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Abstract

:

Utilizing low-rank prior data in compressed sensing (CS) schemes for Landsat 8–9 remote sensing images (RSIs) has recently received widespread attention. Nevertheless, most CS algorithms focus on the sparsity of an RSI and ignore its low-rank (LR) nature. Therefore, this paper proposes a new CS reconstruction algorithm for Landsat 8–9 remote sensing images based on a non-local optimization framework (NLOF) that is combined with non-convex Laplace functions (NCLF) used for the low-rank approximation (LAA). Since the developed algorithm is based on an approximate low-rank model of the Laplace function, it can adaptively assign different weights to different singular values. Moreover, exploiting the structural sparsity (SS) and low-rank (LR) between the image patches enables the restored image to obtain better CS reconstruction results of Landsat 8–9 RSI than the existing models. For the proposed scheme, first, a CS reconstruction model is proposed using the non-local low-rank regularization (NLLRR) and variational framework. Then, the image patch grouping and Laplace function are used as regularization/penalty terms to constrain the CS reconstruction model. Finally, to effectively solve the rank minimization problem, the alternating direction multiplier method (ADMM) is used to solve the model. Extensive numerical experimental results demonstrate that the non-local variational framework (NLVF) combined with the low-rank approximate regularization (LRAR) method of non-convex Laplace function (NCLF) can obtain better reconstruction results than the more advanced image CS reconstruction algorithms. At the same time, the model preserves the details of Landsat 8–9 RSIs and the boundaries of the transition areas.






Keywords:


compressed sensing (CS); non-local (NL); Laplace function (LF); ADMM; Landsat 8–9 remote sensing images (LRSIs)












1. Introduction


The transmission, reception, and storage of Landsat 8–9 remote sensing images (RSIs) is a critical practical challenge in remote sensing (RS). Therefore, the collection time and processing of massive Landsat 8–9 images have become hot research topics. Compressed sensing (CS) aims to sample/compress the original image using part of the image data (or the corresponding frequency-domain data) and then reconstruct the sampled/compressed data at the terminal by obtaining the reconstructed image [1] close to or beyond the quality of the original data. Generally, CS theory exploits the sparsity and low-rank prior information of the original image to compress the RSI through a data compression method and to recover and reconstruct the compressed data when required.



Nevertheless, the Landsat 8–9 RSIs involve huge real matrices, and this huge data volume (the compressed file size of each group of Landsat 8–9 RSIs exceeds 1GB) imposes a long data transmission time [2], while many practical applications require fast remote sensing data acquisition, limiting the practical application of Landsat 8–9 RSIs. For example, fast data acquisition enables timely assessment of the losses caused by natural disasters, and real-time monitoring of ground objects also depends on the rapid transmission and analysis of RSIs. Therefore, CS technology has prominent practical applications in reconstructing Landsat 8–9 RSIs. At the same time, the compression perception model of an RSI poses a great practical application potential in improving the energy efficiency of imaging sensors [3]. Given that the proportion of random measuring signals acquired by CS in the image is relatively low (typically 10–25%), measuring signal transmission [4] has a significant advantage in time and space storage.



The traditional CS model usually employs a regularization model, compresses the original image using the frequency-domain random sampling (FDRS) method, and then obtains the compressed data [5] with sparsity. Consequently, many image CS reconstruction models are built on practical problem situations. For instance, the traditional CS reconstruction method can be effectively solved using the 11-norm of the sampled signal, i.e., the sparsity of the original signal, and the low-rank function replacement (LRFR) method [6], which effectively solves the CS reconstruction problem. In recent years, the concept of sparsity has been developed into various complex forms, including model-based or Bayesian, non-local sparsity, and structural sparse/group sparsity [7]. Thus, CS data can be reconstructed by exploiting the high correlation between the sparse coefficient, while some experimental studies have demonstrated that the non-convex optimization method (NCOM) based on CS has better image reconstruction results. Indeed, NCOM-based reconstructed images are often higher in visual effect and numerical accuracy than the convex optimization method (COM) [8,9]. To exploit the high correlation between the sparse coefficient and non-convex optimization and find a solution algorithm with relatively high computational efficiency, [10] introduced a method for solving the nuclear norm low-rank approximation model (LRAM) using the SVD algorithm, which yields an easily solved convex optimization problem (COP) [10] by minimizing the sum of all singular values in the image. However, each singular value of the optimization problem in image reconstruction has its practical physical meaning, and therefore, each singular value in any real problem should be treated differently [11]. However, all the singular values have been averaged in the nuclear norm LRAM, limiting the algorithm’s ability and flexibility.



Spurred by the findings presented above, we suggest a CS reconstruction model for the Landsat 8–9 RSI based on low-rank approximation (LRA) of non-local associative non-convex Laplace functions (NL-NCLF), which adaptively assign weights to different singular values [12]. Extensive experimental studies demonstrate that the reconstruction results of NCOMs are more accurate than COMs, but the algorithms are slightly complex and impose a greater computational complexity [13]. In the ongoing big data era, overemphasizing the algorithm’s computational time is no longer an important target; therefore, NCOMs have good practical value and prospects. Hence, the core priority is the model to make full use of the prior information of the original signal (such as sparsity and low-rank) in the CS theory of Landsat 8–9 RSIs [14,15].



Generally, the image patches of Landsat 8–9 RSIs present a strong sparsity and have an approximate structural low rank [16]. Therefore, due to the low rank of the structural information in the Landsat 8–9 RSIs, we employ the SVD method to solve the CS model and thus obtain better CS reconstruction results [17]. Moreover, for the image reconstruction, we utilize the regularization model of the low-rank approximate penalty of the non-local combined non-convex Laplace function, which is based on structural self-similarity in the total variation framework [8,9,12]. Our model is a non-convex CS reconstruction model involving a regularization/penalty constraint, low-rank approximation, and image patch grouping [18]. Substituting the low-rank regularization with a non-local and Laplace function enhances the CS reconstruction accuracy compared to common low-rank substitution methods, e.g., nuclear norm, with extensive theoretical analysis proving our algorithm’s effectiveness and stability.




2. Background


In the CS theory of Landsat 8–9 RSIs, random linear measurement/sampling is conducted in the corresponding Fourier transform domain (FTD) of the RSIs x, and then the sampling data y of the Fourier frequency domain (FFD) is obtained. The original Landsat 8–9 RSIs x are recovered through image reconstruction with the sampling data y. In general, the real Landsat 8–9 RSIs are not absolutely sparse but approximately sparse under a certain transformation domain, i.e., they can be transformed into a compressible signal. The sparsity or compressibility of image signals is an important premise and the theoretical basis for CS. Hence, a remote sensing image x can be represented by a linear combination of a set of bases   Ψ =   η i   ,  i = 1 , 2 , ⋯ , n  , where    η i  ∈   C  N    are the sparse bases, i.e.,   x = Ψ α  . Specifically, y can be expressed as   y = Φ x = Φ Ψ α  , where   x ∈   C  N   ,   y ∈   C  M    and   Φ ∈   C   M × N     is the measurement/sampling matrix,   M < N  . Since   M < N  , matrix  Φ  is not a full rank, i.e., multiple reconstruction results   x ∈   C  N    can be generated using the same measurement y. Generally, if the measurement matrix  Φ  satisfies the limited isometry property (RIP) condition [12,16], CS theory can guarantee the perfect reconstruction of signal x by utilizing the sparse (or compressed) signal y. Prior information about the image x must be known to reconstruct a unique perfect image x from the measured data y. The traditional CS method is to recover remote sensing images by using the sparsity of images x, and to satisfy   y = Φ x  , the following constraint optimization problem is employed:


     x =   arg min  x     α  0        s . t .    y = Φ Ψ α ,     



(1)




where    ⋅  0   is a pseudo-norm counting the number of non-zero elements in  α . However, minimizing the norm    ⋅  0   is an NP-hard problem. Therefore, we recover the RSI signal from the random measurement/sampling y by using the convex norm   l 1   instead of the non-convex norm   l 0   and then solve the norm   l 1   optimization problem. The optimal model obtained by substituting norm   l 1   for the norm   l 0   is a convex optimization model, and therefore multiple solution algorithms such as an iterative contraction algorithm (ICA) [19], Bregman splitting algorithm (BSA) [20], and alternating direction multiplier method (ADMM) [21,22] can effectively solve this problem. Recent studies have demonstrated that replacing the norm   l 1   with a non-convex norm achieves better CS reconstruction results [16].



By modeling the high correlation between sparse coefficients, the uncertainty of unknown signals can be significantly reduced and afford a more accurate CS reconstruction. The structural sparsity of Landsat 8–9 RSI is particularly important in establishing the CS model for RSIs. Usually, image structure information presents a rich repeatability, so the non-local self-similarity (NLSS) principle of an image structure can be obtained by combining the non-local method [14] and the simultaneous sparse coding (SSC) mechanism [23]. One of the key issues in the CS model is the minimization of the rank function. Because the kernel norm is the minimum convex envelope of the rank function, the rank function in the traditional CS model is often relaxed to the kernel norm (the sum of all singular values of the matrix). However, many works in the literature have proven that using kernel norm to approximate the rank of a matrix has many weaknesses, especially when the matrix has large singular values, the inaccuracy of this approximation is particularly obvious. Therefore, it is particularly necessary to study how to construct a more accurate rank approximation function (RAF) and establish a corresponding low-rank matrix (LRM) recovery model based on it. In recent years, the non-convex function approximation (NNFA) of the LRM’s rank function has widely concerned many scholars. A large number of experimental results have proven that these non-convex rank approximation functions are more accurate than the convex function approximation of the kernel norm. The approximate rank function method of the non-convex function (NCF) can not only avoid the NP-hard problem but also provide the optimal solution. The non-convex function replacement (NCFR) can usually provide more scalable solutions. The comparison between the non-convex Laplace replacement function (NCLRF) and the kernel norm replacement function (KNRF) under standard conditions shows that the NCLRF model can better approximate the rank function than the kernel norm model when solving the rank minimization problem. Therefore, it is very meaningful to explore the non-convex regularized low-rank approximation (NCRLRA) model, establish a fast and effective solution algorithm, and apply it to practical problems such as the compressed sensing of a remote sensing image (RSI). This paper suggests a variational framework for CS reconstruction using non-local structural sparsity (NLSS) and non-convex low-rank approximation (NCLRA) [23].




3. Regularized CS Reconstruction Model Based on Non-Local and Non-Convex Approximate Low-Rank Functions


This section presents a new regularized CS reconstruction model with non-local and an NCLRA, comprising a patch grouping to describe the self-similarity of the images and an NCLRA for low-rank enhancement. Our method assumes that the non-local self-similarity in Landsat 8–9 RSIs is very rich. This assumption implies that for each sample image patch    x ^  i   (   n  ×  n   ) sample patch at position (i), a sufficient number of similar image patches can be found by performing a k-nearest neighbor (KNN) search algorithm in a local window, e.g.,   100 × 100  , when     x ^  i  ∈   C  n   , namely:


   G i  =   i j   |     x ^  i  −   x ^   i , j    < T  ,  



(2)




where T is a predefined threshold and   G i   represents the set of locations corresponding to the similar image patch. After the patch is grouped, we obtain the data matrix    X i  =   x  i 0   ,  x  i 1   , … ,  x  i  m − 1      ,    X i  ∈   C   n × m    . For each sample image patch   x   i   , each column of   X   i    represents a patch similar to   x   i    (including   x   i   ). Since these patches have similar structures, the data matrix   X   i    formed is low-rank.



In practical applications,   X   i    may be interfered with by noise, thus deviating from the ideal low-rank constraint (LRC). Thus, a better representation of the data matrix   X i   is    X i  =  L i  +  W i   , where   L i   and   W i   represent the low-rank matrix (LRM) and the Gaussian noise matrix (GNM), respectively. By solving the optimization problem in Equation (3), the LRM is reconstructed:


      L i  =   argmin r a n k   L i      L i         s . t .      X i  −  L i    F  2  ≤  σ  w  2  ,     



(3)




where    ⋅   F  2   represents the Frobenius norm and   σ  w  2   is the variance of additive Gaussian noise. Although the low-rank convex substitution method has good theoretical guarantees, the optimization method of non-convex substitution for the rank minimization problem may obtain better recovery results.



This paper uses a smooth non-convex function (Laplace function) as the alternative to the low-rank function. Nowadays, several works employ the nuclear norm approximate low-rank function, which provides equal weight to all the singular values in the image patch. However, in many practical situations, the singular values have different physical meanings and should be treated differently [11,12], which is particularly prominent for RSIs. For example, larger singular values represent low-frequency information in Landsat 8–9 RSIs, while smaller values represent high-frequency information and noise. The Laplace function   ϕ  ( x )  = 1 −   e   − x / ε     used in this paper is closer to the pseudo-norm   l 0   than the nuclear norm, and thus the sum of the singular values of the Laplace function is closer to the rank function than the nuclear norm. Additionally, the advantage of the Laplace function is that it automatically assigns different weights to each singular value. Based on the above observations, we propose a non-convex low-rank substitution model of the Laplace function, defined as the norm form in Equation (4):


    X  ε  = ϕ  σ  X   =  ∑  i = 1  n   1 −   e    −  σ i   X   / ε     ,  



(4)




where  ε  denotes a smaller constant value. Note that function    X  ε   is the sum of n singular value functions of the matrix X. So it is smooth and non-convex. Laplace non-convex functions can substitute rank function, which has been proven better when considering information theory [24,25]. On these grounds, the non-convex low-rank approximation optimization model (NC-LRAOM) of Equation (5) is proposed to solve   L i  .


      L i  =   arg min   L i       L i   ε        s . t .    X i  −  L i    F  2  ≤  σ  w  2  ,     



(5)







In practice, the constrained minimization problem can be solved with an unconstrained minimization problem, namely:


   L i  =   arg min   L i       X i  −  L i    F  2  + λ    L i   ε  ,  



(6)







By selecting the appropriate  λ , Equation (6) can be made equivalent to Equation (5). For each sample image patch, an approximate low-rank matrix   L i   of the matrix   X i   can be obtained by solving Equation (6), and for each extracted sample image patch the low-rank was enforced on the non-local similar image patch set. Hence, a new non-convex CS reconstruction model is proposed following the proposed low-rank regularization term. The specific CS reconstruction scheme is as follows:


    x ^  ,   L ^  i   =   arg min   x ,  L i       y − Φ x   2  2  + η  ∑ i        R ˜  i  x −  L i    F  2  + λ    L i   ε   ,  



(7)




where     R ˜  i  x ≐   R  i 0   x ,  R  i 1   x , … ,  R  i  m − 1    x    is a matrix comprising a group of similar patches of each sample image patch   x i  . The proposed regularized model with non-local combined non-convex approximate low-rank function (NL-NCALF) simultaneously utilizes the group sparsity of similar image patches and the non-convexity of rank minimization, thus being able to obtain better reconstruction results. In the next section, the proposed objective function will be solved effectively using the minimization method of the non-convex function instead of the low-rank function.




4. Landsat 8–9 Remote Sensing Image CS Reconstruction Algorithm


The proposed CS reconstructed algorithm of the Landsat 8–9 RSI can be solved by minimizing the objective function and the low-rank matrix (LRM)   L   i    of the whole image x. For the initial estimate of the unknown image x, we first extract the sample image patch   x i   at each pixel i in each direction and assign a similar set to each image patch   x i  , as described in Section 3. Then we solve the following minimization problem for each image patch as follows:


   L i  =   arg min   L i    η     R ˜  i  x −  L i    F  2  + λ    L i   ε  ,  



(8)







Equation (8) is solved using Theorem 1:



Theorem 1. 

Given   Z ∈   R    m 1  ×  m 2     , the minimum value of Equation (9):


   arg  min X     X  ε  +  β 2    Z − X   F  2  ,   



(9)







is given by a weighted singular value threshold, i.e.,:


   X = U  D     ∇ ϕ   /   β      V  H  ,   



(10)







where   Z = U S   V  H    and    D     ∇ ϕ   /   β    ∈   R    m 1  ×  m 2      is a diagonal matrix,    D   ∇ ϕ  β    i , i  =   S  i , i  −   ∇ ϕ   σ i    β   +   ,   ∇ ϕ   σ i   =  1 ε  exp  −   σ i  ε     denotes the gradient of ϕ at position   σ i  , and   σ i   is the ith singular value of X.





Proof. 

Equation (4) shows that the function    X  ε   is the sum of n singular value functions of matrix X, then Equation (9) can be expressed in the form of Equation (11):


  arg  min X    ∑  i = 1  m   ϕ   σ i   X    +  β 2    X − Z   F  2  ,  



(11)




where   X ,  Z ∈   C    m 1  ×  m 2     , and the optimal solution of Equation (11) can be obtained using the general weighted singular value threshold [26,27], namely:


  X = U  D     ∇ ϕ   /   β      V  H  ,  








where   Z = U S   V  H   ,    D   ∇ ϕ  β    i , i  =   S  i , i  −   ∇ ϕ   σ i    β   +   ,   ∇ ϕ   σ i   =  1 ε  exp  −   σ i  ε    , Consequently, the conclusion of Theorem 1 can be confirmed. □





In the case of a real matrix, the proposed CS reconstruction model for the Landsat 8–9 RSI is non-convex, so it is not expected to find its global minimum. However, the weighted singular threshold algorithm can obtain the minimum value (possibly the local minimum value) of Equation (9). Note that even though the weighted threshold method is only a local minimum, the value of the objective function still decreases. In the experiment, we set    w     0   =    1 , 1 , … , 1   T   .



According to [28], weighting   l 1  -norm performs much better than   l 1  -norm in approximating   l 0  -norm and generally produces better image CS perception reconstruction results. Similarly, the experimental results in the next section demonstrate that the Laplace function produces CS reconstruction results better than the nuclear norm. By solving the following minimization problem to obtain   L i  , we can further reconstruct the whole Landsat 8–9 RSI:


  x =   arg min  x     y − Φ x   2  2  + η  ∑ i       R ˜  i  x −  L i    F  2  ,  



(12)




when the measurement matrix  Φ  is the Fourier transform matrix (the Fourier transform is one of the important transforms in the field of Landsat 8–9 RSI processing), Equation (12) can be quickly solved using the alternating direction multiplier method (ADMM) [29]. In this case, first, the augmented Lagrangian form of Equation (12) can be expressed as in Equation (13):


   x , z , μ  =   arg min  x     y − Φ x   2  2  + β   x − z +  μ  2 β     2  2  + η  ∑ i       R ˜  i  z −  L i    F  2  ,  



(13)




where   z ∈   C  N    is an auxiliary variable,   μ ∈   C  N    is a Lagrange multiplier, and  β  is a positive constant. The advantage of ADMM is that Equation (13) can be divided into two subproblems, where both can find their closed solutions. Applying ADMM to Equation (13), the iterative form of the following Equation (14) can be obtained:


       z   l + 1   =   arg min  z     β   l       x   l   − z +    μ   l    2   β   l       2  2  + η  ∑ i       R ˜  i  z −  L i    F  2          x   l + 1   =   arg min  x     y − Φ x   2  2  +   β   l     x −   z   l + 1   +    μ   l    2   β   l       2  2          μ   l + 1   =   μ   l   +   β   l     x   l + 1   −   z   l + 1           β   l + 1   = ρ   β   l   ,     



(14)







In Equation (14),   ρ > 1   is a constant. By determining    x   l   ,    μ   l   ,    β   l   , and    z   l + 1   , a closed solution can be obtained:


    z   l + 1   =    η  ∑ i     R ˜   i  T    R ˜  i  +   β   l   I    − 1      β   l     x   l   +    μ   l   2  + η  ∑ i     R ˜   i     L i   ,  



(15)







Note that    ∑ i     R ˜   i  T    R ˜  i     is a diagonal matrix. Therefore, Equation (15) can be easily calculated.



The sub-problems of x and y can be calculated using Equation (16):


     Φ  H  Φ +   β   l   I  x =    Φ  H  y +   β   l     z   l + 1   −    μ   l   2   ,  



(16)




where  Φ  is the Fourier transform matrix (FTM),   Φ = D F   and where D and F represent the down-sampling matrix and Fourier transform matrix (FTM), respectively. In other words, the sub-problems of x and y can be solved from the image space to the Fourier frequency domain space by Equation (16). Equation (17) can be obtained by replacing  Φ  with   D F   in Equation (16) and executing Fourier transform on both sides of the equation.


  F     D F   H  D F +   β   l   I    F  H  F x = F    D F   H  y + F    β   l     z   l + 1   −    μ   l   2   ,  



(17)







So, we simplify Equation (17) and calculate x by taking the inverse Fourier transform, namely:


    x   l + 1   =   F  H        D  T  D +   β   l      − 1      D  T  y + F    β   l     z   l + 1   −    μ   l   2     ,  



(18)







By updating x and z according to Equation (14),  μ  and  β  can be easily calculated.



After the unknown image x is calculated, the low-rank matrix   L i   is updated using Equation (8), from which we obtain the updated   L i   that is used to recalculate the estimate of image x. This process is repeated until the algorithm meets the convergence condition.



The proposed CS reconstruction model for the Landsat 8–9 RSIs is non-convex. Therefore, the hot start method is used to preprocess the CS reconstruction images. When the reconstruction results reach a certain accuracy, the above ADMM method is used to solve the proposed model and obtain higher accuracy. To save computing time, image patch grouping is not updated after each iteration but at the end of an outer cycle.




5. Data Sources


This study employs Landsat 8–9 RSIs for all simulation experiments obtained from the US Geological Survey Center for Earth Resource Observation and Science (EROS). Landsat 8 is the eighth satellite of the US Landsat Missions (Landsat), successfully launched on an Atlas-V rocket from Vandenberg Air Force Base, California, on 11 February 2013, originally known as the Landsat Data Continuity Mission (LDCM). Landsat 8 carries an operational land imager (OLI) and a thermal infrared sensor (TIRS). The OLI measures the spectrum’s visible, near-infrared, and shortwave infrared portions (VNIR, NIR, and SWIR). The TIRS measures the temperature of land surfaces in two thermal bands with a new technology that applies quantum physics to detect heat. The OLI Land Imager includes nine spectral bands with 30-m multi-spectral spatial resolutions, which include a 15-m panchromatic band. This study’s first set of satellite images was the Landsat-8 LITP product of the blue band (30-m) with a wavelength range of 450–515 nm. Landsat 9 is the ninth satellite of the US Landsat Missions (Landsat), successfully launched from the Vandenburg Space Force Base, California, on 27 September 2021. Landsat 9 Carries the second-generation land imager (Operational Land Imager 2, OLI-2) built by Ball Aerospace & Technologies and the second-generation thermal infrared sensor (Thermal Infrared Sensor 2, TIRS-2) built by NASA Goddard Space Flight Center. The OLI–2 captures images of the Earth’s surface in visible, near-infrared, and shortwave-infrared bands, increasing the radiative measurement accuracy from 12 to 14 bits with Landsat 8 and slightly improving the overall signal-to-noise ratio. The OLI-2 land imager includes nine spectral bands with a 30-meter spatial resolution, which includes a 15-meter panchromatic band. The TIRS-2 measures the thermal infrared radiation or heat of the Earth’s surface in two bands that perform better than the thermal band of the Landsat 8. This study’s second set of satellite images is the Landsat 9 L2SP product of the red band (30-meter) with a wavelength range of 640–670 nm. Table 1 summarizes the locations and dates of the observed images.



The Landsat 8 RSIs were ordered in four different geographical regions: Antarctica; Selkirk in Manitoba, Canada; Flathead Lake in Montana, USA; Lincoln in Washington, USA. Antarctica is mainly composed of ice sheets, glaciers, and snow, while Selkirk in Manitoba, Canada, is a grassland area with relatively flat terrain, a Precambrian shield, and its northern end is the permafrost layer. Flathead Lake in Montana, USA, is in the state’s northeast and is known for its rich rocks and plains. It includes rich land features, such as water, mountain, forest, and vegetation. Lincoln has abundant landforms, abundant rainfall, and large desert areas in the east.



The Landsat 9 remote sensing images (RSIs) [30] were ordered in five different geographical regions: Lake Abitibi in Ontario, Canada; Yeosu, South Korea; Shanghai, China; Huangshi, Hubei, China; Erenhot, Inner Mongolia, China. The Lake Abitibi waters range from western Lake Forest to the St. Lawrence River in eastern Cornwall. Lake Abitibi stretches between Ontario and Quebec and includes many land features, such as lakes, forests, cities, and farmland. Yeosu is located in the Yeosu Peninsula, the southernmost tip of the Korean Peninsula, belonging to South Jeolla Province, and it includes the ocean, coastline, and city. Shanghai is located on the west coast of the Pacific Ocean, where the Yangtze River and Huangpu River converge. Its land features include rivers, oceans, cities, islands, and peninsulas. Huangshi City is located on the south bank of the middle reaches of the Yangtze River, facing the Yangtze River in the northeast and Huanggang City across the river, and it is rich in minerals. In the northwest and middle of the city, lakes such as Baoan, Sanshan, and Daye form a plain lake marshland, while the rest are low mountains and hills. Erenhot is flat and gently inclined from southwest to northeast. The land features include forests, deserts, grasslands, villages, and vegetation.



The objective of selecting Landsat 8–9 RSIs of different regions is to ensure that the newly-developed model performs very well for diverse land cover types.




6. Experimental Results and Analysis


To demonstrate the effectiveness of the newly developed method, extensive simulations were conducted using Landsat 8–9 RSIs. Since Landsat 8–9 RSIs (30-meter resolution) are too large, we adjusted the images by cropping, scaling, recombining, and synthesizing. After processing, the simulated Landsat 8–9 RSI had a   1000 × 1000   resolution used to evaluate the proposed CS model. Then, the CS model was applied to reconstruct the compressed sampling data and obtain the restored image, which was compared against the original image to assess the model. All simulations were conducted on an Intel (R) Core (TM) i9-10980XE CPU @ 3.00 GHz and with 128 GB RAM. The synthetic RSIs for reconstruction are illustrated in Figure 1:



Figure 1 illustrates a series of synthetic images obtained from the original Landsat 8–9 images, which were used to evaluate our algorithm after cutting and resizing. The above images were used in the newly developed CS model for reconstruction and comparative evaluation against other CS models, namely, NL-Laplace-CS, NL-SRF-CS [16], KCS-GSR [31], and NLDR-CS [32], and revealed the advantages and disadvantages of each model. The Landsat 8–9 RSIs were sampled using different frequency-domain sampling ratios (10%, 15%, 20%, and 25%) and were reconstructed using the above model. The corresponding reconstruction results are presented in Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9 and Figure 10.



Figure 2 reveals that the NL-Laplace-CS model performs better than NL-SRF-CS, KCS-GSR, and NLDR-CS considering reconstruction. From the first line (10%), the fourth line (15%), the seventh line (20%), and the tenth line (25%), it is evident that the images reconstructed by the NL-Laplace-CS model have no obvious edge blur, but the competitor method reconstructs images with a visible edge blur. The reconstructed image using the NL-SRF-CS model has information loss in surface features and heterogeneous regions of textures. The images reconstructed with the NL-Laplace-CS and KCS-GSR methods present fewer zigzag effects than the other models. The overall reconstruction result of the NLDR-CS model is better than the NL-Laplace-CS and KCS-GSR models but still slightly inferior to the NL-Laplace-CS model. The NL-Laplace-CS model has inherent noise suppression and, therefore, can suppress areas of high-frequency changes. However, from the different images in Figure 2e red magnified diagram at the lower left corner of each image), we observe that the NL-Laplace-CS model retains the most details.



Figure 3 illustrates the CS reconstruction results of the Landsat 8 RSI covering Selkirk, Manitoba, Canada, using the same model presented in Figure 2 Compared with the competitor models, the NL-SRF-CS and KCS-GSR models present large differences compared to the original images. Specifically, the images reconstructed with the NL-SRF-CS method have significant edge blurring and lost more details in areas with more edges. The images reconstructed with the KCS-GSR model have a sharp zigzag effect. Moreover, the results of images reconstructed by NLDR-CS show a greater data loss of surface features and edge areas than those reconstructed images using the NL-Laplace-CS model. The overall visual effect of the reconstructed image from the NL-Laplace-CS model has the highest fidelity relative to the original images.



Figure 4 depicts the CS reconstruction of a Landsat 8 RSI of Lake Flathead, Montana, USA, using the same model as in Figure 2 and Figure 3. The difference between the reconstructed image of the KCS-GSR model and the original image is the largest, followed by the NL-SRF-CS model and NLDR-CS model. However, the proposed NL-Laplace-CS model has the smallest difference from the original image. The reconstructed images of the NL-SRF-CS model have much edge blurring and loss of detail in the edge area, and the KCS-GSR reconstructed image also lost more details than the original image. The reconstructed image of the NLDR-CS model affords fine surface structure and edge information, but there is a minor blurring effect in the edge area. In the image reconstructed by the NL-Laplace-CS model, the partially magnified area (lower left red box diagram) reveals a good visual effect, while the details of edges and non-smooth areas are also well preserved.



Figure 5 illustrates the resulting images of CS reconstruction of Landsat 8 RSIs from Lincoln, Washington, USA, using the model of Figure 2. The difference images show that the reconstructed result images of the KCS-GSR model and the NLDR-CS model differ the most from the original image, and the proposed NL-Laplace-CS model differs the least. For KCS-GSR and NLDR-CS models, the reconstructed image’s local magnified area (red block diagram in the lower left corner) has a more obvious edge blur. Furthermore, the reconstructed images of the NL-SRF-CS model reveal that the reconstruction results are significantly serrated, and there is also a small fuzzy effect in the uneven areas. For the NL-Laplace-CS model, the reconstructed images afford a good visualization, the suppression of details is invisible, and the boundaries of each object region in the image are well preserved.



Table 2 summarizes the number of pixels within a range (  ± 260  ) of around 0 for each image. The more pixels within a pixel value range around 0, the better the reconstruction effect. Table 2 highlights the fact that most pixels of the different numbers between the image reconstructed by the NL-Laplace-CS model and the original image are concentrated in the range   − 260 , 260  . Moreover, Figure 2, Figure 3, Figure 4 and Figure 5 illustrate that the range   0 , 260   of the pixel values is very small compared to 16-bit images (0–65535). Besides, Table 2 reveals that the percentage of pixel difference within the   − 260 , 260   range between the reconstructed image of the NL-Laplace-CS model and the original image is the largest (the percentage of the whole image), indicating that the fidelity of a Landsat 8 RSI reconstructed by the proposed NL-Laplace-CS model is the highest.



To further evaluate our model’s performance, we employ three quantitative image quality indicators (PQI): root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) [33]. A lower RMSE value, higher PSNR value, or higher SSIM value indicates a better model performance. Table 3 summarizes the PQI values in different areas for each model presented in Figure 2, Figure 3, Figure 4 and Figure 5. For the Antarctic region (Figure 2), the difference in the RMSE values between the competitor models is obvious, as the RMSE values of the NL-SRF-CS model are significantly larger, followed by the RMSE of the KCS-GSR model and NLDR-CS model. The NL-Laplace-CS model has the smallest RMSE among all models.



Moreover, the average error generated by the NL-Laplace-CS model in all geographic regions is the smallest among all models for all sampling ratios. For Selkirk in Manitoba, Canada (Figure 3), all models have similar PSNR values, but the PSNR values of NL-SRF-CS and KCS-GSR models are relatively smaller than the other models. Although the NLDR-CS model has high PSNR values, it changes relatively slowly with the sampling rate increasing. In any case, the PSNR of the NL-Laplace-CS model is the maximum. Furthermore, the PSNR results (see Table 3) indicate that the NL-Laplace-CS model performs well, and its SSIM value is greater than the competitor models. Although the SSIM value increases with the image sampling rate, the rate at which the new model increases is much larger than the other models. These PQI results indicate that the newly developed NL-Laplace-CS model has lower RMSE values, higher PSNR and SSIM values, better visual effects, and edge preservation.



The second group of satellite images used in our simulations involves the Landsat 9 L2SP product in the red band (30-meter) with a wavelength range of 640–670 nm. Similar to the Landsat 8 synthetic simulation images, the Landsat 9 image was trimmed and scaled to obtain the simulation Landsat 9 data presented in the second row in Figure 1. Finally, we evaluated that dataset with the NL-SRF-CS, KCS-GSR, NLDR-CS, and NL-Laplace-CS models and analyze the performance of each algorithm through the simulation results.



Figure 6 illustrates the CS reconstruction images of the Landsat 9 RSIs from Lake Abitibi, Ontario, Canada, using the model presented in Figure 2. In the algorithm simulation experiment in this region, various CS reconstruction models can reconstruct the resulting images well. However, there are still some differences, as Figure 6 highlights the fact that the NL-SRF-CS model has a good reconstruction effect in the relatively smooth area, but the reconstruction effect in the edge area and the detailed area is unsatisfactory. The reconstructed resulting images of the KCS-GSR model are quite different from the original images; namely, there is a certain gap between the overall reconstruction results of the KCS-GSR model and those of the NLDR-CS model and NL-Laplace-CS model. For NL-Laplace-CS and NLDR-CS models, the reconstructed image’s local magnified area (red block diagram in the lower left corner) has more obvious detail preservation. At the same time, the reconstruction results of the proposed NL-Laplace-CS model have the least difference from the original images.



Figure 7 depicts the resulting images of the CS reconstruction of the Landsat 9 RSI of Yeosu, South Korea, using the model presented in Figure 2. For this area, the reconstructed images of all CS reconstruction models present unsatisfactory results, mainly due to the geographic details in this region. Figure 7 reveals that the KCS-GSR model’s reconstructed images differ the most from the original ones, followed by the NL-SRF-CS model. The NLDR-CS model shows better reconstruction results but is still imperfect in the marginal and detailed areas. The reconstruction results of the proposed NL-Laplace-CS model present minor differences from the original images and thus affords the best visual effect.



Figure 8, Figure 9 and Figure 10 demonstrate each competitor algorithm’s advantages and disadvantages based on each image’s corresponding reconstruction result. However, due to paper length limitations, we neglect a detailed analysis. Additionally, Table 4 summarizes the number of pixels within a range (  ± 260  ) of around 0 for different Landsat 9 images. The more pixel values within the range around 0, the better the reconstruction effect. Table 4 reveals that most pixels of the NL-Laplace-CS model-based reconstructed images are concentrated within the range   − 260 , 260  , as illustrated in Figure 6, Figure 7, Figure 8, Figure 9 and Figure 10. For 16-bit images (0 to 65,535), the range of (0 to 260) is very small. Table 4 highlights the fact that the NL-Laplace-CS model has the largest percentage of pixels (percentage of the whole image) in a range of around 0, indicating that its performance is best among the models evaluated.



To further evaluate the proposed model’s performance, we calculate the RMSE, PSNR, and SSIM values on the CS reconstructed Landsat 9 images. Table 5 summarizes the information presented in Figure 6, Figure 7, Figure 8, Figure 9 and Figure 10 and highlights the fact that the NL-Laplace-CS model has the lowest RMSE value and the highest PSNR and SSIM values. The resulting images used for the CS reconstruction based on the NL-Laplace-CS model had the best visual effect, namely, the most preserved edge information and image details.




7. Discussion


The NL-Laplace-CS regularization method relies on the appropriate adjustment of the data fidelity and weight parameters in the regularization terms. With the optimal choice of the weight parameters, this method yields the best reconstruction results. The experiments use the Landsat 8–9 RSI for CS simulation reconstruction, and we compared the reconstruction results obtained from the Landsat 8–9 RSI simulation with the NL-Laplace-CS model against the NL-SRF-CS, KCS-GSR, and NLDR-CS image reconstruction models. We also compared these reconstruction results with the original Landsat 8–9 RSI. The results highlighted that the new NL-Laplace-CS had lower RMSE values, higher PSNR and SSIM values, and better visual effects than the competitor models. Errors mostly occur between geological structures and land cover classes in the transition zone. The resulting images of the CS reconstruction of the newly developed NL-Laplace-CS model reveal that, even in such a transition zone, the reconstructed pixel values still have a high fidelity relative to the original Landsat 8–9 RSIs. This is important because most remote sensing image applications require high fidelity in the transition zone to clarify the geological surface features with complex geographical compositions.




8. Conclusions


This work developed a Landsat 8–9 RSI CS reconstruction model based on a non-local framework combined with low-rank regularization approximation of non-convex Laplace functions, which was solved using the ADMM algorithm. The proposed NL-Laplace-CS model was challenged against advanced CS image reconstruction models such as NL-SRF-CS, KCS-GSR, and NLDR-CS in a simulation reconstruction for Landsat 8–9 RSIs. The simulation results revealed that the proposed NL-Laplace-CS model effectively utilized similar image patches of sparse groups and established a low-rank regularized approximate minimization model of non-convex Laplace functions, suggesting a very effective method for CS reconstruction of Landsat 8–9 RSIs. Specifically, the proposed NL-Laplace-CS model has lower RMSE values, higher PSNR and SSIM values, and outperforms state-of-the-art CS image reconstruction models such as NL-SRF-CS, KCS-GSR, and NLDR-CS.
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Figure 1. Synthetic Landsat 8–9 RSIs used for model evaluation. The first row presents the synthetic Landsat 8 images (from left to right: the first image was collected in Antarctica on 22 February 2018; the second image was collected in Selkirk, Manitoba, Canada, on 7 October 2022; the third image was collected in Lake Flathead, Montana, USA, on 29 September 2017; the last image was collected in Lincoln, Washington, USA on 15 October 2015). The second row presents the synthetic Landsat 9 RSIs (from left to right: the first image was collected in Lake Abitibi, Ontario, Canada, on 11 October 2022; the second image was collected in Yeosu, Korea, on 12 October 2022; the third image was collected in Shanghai, China on 8 April 2022; the fourth image was collected in Huangshi, Hubei, China on 13 October 2022; the last image was collected in Erenhot, Inner Mongolia, China on 28 July 2022). 
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Figure 2. Reconstruction Results using Sampling Rates of 10%, 15%, 20%, and 25% for a Landsat 8 RSI in Antarctica, (a) original Landsat 8 RSI of Antarctica, (b–e) of the first row (10%), the fourth row (15%), the seventh row (20%), and the tenth row (25%) are the reconstruction result images of NL-SRF-CS, KCS-GSR, NLDR-CS, and NL-Laplace-CS models, respectively. The red square area in the lower left corner of each image is the magnified form of the selected area in the image, which is convenient for observing the details of the reconstruction results. The images in the second, fifth, eighth, and eleventh rows are the differences between the reconstructed and original images corresponding to each sampling ratio. The third, sixth, ninth, and twelfth rows show the histograms of the corresponding difference image. 
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Figure 3. CS reconstruction result images of a Landsat 8 RSI in Selkirk, Manitoba, Canada, are the same as the second image on the left of the top row of Figure 1. (a–e) The specific details of the images are the ones presented in Figure 2. 






Figure 3. CS reconstruction result images of a Landsat 8 RSI in Selkirk, Manitoba, Canada, are the same as the second image on the left of the top row of Figure 1. (a–e) The specific details of the images are the ones presented in Figure 2.



[image: Entropy 25 00523 g003]







[image: Entropy 25 00523 g004 550] 





Figure 4. CS reconstruction result images of a Landsat 8 RSI in Lake Flathead, Montana, USA ((a–e) similar to Figure 2 and the third to the left image in the first line of Figure 1). 
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Figure 5. CS reconstruction result images of a Landsat 8 RSI in Lincoln, Washington, USA ((a–e) similar to Figure 2 and the last image in the first line of Figure 1). 
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Figure 6. CS reconstruction result images of a Landsat 9 RSI in Lake Abitibi, Ontario, Canada, using various models ((a–e) similar to Figure 2 and the first image on the left in the second row of Figure 1). 
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Figure 7. Landsat 9 remote CS reconstruction of Yeosu using various models ((a–e) similar to Figure 6 and the second left image in the second row of Figure 1). 
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Figure 8. CS reconstruction result images of a Landsat 9 RSI in Shanghai, China, using various models ((a–e) similar to Figure 6 and the second left image in the second row of Figure 1). 
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Figure 9. CS reconstruction result images of a Landsat 9 RSI in Huangshi, Hubei, China, using various models ((a–e) similar to Figure 6 and the fourth left image in the second row of Figure 1). 
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Figure 10. CS reconstruction result images of a Landsat 9 RSI in Erenhot, Inner Mongolia, China, using various models ((a–e) similar to Figure 6 and the last image in the second row of Figure 1). 
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Table 1. The images and regions used for the CS reconstruction algorithm of remote sensing image.






Table 1. The images and regions used for the CS reconstruction algorithm of remote sensing image.





	
Image Locations and Date




	
Remote Sensing Image Type

	
Locations

	
WRS2

(Worldwide Reference System 2)

	
Date






	
Landsat 8

	
Antarctica

	
128111

	
22/02/2018




	
Selkirk, Manitoba, Canada

	
031025

	
07/10/2022




	
Lake Flathead, Montana, USA

	
041027

	
29/09/2017




	
Lincoln, Washington, USA

	
044027

	
15/10/2015




	
Landsat 9

	
Lake Abitibi, Ontario, Canada

	
019026

	
11/10/2022




	
Yeosu, Republic of Korea

	
115036

	
12/10/2022




	
Shanghai, China

	
118038

	
08/04/2022




	
Huangshi, Hubei, China

	
122039

	
13/10/2022




	

	
Erenhot, Inner Mongolia, China

	
127030

	
28/07/2022
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Table 2. Percentage of the number of pixels (in a small range   − 260 , 260   of around 0) of the difference images between the original Landsat 8 RSI and the reconstructed image using different CS models.
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Landsat 8

Remote Sensing

Image

	
Range of

Pixel

Value

	
Rate

	
Percentage of Pixels Occupied




	
NL-SRF-CS

	
KCS-GSR

	
NLDR-CS

	
NL-Laplace-CS




	
Inside

	
Outside

	
Inside

	
Outside

	
Inside

	
Outside

	
Inside

	
Outside






	
Antarctica

128111_20180222

	
   [ − 260 , 260 ]   

	
0.10

	
31.7318

	
68.2682

	
51.8176

	
48.3557

	
70.9197

	
29.0803

	
86.5486

	
13.4514




	
   [ − 260 , 260 ]   

	
0.15

	
40.9783

	
59.0217

	
55.6457

	
44.5336

	
77.8590

	
22.1410

	
94.2010

	
5.7990




	
   [ − 260 , 260 ]   

	
0.20

	
44.6930

	
55.3070

	
58.5099

	
41.6791

	
82.7760

	
17.2240

	
97.9707

	
2.0293




	
   [ − 260 , 260 ]   

	
0.25

	
54.7053

	
45.2947

	
61.4826

	
38.7127

	
86.6517

	
13.3483

	
99.6080

	
0.3920




	
Selkirk, Manitoba,

Canada

031025_20221007

	
   [ − 260 , 260 ]   

	
0.10

	
30.7078

	
69.2922

	
38.9215

	
61.2166

	
60.4930

	
39.5070

	
66.7224

	
33.2776




	
   [ − 260 , 260 ]   

	
0.15

	
36.9558

	
63.0442

	
42.0941

	
58.0497

	
68.5670

	
31.4330

	
74.7742

	
25.2258




	
   [ − 260 , 260 ]   

	
0.20

	
39.8745

	
60.1255

	
45.0647

	
55.0905

	
75.5086

	
24.4914

	
82.8788

	
17.1212




	
   [ − 260 , 260 ]   

	
0.25

	
46.7389

	
53.2611

	
47.8097

	
52.3493

	
81.5440

	
18.4560

	
90.4872

	
9.5128




	
Flathead Lake,

Montana, USA,

041027_20170929

	
   [ − 260 , 260 ]   

	
0.10

	
77.4191

	
22.5809

	
78.4541

	
21.7012

	
84.8593

	
15.1407

	
93.9916

	
6.0084




	
   [ − 260 , 260 ]   

	
0.15

	
87.4137

	
12.5863

	
80.5140

	
19.6338

	
88.0287

	
11.9713

	
96.8053

	
3.1947




	
   [ − 260 , 260 ]   

	
0.20

	
88.3001

	
11.6999

	
82.6323

	
17.5099

	
90.4024

	
9.5976

	
98.8148

	
1.1852




	
   [ − 260 , 260 ]   

	
0.25

	
93.2202

	
6.7798

	
83.7051

	
16.4393

	
92.2663

	
7.7337

	
99.6793

	
0.3207




	
Lincoln,

Washington, USA

044027_2015288

	
   [ − 260 , 260 ]   

	
0.10

	
86.4147

	
13.5853

	
81.8592

	
18.3014

	
85.6378

	
14.3622

	
96.8269

	
3.1731




	
   [ − 260 , 260 ]   

	
0.15

	
94.4427

	
5.5573

	
87.7942

	
12.3480

	
89.0729

	
10.9271

	
98.6488

	
1.3512




	
   [ − 260 , 260 ]   

	
0.20

	
95.1954

	
4.8046

	
86.1578

	
13.9878

	
91.6887

	
8.3113

	
99.6090

	
0.3910




	
   [ − 260 , 260 ]   

	
0.25

	
97.9079

	
2.0921

	
87.7942

	
12.3480

	
93.7166

	
6.2834

	
99.9129

	
0.0871
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Table 3. RMSE, PSNR, and SSIM values for different models in the Landsat 8 remote sensing image (RSI) study shown in Figure 2, Figure 3, Figure 4 and Figure 5.
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Landsat 8 Remote-Sensing Images

	
PQIs

	

	
NL-SRF-CS

	
KCS-GSR

	
NLDR-CS

	
NL-Laplace-CS






	
Antarctica

128111_20180222

	
Rate0.10

	
RMSE

	
898.253

	
480.6734

	
203.4486

	
195.7073




	
PSNR

	
37.2615

	
43.2624

	
50.0925

	
50.4973




	
SSIM

	
0.9415

	
0.97808

	
0.9935

	
0.9942




	
Rate0.15

	
RMSE

	
641.1155

	
412.0085

	
153.7279

	
130.5971




	
PSNR

	
40.1907

	
44.8054

	
52.5266

	
54.0107




	
SSIM

	
0.9598

	
0.9828

	
0.9959

	
0.9971




	
Rate0.20

	
RMSE

	
539.2623

	
373.2582

	
124.7959

	
93.5328




	
PSNR

	
41.6935

	
45.8467

	
54.3376

	
56.9102




	
SSIM

	
0.9664

	
0.98561

	
0.9971

	
0.9984




	
Rate0.25

	
RMSE

	
401.2769

	
326.7187

	
104.8497

	
68.3434




	
PSNR

	
44.2606

	
47.3134

	
55.8503

	
59.6355




	
SSIM

	
0.978

	
0.98882

	
0.9979

	
0.9991




	
Selkirk, Manitoba,

Canada,

031025_20221007

	
Rate0.10

	
RMSE

	
833.0314

	
699.6305

	
360.0842

	
307.8145




	
PSNR

	
37.9162

	
39.5301

	
45.1335

	
46.5637




	
SSIM

	
0.924

	
0.93774

	
0.9777

	
0.9834




	
Rate0.15

	
RMSE

	
639.0923

	
620.12

	
276.0758

	
242.2749




	
PSNR

	
40.2182

	
40.6163

	
47.441

	
48.6433




	
SSIM

	
0.9447

	
0.9476

	
0.9859

	
0.9893




	
Rate0.20

	
RMSE

	
555.8848

	
553.2539

	
220.699

	
190.908




	
PSNR

	
41.4298

	
41.6514

	
49.3856

	
50.713




	
SSIM

	
0.9543

	
0.95653

	
0.9906

	
0.9931




	
Rate0.25

	
RMSE

	
446.627

	
501.8709

	
179.8765

	
149.425




	
PSNR

	
43.3306

	
42.5392

	
51.1621

	
52.841




	
SSIM

	
0.9948

	
0.9633

	
0.9935

	
0.9957




	
Flathead Lake,

Montana, USA

041027_20170929

	
Rate0.10

	
RMSE

	
251.2652

	
243.7577

	
177.0215

	
130.6265




	
PSNR

	
48.3268

	
49.3549

	
51.3011

	
54.0088




	
SSIM

	
0.9915

	
0.992

	
0.9938

	
0.9964




	
Rate0.15

	
RMSE

	
190.7938

	
226.0831

	
152.4969

	
109.2699




	
PSNR

	
50.7182

	
50.1743

	
52.5964

	
55.5595




	
SSIM

	
0.9939

	
0.99292

	
0.9951

	
0.9974




	
Rate0.20

	
RMSE

	
178.4575

	
206.608

	
134.7184

	
88.429




	
PSNR

	
51.2988

	
51.1945

	
53.6731

	
57.3976




	
SSIM

	
0.9945

	
0.99396

	
0.996

	
0.9982




	
Rate0.25

	
RMSE

	
147.1679

	
198.9782

	
120.6403

	
72.7902




	
PSNR

	
52.9732

	
51.6346

	
54.6318

	
59.088




	
SSIM

	
0.9959

	
0.99447

	
0.9967

	
0.9988




	
Lincoln, Washington,

USA, 044027_2015288

	
Rate0.10

	
RMSE

	
170.9491

	
197.1138

	
163.8181

	
110.3724




	
PSNR

	
51.6721

	
51.7843

	
51.9744

	
55.4723




	
SSIM

	
0.9953

	
0.99505

	
0.995

	
0.9974




	
Rate0.15

	
RMSE

	
129.7697

	
184.5744

	
142.788

	
92.3254




	
PSNR

	
54.066

	
52.6122

	
53.1678

	
57.023




	
SSIM

	
0.9967

	
0.99566

	
0.9959

	
57.023




	
Rate0.20

	
RMSE

	
125.595

	
174.4205

	
126.319

	
75.308




	
PSNR

	
54.35

	
53.3213

	
54.2322

	
58.7926




	
SSIM

	
0.997

	
0.99616

	
0.9966

	
0.9987




	
Rate0.25

	
RMSE

	
105.3094

	
166.1922

	
113.3335

	
62.0297




	
PSNR

	
55.8801

	
53.9867

	
55.1744

	
60.4775




	
SSIM

	
0.9977

	
0.9966

	
0.9972

	
0.9991
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Table 4. Number of pixels in a small range around 0 (in percentage) of the difference images between the original Landsat 9 RSI and the reconstructed image using different CS models.
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Landsat 9

Remote Sensing

Image

	
Range of

Pixel

Value

	
Rate

	
Percentage of Pixels Occupied




	
NL-SRF-CS

	
KCS-GSR

	
NLDR-CS

	
NL-Laplace-CS




	
Inside

	
Outside

	
Inside

	
Outside

	
Inside

	
Outside

	
Inside

	
Outside






	
Lake Abitibi,

Ontario, Canada

019026_20221011

	
   [ − 260 , 260 ]   

	
0.10

	
86.1794

	
13.8206

	
81.8307

	
18.3343

	
86.3252

	
13.6748

	
95.4589

	
4.5411




	
   [ − 260 , 260 ]   

	
0.15

	
93.3402

	
6.6598

	
83.7116

	
16.4469

	
88.6563

	
11.3437

	
97.7012

	
2.2988




	
   [ − 260 , 260 ]   

	
0.20

	
94.2158

	
5.7842

	
85.2966

	
14.8484

	
90.6463

	
9.3537

	
99.1153

	
0.8847




	
   [ − 260 , 260 ]   

	
0.25

	
97.1915

	
2.8085

	
86.5466

	
13.5959

	
92.3951

	
7.6049

	
99.7508

	
0.2492




	
Yeosu, Korea

115036_20221012

	
   [ − 260 , 260 ]   

	
0.10

	
56.7899

	
43.2101

	
66.3285

	
33.8273

	
80.7143

	
19.2857

	
82.9278

	
17.0722




	
   [ − 260 , 260 ]   

	
0.15

	
70.6925

	
29.3075

	
68.2372

	
31.9191

	
84.9258

	
15.0742

	
87.3849

	
12.6151




	
   [ − 260 , 260 ]   

	
0.20

	
72.4175

	
27.5825

	
69.6345

	
30.5274

	
88.2334

	
11.7666

	
92.1732

	
7.8268




	
   [ − 260 , 260 ]   

	
0.25

	
79.8082

	
20.1918

	
70.9790

	
29.1828

	
91.0656

	
8.9344

	
96.0945

	
3.9055




	
Shanghai, China

118038_20220408

	
   [ − 260 , 260 ]   

	
0.10

	
53.9526

	
46.0474

	
65.2240

	
34.9397

	
79.8067

	
20.1933

	
83.3926

	
16.6074




	
   [ − 260 , 260 ]   

	
0.15

	
65.8213

	
34.1787

	
66.5302

	
33.6376

	
84.3560

	
15.6440

	
87.1873

	
12.8127




	
   [ − 260 , 260 ]   

	
0.20

	
67.4619

	
32.5381

	
67.9013

	
32.2696

	
88.0579

	
11.9421

	
92.1889

	
7.8111




	
   [ − 260 , 260 ]   

	
0.25

	
75.5923

	
24.4077

	
68.7766

	
31.3947

	
91.1311

	
8.8689

	
96.2243

	
3.7757




	
Huangshi, Hubei,

China

122039_20221013

	
   [ − 260 , 260 ]   

	
0.10

	
49.5321

	
50.4679

	
55.5235

	
44.6434

	
65.5933

	
34.4067

	
68.3807

	
31.6193




	
   [ − 260 , 260 ]   

	
0.15

	
60.2258

	
39.7742

	
57.7512

	
42.4289

	
71.2787

	
28.7213

	
73.0715

	
26.9285




	
   [ − 260 , 260 ]   

	
0.20

	
63.5580

	
36.4420

	
59.7541

	
40.4251

	
76.4113

	
23.5887

	
78.8740

	
21.1260




	
   [ − 260 , 260 ]   

	
0.25

	
70.9719

	
29.0281

	
61.6484

	
38.5290

	
81.1467

	
18.8533

	
84.3839

	
15.6161




	
Erenhot, Inner

Mongolia, China

127030_20220728

	
   [ − 260 , 260 ]   

	
0.10

	
64.5972

	
35.4028

	
67.3637

	
32.8217

	
75.7473

	
24.2527

	
88.7506

	
11.2494




	
   [ − 260 , 260 ]   

	
0.15

	
78.5930

	
21.4070

	
69.7726

	
30.4136

	
79.7862

	
20.2138

	
92.6547

	
7.3453




	
   [ − 260 , 260 ]   

	
0.20

	
79.6510

	
20.3490

	
71.6206

	
28.5706

	
83.0796

	
16.9204

	
95.9827

	
4.0173




	
   [ − 260 , 260 ]   

	
0.25

	
87.1182

	
12.8818

	
73.0742

	
27.1169

	
85.7812

	
14.2188

	
98.2061

	
1.7939
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Table 5. RMSE, PSNR, and SSIM values of the different models in the Landsat 9 RSI study, as illustrated in Figure 6, Figure 7, Figure 8, Figure 9 and Figure 10.
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Landsat 9 Sensing Image

	
PQIs

	

	
NL-SRF-CS

	
KCS-GSR

	
NLDR-CS

	
NL-Laplace-CS






	
Lake Abitibi, Ontario, Canada 019026_20221011

	
Rate0.10

	
RMSE

	
178.6558

	
202.9490

	
165.8346

	
122.6032




	
PSNR

	
51.2891

	
51.3389

	
51.8681

	
54.5594




	
SSIM

	
0.9946

	
0.9942

	
0.9945

	
0.9967




	
Rate0.15

	
RMSE

	
139.6148

	
191.3931

	
148.7677

	
104.8770




	
PSNR

	
53.4308

	
52.0435

	
52.8114

	
55.9159




	
SSIM

	
0.9961

	
0.9948

	
0.9953

	
0.9975




	
Rate0.20

	
RMSE

	
133.2829

	
181.8600

	
135.4003

	
88.0589




	
PSNR

	
53.8340

	
52.6628

	
53.6292

	
57.4340




	
SSIM

	
0.9965

	
0.9954

	
0.9960

	
0.9982




	
Rate0.25

	
RMSE

	
112.5607

	
174.6843

	
124.1275

	
74.0333




	
PSNR

	
55.3017

	
53.1794

	
54.3842

	
58.9409




	
SSIM

	
0.9973

	
0.9958

	
0.9965

	
0.9987




	
Yeosu, Korea, 115036_20221012

	
Rate0.10

	
RMSE

	
357.9920

	
352.5152

	
234.8635

	
211.7692




	
PSNR

	
45.2520

	
45.7370

	
48.8453

	
49.8122




	
SSIM

	
0.9809

	
0.9805

	
0.9885

	
0.9907




	
Rate0.15

	
RMSE

	
277.7287

	
325.7535

	
191.6372

	
175.6439




	
PSNR

	
47.4571

	
46.4924

	
50.6120

	
51.4368




	
SSIM

	
0.9860

	
0.9826

	
0.9920

	
0.9935




	
Rate0.20

	
RMSE

	
255.6346

	
308.1822

	
160.4600

	
140.0482




	
PSNR

	
48.1771

	
47.0331

	
52.1543

	
53.4039




	
SSIM

	
0.9880

	
0.9842

	
0.9943

	
0.9958




	
Rate0.25

	
RMSE

	
212.1976

	
290.5371

	
136.3814

	
111.8590




	
PSNR

	
49.7947

	
47.6095

	
53.5665

	
55.3560




	
SSIM

	
0.9911

	
0.9857

	
0.9958

	
0.9972




	
Shanghai, China, 118038_20220408

	
Rate0.10

	
RMSE

	
421.4962

	
375.1064

	
235.0718

	
213.3513




	
PSNR

	
43.8336

	
45.2743

	
48.8376

	
49.7476




	
SSIM

	
0.9767

	
0.9787

	
0.9886

	
0.9908




	
Rate0.15

	
RMSE

	
317.1140

	
353.8817

	
185.3175

	
178.0600




	
PSNR

	
46.3052

	
45.8320

	
50.9033

	
51.3181




	
SSIM

	
0.9832

	
0.9805

	
0.9926

	
0.9935




	
Rate0.20

	
RMSE

	
290.2904

	
327.6273

	
150.3745

	
137.9961




	
PSNR

	
47.0728

	
46.5834

	
52.7181

	
53.5321




	
SSIM

	
0.9854

	
0.9828

	
0.9950

	
0.9960




	
Rate0.25

	
RMSE

	
236.4489

	
316.6613

	
123.8975

	
108.0126




	
PSNR

	
48.8547

	
46.9231

	
54.4004

	
55.6600




	
SSIM

	
0.9894

	
0.9840

	
0.9966

	
0.9975




	
Huangshi, Hubei, China 122039_20221013

	
Rate0.10

	
RMSE

	
396.5857

	
388.7419

	
292.8481

	
277.0668




	
PSNR

	
44.3627

	
44.8508

	
46.9288

	
47.4778




	
SSIM

	
0.9755

	
0.9751

	
0.9820

	
0.9840




	
Rate0.15

	
RMSE

	
318.2901

	
362.8340

	
249.2427

	
243.6536




	
PSNR

	
46.2730

	
45.5082

	
48.3292

	
48.5940




	
SSIM

	
0.9812

	
0.9775

	
0.9863

	
0.9874




	
Rate0.20

	
RMSE

	
291.5050

	
341.4579

	
215.0280

	
209.8189




	
PSNR

	
47.0365

	
46.0784

	
49.6117

	
49.8926




	
SSIM

	
0.9839

	
0.9797

	
0.9895

	
0.9904




	
Rate0.25

	
RMSE

	
247.1052

	
324.2598

	
185.9369

	
180.8646




	
PSNR

	
48.4718

	
46.5733

	
50.8743

	
51.1824




	
SSIM

	
0.9877

	
0.9815

	
0.9920

	
0.9928




	
Erenhot, Inner Mongolia, China 127030_20220728

	
Rate0.10

	
RMSE

	
303.5128

	
291.5269

	
202.6761

	
167.4437




	
PSNR

	
46.6859

	
48.0452

	
50.1256

	
51.8521




	
SSIM

	
0.9879

	
0.9888

	
0.9919

	
0.9942




	
Rate0.15

	
RMSE

	
222.9116

	
271.3286

	
173.9108

	
141.6788




	
PSNR

	
49.3668

	
48.8500

	
51.4551

	
53.3034




	
SSIM

	
0.9915

	
0.9900

	
0.9936

	
0.9957




	
Rate0.20

	
RMSE

	
210.7621

	
255.6723

	
152.7735

	
118.1105




	
PSNR

	
49.8536

	
49.5255

	
52.5806

	
54.8837




	
SSIM

	
0.9923

	
0.9911

	
0.9949

	
0.9969




	
Rate0.25

	
RMSE

	
171.3273

	
244.1732

	
136.6703

	
98.9114




	
PSNR

	
51.6529

	
50.0810

	
53.5481

	
56.4245




	
SSIM

	
0.9944

	
0.9919

	
0.9958

	
0.9978
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