-specific Family-Wise Error Rate based on the
statistical significance of the cell-specific Z-score (FWER).

TCGA LUAD vs. CPTAC LUAD
Kendall’s Tau-B = 0.3832 [0.3393, 0.4271]

Chi-Squared Test p = 7.481 × 10−51

CPTAC DOWN
(MWU Test)

CPTAC NS
(MWU Test)

CPTAC UP
(MWU Test)

TCGA UP
(NaRnEA)

Obs = 77
Exp = 154.35
Z = −9.891

FWER = 4.079 × 10−22

Obs = 91
Exp = 106.92
Z = −2.158

FWER = 0.2782

Obs = 279
Exp = 185.73

Z = 11.31
FWER = 1.037 × 10−28

TCGA NS
(NaRnEA)

Obs = 142
Exp = 159.88
Z = −2.160

FWER = 0.2768

Obs = 131
Exp = 110.74

Z = 2.850
FWER = 3.393 × 10−2

Obs = 190
Exp = 192.38
Z = −0.2241

FWER = 1.000

TCGA DOWN
(NaRnEA)

Obs = 204
Exp = 108.77

Z = 12.95
FWER = 2.179 × 10−37

Obs = 71
Exp = 75.34
Z = −0.5846

FWER = 1.000

Obs = 40
Exp = 130.89
Z = −12.67

FWER = 7.848 × 10−36
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Table 4. Three-by-three contingency table comparing NaRnEA-inferred differential protein activity
from TCGA COAD (rows) with MWU-inferred differential protein abundance from CPTAC COAD
(columns). Each cell in the table displays the number of proteins observed (Obs), the number of
proteins expected under the null hypothesis that the rows and columns are in-dependent (Exp), a
Z-score computed from the standardized residual between the observed and expected values in the
cell (Z), and a Bonferroni-corrected estimate of the cell-specific Family-Wise Error Rate based on the
statistical significance of the cell-specific Z-score (FWER).

TCGA COAD vs. CPTAC COAD
Kendall’s Tau-B = 0.2913 [0.2333, 0.3492]

Chi-Squared Test p = 1.456 × 10−18

CPTAC DOWN
(MWU Test)

CPTAC NS
(MWU Test)

CPTAC UP
(MWU Test)

TCGA UP
(NaRnEA)

Obs = 104
Exp = 147.20
Z = −6.260

FWER = 3.465 × 10−9

Obs = 45
Exp = 54.40
Z = −1.722

FWER = 0.7656

Obs = 167
Exp = 114.40

Z = 8.013
FWER = 1.006 × 10−14

TCGA NS
(NaRnEA)

Obs = 153
Exp = 149.06

Z = 0.6447
FWER = 1.000

Obs = 66
Exp = 55.09

Z = 2.179
FWER = 0.2637

Obs = 101
Exp = 115.85
Z = −2.170

FWER = 0.2701

TCGA DOWN
(NaRnEA)

Obs = 111
Exp = 71.74

Z = 7.230
FWER = 4.360 × 10−12

Obs = 25
Exp = 26.51
Z = −0.2254

FWER = 1.000

Obs = 18
Exp = 55.75
Z = −7.445

FWER = 8.757 × 10−13

Table 5. Three-by-three contingency table comparing NaRnEA-inferred differential protein activity
from TCGA HNSC (rows) with MWU-inferred differential protein abundance from CPTAC HNSC
(columns). Each cell in the table displays the number of proteins observed (Obs), the number of
proteins expected under the null hypothesis that the rows and columns are in-dependent (Exp), a
Z-score computed from the standardized residual between the observed and expected values in the
cell (Z), and a Bonferroni-corrected estimate of the cell-specific Family-Wise Error Rate based on the
statistical significance of the cell-specific Z-score (FWER).

TCGA HNSC vs. CPTAC HNSC
Kendall’s Tau-B = 0.3455 [0.2964, 0.3946]

Chi-Squared Test p = 7.481 × 10−51

CPTAC DOWN
(MWU Test)

CPTAC NS
(MWU Test)

CPTAC UP
(MWU Test)

TCGA UP
(NaRnEA)

Obs = 43
Exp = 95.2
Z = −7.980

FWER = 1.320 × 10−14

Obs = 97
Exp = 125.46
Z = −3.825

FWER = 1.179 × 10−3

Obs = 270
Exp = 189.32

Z = 10.222
FWER = 1.429 × 10−23

TCGA NS
(NaRnEA)

Obs = 95
Exp = 104.51
Z = −1.311

FWER = 1.000

Obs = 168
Exp = 137.70

Z = 4.085
FWER = 3.967 × 10−4

Obs = 187
Exp = 207.79
Z = −2.500

FWER = 0.112

TCGA DOWN
(NaRnEA)

Obs = 117
Exp = 55.27
Z = 10.221

FWER = 1.433 × 10−23

Obs = 71
Exp = 72.83
Z = −0.206

FWER = 1.000

Obs = 50
Exp = 109.90
Z = −8.983

FWER = 2.364 × 10−18

This analysis revealed that the NaRnEA-inferred differential protein activity from TCGA
was statistically significantly positively correlated with the MWU-inferred differential pro-
tein abundance from CPTAC for the LUAD (Kendall’s Tau-B = 0.3832, p = 7.481 × 10−51),
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COAD (Kendall’s Tau-B = 0.2913, p = 1.456 × 10−18), and HNSC (Kendall’s Tau-B = 0.3455,
p = 5.237 × 10−38) cancer types. These results offer biological validity for the NaRnEA-
inferred differential protein activity, further reinforcing that NaRnEA is a highly sensitive
gene set analysis method. The NaRnEA-inferred differential protein activity for all putative
transcriptional regulatory proteins can be visualized en masse by plotting the absolute value
of the Normalized Enrichment Score vs. the Proportional Enrichment Score for each TS
regulon using a modified version of a volcano plot [35] (Figures 1–3). Alternatively, one can
directly visualize the distribution of ARACNe3-inferred transcriptional regulatory targets
in the nonparametric differential gene expression signature computed between primary
tumor and adjacent normal tissue samples for a subset of the most differentially activated
proteins using a Master Regulator Analysis plot (Figures 4–6).
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regulons in the differential gene expression signatures computed between primary tumors and
phenotype-matched normal tissue samples from The Cancer Genome Atlas (TCGA) cohort for colon
adenocarcinoma (COAD).

To demonstrate the utility of the NaRnEA Leading Edge analysis, we calculated
the post hoc Leading Edge p-values for each of the TS regulons that were statistically
significantly enriched in the differential gene expression signatures computed between
the primary tumor and adjacent normal tissue samples from TCGA (FWER < 0.05). Since
there was no overlap between the gene expression profiles that were used by ARACNe3
to reverse-engineer the context-specific transcriptional regulatory networks and the gene
expression profiles that were used to estimate the differential gene expression signatures
for these cancer types, the NaRnEA Leading Edge p-values and the ARACNe3-inferred
Association Weight values would be independent under the null hypothesis that the
NaRnEA Leading Edge analysis cannot identify the gene set members that contribute
most significantly to the gene set enrichment. In support of the NaRnEA Leading Edge
analysis, this analysis revealed that the ARACNe3-inferred Association Weight values and



Entropy 2023, 25, 542 26 of 39

the NaRnEA-inferred post hoc Leading Edge p-values exhibited a statistically significantly
negative Spearman correlation (FWER < 0.05) for the vast majority of TS regulons in TCGA
LUAD (91.75%), TCGA COAD (90.56%), and TCGA HNSC (88.33%). This analysis was
restricted to those TS regulons that NaRnEA inferred were statistically significantly enriched
in the differential gene expression signatures computed between the corresponding primary
tumor and adjacent normal tissue samples from TCGA (FWER < 0.05) since post hoc
Leading Edge analysis is only interpretable for these gene sets.
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Figure 4. Master Regulator Analysis plot for the NaRnEA-inferred enrichment of the TS-regulons
in the differential gene expression signatures computed between primary tumors and phenotype-
matched normal tissue samples from The Cancer Genome Atlas (TCGA) cohort for lung adenocarci-
noma (LUAD). The 50 most positively enriched and 50 most negatively enriched TS-regulons are
selected for visualization based on the NaRnEA-inferred Proportional Enrichment Score (PES).

3.2. Identifying Systematic Biases in Phenotype-Based Permutation Null Models for Gene
Set Enrichment

To compare NaRnEA with GSEA and aREA, we first applied these alternative gene
set analysis methods to test for the enrichment of the NM regulons in the gene expression
data from TCGA for LUAD, COAD, and HNSC. The number of statistically significantly
enriched NM regulons was determined for GSEA (Table 6) and aREA (Table 7) from the
resulting two-sided p-values; statistical significance was established based on the control
of the False-Positive Rate (FPR < 0.05), False Discovery Rate (FDR < 0.05), or Family-Wise
Error Rate (FWER < 0.05).
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Figure 5. Master Regulator Analysis plot for the NaRnEA-inferred enrichment of the TS-regulons
in the differential gene expression signatures computed between primary tumors and phenotype-
matched normal tissue samples from The Cancer Genome Atlas (TCGA) cohort for colon adenocarci-
noma (COAD). The 50 most positively enriched and 50 most negatively enriched TS-regulons are
selected for visualization based on the NaRnEA-inferred Proportional Enrichment Score (PES).

This analysis demonstrates that, after correcting for multiple hypothesis testing, nei-
ther GSEA nor aREA found any of the NM regulons to be statistically significantly enriched
in the differential gene expression signatures computed between primary tumor and adja-
cent normal tissue samples from TCGA; thus, we conclude that both methods adequately
control the Type I error rate of gene set analysis. We subsequently applied GSEA and
aREA to test for the enrichment of the TS regulons in the gene expression data from
TCGA for LUAD, COAD, and HNSC. The number of statistically significantly enriched
TS regulons was determined for GSEA (Table 8) and aREA (Table 9) from the resulting
two-sided p-values; statistical significance was established based on the control of the
False-Positive Rate (FPR < 0.05), False Discovery Rate (FDR < 0.05), or Family-Wise Error
Rate (FWER < 0.05).
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Figure 6. Master Regulator Analysis plot for the NaRnEA-inferred enrichment of the TS-regulons
in the differential gene expression signatures computed between primary tumors and phenotype-
matched normal tissue samples from The Cancer Genome Atlas (TCGA) cohort for head and neck
squamous cell carcinoma (HNSC). The 50 most positively enriched and 50 most negatively enriched
TS-regulons are selected for visualization based on the NaRnEA-inferred Proportional Enrichment
Score (PES).

This analysis demonstrates that, after correcting for multiple hypothesis testing, nei-
ther GSEA nor aREA found any of the TS regulons to be statistically significantly enriched
in the differential gene expression signatures computed between primary tumor and ad-
jacent normal tissue samples from TCGA. Given that the NaRnEA-inferred differential
protein activity from TCGA was significantly correlated with MWU-inferred differential
protein abundance from CPTAC, we conclude that NaRnEA is significantly more sensitive
than both GSEA and aREA; furthermore, the fact that NaRnEA did not identify any statisti-
cally significantly enriched NM regulons after correcting for multiple hypothesis testing
demonstrates that this gain in sensitivity is achieved without loss of specificity.
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Table 6. Proportion of NM regulons inferred to be statistically significantly enriched in differential
gene expression signatures computed between primary tumor and adjacent normal tissue samples in
TCGA LUAD, TCGA COAD, and TCGA HNSC by GSEA.

Type I
Error Rate

TCGA LUAD
GSEA-Inferred
NM Regulon
Enrichment

TCGA COAD
GSEA-Inferred
NM Regulon
Enrichment

TCGA HNSC
GSEA-Inferred
NM Regulon
Enrichment

FPR < 0.05 10.88%
[9.58%, 12.17%]

13.01%
[11.71%, 14.39%]

1.49%
[1.05%, 2.04%]

FDR < 0.05 0%
[0%, 0.15%]

0%
[0%, 0.15%]

0%
[0%, 0.15%]

FWER < 0.05 0%
[0%, 0.15%]

0%
[0%, 0.15%]

0%
[0%, 0.15%]

Table 7. Proportion of NM regulons inferred to be statistically significantly enriched in differential
gene expression signatures computed between primary tumor and adjacent normal tissue samples in
TCGA LUAD, TCGA COAD, and TCGA HNSC by aREA.

Type I
Error Rate

TCGA LUAD
aREA-Inferred
NM Regulon
Enrichment

TCGA COAD
aREA-Inferred
NM Regulon
Enrichment

TCGA HNSC
aREA-Inferred
NM Regulon
Enrichment

FPR < 0.05 3.41%
[2.73%, 4.20%]

4.18%
[3.42%, 5.04%]

5.14%
[4.30%, 6.08%]

FDR < 0.05 0%
[0%, 0.15%]

0%
[0%, 0.15%]

0%
[0%, 0.15%]

FWER < 0.05 0%
[0%, 0.15%]

0%
[0%, 0.15%]

0%
[0%, 0.15%]

Table 8. Proportion of TS regulons inferred to be statistically significantly enriched in differential
gene expression signatures computed between primary tumor and adjacent normal tissue samples in
TCGA LUAD, TCGA COAD, and TCGA HNSC by GSEA.

Type I
Error Rate

TCGA LUAD
GSEA-Inferred

TS Regulon
Enrichment

TCGA COAD
GSEA-Inferred

TS Regulon
Enrichment

TCGA HNSC
GSEA-Inferred

TS Regulon
Enrichment

FPR < 0.05 7.51%
[6.50%, 8.61%]

6.62%
[5.68%, 7.67%]

5.26%
[4.42%, 6.21%]

FDR < 0.05 0%
[0%, 0.15%]

0%
[0%, 0.15%]

0%
[0%, 0.15%]

FWER < 0.05 0%
[0%, 0.15%]

0%
[0%, 0.15%]

0%
[0%, 0.15%]

The low sensitivity of GSEA and aREA, as evidenced by their inability to identify sta-
tistically significantly enriched TS regulons after correcting for multiple hypothesis testing,
can be attributed directly to their reliance on the empirical phenotype-based permutation
null model, which we have shown to be unnecessary for achieving adequate control of
the gene set analysis Type I error rate. In order to determine why the use of the empirical
phenotype-based permutation null model decreases the sensitivity of these methods, we
applied this procedure to the gene expression data from TCGA while determining how
many primary tumor and adjacent normal tissue samples were distributed to the null test
phenotype and null reference phenotype during each permutation. Then, for each of the
sample-shuffling permutations, we estimated a null differential gene expression signature
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between the null test phenotype samples and the null reference phenotype samples using
an MWU test; we repeated this process 1000 times for each cancer type. We then tested for
the enrichment of the ARACNe3-inferred TS regulons in each of these null differential gene
expression signatures with NaRnEA.

Table 9. Proportion of TS regulons inferred to be statistically significantly enriched in differential
gene expression signatures computed between primary tumor and adjacent normal tissue samples in
TCGA LUAD, TCGA COAD, and TCGA HNSC by aREA.

Type I
Error Rate

TCGA LUAD
aREA-Inferred

TS Regulon
Enrichment

TCGA COAD
aREA-Inferred

TS Regulon
Enrichment

TCGA HNSC
aREA-Inferred

TS Regulon
Enrichment

FPR < 0.05 10.88%
[9.68%, 12.17%]

3.49%
[2.81%, 4.29%]

6.62%
[5.68%, 7.67%]

FDR < 0.05 0%
[0%, 0.15%]

0%
[0%, 0.15%]

0%
[0%, 0.15%]

FWER < 0.05 0%
[0%, 0.15%]

0%
[0%, 0.15%]

0%
[0%, 0.15%]

After correcting the resulting NaRnEA two-sided p-values for multiple hypothesis
testing (FWER < 0.05), we found that some of the TS regulons were statistically significantly
enriched in each of the null differential gene expression signatures computed from TCGA
LUAD (minimum = 112, median = 568, maximum = 1053), TCGA COAD (minimum = 65,
median = 532, maximum = 1041), and TCGA HNSC (minimum = 78, median = 489,
maximum = 916). Since we established that NaRnEA adequately controls the Type I
error rate of gene set analysis, we can conclude that the enrichment of the TS regulons
was not an artifact; rather, this finding suggests that each of the null differential gene
expression signatures exhibited some degree of correlation with the original differential
gene expression signature.

To test for this, we calculated the Spearman correlation between each null differential
gene expression signature and the original differential gene expression signature. After
correcting the two-sided p-values for multiple hypothesis testing (FWER < 0.05), we found
that nearly all of the null differential gene expression signatures from TCGA LUAD (94.7%),
TCGA COAD (95%), and TCGA HNSC (93.2%) were statistically significantly correlated
with the original differential gene expression signature from the same cancer type. Fur-
thermore, we found that this correlation between each null differential gene expression
signature and the original differential gene expression signature was strongly associated
with the degree of imbalance between the corresponding null phenotypes; for example,
when the null test phenotype contained a greater number of primary tumor samples than
adjacent normal tissue samples, the resulting null differential gene expression signature
was more likely to be positively correlated with the original differential gene expression
signature (Figures 7–9).

This analysis provides an immediate explanation for the reduced sensitivity of GSEA
and aREA: the empirical phenotype-based permutation null models leveraged by each of
these methods are contaminated with enrichment test statistics that do not strictly follow the
null distribution due to the enrichment of the gene sets in a portion of the null differential
gene expression signatures. Thus, in addition to demonstrating that NaRnEA adequately
controls the Type I error rate of gene set analysis with an analytical null model derived
using the information theoretic Principle of Maximum Entropy, we have also shown that
systematic biases in the empirical phenotype-based permutation null model leveraged
by GSEA and aREA can fully explain the substantial difference in sensitivity between
these methods.
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Figure 7. Statistically significant Spearman correlation between null differential gene expression
signatures (GES) and the original differential gene expression signature (GES) computed between
primary tumors and phenotype-matched normal tissue samples from The Cancer Genome Atlas
(TCGA) cohort for lung adenocarcinoma (LUAD) are associated with, but not fully explained by, null
phenotype sample imbalance.

3.3. Examining the Alternative Null Model for GSEA

Having established that the empirical phenotype-based permutation null model for
gene set analysis is both systematically flawed and unnecessary to maintain adequate
control of the Type I error rate, we next examined the alternative null model for GSEA that
Subramanian et al. [9] described as follows:

“ . . . [GSEA] can be applied to ranked gene lists arising in other settings. Genes may be
ranked based on the differences seen in a small data set, with too few samples to allow
rigorous evaluation of significance levels by permuting the class labels. In these cases, a P
value can be estimated by permuting the genes, with the result that genes are randomly
assigned to the sets while maintaining their size. This approach is not strictly accurate:
because it ignores gene-gene correlations, it will overestimate the significance levels and
may lead to false positives. Nonetheless, it can be useful for hypothesis generation”.
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Figure 8. Statistically significant Spearman correlation between null differential gene expression
signatures (GES) and the original differential gene expression signature (GES) computed between
primary tumors and phenotype-matched normal tissue samples from The Cancer Genome Atlas
(TCGA) cohort for colon adenocarcinoma (COAD) are associated with, but not fully explained by,
null phenotype sample imbalance.

Tamayo et al. [10] formally describe the GSEA enrichment score as the following
weighted variation of the two-sample Kolmogorov–Smirnov statistic (Equation (28)):

SGSEA
k = supi=1,...,N

(
Fgk

i − Fgk
i

)
Fgk

i = ∑i
h=1|sh |α Ih

∑N
h=1|sh |α Ih

Fgk
i = ∑i

h=1(1−Ih)
(N−nk)

Ih =

{
1 i f h ∈ gk
0 i f h ∈ gk

(28)

where (SGSEA
k ) is the GSEA enrichment score test statistic for the kth gene set, (sup) is

the supremum operator, (Fgk
i ) is the component of the running sum statistic computed at

the ith ranked gene in the gene expression signature that corresponds with the gene set,
(Fgk

i ) is the component of the running sum statistic computed at the ith ranked gene in
the gene expression signature that corresponds with the gene set’s complement, (Ih) is an
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indicator variable that identifies whether the hth ranked gene belongs to the gene set or the
gene set’s complement, (sh) is the differential gene expression signature value of the hth
ranked gene, (N) is the total number of genes in the differential gene expression signature,
and (nk) is the number of genes in the kth gene set. The exponential (α) determines the
extent to which GSEA is sensitive to the magnitude of differential gene expression for
each gene in the gene set when computing the enrichment score test statistic. Mootha
et al. [8] originally recommended setting (α) to zero, which renders the GSEA enrichment
score equivalent to the two-sample Kolmogorov–Smirnov test statistic, while Subramanian
et al. [9] recommended setting (α) to one; they set (α) to one for GSEA based on the following
observation:

“In the original implementation, the running-sum statistic used equal weights at every
step, which yielded high scores for sets clustered near the middle of the ranked list . . .
These sets do not represent biologically relevant correlation with the phenotype. We
addressed this issue by weighting the steps according to each gene’s correlation with a
phenotype”.
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Figure 9. Statistically significant Spearman correlation between null differential gene expression
signatures (GES) and the original differential gene expression signature (GES) computed between
primary tumors and phenotype-matched normal tissue samples from The Cancer Genome Atlas
(TCGA) cohort for head and neck squamous cell carcinoma (HNSC) are associated with, but not fully
explained by, null phenotype sample imbalance.
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The behavior of GSEA, as implemented by Mootha et al. [8] with (α) set to zero, follows
directly from the statistical formulation of the two-sample Kolmogorov–Smirnov test, which
was created to test the null hypothesis that two sets of observations are independently and
identically distributed from the same sampling distribution. By virtue of its design, the two-
sample Kolmogorov–Smirnov test is sensitive to any sufficiently large deviation between
the two sample-specific empirical cumulative distribution functions regardless of where in
the set of observations that deviation occurs. Thus, the alternative hypothesis for the two-
sample Kolmogorov–Smirnov test is far too broad for gene set analysis if one is interested in
rejecting the null hypothesis only when the gene set members are enriched at the extremes
of the differential gene expression signature. Subramanian et al. [9] attempted to modify
GSEA by setting (α) equal to one; however, we can demonstrate that this pathological
behavior is still present when the alternative empirical gene-based permutation null model
for GSEA is used.

We constructed a new group of gene sets, which we refer to as totally null (TN) reg-
ulons, by replacing the members of each TS regulon with genes drawn at random from
the set of genes for which the MWU differential gene expression two-sided p-value was
greater than 0.50. Thus, these TN regulons consisted solely of genes that were not enriched
at the extremes of the corresponding differential gene expression signature; therefore, an
accurate gene set analysis method should not identify any statistically significant enrich-
ment for these gene sets. We used NaRnEA (Table 10) and GSEA (Table 11) to test for the
enrichment of the TN regulons in the corresponding differential gene expression signatures
computed between the primary tumor and adjacent normal tissue samples from TCGA;
here, we used the alternative empirical gene-based permutation null model for GSEA.
The number of statistically significantly enriched TN regulons was determined from the
resulting two-sided p-values; statistical significance was established based on the control
of the False-Positive Rate (FPR < 0.05), False Discovery Rate (FDR < 0.05), or Family-Wise
Error Rate (FWER < 0.05).

Table 10. Proportion of TN regulons inferred to be statistically significantly enriched in differential
gene expression signatures computed between primary tumor and adjacent normal tissue samples in
TCGA LUAD, TCGA COAD, and TCGA HNSC by NaRnEA.

Type I
Error Rate

TCGA LUAD
NaRnEA-Inferred

TN Regulon
Enrichment

TCGA COAD
NaRnEA-Inferred

TN Regulon
Enrichment

TCGA HNSC
NaRnEA-Inferred

TN Regulon
Enrichment

FPR < 0.05 0%
[0%, 0.15%]

0%
[0%, 0.15%]

0%
[0%, 0.15%]

FDR < 0.05 0%
[0%, 0.15%]

0%
[0%, 0.15%]

0%
[0%, 0.15%]

FWER < 0.05 0%
[0%, 0.15%]

0%
[0%, 0.15%]

0%
[0%, 0.15%]

We determined that, after correcting for multiple hypothesis testing to control the
False Discovery Rate, GSEA found 100% of the TN regulons to be statistically significantly
enriched in the differential gene expression signatures computed between primary tumor
and adjacent normal tissue samples from TCGA. In contrast, even without correcting for
multiple hypothesis testing, NaRnEA did not find any of the TN regulons to be statistically
significantly enriched in the differential gene expression signatures. These results falsify the
secondary claim made by Subramanian et al. [9] and Tamayo et al. [10] that the weighted
two-sample Kolmogorov–Smirnov test statistic prevents GSEA from detecting statistically
significant enrichment for gene sets whose members exhibit biologically meaningless non-
uniform distribution in the differential gene expression signature. Taken together, these
findings demonstrate that GSEA exhibits significant and irreparable flaws that render
its use as a gene set analysis method inappropriate regardless of whether the original
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empirical phenotype-based permutation null model or the alternative empirical gene-based
permutation null model is employed.

Table 11. Proportion of TN regulons inferred to be statistically significantly enriched in differential
gene expression signatures computed between primary tumor and adjacent normal tissue samples in
TCGA LUAD, TCGA COAD, and TCGA HNSC by GSEA using the alternative empirical gene-based
permutation null model.

Type I
Error Rate

TCGA LUAD
GSEA-Inferred

TN Regulon
Enrichment

TCGA COAD
GSEA-Inferred

TN Regulon
Enrichment

TCGA HNSC
GSEA-Inferred

TN Regulon
Enrichment

FPR < 0.05 100%
[99.85%, 100%]

100%
[99.85%, 100%]

100%
[99.85%, 100%]

FDR < 0.05 100%
[99.85%, 100%]

100%
[99.85%, 100%]

100%
[99.85%, 100%]

FWER < 0.05 0%
[0%, 0.15%]

0%
[0%, 0.15%]

0%
[0%, 0.15%]

3.4. Examining the Alternative Null Model for aREA

We also examined the alternative null model for aREA, which is described by Al-
varez et al. [4] as follows:

“ . . . the statistical significance for the enrichment score is estimated by comparison to a
null model generated by permuting the samples uniformly at random or by an analytic
approach equivalent to shuffle the genes in the signatures uniformly at random . . . Gene
shuffling can be approximated analytically as follows: according to the central limit
theorem, the mean of a sufficiently large number of independent random variables will
be approximately normally distributed. The enrichment score of our null hypothesis
fulfill this condition, and we ensure a mean of zero and variance equal to one for the
enrichment score under the null hypothesis by applying a quantile transformation based
on the normal distribution to the rank-transformed gene expression signature before
computing the enrichment score”.

Alvarez et al. [4] invoked the Central Limit Theorem to claim that the aREA test
statistic would be normally distributed with a mean of zero and a variance of one under the
null hypothesis of gene set analysis. We directly tested this claim by permuting the values
of the original differential gene expression signature to create 1000 shuffled differential
gene expression signatures for each cancer type from TCGA. By virtue of this shuffling
procedure, none of the TS regulons would be enriched in these shuffled differential gene
expression signatures. In order to test the claim made by Alvarez et al. [4] that the aREA test
statistics would be normally distributed with a mean of zero and a variance of one under
the null hypothesis of gene set analysis, we used aREA to test for the enrichment of each
TS regulon in each shuffled differential gene expression signature, producing 1000 aREA
test statistics for each TS regulon in each cancer type from TCGA. We then tested the null
hypothesis that the aREA test statistics for each TS regulon followed a standard normal
distribution as Alvarez et al. [4] claim using a one-sample Kolmogorov–Smirnov test.

We found that, after correcting the resulting p-values for multiple hypothesis testing
(FWER < 0.05), we rejected the null hypothesis that the aREA test statistics were normally
distributed with a mean of zero and a variance of one under the null hypothesis of gene set
analysis for 100% of the TS regulons in TCGA LUAD, TCGA COAD, and TCGA HNSC. This
analysis demonstrates that the alternative null model provided for aREA does not behave
in the manner described by Alvarez et al. [4]; unfortunately, no formal analysis could
be conducted to identify the source of this discrepancy as the alternative null model for
aREA was published without accompanying proof to provide its mathematical justification.
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Thus, we conclude that aREA also exhibits significant flaws as a gene set analysis method
regardless of whether the original empirical phenotype-based permutation null model
or the alternative analytical null model is employed. When we repeat this analysis with
NaRnEA instead of aREA, we do not reject the null hypothesis for any of the TS regulons
after correcting for multiple hypothesis testing (FWER < 0.05). Thus, while these results
effectively falsify the alternative analytical null model for aREA, they demonstrate that the
NaRnEA analytical null model behaves precisely as expected.

4. Discussion

It is widely appreciated that the rigor and reproducibility of scientific research depends
on the use of computational and experimental methods that are sufficiently sensitive to
make meaningful inferences while maintaining adequate control of the Type I error rate to
reduce spurious findings [36]. Gene set analysis methods are being increasingly applied for
hypothesis generation [37], precision oncology [15], systems pharmacology [38], analysis
of single-cell transcriptomic data [39,40], and biomarker development [41]. Here, we
demonstrate that NaRnEA significantly outperforms both GSEA and aREA for the purpose
of gene set analysis in three independent cancer types; despite the widespread use of both
competing methods, NaRnEA is the only method capable of consistently distinguishing
between biologically coherent gene sets and gene sets constructed at random in these
cohorts. Furthermore, the substantial agreement between NaRnEA-inferred differential
protein activity in TCGA cohorts and MWU-inferred differential protein abundance in
phenotype-matched CPTAC cohorts confirms that gene set enrichment inferred by NaRnEA
cannot be explained away as erroneous false positives. Indeed, the specificity of NaRnEA
is established by the fact that NaRnEA did not infer statistically significant enrichment for
any of the NM regulons between primary tumor and adjacent normal tissue samples in
TCGA after correcting for multiple hypothesis testing. We find that the low sensitivity of
both GSEA and aREA can be attributed to their reliance on an empirical phenotype-based
permutation null model that we show to be overwhelmingly confounded by genuine gene
set enrichment due to persistent associations between null gene expression signatures
and the original gene expression signatures. Finally, we show that the alternative null
models for GSEA and aREA are statistically invalid due to similarity with the two-sample
Kolmogorov–Smirnov test and an inaccurate mathematical framework, respectively. Future
work will aim to demonstrate the application of NaRnEA to a wider range of malignant
and non-malignant phenotypes of interest where either orthogonal data are available for
validation (i.e., CPTAC protein abundance or similar) or in vitro follow-up experiments
can validate potentially novel findings. Additionally, we aim to adapt this algorithm for the
analysis of single-cell gene expression profiles. To encourage immediate use by members
of the scientific community, both NaRnEA and ARACNe3 are freely available for research
use on GitHub (https://github.com/califano-lab/NaRnEA (accessed on 3 March 2023)).
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