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Abstract: Utilizing low-rank prior data in compressed sensing (CS) schemes for Landsat 8–9 remote
sensing images (RSIs) has recently received widespread attention. Nevertheless, most CS algorithms
focus on the sparsity of an RSI and ignore its low-rank (LR) nature. Therefore, this paper proposes
a new CS reconstruction algorithm for Landsat 8–9 remote sensing images based on a non-local
optimization framework (NLOF) that is combined with non-convex Laplace functions (NCLF) used
for the low-rank approximation (LAA). Since the developed algorithm is based on an approximate
low-rank model of the Laplace function, it can adaptively assign different weights to different
singular values. Moreover, exploiting the structural sparsity (SS) and low-rank (LR) between the
image patches enables the restored image to obtain better CS reconstruction results of Landsat 8–9
RSI than the existing models. For the proposed scheme, first, a CS reconstruction model is proposed
using the non-local low-rank regularization (NLLRR) and variational framework. Then, the image
patch grouping and Laplace function are used as regularization/penalty terms to constrain the CS
reconstruction model. Finally, to effectively solve the rank minimization problem, the alternating
direction multiplier method (ADMM) is used to solve the model. Extensive numerical experimental
results demonstrate that the non-local variational framework (NLVF) combined with the low-rank
approximate regularization (LRAR) method of non-convex Laplace function (NCLF) can obtain better
reconstruction results than the more advanced image CS reconstruction algorithms. At the same time,
the model preserves the details of Landsat 8–9 RSIs and the boundaries of the transition areas.

Keywords: compressed sensing (CS); non-local (NL); Laplace function (LF); ADMM; Landsat 8–9
remote sensing images (LRSIs)

1. Introduction

The transmission, reception, and storage of Landsat 8–9 remote sensing images (RSIs)
is a critical practical challenge in remote sensing (RS). Therefore, the collection time and
processing of massive Landsat 8–9 images have become hot research topics. Compressed
sensing (CS) aims to sample/compress the original image using part of the image data (or
the corresponding frequency-domain data) and then reconstruct the sampled/compressed
data at the terminal by obtaining the reconstructed image [1] close to or beyond the
quality of the original data. Generally, CS theory exploits the sparsity and low-rank prior
information of the original image to compress the RSI through a data compression method
and to recover and reconstruct the compressed data when required.
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Nevertheless, the Landsat 8–9 RSIs involve huge real matrices, and this huge data
volume (the compressed file size of each group of Landsat 8–9 RSIs exceeds 1GB) imposes
a long data transmission time [2], while many practical applications require fast remote
sensing data acquisition, limiting the practical application of Landsat 8–9 RSIs. For example,
fast data acquisition enables timely assessment of the losses caused by natural disasters,
and real-time monitoring of ground objects also depends on the rapid transmission and
analysis of RSIs. Therefore, CS technology has prominent practical applications in recon-
structing Landsat 8–9 RSIs. At the same time, the compression perception model of an RSI
poses a great practical application potential in improving the energy efficiency of imaging
sensors [3]. Given that the proportion of random measuring signals acquired by CS in
the image is relatively low (typically 10–25%), measuring signal transmission [4] has a
significant advantage in time and space storage.

The traditional CS model usually employs a regularization model, compresses the orig-
inal image using the frequency-domain random sampling (FDRS) method, and then obtains
the compressed data [5] with sparsity. Consequently, many image CS reconstruction models
are built on practical problem situations. For instance, the traditional CS reconstruction
method can be effectively solved using the 11-norm of the sampled signal, i.e., the sparsity
of the original signal, and the low-rank function replacement (LRFR) method [6], which
effectively solves the CS reconstruction problem. In recent years, the concept of sparsity has
been developed into various complex forms, including model-based or Bayesian, non-local
sparsity, and structural sparse/group sparsity [7]. Thus, CS data can be reconstructed by
exploiting the high correlation between the sparse coefficient, while some experimental
studies have demonstrated that the non-convex optimization method (NCOM) based on
CS has better image reconstruction results. Indeed, NCOM-based reconstructed images
are often higher in visual effect and numerical accuracy than the convex optimization
method (COM) [8,9]. To exploit the high correlation between the sparse coefficient and
non-convex optimization and find a solution algorithm with relatively high computational
efficiency, [10] introduced a method for solving the nuclear norm low-rank approximation
model (LRAM) using the SVD algorithm, which yields an easily solved convex optimization
problem (COP) [10] by minimizing the sum of all singular values in the image. However,
each singular value of the optimization problem in image reconstruction has its practical
physical meaning, and therefore, each singular value in any real problem should be treated
differently [11]. However, all the singular values have been averaged in the nuclear norm
LRAM, limiting the algorithm’s ability and flexibility.

Spurred by the findings presented above, we suggest a CS reconstruction model for
the Landsat 8–9 RSI based on low-rank approximation (LRA) of non-local associative non-
convex Laplace functions (NL-NCLF), which adaptively assign weights to different singular
values [12]. Extensive experimental studies demonstrate that the reconstruction results of
NCOMs are more accurate than COMs, but the algorithms are slightly complex and impose
a greater computational complexity [13]. In the ongoing big data era, overemphasizing the
algorithm’s computational time is no longer an important target; therefore, NCOMs have
good practical value and prospects. Hence, the core priority is the model to make full use
of the prior information of the original signal (such as sparsity and low-rank) in the CS
theory of Landsat 8–9 RSIs [14,15].

Generally, the image patches of Landsat 8–9 RSIs present a strong sparsity and have
an approximate structural low rank [16]. Therefore, due to the low rank of the structural
information in the Landsat 8–9 RSIs, we employ the SVD method to solve the CS model and
thus obtain better CS reconstruction results [17]. Moreover, for the image reconstruction,
we utilize the regularization model of the low-rank approximate penalty of the non-local
combined non-convex Laplace function, which is based on structural self-similarity in the
total variation framework [8,9,12]. Our model is a non-convex CS reconstruction model
involving a regularization/penalty constraint, low-rank approximation, and image patch
grouping [18]. Substituting the low-rank regularization with a non-local and Laplace func-
tion enhances the CS reconstruction accuracy compared to common low-rank substitution
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methods, e.g., nuclear norm, with extensive theoretical analysis proving our algorithm’s
effectiveness and stability.

2. Background

In the CS theory of Landsat 8–9 RSIs, random linear measurement/sampling is con-
ducted in the corresponding Fourier transform domain (FTD) of the RSIs x, and then
the sampling data y of the Fourier frequency domain (FFD) is obtained. The original
Landsat 8–9 RSIs x are recovered through image reconstruction with the sampling data y.
In general, the real Landsat 8–9 RSIs are not absolutely sparse but approximately sparse
under a certain transformation domain, i.e., they can be transformed into a compressible
signal. The sparsity or compressibility of image signals is an important premise and the
theoretical basis for CS. Hence, a remote sensing image x can be represented by a linear
combination of a set of bases Ψ = {ηi}, i = 1, 2, · · · , n, where ηi ∈ CN are the sparse bases,
i.e., x = Ψα. Specifically, y can be expressed as y = Φx = ΦΨα, where x ∈ CN , y ∈ CM

and Φ ∈ CM×N is the measurement/sampling matrix, M < N. Since M < N, matrix Φ
is not a full rank, i.e., multiple reconstruction results x ∈ CN can be generated using the
same measurement y. Generally, if the measurement matrix Φ satisfies the limited isometry
property (RIP) condition [12,16], CS theory can guarantee the perfect reconstruction of
signal x by utilizing the sparse (or compressed) signal y. Prior information about the image
x must be known to reconstruct a unique perfect image x from the measured data y. The
traditional CS method is to recover remote sensing images by using the sparsity of images
x, and to satisfy y = Φx, the following constraint optimization problem is employed:

x = arg min
x
‖α‖0

s.t. y = ΦΨα,
(1)

where ‖�‖0 is a pseudo-norm counting the number of non-zero elements in α. However, min-
imizing the norm ‖�‖0 is an NP-hard problem. Therefore, we recover the RSI signal from the
random measurement/sampling y by using the convex norm l1 instead of the non-convex
norm l0 and then solve the norm l1 optimization problem. The optimal model obtained by
substituting norm l1 for the norm l0 is a convex optimization model, and therefore multiple
solution algorithms such as an iterative contraction algorithm (ICA) [19], Bregman splitting
algorithm (BSA) [20], and alternating direction multiplier method (ADMM) [21,22] can
effectively solve this problem. Recent studies have demonstrated that replacing the norm
l1 with a non-convex norm achieves better CS reconstruction results [16].

By modeling the high correlation between sparse coefficients, the uncertainty of un-
known signals can be significantly reduced and afford a more accurate CS reconstruction.
The structural sparsity of Landsat 8–9 RSI is particularly important in establishing the CS
model for RSIs. Usually, image structure information presents a rich repeatability, so the
non-local self-similarity (NLSS) principle of an image structure can be obtained by combin-
ing the non-local method [14] and the simultaneous sparse coding (SSC) mechanism [23].
One of the key issues in the CS model is the minimization of the rank function. Because the
kernel norm is the minimum convex envelope of the rank function, the rank function in the
traditional CS model is often relaxed to the kernel norm (the sum of all singular values of
the matrix). However, many works in the literature have proven that using kernel norm
to approximate the rank of a matrix has many weaknesses, especially when the matrix
has large singular values, the inaccuracy of this approximation is particularly obvious.
Therefore, it is particularly necessary to study how to construct a more accurate rank ap-
proximation function (RAF) and establish a corresponding low-rank matrix (LRM) recovery
model based on it. In recent years, the non-convex function approximation (NNFA) of the
LRM’s rank function has widely concerned many scholars. A large number of experimental
results have proven that these non-convex rank approximation functions are more accurate
than the convex function approximation of the kernel norm. The approximate rank function
method of the non-convex function (NCF) can not only avoid the NP-hard problem but also
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provide the optimal solution. The non-convex function replacement (NCFR) can usually
provide more scalable solutions. The comparison between the non-convex Laplace replace-
ment function (NCLRF) and the kernel norm replacement function (KNRF) under standard
conditions shows that the NCLRF model can better approximate the rank function than
the kernel norm model when solving the rank minimization problem. Therefore, it is very
meaningful to explore the non-convex regularized low-rank approximation (NCRLRA)
model, establish a fast and effective solution algorithm, and apply it to practical problems
such as the compressed sensing of a remote sensing image (RSI). This paper suggests a
variational framework for CS reconstruction using non-local structural sparsity (NLSS) and
non-convex low-rank approximation (NCLRA) [23].

3. Regularized CS Reconstruction Model Based on Non-Local and Non-Convex
Approximate Low-Rank Functions

This section presents a new regularized CS reconstruction model with non-local and
an NCLRA, comprising a patch grouping to describe the self-similarity of the images and an
NCLRA for low-rank enhancement. Our method assumes that the non-local self-similarity
in Landsat 8–9 RSIs is very rich. This assumption implies that for each sample image patch
x̂i (
√

n×
√

n) sample patch at position (i), a sufficient number of similar image patches can
be found by performing a k-nearest neighbor (KNN) search algorithm in a local window,
e.g., 100× 100, when x̂i ∈ Cn, namely:

Gi =
{

ij|
∥∥x̂i − x̂i,j

∥∥ < T
}

, (2)

where T is a predefined threshold and Gi represents the set of locations correspond-
ing to the similar image patch. After the patch is grouped, we obtain the data matrix
Xi =

[
xi0 , xi1 , . . . , xim−1

]
, Xi ∈ Cn×m. For each sample image patch xi, each column of Xi

represents a patch similar to xi (including xi). Since these patches have similar structures,
the data matrix Xi formed is low-rank.

In practical applications, Xi may be interfered with by noise, thus deviating from
the ideal low-rank constraint (LRC). Thus, a better representation of the data matrix Xi
is Xi = Li + Wi, where Li and Wi represent the low-rank matrix (LRM) and the Gaussian
noise matrix (GNM), respectively. By solving the optimization problem in Equation (3), the
LRM is reconstructed:

Li = argmin rank
Li

(Li)

s.t. ‖Xi − Li‖2
F ≤ σ2

w,
(3)

where ‖�‖2
F represents the Frobenius norm and σ2

w is the variance of additive Gaussian
noise. Although the low-rank convex substitution method has good theoretical guarantees,
the optimization method of non-convex substitution for the rank minimization problem
may obtain better recovery results.

This paper uses a smooth non-convex function (Laplace function) as the alternative to
the low-rank function. Nowadays, several works employ the nuclear norm approximate
low-rank function, which provides equal weight to all the singular values in the image
patch. However, in many practical situations, the singular values have different physical
meanings and should be treated differently [11,12], which is particularly prominent for RSIs.
For example, larger singular values represent low-frequency information in Landsat 8–9
RSIs, while smaller values represent high-frequency information and noise. The Laplace
function φ(x) = 1− e−x/ε used in this paper is closer to the pseudo-norm l0 than the
nuclear norm, and thus the sum of the singular values of the Laplace function is closer
to the rank function than the nuclear norm. Additionally, the advantage of the Laplace
function is that it automatically assigns different weights to each singular value. Based
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on the above observations, we propose a non-convex low-rank substitution model of the
Laplace function, defined as the norm form in Equation (4):

‖X‖ε = φ(σ(X)) =
n

∑
i=1

1− e−σi(X)/ε , (4)

where ε denotes a smaller constant value. Note that function ‖X‖ε is the sum of n singular
value functions of the matrix X. So it is smooth and non-convex. Laplace non-convex
functions can substitute rank function, which has been proven better when considering
information theory [24,25]. On these grounds, the non-convex low-rank approximation
optimization model (NC-LRAOM) of Equation (5) is proposed to solve Li.

Li = arg min
Li

‖Li‖ε

s.t.‖Xi − Li‖2
F ≤ σ2

w,
(5)

In practice, the constrained minimization problem can be solved with an unconstrained
minimization problem, namely:

Li = arg min
Li

‖Xi − Li‖2
F + λ‖Li‖ε, (6)

By selecting the appropriate λ, Equation (6) can be made equivalent to Equation (5).
For each sample image patch, an approximate low-rank matrix Li of the matrix Xi can be
obtained by solving Equation (6), and for each extracted sample image patch the low-rank
was enforced on the non-local similar image patch set. Hence, a new non-convex CS
reconstruction model is proposed following the proposed low-rank regularization term.
The specific CS reconstruction scheme is as follows:(

x̂, L̂i
)
= arg min

x,Li

‖y−Φx‖2
2 + η∑

i

{∥∥R̃ix− Li
∥∥2

F + λ‖Li‖ε

}
, (7)

where R̃ix
.
=
[
Ri0 x, Ri1 x, . . . , Rim−1 x

]
is a matrix comprising a group of similar patches of

each sample image patch xi. The proposed regularized model with non-local combined
non-convex approximate low-rank function (NL-NCALF) simultaneously utilizes the group
sparsity of similar image patches and the non-convexity of rank minimization, thus being
able to obtain better reconstruction results. In the next section, the proposed objective
function will be solved effectively using the minimization method of the non-convex
function instead of the low-rank function.

4. Landsat 8–9 Remote Sensing Image CS Reconstruction Algorithm

The proposed CS reconstructed algorithm of the Landsat 8–9 RSI can be solved by
minimizing the objective function and the low-rank matrix (LRM) Li of the whole image x.
For the initial estimate of the unknown image x, we first extract the sample image patch xi
at each pixel i in each direction and assign a similar set to each image patch xi, as described
in Section 3. Then we solve the following minimization problem for each image patch
as follows:

Li = arg min
Li

η
∥∥R̃ix− Li

∥∥2
F + λ‖Li‖ε, (8)

Equation (8) is solved using Theorem 1:

Theorem 1. Given Z ∈ Rm1×m2 , the minimum value of Equation (9):

arg min
X
‖X‖ε +

β

2
‖Z− X‖2

F, (9)
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is given by a weighted singular value threshold, i.e.,:

X = UD∇φ/β
VH , (10)

where Z = USVH and D∇φ/β
∈ Rm1×m2 is a diagonal matrix, D∇φ

β
(i, i) =

(
S(i, i)− ∇φ(σi)

β

)
+

,

∇φ(σi) =
1
ε exp

(
− σi

ε

)
denotes the gradient of φ at position σi, and σi is the ith singular value of X.

Proof. Equation (4) shows that the function ‖X‖ε is the sum of n singular value functions
of matrix X, then Equation (9) can be expressed in the form of Equation (11):

arg min
X

m

∑
i=1

φ(σi(X)) +
β

2
‖X− Z‖2

F, (11)

where X, Z ∈ Cm1×m2 , and the optimal solution of Equation (11) can be obtained using the
general weighted singular value threshold [26,27], namely:

X = UD∇φ/β
VH ,

where Z = USVH , D∇φ
β
(i, i) =

(
S(i, i)− ∇φ(σi)

β

)
+

, ∇φ(σi) =
1
ε exp

(
− σi

ε

)
, Consequently,

the conclusion of Theorem 1 can be confirmed.

In the case of a real matrix, the proposed CS reconstruction model for the Landsat
8–9 RSI is non-convex, so it is not expected to find its global minimum. However, the
weighted singular threshold algorithm can obtain the minimum value (possibly the local
minimum value) of Equation (9). Note that even though the weighted threshold method is
only a local minimum, the value of the objective function still decreases. In the experiment,
we set w(0) = [1, 1, . . . , 1]T .

According to [28], weighting l1-norm performs much better than l1-norm in approxi-
mating l0-norm and generally produces better image CS perception reconstruction results.
Similarly, the experimental results in the next section demonstrate that the Laplace function
produces CS reconstruction results better than the nuclear norm. By solving the following
minimization problem to obtain Li, we can further reconstruct the whole Landsat 8–9 RSI:

x = arg min
x
‖y−Φx‖2

2 + η∑
i

∥∥R̃ix− Li
∥∥2

F, (12)

when the measurement matrix Φ is the Fourier transform matrix (the Fourier transform is
one of the important transforms in the field of Landsat 8–9 RSI processing), Equation (12)
can be quickly solved using the alternating direction multiplier method (ADMM) [29]. In
this case, first, the augmented Lagrangian form of Equation (12) can be expressed as in
Equation (13):

(x, z, µ) = arg min
x
‖y−Φx‖2

2 + β

∥∥∥∥x− z +
µ

2β

∥∥∥∥2

2
+ η∑

i

∥∥R̃iz− Li
∥∥2

F, (13)

where z ∈ CN is an auxiliary variable, µ ∈ CN is a Lagrange multiplier, and β is a
positive constant. The advantage of ADMM is that Equation (13) can be divided into two
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subproblems, where both can find their closed solutions. Applying ADMM to Equation (13),
the iterative form of the following Equation (14) can be obtained:

z(l+1) = arg min
z

β(l)

∥∥∥∥∥x(l) − z +
µ(l)

2β(l)

∥∥∥∥∥
2

2

+ η∑
i

∥∥R̃iz− Li
∥∥2

F

x(l+1) = arg min
x
‖y−Φx‖2

2 + β(l)

∥∥∥∥∥x− z(l+1) +
µ(l)

2β(l)

∥∥∥∥∥
2

2

µ(l+1) = µ(l) + β(l)x(l+1) − z(l+1)

β(l+1) = ρβ(l),

(14)

In Equation (14), ρ > 1 is a constant. By determining x(l), µ(l), β(l), and z(l+1), a closed
solution can be obtained:

z(l+1) =

(
η∑

i
R̃T

i R̃i + β(l) I

)−1(
β(l)x(l) +

µ(l)

2
+ η∑

i
R̃iLi

)
, (15)

Note that ∑i R̃T
i R̃i is a diagonal matrix. Therefore, Equation (15) can be easily calculated.

The sub-problems of x and y can be calculated using Equation (16):

(
ΦHΦ + β(l) I

)
x =

(
ΦHy + β(l)z(l+1) − µ(l)

2

)
, (16)

where Φ is the Fourier transform matrix (FTM), Φ = DF and where D and F represent the
down-sampling matrix and Fourier transform matrix (FTM), respectively. In other words,
the sub-problems of x and y can be solved from the image space to the Fourier frequency
domain space by Equation (16). Equation (17) can be obtained by replacing Φ with DF in
Equation (16) and executing Fourier transform on both sides of the equation.

F
(
(DF)H DF + β(l) I

)
FH Fx=F(DF)Hy + F

(
β(l)z(l+1) − µ(l)

2

)
, (17)

So, we simplify Equation (17) and calculate x by taking the inverse Fourier trans-
form, namely:

x(l+1) = FH

{(
DT D + β(l)

)−1
(

DTy + F

(
β(l)z(l+1) − µ(l)

2

))}
, (18)

By updating x and z according to Equation (14), µ and β can be easily calculated.
After the unknown image x is calculated, the low-rank matrix Li is updated using

Equation (8), from which we obtain the updated Li that is used to recalculate the estimate
of image x. This process is repeated until the algorithm meets the convergence condition.

The proposed CS reconstruction model for the Landsat 8–9 RSIs is non-convex. There-
fore, the hot start method is used to preprocess the CS reconstruction images. When the
reconstruction results reach a certain accuracy, the above ADMM method is used to solve
the proposed model and obtain higher accuracy. To save computing time, image patch
grouping is not updated after each iteration but at the end of an outer cycle.

5. Data Sources

This study employs Landsat 8–9 RSIs for all simulation experiments obtained from the
US Geological Survey Center for Earth Resource Observation and Science (EROS). Landsat
8 is the eighth satellite of the US Landsat Missions (Landsat), successfully launched on an
Atlas-V rocket from Vandenberg Air Force Base, California, on 11 February 2013, originally
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known as the Landsat Data Continuity Mission (LDCM). Landsat 8 carries an operational
land imager (OLI) and a thermal infrared sensor (TIRS). The OLI measures the spectrum’s
visible, near-infrared, and shortwave infrared portions (VNIR, NIR, and SWIR). The TIRS
measures the temperature of land surfaces in two thermal bands with a new technology
that applies quantum physics to detect heat. The OLI Land Imager includes nine spectral
bands with 30-m multi-spectral spatial resolutions, which include a 15-m panchromatic
band. This study’s first set of satellite images was the Landsat-8 LITP product of the blue
band (30-m) with a wavelength range of 450–515 nm. Landsat 9 is the ninth satellite of
the US Landsat Missions (Landsat), successfully launched from the Vandenburg Space
Force Base, California, on 27 September 2021. Landsat 9 Carries the second-generation
land imager (Operational Land Imager 2, OLI-2) built by Ball Aerospace & Technologies
and the second-generation thermal infrared sensor (Thermal Infrared Sensor 2, TIRS-2)
built by NASA Goddard Space Flight Center. The OLI–2 captures images of the Earth’s
surface in visible, near-infrared, and shortwave-infrared bands, increasing the radiative
measurement accuracy from 12 to 14 bits with Landsat 8 and slightly improving the overall
signal-to-noise ratio. The OLI-2 land imager includes nine spectral bands with a 30-meter
spatial resolution, which includes a 15-meter panchromatic band. The TIRS-2 measures the
thermal infrared radiation or heat of the Earth’s surface in two bands that perform better
than the thermal band of the Landsat 8. This study’s second set of satellite images is the
Landsat 9 L2SP product of the red band (30-meter) with a wavelength range of 640–670 nm.
Table 1 summarizes the locations and dates of the observed images.

Table 1. The images and regions used for the CS reconstruction algorithm of remote sensing image.

Image Locations and Date

Remote Sensing Image Type Locations WRS2 Date(Worldwide Reference System 2)

Landsat 8

Antarctica 128111 22/02/2018
Selkirk, Manitoba, Canada 031025 07/10/2022

Lake Flathead, Montana, USA 041027 29/09/2017
Lincoln, Washington, USA 044027 15/10/2015

Landsat 9

Lake Abitibi, Ontario, Canada 019026 11/10/2022
Yeosu, Republic of Korea 115036 12/10/2022

Shanghai, China 118038 08/04/2022
Huangshi, Hubei, China 122039 13/10/2022

Erenhot, Inner Mongolia, China 127030 28/07/2022

The Landsat 8 RSIs were ordered in four different geographical regions: Antarctica;
Selkirk in Manitoba, Canada; Flathead Lake in Montana, USA; Lincoln in Washington,
USA. Antarctica is mainly composed of ice sheets, glaciers, and snow, while Selkirk in
Manitoba, Canada, is a grassland area with relatively flat terrain, a Precambrian shield, and
its northern end is the permafrost layer. Flathead Lake in Montana, USA, is in the state’s
northeast and is known for its rich rocks and plains. It includes rich land features, such
as water, mountain, forest, and vegetation. Lincoln has abundant landforms, abundant
rainfall, and large desert areas in the east.

The Landsat 9 remote sensing images (RSIs) [30] were ordered in five different geo-
graphical regions: Lake Abitibi in Ontario, Canada; Yeosu, South Korea; Shanghai, China;
Huangshi, Hubei, China; Erenhot, Inner Mongolia, China. The Lake Abitibi waters range
from western Lake Forest to the St. Lawrence River in eastern Cornwall. Lake Abitibi
stretches between Ontario and Quebec and includes many land features, such as lakes,
forests, cities, and farmland. Yeosu is located in the Yeosu Peninsula, the southernmost
tip of the Korean Peninsula, belonging to South Jeolla Province, and it includes the ocean,
coastline, and city. Shanghai is located on the west coast of the Pacific Ocean, where the
Yangtze River and Huangpu River converge. Its land features include rivers, oceans, cities,
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islands, and peninsulas. Huangshi City is located on the south bank of the middle reaches
of the Yangtze River, facing the Yangtze River in the northeast and Huanggang City across
the river, and it is rich in minerals. In the northwest and middle of the city, lakes such as
Baoan, Sanshan, and Daye form a plain lake marshland, while the rest are low mountains
and hills. Erenhot is flat and gently inclined from southwest to northeast. The land features
include forests, deserts, grasslands, villages, and vegetation.

The objective of selecting Landsat 8–9 RSIs of different regions is to ensure that the
newly-developed model performs very well for diverse land cover types.

6. Experimental Results and Analysis

To demonstrate the effectiveness of the newly developed method, extensive simula-
tions were conducted using Landsat 8–9 RSIs. Since Landsat 8–9 RSIs (30-meter resolution)
are too large, we adjusted the images by cropping, scaling, recombining, and synthesiz-
ing. After processing, the simulated Landsat 8–9 RSI had a 1000× 1000 resolution used
to evaluate the proposed CS model. Then, the CS model was applied to reconstruct the
compressed sampling data and obtain the restored image, which was compared against
the original image to assess the model. All simulations were conducted on an Intel (R)
Core (TM) i9-10980XE CPU @ 3.00 GHz and with 128 GB RAM. The synthetic RSIs for
reconstruction are illustrated in Figure 1:

Figure 1. Synthetic Landsat 8–9 RSIs used for model evaluation. The first row presents the synthetic
Landsat 8 images (from left to right: the first image was collected in Antarctica on 22 February 2018;
the second image was collected in Selkirk, Manitoba, Canada, on 7 October 2022; the third image
was collected in Lake Flathead, Montana, USA, on 29 September 2017; the last image was collected in
Lincoln, Washington, USA on 15 October 2015). The second row presents the synthetic Landsat 9 RSIs
(from left to right: the first image was collected in Lake Abitibi, Ontario, Canada, on 11 October 2022;
the second image was collected in Yeosu, Korea, on 12 October 2022; the third image was collected
in Shanghai, China on 8 April 2022; the fourth image was collected in Huangshi, Hubei, China on
13 October 2022; the last image was collected in Erenhot, Inner Mongolia, China on 28 July 2022).

Figure 1 illustrates a series of synthetic images obtained from the original Landsat
8–9 images, which were used to evaluate our algorithm after cutting and resizing. The
above images were used in the newly developed CS model for reconstruction and com-
parative evaluation against other CS models, namely, NL-Laplace-CS, NL-SRF-CS [16],
KCS-GSR [31], and NLDR-CS [32], and revealed the advantages and disadvantages of each
model. The Landsat 8–9 RSIs were sampled using different frequency-domain sampling
ratios (10%, 15%, 20%, and 25%) and were reconstructed using the above model. The
corresponding reconstruction results are presented in Figures 2–10.
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Figure 2 reveals that the NL-Laplace-CS model performs better than NL-SRF-CS,
KCS-GSR, and NLDR-CS considering reconstruction. From the first line (10%), the fourth
line (15%), the seventh line (20%), and the tenth line (25%), it is evident that the images
reconstructed by the NL-Laplace-CS model have no obvious edge blur, but the competitor
method reconstructs images with a visible edge blur. The reconstructed image using the
NL-SRF-CS model has information loss in surface features and heterogeneous regions of
textures. The images reconstructed with the NL-Laplace-CS and KCS-GSR methods present
fewer zigzag effects than the other models. The overall reconstruction result of the NLDR-
CS model is better than the NL-Laplace-CS and KCS-GSR models but still slightly inferior
to the NL-Laplace-CS model. The NL-Laplace-CS model has inherent noise suppression
and, therefore, can suppress areas of high-frequency changes. However, from the different
images in Figure 2e red magnified diagram at the lower left corner of each image), we
observe that the NL-Laplace-CS model retains the most details.

Figure 3 illustrates the CS reconstruction results of the Landsat 8 RSI covering Selkirk,
Manitoba, Canada, using the same model presented in Figure 2 Compared with the com-
petitor models, the NL-SRF-CS and KCS-GSR models present large differences compared
to the original images. Specifically, the images reconstructed with the NL-SRF-CS method
have significant edge blurring and lost more details in areas with more edges. The images
reconstructed with the KCS-GSR model have a sharp zigzag effect. Moreover, the results of
images reconstructed by NLDR-CS show a greater data loss of surface features and edge
areas than those reconstructed images using the NL-Laplace-CS model. The overall visual
effect of the reconstructed image from the NL-Laplace-CS model has the highest fidelity
relative to the original images.

Figure 4 depicts the CS reconstruction of a Landsat 8 RSI of Lake Flathead, Montana,
USA, using the same model as in Figures 2 and 3. The difference between the reconstructed
image of the KCS-GSR model and the original image is the largest, followed by the NL-SRF-
CS model and NLDR-CS model. However, the proposed NL-Laplace-CS model has the
smallest difference from the original image. The reconstructed images of the NL-SRF-CS
model have much edge blurring and loss of detail in the edge area, and the KCS-GSR
reconstructed image also lost more details than the original image. The reconstructed
image of the NLDR-CS model affords fine surface structure and edge information, but there
is a minor blurring effect in the edge area. In the image reconstructed by the NL-Laplace-CS
model, the partially magnified area (lower left red box diagram) reveals a good visual effect,
while the details of edges and non-smooth areas are also well preserved.

Figure 5 illustrates the resulting images of CS reconstruction of Landsat 8 RSIs from
Lincoln, Washington, USA, using the model of Figure 2. The difference images show that
the reconstructed result images of the KCS-GSR model and the NLDR-CS model differ the
most from the original image, and the proposed NL-Laplace-CS model differs the least.
For KCS-GSR and NLDR-CS models, the reconstructed image’s local magnified area (red
block diagram in the lower left corner) has a more obvious edge blur. Furthermore, the
reconstructed images of the NL-SRF-CS model reveal that the reconstruction results are
significantly serrated, and there is also a small fuzzy effect in the uneven areas. For the NL-
Laplace-CS model, the reconstructed images afford a good visualization, the suppression of
details is invisible, and the boundaries of each object region in the image are well preserved.
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Figure 2. Reconstruction Results using Sampling Rates of 10%, 15%, 20%, and 25% for a Landsat
8 RSI in Antarctica, (a) original Landsat 8 RSI of Antarctica, (b–e) of the first row (10%), the fourth
row (15%), the seventh row (20%), and the tenth row (25%) are the reconstruction result images of
NL-SRF-CS, KCS-GSR, NLDR-CS, and NL-Laplace-CS models, respectively. The red square area in
the lower left corner of each image is the magnified form of the selected area in the image, which
is convenient for observing the details of the reconstruction results. The images in the second,
fifth, eighth, and eleventh rows are the differences between the reconstructed and original images
corresponding to each sampling ratio. The third, sixth, ninth, and twelfth rows show the histograms
of the corresponding difference image.
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Figure 3. CS reconstruction result images of a Landsat 8 RSI in Selkirk, Manitoba, Canada, are the
same as the second image on the left of the top row of Figure 1. (a–e) The specific details of the images
are the ones presented in Figure 2.
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Figure 4. CS reconstruction result images of a Landsat 8 RSI in Lake Flathead, Montana, USA ((a–e)
similar to Figure 2 and the third to the left image in the first line of Figure 1).
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Figure 5. CS reconstruction result images of a Landsat 8 RSI in Lincoln, Washington, USA ((a–e)
similar to Figure 2 and the last image in the first line of Figure 1).

Table 2 summarizes the number of pixels within a range (±260) of around 0 for each
image. The more pixels within a pixel value range around 0, the better the reconstruction
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effect. Table 2 highlights the fact that most pixels of the different numbers between the
image reconstructed by the NL-Laplace-CS model and the original image are concentrated
in the range [−260, 260]. Moreover, Figures 2–5 illustrate that the range (0, 260) of the pixel
values is very small compared to 16-bit images (0–65535). Besides, Table 2 reveals that
the percentage of pixel difference within the [−260, 260] range between the reconstructed
image of the NL-Laplace-CS model and the original image is the largest (the percentage
of the whole image), indicating that the fidelity of a Landsat 8 RSI reconstructed by the
proposed NL-Laplace-CS model is the highest.

Table 2. Percentage of the number of pixels (in a small range [−260, 260] of around 0) of the difference
images between the original Landsat 8 RSI and the reconstructed image using different CS models.

Landsat 8
Remote Sensing
Image

Range of
Pixel
Value

Rate

Percentage of Pixels Occupied

NL-SRF-CS KCS-GSR NLDR-CS NL-Laplace-CS

Inside Outside Inside Outside Inside Outside Inside Outside

Antarctica
128111_20180222

[−260, 260] 0.10 31.7318 68.2682 51.8176 48.3557 70.9197 29.0803 86.5486 13.4514
[−260, 260] 0.15 40.9783 59.0217 55.6457 44.5336 77.8590 22.1410 94.2010 5.7990
[−260, 260] 0.20 44.6930 55.3070 58.5099 41.6791 82.7760 17.2240 97.9707 2.0293
[−260, 260] 0.25 54.7053 45.2947 61.4826 38.7127 86.6517 13.3483 99.6080 0.3920

Selkirk, Manitoba,
Canada
031025_20221007

[−260, 260] 0.10 30.7078 69.2922 38.9215 61.2166 60.4930 39.5070 66.7224 33.2776
[−260, 260] 0.15 36.9558 63.0442 42.0941 58.0497 68.5670 31.4330 74.7742 25.2258
[−260, 260] 0.20 39.8745 60.1255 45.0647 55.0905 75.5086 24.4914 82.8788 17.1212
[−260, 260] 0.25 46.7389 53.2611 47.8097 52.3493 81.5440 18.4560 90.4872 9.5128

Flathead Lake,
Montana, USA,
041027_20170929

[−260, 260] 0.10 77.4191 22.5809 78.4541 21.7012 84.8593 15.1407 93.9916 6.0084
[−260, 260] 0.15 87.4137 12.5863 80.5140 19.6338 88.0287 11.9713 96.8053 3.1947
[−260, 260] 0.20 88.3001 11.6999 82.6323 17.5099 90.4024 9.5976 98.8148 1.1852
[−260, 260] 0.25 93.2202 6.7798 83.7051 16.4393 92.2663 7.7337 99.6793 0.3207

Lincoln,
Washington, USA
044027_2015288

[−260, 260] 0.10 86.4147 13.5853 81.8592 18.3014 85.6378 14.3622 96.8269 3.1731
[−260, 260] 0.15 94.4427 5.5573 87.7942 12.3480 89.0729 10.9271 98.6488 1.3512
[−260, 260] 0.20 95.1954 4.8046 86.1578 13.9878 91.6887 8.3113 99.6090 0.3910
[−260, 260] 0.25 97.9079 2.0921 87.7942 12.3480 93.7166 6.2834 99.9129 0.0871

To further evaluate our model’s performance, we employ three quantitative image
quality indicators (PQI): root mean square error (RMSE), peak signal-to-noise ratio (PSNR),
and structural similarity (SSIM) [33]. A lower RMSE value, higher PSNR value, or higher
SSIM value indicates a better model performance. Table 3 summarizes the PQI values in
different areas for each model presented in Figures 2–5. For the Antarctic region (Figure 2),
the difference in the RMSE values between the competitor models is obvious, as the RMSE
values of the NL-SRF-CS model are significantly larger, followed by the RMSE of the
KCS-GSR model and NLDR-CS model. The NL-Laplace-CS model has the smallest RMSE
among all models.

Moreover, the average error generated by the NL-Laplace-CS model in all geographic
regions is the smallest among all models for all sampling ratios. For Selkirk in Manitoba,
Canada (Figure 3), all models have similar PSNR values, but the PSNR values of NL-SRF-CS
and KCS-GSR models are relatively smaller than the other models. Although the NLDR-CS
model has high PSNR values, it changes relatively slowly with the sampling rate increasing.
In any case, the PSNR of the NL-Laplace-CS model is the maximum. Furthermore, the
PSNR results (see Table 3) indicate that the NL-Laplace-CS model performs well, and its
SSIM value is greater than the competitor models. Although the SSIM value increases with
the image sampling rate, the rate at which the new model increases is much larger than
the other models. These PQI results indicate that the newly developed NL-Laplace-CS
model has lower RMSE values, higher PSNR and SSIM values, better visual effects, and
edge preservation.
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Table 3. RMSE , PSNR, and SSIM values for different models in the Landsat 8 remote sensing image
(RSI) study shown in Figures 2–5.

Landsat 8 Remote-Sensing Images PQIs NL-SRF-CS KCS-GSR NLDR-CS NL-Laplace-CS

Antarctica
128111_20180222

Rate0.10
RMSE 898.253 480.6734 203.4486 195.7073
PSNR 37.2615 43.2624 50.0925 50.4973
SSIM 0.9415 0.97808 0.9935 0.9942

Rate0.15
RMSE 641.1155 412.0085 153.7279 130.5971
PSNR 40.1907 44.8054 52.5266 54.0107
SSIM 0.9598 0.9828 0.9959 0.9971

Rate0.20
RMSE 539.2623 373.2582 124.7959 93.5328
PSNR 41.6935 45.8467 54.3376 56.9102
SSIM 0.9664 0.98561 0.9971 0.9984

Rate0.25
RMSE 401.2769 326.7187 104.8497 68.3434
PSNR 44.2606 47.3134 55.8503 59.6355
SSIM 0.978 0.98882 0.9979 0.9991

Selkirk, Manitoba,
Canada,
031025_20221007

Rate0.10
RMSE 833.0314 699.6305 360.0842 307.8145
PSNR 37.9162 39.5301 45.1335 46.5637
SSIM 0.924 0.93774 0.9777 0.9834

Rate0.15
RMSE 639.0923 620.12 276.0758 242.2749
PSNR 40.2182 40.6163 47.441 48.6433
SSIM 0.9447 0.9476 0.9859 0.9893

Rate0.20
RMSE 555.8848 553.2539 220.699 190.908
PSNR 41.4298 41.6514 49.3856 50.713
SSIM 0.9543 0.95653 0.9906 0.9931

Rate0.25
RMSE 446.627 501.8709 179.8765 149.425
PSNR 43.3306 42.5392 51.1621 52.841
SSIM 0.9948 0.9633 0.9935 0.9957

Flathead Lake,
Montana, USA
041027_20170929

Rate0.10
RMSE 251.2652 243.7577 177.0215 130.6265
PSNR 48.3268 49.3549 51.3011 54.0088
SSIM 0.9915 0.992 0.9938 0.9964

Rate0.15
RMSE 190.7938 226.0831 152.4969 109.2699
PSNR 50.7182 50.1743 52.5964 55.5595
SSIM 0.9939 0.99292 0.9951 0.9974

Rate0.20
RMSE 178.4575 206.608 134.7184 88.429
PSNR 51.2988 51.1945 53.6731 57.3976
SSIM 0.9945 0.99396 0.996 0.9982

Rate0.25
RMSE 147.1679 198.9782 120.6403 72.7902
PSNR 52.9732 51.6346 54.6318 59.088
SSIM 0.9959 0.99447 0.9967 0.9988

Lincoln, Washington,
USA, 044027_2015288

Rate0.10
RMSE 170.9491 197.1138 163.8181 110.3724
PSNR 51.6721 51.7843 51.9744 55.4723
SSIM 0.9953 0.99505 0.995 0.9974

Rate0.15
RMSE 129.7697 184.5744 142.788 92.3254
PSNR 54.066 52.6122 53.1678 57.023
SSIM 0.9967 0.99566 0.9959 57.023

Rate0.20
RMSE 125.595 174.4205 126.319 75.308
PSNR 54.35 53.3213 54.2322 58.7926
SSIM 0.997 0.99616 0.9966 0.9987

Rate0.25
RMSE 105.3094 166.1922 113.3335 62.0297
PSNR 55.8801 53.9867 55.1744 60.4775
SSIM 0.9977 0.9966 0.9972 0.9991
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The second group of satellite images used in our simulations involves the Landsat 9
L2SP product in the red band (30-meter) with a wavelength range of 640–670 nm. Similar
to the Landsat 8 synthetic simulation images, the Landsat 9 image was trimmed and scaled
to obtain the simulation Landsat 9 data presented in the second row in Figure 1. Finally,
we evaluated that dataset with the NL-SRF-CS, KCS-GSR, NLDR-CS, and NL-Laplace-CS
models and analyze the performance of each algorithm through the simulation results.

Figure 6 illustrates the CS reconstruction images of the Landsat 9 RSIs from Lake
Abitibi, Ontario, Canada, using the model presented in Figure 2. In the algorithm simulation
experiment in this region, various CS reconstruction models can reconstruct the resulting
images well. However, there are still some differences, as Figure 6 highlights the fact
that the NL-SRF-CS model has a good reconstruction effect in the relatively smooth area,
but the reconstruction effect in the edge area and the detailed area is unsatisfactory. The
reconstructed resulting images of the KCS-GSR model are quite different from the original
images; namely, there is a certain gap between the overall reconstruction results of the
KCS-GSR model and those of the NLDR-CS model and NL-Laplace-CS model. For NL-
Laplace-CS and NLDR-CS models, the reconstructed image’s local magnified area (red
block diagram in the lower left corner) has more obvious detail preservation. At the
same time, the reconstruction results of the proposed NL-Laplace-CS model have the least
difference from the original images.

Figure 7 depicts the resulting images of the CS reconstruction of the Landsat 9 RSI of
Yeosu, South Korea, using the model presented in Figure 2. For this area, the reconstructed
images of all CS reconstruction models present unsatisfactory results, mainly due to the
geographic details in this region. Figure 7 reveals that the KCS-GSR model’s reconstructed
images differ the most from the original ones, followed by the NL-SRF-CS model. The
NLDR-CS model shows better reconstruction results but is still imperfect in the marginal
and detailed areas. The reconstruction results of the proposed NL-Laplace-CS model
present minor differences from the original images and thus affords the best visual effect.

Figures 8–10 demonstrate each competitor algorithm’s advantages and disadvantages
based on each image’s corresponding reconstruction result. However, due to paper length
limitations, we neglect a detailed analysis. Additionally, Table 4 summarizes the number of
pixels within a range (±260) of around 0 for different Landsat 9 images. The more pixel
values within the range around 0, the better the reconstruction effect. Table 4 reveals that
most pixels of the NL-Laplace-CS model-based reconstructed images are concentrated
within the range [−260, 260], as illustrated in Figures 6–10. For 16-bit images (0 to 65,535),
the range of (0 to 260) is very small. Table 4 highlights the fact that the NL-Laplace-CS
model has the largest percentage of pixels (percentage of the whole image) in a range of
around 0, indicating that its performance is best among the models evaluated.

To further evaluate the proposed model’s performance, we calculate the RMSE, PSNR,
and SSIM values on the CS reconstructed Landsat 9 images. Table 5 summarizes the
information presented in Figures 6–10 and highlights the fact that the NL-Laplace-CS
model has the lowest RMSE value and the highest PSNR and SSIM values. The resulting
images used for the CS reconstruction based on the NL-Laplace-CS model had the best
visual effect, namely, the most preserved edge information and image details.
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Figure 6. CS reconstruction result images of a Landsat 9 RSI in Lake Abitibi, Ontario, Canada, using
various models ((a–e) similar to Figure 2 and the first image on the left in the second row of Figure 1).
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Figure 7. Landsat 9 remote CS reconstruction of Yeosu using various models ((a–e) similar to Figure 6
and the second left image in the second row of Figure 1).
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Figure 8. CS reconstruction result images of a Landsat 9 RSI in Shanghai, China, using various
models ((a–e) similar to Figure 6 and the second left image in the second row of Figure 1).
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Figure 9. CS reconstruction result images of a Landsat 9 RSI in Huangshi, Hubei, China, using
various models ((a–e) similar to Figure 6 and the fourth left image in the second row of Figure 1).
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Figure 10. CS reconstruction result images of a Landsat 9 RSI in Erenhot, Inner Mongolia, China,
using various models ((a–e) similar to Figure 6 and the last image in the second row of Figure 1).
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Table 4. Number of pixels in a small range around 0 (in percentage) of the difference images between
the original Landsat 9 RSI and the reconstructed image using different CS models.

Landsat 9
Remote Sensing
Image

Range of
Pixel
Value

Rate

Percentage of Pixels Occupied

NL-SRF-CS KCS-GSR NLDR-CS NL-Laplace-CS

Inside Outside Inside Outside Inside Outside Inside Outside

Lake Abitibi,
Ontario, Canada
019026_20221011

[−260, 260] 0.10 86.1794 13.8206 81.8307 18.3343 86.3252 13.6748 95.4589 4.5411
[−260, 260] 0.15 93.3402 6.6598 83.7116 16.4469 88.6563 11.3437 97.7012 2.2988
[−260, 260] 0.20 94.2158 5.7842 85.2966 14.8484 90.6463 9.3537 99.1153 0.8847
[−260, 260] 0.25 97.1915 2.8085 86.5466 13.5959 92.3951 7.6049 99.7508 0.2492

Yeosu, Korea
115036_20221012

[−260, 260] 0.10 56.7899 43.2101 66.3285 33.8273 80.7143 19.2857 82.9278 17.0722
[−260, 260] 0.15 70.6925 29.3075 68.2372 31.9191 84.9258 15.0742 87.3849 12.6151
[−260, 260] 0.20 72.4175 27.5825 69.6345 30.5274 88.2334 11.7666 92.1732 7.8268
[−260, 260] 0.25 79.8082 20.1918 70.9790 29.1828 91.0656 8.9344 96.0945 3.9055

Shanghai, China
118038_20220408

[−260, 260] 0.10 53.9526 46.0474 65.2240 34.9397 79.8067 20.1933 83.3926 16.6074
[−260, 260] 0.15 65.8213 34.1787 66.5302 33.6376 84.3560 15.6440 87.1873 12.8127
[−260, 260] 0.20 67.4619 32.5381 67.9013 32.2696 88.0579 11.9421 92.1889 7.8111
[−260, 260] 0.25 75.5923 24.4077 68.7766 31.3947 91.1311 8.8689 96.2243 3.7757

Huangshi, Hubei,
China
122039_20221013

[−260, 260] 0.10 49.5321 50.4679 55.5235 44.6434 65.5933 34.4067 68.3807 31.6193
[−260, 260] 0.15 60.2258 39.7742 57.7512 42.4289 71.2787 28.7213 73.0715 26.9285
[−260, 260] 0.20 63.5580 36.4420 59.7541 40.4251 76.4113 23.5887 78.8740 21.1260
[−260, 260] 0.25 70.9719 29.0281 61.6484 38.5290 81.1467 18.8533 84.3839 15.6161

Erenhot, Inner
Mongolia, China
127030_20220728

[−260, 260] 0.10 64.5972 35.4028 67.3637 32.8217 75.7473 24.2527 88.7506 11.2494
[−260, 260] 0.15 78.5930 21.4070 69.7726 30.4136 79.7862 20.2138 92.6547 7.3453
[−260, 260] 0.20 79.6510 20.3490 71.6206 28.5706 83.0796 16.9204 95.9827 4.0173
[−260, 260] 0.25 87.1182 12.8818 73.0742 27.1169 85.7812 14.2188 98.2061 1.7939

Table 5. RMSE , PSNR, and SSIM values of the different models in the Landsat 9 RSI study, as
illustrated in Figures 6–10.

Landsat 9 Sensing Image PQIs NL-SRF-CS KCS-GSR NLDR-CS NL-Laplace-CS

Lake Abitibi, Ontario, Canada 019026_20221011

Rate0.10
RMSE 178.6558 202.9490 165.8346 122.6032
PSNR 51.2891 51.3389 51.8681 54.5594
SSIM 0.9946 0.9942 0.9945 0.9967

Rate0.15
RMSE 139.6148 191.3931 148.7677 104.8770
PSNR 53.4308 52.0435 52.8114 55.9159
SSIM 0.9961 0.9948 0.9953 0.9975

Rate0.20
RMSE 133.2829 181.8600 135.4003 88.0589
PSNR 53.8340 52.6628 53.6292 57.4340
SSIM 0.9965 0.9954 0.9960 0.9982

Rate0.25
RMSE 112.5607 174.6843 124.1275 74.0333
PSNR 55.3017 53.1794 54.3842 58.9409
SSIM 0.9973 0.9958 0.9965 0.9987

Yeosu, Korea, 115036_20221012

Rate0.10
RMSE 357.9920 352.5152 234.8635 211.7692
PSNR 45.2520 45.7370 48.8453 49.8122
SSIM 0.9809 0.9805 0.9885 0.9907

Rate0.15
RMSE 277.7287 325.7535 191.6372 175.6439
PSNR 47.4571 46.4924 50.6120 51.4368
SSIM 0.9860 0.9826 0.9920 0.9935

Rate0.20
RMSE 255.6346 308.1822 160.4600 140.0482
PSNR 48.1771 47.0331 52.1543 53.4039
SSIM 0.9880 0.9842 0.9943 0.9958

Rate0.25
RMSE 212.1976 290.5371 136.3814 111.8590
PSNR 49.7947 47.6095 53.5665 55.3560
SSIM 0.9911 0.9857 0.9958 0.9972
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Table 5. Cont.

Landsat 9 Sensing Image PQIs NL-SRF-CS KCS-GSR NLDR-CS NL-Laplace-CS

Shanghai, China, 118038_20220408

Rate0.10
RMSE 421.4962 375.1064 235.0718 213.3513
PSNR 43.8336 45.2743 48.8376 49.7476
SSIM 0.9767 0.9787 0.9886 0.9908

Rate0.15
RMSE 317.1140 353.8817 185.3175 178.0600
PSNR 46.3052 45.8320 50.9033 51.3181
SSIM 0.9832 0.9805 0.9926 0.9935

Rate0.20
RMSE 290.2904 327.6273 150.3745 137.9961
PSNR 47.0728 46.5834 52.7181 53.5321
SSIM 0.9854 0.9828 0.9950 0.9960

Rate0.25
RMSE 236.4489 316.6613 123.8975 108.0126
PSNR 48.8547 46.9231 54.4004 55.6600
SSIM 0.9894 0.9840 0.9966 0.9975

Huangshi, Hubei, China 122039_20221013

Rate0.10
RMSE 396.5857 388.7419 292.8481 277.0668
PSNR 44.3627 44.8508 46.9288 47.4778
SSIM 0.9755 0.9751 0.9820 0.9840

Rate0.15
RMSE 318.2901 362.8340 249.2427 243.6536
PSNR 46.2730 45.5082 48.3292 48.5940
SSIM 0.9812 0.9775 0.9863 0.9874

Rate0.20
RMSE 291.5050 341.4579 215.0280 209.8189
PSNR 47.0365 46.0784 49.6117 49.8926
SSIM 0.9839 0.9797 0.9895 0.9904

Rate0.25
RMSE 247.1052 324.2598 185.9369 180.8646
PSNR 48.4718 46.5733 50.8743 51.1824
SSIM 0.9877 0.9815 0.9920 0.9928

Erenhot, Inner Mongolia, China 127030_20220728

Rate0.10
RMSE 303.5128 291.5269 202.6761 167.4437
PSNR 46.6859 48.0452 50.1256 51.8521
SSIM 0.9879 0.9888 0.9919 0.9942

Rate0.15
RMSE 222.9116 271.3286 173.9108 141.6788
PSNR 49.3668 48.8500 51.4551 53.3034
SSIM 0.9915 0.9900 0.9936 0.9957

Rate0.20
RMSE 210.7621 255.6723 152.7735 118.1105
PSNR 49.8536 49.5255 52.5806 54.8837
SSIM 0.9923 0.9911 0.9949 0.9969

Rate0.25
RMSE 171.3273 244.1732 136.6703 98.9114
PSNR 51.6529 50.0810 53.5481 56.4245
SSIM 0.9944 0.9919 0.9958 0.9978

7. Discussion

The NL-Laplace-CS regularization method relies on the appropriate adjustment of
the data fidelity and weight parameters in the regularization terms. With the optimal
choice of the weight parameters, this method yields the best reconstruction results. The
experiments use the Landsat 8–9 RSI for CS simulation reconstruction, and we compared
the reconstruction results obtained from the Landsat 8–9 RSI simulation with the NL-
Laplace-CS model against the NL-SRF-CS, KCS-GSR, and NLDR-CS image reconstruction
models. We also compared these reconstruction results with the original Landsat 8–9 RSI.
The results highlighted that the new NL-Laplace-CS had lower RMSE values, higher PSNR
and SSIM values, and better visual effects than the competitor models. Errors mostly occur
between geological structures and land cover classes in the transition zone. The resulting
images of the CS reconstruction of the newly developed NL-Laplace-CS model reveal that,
even in such a transition zone, the reconstructed pixel values still have a high fidelity
relative to the original Landsat 8–9 RSIs. This is important because most remote sensing
image applications require high fidelity in the transition zone to clarify the geological
surface features with complex geographical compositions.

8. Conclusions

This work developed a Landsat 8–9 RSI CS reconstruction model based on a non-local
framework combined with low-rank regularization approximation of non-convex Laplace
functions, which was solved using the ADMM algorithm. The proposed NL-Laplace-CS
model was challenged against advanced CS image reconstruction models such as NL-SRF-
CS, KCS-GSR, and NLDR-CS in a simulation reconstruction for Landsat 8–9 RSIs. The
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simulation results revealed that the proposed NL-Laplace-CS model effectively utilized
similar image patches of sparse groups and established a low-rank regularized approximate
minimization model of non-convex Laplace functions, suggesting a very effective method
for CS reconstruction of Landsat 8–9 RSIs. Specifically, the proposed NL-Laplace-CS model
has lower RMSE values, higher PSNR and SSIM values, and outperforms state-of-the-art
CS image reconstruction models such as NL-SRF-CS, KCS-GSR, and NLDR-CS.
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