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Abstract: Many datasets in statistical analyses contain missing values. As omitting observations
containing missing entries may lead to information loss or greatly reduce the sample size, imputation
is usually preferable. However, imputation can also introduce bias and impact the quality and validity
of subsequent analysis. Focusing on binary classification problems, we analyzed how missing value
imputation under MCAR as well as MAR missingness with different missing patterns affects the
predictive performance of subsequent classification. To this end, we compared imputation methods
such as several MICE variants, missForest, Hot Deck as well as mean imputation with regard to the
classification performance achieved with commonly used classifiers such as Random Forest, Extreme
Gradient Boosting, Support Vector Machine and regularized logistic regression. Our simulation
results showed that Random Forest based imputation (i.e., MICE Random Forest and missForest)
performed particularly well in most scenarios studied. In addition to these two methods, simple
mean imputation also proved to be useful, especially when many features (covariates) contained
missing values.

Keywords: missing values; imputation; MICE; missForest; classification; machine learning

1. Introduction

Missing data is a reoccurring challenge in statistical analyses in the life sciences and
many other domains from the information sciences. For example, patients may refuse
to share sensitive details about their health. In repeated measurement designs, patients
may either miss single measurements or drop out completely. Survey data may also be
missing by design where not all respondents receive the same set of questions. Generally
speaking, there are three different mechanisms to distinguish when handling missing
data [1]. The missing completely at random (MCAR) mechanism assumes that missingness
does not depend on the data (neither the observed nor the unobserved part). The other
two mechanisms allow for missingness to depend on the data. For missing at random
(MAR), the missingness depends on the observed components of an observation (i.e.,
the dependance relation is encoded in the observed data), while for missing not at random
(MNAR), the missingness depends on the unobserved compontents of an observation (i.e.,
the dependance relation is not encoded in the observed data).

Thus, depending on the (usually unknown) missing mechanism that governs the
occurrence of given missing values, the common practice of listwise deletion (i.e., deletion
of observations that contain at least one missing value) may lead to reduced sample size
and thus information loss. As a remedy, missing data is often imputed through different
techniques such as simple mean or mode imputation, or advanced imputation methods
such as MICE [2,3] or techniques stemming from machine learning (ML) [4–7]. However,
data imputation may also affect the quality and validity of prediction or inference from
resulting models [3,8–11]. It is therefore crucial to analyze the extent to which imputation
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methods influence subsequent regression or classification models obtained from imputed
data. In the context of classification, a few studies have compared the performance of
different imputation methods [12–15]. For our purposes most notably due to the variety
of imputation and classification methods, Farfanghar et al. [12] compared the predictive
performance of six different imputation methods w.r.t. the predictive performance of
five classifiers. As imputation methods, the authors used Hot Deck imputation, Naive
Bayes imputation, mean imputation as well as a polytomous regression-based imputation
method. Additionally, the former two methods, were also embedded within a custom
imputation framework meant to improve the performance of their standalone counterpart.
Although they found that imputation generally improves performance, no imputation
method was found to regularly outperform its competitors. Since their 2008 study, new
imputation methods were suggested, for example, the Refs. [4,6]. In particular, tree-based
ML approaches have shown some enhancements with respect to accuracy for regression
problems [10,11,16]. For example, Ramosaj et al. [10] have recently analyzed how different
imputation methods influence the subsequent predictive performance of linear regression
and tree-based ML approaches. In their work, they found a certain preference to use the
Random Forest based missForest [4] imputation method or a MICE [2] model based on
Bayesian linear regression.

In light of their findings for the regression context, we investigated whether similar
conclusions regarding the performance of the different imputation methods can be drawn
for classification problems. Compared to the previous studies in the classification context,
we used a more modern suite of imputation algorithms, that is, missForest and MICE,
and further considered MCAR as well as MAR missing mechanisms with varying missing
patterns. In the next section, we describe our simulation set-up in more detail. We report
our results in Section 3 and follow up with a discussion in Section 4.

2. Materials and Methods

For our analysis, we used six binary classification problems from the life sciences.
Table 1 provides an overview over the datasets including the number of observation and
features as well as a short description of the target variable and features (covariates) used for
prediction. The datasets Phoneme and Pima Indians were obtained from the Open Machine
Learning Project [17], while the datasets Haberman, Skin [18], SPECT and Wilt [19] were
obtained from the UCI Machine Learning Repository [20]. Except for the Skin dataset,
we used the original datasets as they came. The Skin dataset had an original size of
245,057 observations. In our analysis, we used a random sample of 5% where the original
class balance was preserved through stratified sampling. None of the original datasets
included any missing values. To limit the scope of our investigation, we have decided to
only focus on datasets with numerical features at this time.

The general flow of our analysis is depicted in Figure 1. Starting from an original
complete dataset, we generated ten train/test partitions as in a 10-fold cross-validation.
In each fold, we generated missing values in the feature data of the respective training set.
To this end, we used the ampute function from the MICE R package [2] which implements
the multivariate amputation procedure proposed in [21]. We varied the proportion of
missing values between 10%, 30% and 50%, that is, we set 10%, 30% and 50% of the original
feature data as missing, respectively. The missingness was generated via a MCAR as well
as different MAR mechanisms. One key component of the amputation procedure is the
ability to specify a missingness pattern that governs which set of features may contain
missing values and which set of features is kept complete. This allows for creating flexible
missingness scenarios. To study different MAR mechanisms, we specified three missingness
patterns that vary in the amount of features that may contain missing values and as such
cover diverse scenarios. First, a pattern where for any given observation only one feature
value at a time could be set missing. Second, a pattern where missing values could only
occur in the middle third of the features. Third, a pattern where missing values could only
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occur in the first and last third of the features. We will refer to these three MAR patterns as
the One at a Time, One Third and Two Thirds pattern, respectively.

Table 1. Descriptions, class distributions and feature counts of datasets used in simulation study.

Dataset Class 1 Class 0 Features Description

Haberman 225 81 3 Survival status of breast cancer patients using age at operation,
year of operation and number of positive axillary lymph nodes

Phoneme 3818 1586 5 Classification of oral and nasal sounds using five frequency-
related characteristics of the sound sample

Pima Indians 500 268 8 Diabetes status in indigenous population using features such as
BMI, blood pressure, insulin level, etc.

Skin 2542 9709 3 Segmentation of skin texture based on random samples of
RGB color values from face images

SPECT 95 254 44 Diagnosis of computed tomography using information about
22 regions of interest in stress and rest mode

Wilt 4578 261 5 Detection of diseased trees in segments of pansharpened
images using spectral and texture information

Original Complete Data

Train Set

Fold 1

Amputed
Data

Imputed
Data

Tuning

Model Fit

Test Set

Classification
Error

...

...

...

...

Train Set

Fold 10

Amputed
Data

Imputed
Data

Tuning

Model Fit

Test Set

Classification
Error

Cross-validated
Classification Error

1

Figure 1. Workflow used in simulation study.

Having introduced missingness into the training set, we then imputed the missing
values using three MICE [3] algorithms as well as missForest [4], Hot Deck imputation [22]
and a naive mean imputation. The three MICE algorithms we used were Bayesian linear
regression (denoted as MICE Norm), Predictive Mean Matching (denoted as MICE PMM)
and Random Forest (denoted as MICE RF). A common approach of the MICE algorithms
and missForest is the concept of treating the imputation for a feature containing missing
values as a prediction problem where the respective feature acts as the target variable that is
predicted using the remaining features. Usually, some model (e.g., linear model or decision
tree) is learned on the data subset for which the respective feature was observed. This idea
is fleshed out in varying ways between the different imputation methods.
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MICE Norm is based on Rubin’s [23] imputation method under the assumption of
normality. The parameters of the linear model are sampled from their respective posterior
distribution which is estimated using the observed data [3]. MICE PMM extends upon
this by sampling a set of candidate donors (five per default) from the observed data whose
values are closest to the predictions for missing data points as obtained from the Bayesian
linear model. From this set of candidates, one donor is then chosen at random. Thus, PMM
only imputes values that were actually observed and consequently does not suffer from
the issue of out-of-range imputation [3]. For more details on the matching procedure see
the Ref. [24].

MICE RF and missForest fall into the category of tree-based imputation methods.
MICE RF is based on the algorithm proposed in Doove et al. [25] in which k individual
tree models are fit on bootstrap samples from the observed data. The data point requiring
imputation is then passed through each tree and falls into a terminal node, respectively.
For each of these terminal nodes, one donor is sampled at random from all observations
belonging to the node, thus resulting in a set of k donors overall. Out of this set, one donor
is chosen at random for the imputation. One commonality of all MICE methods is the
concept of multiple imputation. To account for the variability of the imputation process due
to the probabilistic nature of the methods, multiple imputed datasets are created. Typically,
subsequent analysis is performed on each dataset and the respective model results are
pooled. Because we did not analyze uncertainty or perform inference, and in order to limit
the computational complexity and to keep our simulation setup consistent, we aggregated
the imputed datasets into a combined dataset. This was performed by averaging numeric
features and selecting the mode for categorical features, respectively.

In contrast to MICE RF, missForest uses Random Forests to iteratively improve upon
an initial imputation guess. The algorithm repeatedly cycles through all originally non-
complete features and updates its imputations by fitting Random Forest models and
obtaining new predictions for the missing entries. Since the features used in a respective
step for prediction potentially contain imputed values themselves that were improved
upon in previous steps, the procedure gradually refines its imputations over time. Another
difference between MICE and missForest is that the latter does not use multiple imputation.

Last, Hot Deck imputation obtains imputations by sampling from the set of observed
values where observations that are similar to the observation requiring imputation have a
higher chance of being selected as the donor through proximity-based weighting. For im-
puting with Hot Deck imputation, MICE and missForest in R (version 4.0.0; [26]), we used
the hot.deck package [27], the mice package [2] and the missRanger package [6], respec-
tively. The latter allows for additional PMM and is a faster implementation of missForest
since it uses the computationally efficient ranger package [28]. For MICE, we used the
Bayesian linear regression (MICE Norm), Predictive Mean Matching (MICE PMM) and
Random Forest (MICE RF) variants. For missForest, we included both a non-PMM and a
PMM variant with three candidate non-missing values from which the imputed value was
sampled. We used default values for MICE and missForest settings except for the number
of trees and the maximum chaining iterations of missForest which we set to 100 and 3,
respectively. The number of multiple imputations for MICE was five as per default. Having
imputed the missing values, we continued with the task of classification. As classifiers, we
used Elastic Net regularized logistic regression (denoted EN-LR in the following), Random
Forest (RF), Support Vector Machine (SVM) and Extreme Gradient Boosting (XGBoost). All
ML experiments were performed with the mlr package that provides a unified interface for
ML-based analysis in R. For our classifiers, we used the glmnet package [29] for EN-LR,
the ranger package [28] for RF, the e1071 package [30] for (radial basis) SVM and the
xgboost package [31] for XGBoost. All of these learners have individual sets of hyperpa-
rameters that must be specified in advance. Their optimal choice is problem-dependent
and approximated via hyperparameter tuning. Incorporating tuning into a benchmark ex-
periment of different ML algorithms requires a nested resampling approach, where tuning
is performed in the inner, and validation in the outer resampling loop. Otherwise, tuning
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and validating on overlapping data samples may lead to optimistic error estimates due to
overfitting [32]. Thus, we perform an additional 3-fold cross-validation for hyperparameter
tuning on the respective imputed training sets. Table A1 shows the respective hyperpa-
rameters and search spaces considered for tuning via a random search with 30 iterations.
For hyperparameters that were not tuned, we used the default values.

After tuning, the classification models were learned on the entire imputed training
set using the optimal hyperparameter settings, and validated on the test set. For each
fold, this yielded a classification performance as measured by the Mean Misclassification
Error (MMCE), that is, the proportion of wrongly classified instances in relation to all
instances. Averaging over the fold-specific performances resulted in an overall cross-
validated classification performance on which further comparisons are based. For each
combination of dataset, imputation method and learner, we performed 100 replications.

3. Results

Table 2 shows the mean ranks based on the MMCE achieved by the respective classi-
fiers for the 100 replications under a MCAR mechanism. For each row in the table, the best
(i.e., lowest) mean rank is signified by bold font and a grey-colored cell. We have prepared
similar tables for the standard deviation of the MMCE values for all scenarios in the Ap-
pendix (Tables A2–A5). As the observed variability is low and homogeneous between the
imputation methods, we will only focus on the MMCE ranks from now on. It can be seen
that the optimal imputation method varied for the different classifiers.

Table 2. Mean MMCE ranks (lower = better) for imputation methods under a MCAR mechanism.
Best value per row printed in bold and colored grey.

Classifier % Miss. Dataset Hot Deck MICE
Norm

MICE
PMM MICE RF missForest missForest

PMM Mean

EN-LR

10%

Haberman 4.16 4.02 4.08 3.83 3.76 4.32 3.85
Phoneme 5.66 4.61 4.57 3.49 3.48 4.62 1.57
Pima Indians 4.40 3.67 4.38 3.38 4.34 4.03 3.81
Skin 4.19 1.59 1.48 2.97 5.01 5.99 6.77
SPECT 4.44 3.92 3.87 3.67 3.96 4.06 4.08
Wilt 4.47 3.43 3.20 3.39 4.08 4.66 4.76

30%

Haberman 4.32 4.03 3.63 4.29 3.84 4.34 3.56
Phoneme 6.60 4.46 4.76 3.01 3.25 4.86 1.07
Pima Indians 4.20 3.74 3.74 4.12 4.10 4.18 3.91
Skin 4.63 1.76 1.24 3.00 4.65 5.89 6.82
SPECT 5.00 4.19 3.88 3.60 3.40 3.92 4.02
Wilt 5.73 2.02 1.97 3.10 4.10 5.34 5.74

50%

Haberman 4.54 3.80 3.84 3.93 3.75 4.41 3.74
Phoneme 6.92 4.26 4.62 2.79 3.07 5.33 1.01
Pima Indians 4.22 3.83 3.61 3.55 3.63 4.53 4.62
Skin 5.05 1.70 1.44 2.89 3.99 5.93 7.00
SPECT 5.24 3.80 3.90 3.71 3.88 3.62 3.87
Wilt 5.50 1.64 1.44 3.01 5.43 5.50 5.50

RF

10%

Haberman 4.14 3.81 4.39 3.94 3.94 3.90 3.90
Phoneme 4.43 4.31 3.92 2.90 3.75 4.00 4.69
Pima Indians 3.98 3.94 4.15 3.88 4.11 4.03 3.92
Skin 4.66 3.96 3.17 1.36 4.64 4.21 6.00
SPECT 3.88 4.08 3.71 4.39 4.12 3.78 4.04
Wilt 6.23 2.85 2.71 2.62 4.24 4.80 4.54

30%

Haberman 4.34 3.93 3.96 4.41 3.92 3.72 3.71
Phoneme 4.88 5.38 3.89 2.10 3.18 3.89 4.70
Pima Indians 4.02 4.06 4.01 4.44 4.24 3.75 3.49
Skin 5.46 4.50 3.12 1.02 6.18 5.21 2.50
SPECT 4.15 3.82 4.14 4.09 4.10 3.79 3.92
Wilt 6.85 1.98 2.10 2.67 5.20 5.80 3.41

50%

Haberman 4.16 3.62 4.24 4.02 3.78 4.08 4.12
Phoneme 5.57 5.48 4.06 1.62 2.71 4.36 4.20
Pima Indians 4.24 4.16 4.19 3.98 3.91 3.84 3.68
Skin 6.08 3.94 3.18 1.04 5.83 5.94 1.99
SPECT 4.28 3.86 3.99 4.02 3.98 3.76 4.12
Wilt 6.86 2.16 1.61 3.04 5.21 5.93 3.18
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Table 2. Cont.

Classifier % Miss. Dataset Hot
Deck

MICE
Norm

MICE
PMM MICE RF missForest missForest

PMM Mean

SVM

10%

Haberman 3.68 4.00 4.26 4.03 3.64 4.28 4.11
Phoneme 4.04 4.70 3.79 3.21 3.90 3.90 4.45
Pima Indians 3.71 3.71 3.92 4.32 4.22 3.89 4.22
Skin 5.34 3.52 2.51 1.32 4.57 4.27 6.48
SPECT 5.24 4.10 3.31 3.81 4.11 3.76 3.68
Wilt 5.96 2.01 1.74 2.34 4.22 4.80 6.93

30%

Haberman 4.07 4.28 4.12 4.16 4.06 3.50 3.79
Phoneme 3.88 5.84 4.96 1.91 2.90 3.98 4.53
Pima Indians 3.98 3.94 3.98 3.96 3.98 4.28 3.88
Skin 5.66 3.30 2.22 1.02 5.33 5.11 5.36
SPECT 6.56 3.61 3.34 3.44 3.61 3.81 3.64
Wilt 6.01 2.24 1.29 2.46 4.20 4.82 6.98

50%

Haberman 3.80 3.83 4.38 4.18 3.80 3.80 4.22
Phoneme 4.31 5.94 5.26 1.42 2.86 4.41 3.80
Pima Indians 3.94 4.36 4.04 3.80 4.07 3.64 4.16
Skin 6.42 3.08 2.14 1.00 5.34 5.64 4.39
SPECT 6.95 3.46 3.46 3.52 3.60 3.41 3.61
Wilt 6.03 2.32 1.09 2.59 4.06 4.95 6.96

XGB

10%

Haberman 4.28 3.79 4.22 4.04 3.79 3.86 4.03
Phoneme 4.26 4.34 4.37 3.38 3.51 4.06 4.08
Pima Indians 3.95 4.25 3.98 3.87 4.04 4.04 3.88
Skin 5.84 4.26 2.97 1.47 5.12 5.64 2.70
SPECT 3.77 3.85 3.78 4.11 4.22 4.12 4.16
Wilt 6.11 2.50 2.26 2.48 4.99 5.39 4.27

30%

Haberman 4.28 3.90 3.93 4.07 4.10 4.17 3.56
Phoneme 5.22 4.82 3.90 2.41 3.44 4.06 4.14
Pima Indians 4.12 3.64 4.32 3.78 3.88 4.21 4.06
Skin 6.10 4.02 3.09 1.49 5.79 5.79 1.73
SPECT 3.88 3.96 4.08 4.22 3.94 4.27 3.65
Wilt 6.72 2.08 2.11 2.40 5.19 5.89 3.61

50%

Haberman 4.30 4.04 4.26 4.05 3.50 4.00 3.87
Phoneme 5.76 4.78 4.00 2.01 3.22 4.48 3.76
Pima Indians 4.11 3.87 3.84 4.40 3.88 4.24 3.66
Skin 6.20 3.85 3.19 1.61 5.39 6.33 1.43
SPECT 4.14 3.73 4.11 3.81 4.08 4.25 3.88
Wilt 6.68 2.29 1.92 2.92 5.36 5.94 2.88

For RF, SVM and XGBoost, MICE RF performed best overall by leading to the lowest
mean MMCE ranks in more scenarios than the other imputation methods. For SVM, MICE
PMM and missForest PMM were close in performance to MICE RF. In contrast to the
other classifiers, MICE RF did not perform as well in the case of EN-LR. Instead, MICE
PMM and mean imputation performed slightly better than the other imputation methods.
Except for XGBoost, where MICE RF slightly suffered from the increased proportion of
missing values while mean imputation benefitted from it, the proportion of missing values
did not noticeably affect the results for RF, SVM and EN-LR. Overall, Hot Deck, MICE
Norm and missForest imputation were less competitive in the MCAR case.

When looking at the results for the One at a Time MAR pattern, Table 3 shows that
some of the results from the MCAR case carried over. MICE RF performed well again
for RF, SVM and XGBoost winning about a third to a half of the scenarios. For XGBoost,
however, MICE PMM and missForest performed similary well. For EN-LR, the results
were less clear-cut as well with MICE PMM, MICE Norm and mean imputation similarly
competing for the best performance. Overall, Hot Deck and missForest PMM imputation
were not as competitive for this missing pattern. MICE Norm was only competitive for
classification with EN-LR and fell behind for the other classifiers.
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Table 3. Mean MMCE ranks (lower = better) for imputation methods under a MAR mechanism with
One at a Time pattern. Best value per row printed in bold and colored grey.

Classifier % Miss. Dataset Hot
Deck

MICE
Norm

MICE
PMM MICE RF missForest missForest

PMM Mean

EN-LR

10%

Haberman 4.52 3.62 4.16 3.65 3.94 4.19 3.92
Phoneme 5.41 4.37 4.67 3.56 3.69 4.60 1.70
Pima Indians 4.54 3.94 4.01 4.00 3.41 3.96 4.14
Skin 4.61 1.65 1.47 2.90 5.11 5.48 6.79
SPECT 4.43 3.82 3.83 3.65 4.12 4.14 4.01
Wilt 4.30 3.64 3.57 3.73 3.68 3.74 5.34

30%

Haberman 4.51 4.09 3.64 3.76 4.11 4.11 3.78
Phoneme 6.55 4.15 4.48 3.29 3.46 5.01 1.07
Pima Indians 4.09 3.85 4.04 4.02 3.94 3.97 4.09
Skin 4.60 1.67 1.33 3.00 4.98 6.19 6.23
SPECT 5.06 4.06 3.60 3.76 3.69 3.67 4.17
Wilt 5.54 1.74 3.03 3.46 3.81 4.87 5.54

50%

Haberman 4.78 3.70 3.69 4.28 3.78 4.20 3.57
Phoneme 6.87 3.70 4.64 3.12 3.40 5.26 1.01
Pima Indians 4.38 3.48 3.60 3.77 3.92 4.32 4.53
Skin 5.04 1.66 1.51 2.83 4.37 5.61 6.98
SPECT 5.54 3.85 3.60 3.87 3.69 3.44 4.00
Wilt 5.42 1.29 1.92 3.38 5.15 5.42 5.42

RF

10%

Haberman 3.48 3.97 4.16 3.96 3.82 4.00 4.62
Phoneme 4.36 4.37 4.09 3.30 3.52 4.10 4.26
Pima Indians 4.21 4.24 4.21 3.59 3.96 3.79 4.00
Skin 5.26 3.66 2.84 1.42 4.33 4.61 5.88
SPECT 4.50 3.96 3.83 3.88 3.60 4.02 4.22
Wilt 6.34 2.56 2.78 2.46 4.10 5.01 4.74

30%

Haberman 4.54 3.67 4.06 4.02 3.62 4.09 4.00
Phoneme 5.14 4.93 4.06 1.90 3.27 4.54 4.16
Pima Indians 4.41 3.76 4.64 3.67 3.72 3.88 3.92
Skin 6.17 3.52 2.82 1.04 5.73 5.99 2.73
SPECT 3.96 4.02 3.90 4.25 3.63 4.03 4.22
Wilt 6.89 2.14 1.93 2.55 4.95 5.94 3.60

50%

Haberman 4.38 3.56 3.83 3.76 3.88 4.26 4.34
Phoneme 5.60 5.15 3.78 1.37 3.04 4.95 4.12
Pima Indians 4.32 3.85 4.08 3.90 3.93 3.70 4.20
Skin 6.28 3.99 2.88 1.01 5.57 6.10 2.17
SPECT 4.20 3.62 4.22 4.18 3.60 4.01 4.18
Wilt 6.81 2.06 1.84 2.63 5.30 5.89 3.46

SVM

10%

Haberman 4.00 4.13 3.83 4.28 3.90 3.76 4.11
Phoneme 3.88 4.38 4.20 3.29 3.30 3.87 5.10
Pima Indians 4.42 3.90 4.28 3.74 3.86 3.99 3.83
Skin 5.36 3.06 2.28 1.64 4.35 4.84 6.46
SPECT 5.61 4.04 3.83 3.47 3.53 3.76 3.77
Wilt 6.12 2.10 1.93 2.24 4.12 4.86 6.62

30%

Haberman 3.72 3.90 4.20 4.43 4.08 3.94 3.71
Phoneme 4.19 5.40 4.86 1.68 2.84 4.44 4.59
Pima Indians 4.14 3.92 4.22 3.98 3.83 3.88 4.03
Skin 6.12 2.84 2.19 1.10 5.22 5.70 4.82
SPECT 6.75 3.38 3.31 3.82 3.86 3.44 3.46
Wilt 6.16 2.14 1.45 2.41 4.12 4.94 6.78

50%

Haberman 3.83 4.12 3.90 4.32 4.12 3.90 3.82
Phoneme 5.00 5.58 4.53 1.19 2.76 4.99 3.95
Pima Indians 3.90 3.92 4.14 4.00 4.04 3.92 4.09
Skin 6.62 2.94 2.18 1.01 5.28 5.72 4.24
SPECT 6.97 3.38 3.31 3.80 3.66 3.71 3.17
Wilt 6.13 2.20 1.25 2.54 4.11 4.90 6.86
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Table 3. Cont.

Classifier % Miss. Dataset Hot
Deck

MICE
Norm

MICE
PMM MICE RF missForest missForest

PMM Mean

XGB

10%

Haberman 3.96 4.45 3.93 3.71 4.10 3.85 4.00
Phoneme 4.24 3.85 4.18 3.48 3.46 4.05 4.74
Pima Indians 4.04 3.80 4.11 3.83 4.01 3.98 4.24
Skin 5.87 3.29 2.74 1.60 5.03 5.86 3.60
SPECT 4.23 4.16 3.83 3.90 3.77 3.98 4.14
Wilt 6.18 2.42 2.26 2.75 4.59 5.28 4.54

30%

Haberman 4.43 3.50 4.24 3.87 3.78 4.27 3.90
Phoneme 5.59 4.34 3.88 2.35 3.59 4.53 3.73
Pima Indians 3.96 4.10 3.88 3.90 3.86 3.83 4.47
Skin 6.42 3.59 2.77 1.40 5.45 6.09 2.29
SPECT 3.74 4.16 4.16 4.27 3.69 4.00 3.97
Wilt 6.74 2.10 2.00 2.37 4.99 5.84 3.96

50%

Haberman 4.55 3.80 3.67 3.57 4.04 4.79 3.58
Phoneme 5.79 4.87 4.02 1.85 3.39 4.74 3.33
Pima Indians 4.14 3.95 3.52 4.08 4.14 3.93 4.24
Skin 6.51 3.85 2.93 1.44 5.39 6.09 1.79
SPECT 3.98 3.89 4.11 3.82 3.80 4.35 4.06
Wilt 6.61 1.99 1.90 2.61 5.33 6.02 3.56

When using the One Third pattern for MAR missingness, Table 4 shows that missForest
clearly outperformed the other imputation methods for classification with RF, SVM and
XGBoost. For these three classifiers, missForest was consistently optimal under almost all
missingness proportions for the Phoneme, Skin and Wilt datasets. The results were more
mixed for EN-LR where MICE Norm and MICE RF performed slightly better than the other
imputation methods. In contrast to the MCAR and default MAR mechanism where Hot
Deck imputation fell behind in almost all scenarios, it regularly achieved the lowest mean
MMCE ranks on the Haberman dataset.

Table 4. Mean MMCE ranks (lower = better) for imputation methods under a MAR mechanism with
One Third pattern. Best value per row printed in bold and colored grey.

Classifier % Miss. Dataset Hot
Deck

MICE
Norm

MICE
PMM MICE RF missForest missForest

PMM Mean

EN-LR

10%

Haberman 3.78 4.43 3.85 4.10 3.73 4.24 3.86
Phoneme 4.94 2.40 3.90 4.78 4.94 5.10 1.95
Pima Indians 4.43 3.79 4.00 4.36 3.88 3.96 3.58
Skin 5.97 1.31 3.57 4.36 3.22 2.58 7.00
SPECT 4.78 4.43 3.94 3.70 3.13 3.92 4.10
Wilt 5.42 3.40 3.27 2.76 3.85 5.40 3.90

30%

Haberman 3.64 4.09 4.17 3.98 3.96 4.08 4.08
Phoneme 6.57 3.99 6.17 2.68 3.85 3.15 1.59
Pima Indians 3.99 3.92 4.14 3.81 4.22 3.93 3.98
Skin 6.00 1.29 4.12 4.64 2.76 2.19 7.00
SPECT 5.68 4.24 4.02 3.60 2.86 3.46 4.14
Wilt 6.70 1.65 1.78 4.19 2.64 4.84 6.20

50%

Haberman 3.72 3.94 4.01 4.30 3.96 3.73 4.34
Phoneme 7.00 4.52 5.40 1.90 3.85 1.98 3.36
Pima Indians 4.35 3.67 4.04 3.81 4.04 4.09 4.01
Skin 6.00 2.00 4.18 4.66 2.18 1.97 7.00
SPECT 4.58 3.92 3.73 3.71 3.84 3.78 4.44
Wilt 6.34 1.46 1.61 4.03 2.92 4.99 6.64
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Table 4. Cont.

Classifier % Miss. Dataset Hot
Deck

MICE
Norm

MICE
PMM MICE RF missForest missForest

PMM Mean

RF

10%

Haberman 3.86 3.94 4.26 4.26 4.10 3.36 4.22
Phoneme 5.53 4.32 4.64 3.60 2.86 3.78 3.27
Pima Indians 3.88 3.58 3.68 4.20 4.12 3.95 4.58
Skin 7.00 3.89 4.11 2.57 1.58 3.46 5.39
SPECT 4.17 3.87 4.02 4.24 3.79 4.20 3.71
Wilt 6.95 3.34 2.72 3.08 2.21 4.15 5.55

30%

Haberman 2.85 4.20 4.16 4.28 4.23 4.00 4.30
Phoneme 6.46 5.27 5.04 2.89 1.99 3.27 3.07
Pima Indians 3.98 4.01 3.56 4.16 4.24 3.83 4.22
Skin 7.00 4.92 4.28 2.27 1.05 4.77 3.71
SPECT 5.24 4.11 3.39 3.60 4.58 4.14 2.94
Wilt 7.00 2.69 2.15 4.06 1.85 5.98 4.26

50%

Haberman 3.12 4.39 4.14 4.22 4.02 3.42 4.70
Phoneme 6.54 5.18 5.36 3.06 1.91 3.77 2.19
Pima Indians 3.83 3.69 3.77 4.19 4.34 3.50 4.68
Skin 7.00 4.76 4.42 2.94 1.09 5.62 2.16
SPECT 4.86 3.51 3.80 3.81 5.30 4.84 1.89
Wilt 7.00 2.66 2.65 4.88 1.45 6.00 3.36

SVM

10%

Haberman 3.97 4.18 4.18 3.69 3.81 3.79 4.38
Phoneme 5.00 4.38 4.94 3.54 2.87 3.51 3.76
Pima Indians 3.72 4.28 4.16 3.82 3.96 4.05 4.01
Skin 6.99 3.88 3.90 3.29 1.66 3.73 4.55
SPECT 4.85 3.96 3.64 3.83 3.70 3.83 4.18
Wilt 6.22 2.94 2.44 2.87 2.06 4.69 6.78

30%

Haberman 3.52 4.29 4.28 3.77 3.97 3.77 4.40
Phoneme 5.61 5.63 5.85 2.65 2.01 2.83 3.42
Pima Indians 3.56 4.24 4.03 4.58 3.98 3.63 3.98
Skin 7.00 4.38 4.75 2.90 1.16 4.84 2.98
SPECT 5.64 3.51 3.16 3.47 4.22 3.37 4.62
Wilt 7.00 3.10 2.18 3.62 1.11 5.00 6.00

50%

Haberman 3.29 4.60 4.50 3.66 4.20 3.61 4.14
Phoneme 5.74 5.62 5.88 2.54 1.61 2.64 3.97
Pima Indians 3.29 4.12 3.97 3.92 4.92 2.91 4.86
Skin 7.00 4.62 4.70 3.12 1.28 5.36 1.92
SPECT 4.97 3.18 3.36 3.54 4.86 2.00 6.10
Wilt 7.00 2.80 2.38 3.82 1.01 5.05 5.95

XGB

10%

Haberman 3.66 4.16 3.94 4.18 4.13 3.88 4.05
Phoneme 4.70 4.20 4.72 3.62 3.10 3.79 3.87
Pima Indians 4.12 3.80 4.30 3.94 3.68 4.22 3.92
Skin 6.86 3.27 3.27 2.64 2.07 4.28 5.62
SPECT 3.67 4.08 4.36 4.49 4.21 3.59 3.59
Wilt 6.97 2.73 2.47 3.63 2.73 4.94 4.52

30%

Haberman 3.82 4.14 4.30 3.82 3.96 3.95 4.03
Phoneme 5.47 5.41 5.34 3.20 2.22 3.25 3.10
Pima Indians 3.50 4.18 3.94 4.20 4.26 3.97 3.96
Skin 6.98 3.97 4.27 2.44 1.46 5.51 3.38
SPECT 3.41 4.30 4.04 4.53 5.34 4.06 2.33
Wilt 7.00 2.56 2.54 4.00 2.47 5.97 3.44

50%

Haberman 3.65 4.30 4.40 4.27 3.66 3.60 4.12
Phoneme 5.82 5.53 5.51 3.31 1.91 3.53 2.39
Pima Indians 3.74 4.04 4.02 3.79 4.27 3.64 4.50
Skin 6.99 4.29 4.53 3.08 1.29 5.86 1.97
SPECT 3.04 4.12 4.33 4.55 6.16 3.60 2.20
Wilt 7.00 2.73 2.71 4.86 1.73 6.00 2.98
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Finally, Table 5 displays the results for the MAR missing mechanism using the Two
Thirds pattern. It can be seen that in most scenarios either missForest or mean imputa-
tion led to the lowest mean MMCE rank. For EN-LR, missForest and mean imputation
performed similarly. When using RF, mean imputation was optimal for nearly all combi-
nations of dataset and missingness proportion. The results for SVM and XGBoost were
tied, with missForest and mean imputation winning about a third of all scenarios each.
The results for EN-LR and XGBoost were sensitive to the missingness proportion. For both
classifiers, mean imputation benefitted similarly from an increased proportion of missing
values. Apart from missForest and mean imputation as well as MICE Norm for EN-LR,
the remaining imputation methods were seldomly competetive.

Table 5. Mean MMCE ranks (lower = better) for imputation methods under a MAR mechanism with
Two Thirds pattern. Best value per row printed in bold and colored grey.

Classifier % Miss. Dataset Hot
Deck

MICE
Norm

MICE
PMM MICE RF missForest missForest

PMM Mean

EN-LR

10%

Haberman 4.48 3.92 3.85 3.81 3.72 4.41 3.81
Phoneme 6.81 5.36 4.32 2.99 1.77 5.49 1.26
Pima Indians 4.46 3.61 3.87 4.57 3.19 3.72 4.57
Skin 7.00 2.46 1.76 4.02 1.99 6.00 4.78
SPECT 3.83 4.18 3.94 4.14 3.92 4.03 3.96
Wilt 4.32 2.13 4.34 4.33 4.14 4.43 4.32

30%

Haberman 4.90 4.14 3.82 3.41 3.37 4.96 3.41
Phoneme 5.62 6.42 5.86 2.99 1.93 4.10 1.08
Pima Indians 5.77 3.94 3.58 3.62 3.54 3.81 3.74
Skin 6.99 1.00 3.66 4.56 3.46 6.01 2.32
SPECT 5.38 4.82 4.22 2.96 3.15 3.19 4.28
Wilt 4.38 1.00 4.57 4.62 4.57 4.47 4.38

50%

Haberman 4.72 4.02 4.11 4.07 3.42 4.72 2.94
Phoneme 5.82 5.96 5.38 2.97 1.14 4.82 1.92
Pima Indians 6.74 3.46 3.70 2.87 3.00 5.50 2.72
Skin 7.00 2.06 3.24 4.89 3.81 6.00 1.00
SPECT 5.69 5.11 4.32 2.85 1.97 3.16 4.90
Wilt 4.47 1.00 4.47 4.47 4.62 4.50 4.47

RF

10%

Haberman 4.30 3.40 3.81 3.94 4.21 4.23 4.12
Phoneme 5.43 3.84 3.44 4.02 3.40 4.64 3.23
Pima Indians 4.01 4.01 3.76 3.98 3.98 4.87 3.40
Skin 3.90 3.68 5.53 4.68 3.63 4.80 1.78
SPECT 4.23 4.34 4.14 3.71 3.69 3.56 4.32
Wilt 7.00 3.36 2.54 3.39 2.19 4.36 5.16

30%

Haberman 4.70 2.98 3.66 4.02 4.26 4.40 3.97
Phoneme 6.48 3.94 3.66 3.59 2.53 6.18 1.62
Pima Indians 4.88 3.83 3.95 3.59 3.36 5.52 2.88
Skin 6.27 3.60 4.76 3.64 1.81 6.68 1.24
SPECT 4.54 4.24 3.64 4.53 3.81 4.34 2.90
Wilt 7.00 2.48 1.89 4.07 2.16 5.98 4.42

50%

Haberman 4.72 3.10 3.90 3.98 3.72 4.74 3.84
Phoneme 6.32 3.99 3.84 3.89 2.17 6.66 1.13
Pima Indians 5.85 3.71 3.67 3.18 2.56 6.50 2.52
Skin 6.93 4.53 3.68 3.79 1.88 6.07 1.12
SPECT 4.78 4.46 4.03 4.00 4.16 5.24 1.32
Wilt 7.00 2.08 1.71 4.82 2.44 6.00 3.94
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Table 5. Cont.

Classifier % Miss. Dataset Hot
Deck

MICE
Norm

MICE
PMM MICE RF missForest missForest

PMM Mean

SVM

10%

Haberman 3.53 3.90 4.34 4.04 3.85 4.17 4.18
Phoneme 4.78 4.26 4.28 4.24 3.47 5.26 1.72
Pima Indians 4.28 3.87 3.63 4.18 3.94 3.92 4.18
Skin 3.85 3.83 5.19 5.00 5.31 3.44 1.39
SPECT 4.76 4.23 3.92 3.98 2.95 3.81 4.36
Wilt 7.00 2.65 2.29 2.77 2.50 4.86 5.93

30%

Haberman 4.08 4.30 4.14 3.81 3.76 3.85 4.08
Phoneme 5.78 4.39 3.97 3.94 2.25 6.63 1.04
Pima Indians 4.40 4.04 3.78 3.65 3.58 4.64 3.90
Skin 4.92 2.45 3.55 3.03 6.38 6.62 1.04
SPECT 3.79 4.52 4.08 4.79 2.69 3.95 4.18
Wilt 7.00 2.89 1.86 3.38 1.89 5.70 5.28

50%

Haberman 3.86 4.06 4.14 4.14 3.54 4.15 4.11
Phoneme 6.15 3.71 3.74 4.35 2.20 6.85 1.00
Pima Indians 5.99 3.69 3.56 2.78 2.44 6.55 2.99
Skin 5.07 2.48 3.08 3.42 5.93 7.00 1.03
SPECT 2.22 4.33 4.44 4.74 3.77 3.62 4.88
Wilt 7.00 2.71 1.60 4.18 1.69 6.00 4.82

XGB

10%

Haberman 4.42 3.71 3.75 4.14 3.94 4.31 3.72
Phoneme 5.55 3.96 3.50 3.59 2.88 4.89 3.63
Pima Indians 3.83 3.88 3.76 3.85 3.55 4.57 4.57
Skin 6.50 4.08 4.54 3.93 1.72 5.18 2.06
SPECT 3.90 4.24 4.30 3.86 4.28 3.86 3.58
Wilt 6.99 3.02 3.23 2.85 2.88 4.78 4.24

30%

Haberman 4.47 3.52 3.76 3.54 4.01 4.98 3.72
Phoneme 6.27 3.80 3.49 3.55 1.92 6.68 2.29
Pima Indians 4.40 4.28 4.13 3.60 2.94 5.24 3.39
Skin 6.26 3.66 4.53 3.69 1.49 6.74 1.62
SPECT 3.67 4.87 4.50 4.58 4.40 4.18 1.80
Wilt 7.00 2.56 2.45 3.69 2.66 5.96 3.68

50%

Haberman 4.67 3.27 4.00 3.87 3.78 4.59 3.82
Phoneme 6.09 3.88 3.56 4.20 2.13 6.91 1.22
Pima Indians 5.40 4.03 3.86 3.29 2.56 6.08 2.80
Skin 6.59 4.39 3.91 3.66 1.58 6.41 1.46
SPECT 3.67 5.24 4.76 4.44 4.72 4.12 1.04
Wilt 7.00 2.43 2.29 4.81 2.93 6.00 2.54

4. Discussion

In this work, we studied the effect of imputation on the classification error under
different missing mechanisms and missing proportions. To this end, we compared seven
imputation methods, namely Hot Deck imputation, MICE Norm, MICE RF, MICE PMM,
missForest, missForest PMM and mean imputation. As classifiers, we used EN-LR, RF,
SVM and XGBoost. In our simulation study, we found that the optimal imputation method
depended on the classifier, missing mechanism, as well as missingness pattern.

For a MCAR mechanism, we found that imputation via MICE RF worked best for
RF, SVM and XGBoost. For EN-LR, the results were more mixed. Between the three MAR
missing patterns (One at a Time, One Third and Two Thirds) we studied, the results for the One
at a Time missing pattern resembled the MCAR results the most. Since for this pattern, only
one feature value at a time could be missing for any given observation, the range of possible
dependency structures that can arise are limited. Compared to the other two patterns,
this situation is most similar to the MCAR mechanism where no dependency structure is
present. Further, since the One at a Time pattern was allowed to vary w.r.t. to the features
selected for containing the missing value, whereas the One Third and Two Thirds had a fixed
set of features (i.e., the middle third, or the first and last third, respectively) where missing
values could occur, the former pattern leads to more uncertainty. As such, the results
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for MCAR and One at a Time MAR are plausible, because MICE is designed to handle
imputation uncertainty through multiple imputation. The missForest method, on the other
hand, does not use multiple imputation and accordingly performed better in scenarios that
included less uncertainty, that is, when using the One Third and Two Thirds patterns where
it was optimal for many combinations of dataset, classifier and missing proportion.

Concerning practical insights, our study showed that RF-based imputation worked
well under all MCAR and MAR missing mechanisms considered here. However, the op-
timality of MICE RF and missForest varied depending on the missing mechanism and
pattern. Thus, this needs to be considered when using either. Even though the missing
mechanism is generally unknown in practice, it is often feasible to form some assumptions
based on the data-generating process. In most scenarios one will find that the underlying
missingness seldomly follows a true MCAR mechanism. Potential patterns of missingness
can also be gauged from exploratory data analysis by analyzing the presence and frequency
of missing values. Alternatively, we found mean imputation to be a viable option when
many features contained missing values. However, there might be a caveat to this finding.
We did not specifically simulate the data and its distribution, so we did not explicitly
examine cases in which the assumptions of mean imputation are violated or challenged.
Our findings in this regard might have benefitted from studying classification as opposed
to regression tasks. Future research should examine the impact of missing and mean
imputation for heavily skewed features, for instance.

As for the MICE results, it should be noted that our approach of aggregating the
imputed datasets did not make use of MICE‘s inherent advantage of controlling for the
between-imputation variability by performing model analysis on the individual imputed
datasets and subsequently averaging the resulting models. When performing inference
or studying uncertainty, this step is detrimental as otherwise resulting standard errors are
overconfident or Type I errors inflated, respectively. As we were only interested in studying
classification errors, we have decided for the data aggregation to keep the simulation setup
more consistent for all imputation methods and to limit the computational complexity (as
each imputed dataset would have required a costly individual hyperparameter tuning
step). However, as some of the MICE methods were not as competitive in our simulation
study, future work should (if the computational resources permit) study whether the fitting
and averaging of classification models on the individual imputed datasets leads to different
results regarding the classification error.

Future work could also include listwise deletion as a benchmark method. We have
refrained from using it here since the nested resampling approach resulted in small data
subsets in the inner cross-validation folds and reducing the sample sizes even more through
listwise deletion led to numerical issues with the logistic regression classifier on the smaller
datasets from our simulation. Thus, we have decided to exclude this benchmark method
for reasons of consistency.

Overall, our results indicated the importance of not only considering the missing
mechanism when imputing, but also the pattern of missingness. The fact that the imputation
methods were quite sensitive to the pattern choice, warrants further research in the future
to investigate the effect of missingness patterns on imputation quality in more detail.
This also includes studying more realistic missingness patterns. In our simulation study,
the distinction between features that could contain missing values and those that could not
was imposed by their order in the dataset (e.g., missings could only occur in the middle
third of the features). In theory, this may occur in survey scenarios where a part of the
questions is blocked from certain respondents (e.g., through filter questions). However,
while helping to standardize the simulation process for all the different datasets, this design
choice did not realistically reflect the common occurrence of relationships between features
where the value of one feature regulates the probability of missingness for another feature.
For example, in an online survey context, older people may have higher probabilities of
missing answers or not completing their survey since they may be more challenged by
technical aspects of the survey than younger participants. In another example, in-person
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measurements could be affected by the place of residence where respondents living far
away might be more inclined to miss measurements due to the long travel time or due to
insufficient public transportation options. For future work, one could design missingness
patterns to better reflect such phenomena and thus make them more realistic. Instead of
randomly selecting the features that may contain missing values, one could also study how
imputation is affected when missingness is induced in “important” features (as measured
by variable importance measures for example). Furthermore, to limit the scope of our
analysis we only considered datasets with numerical features. It would be interesting to
study whether imputation for categorical features yields different results. This may also
impact the performance of Hot Deck imputation which is more suitable to categorical
features. To conclude, our work showed that (i) using modern RF imputation methods such
as MICE RF or missForest may be favorable in terms of subsequent classification accuracy
and that (ii) basing the choice of imputation method on the context in which they are to be
used, may lead to improved classification performance.
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Appendix A

Table A1. Hyperparameters and search spaces for tuning.

Classifier Hyperparameter Search Space Transformation

EN-LR alpha [0, 1] –
lambda [−15, 15] 2x

RF
mtry {2, . . . , #features} –
min.node.size {1, . . . , 10} –
splitrule {gini, extratrees} –

SVM cost [−5, 5] 2x

gamma [−5, 5] 2x

XGBoost

nrounds {10, . . . , 200} –
max_depth {1, . . . , 20} –
eta [0.1, 0.5] –
lambda [−1, 0] 10x

https://osf.io/3z9sb/
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Table A2. Standard deviations of MMCE values for imputation methods under a MCAR mechanism.

Classifier % Miss. Dataset Hot
Deck

MICE
Norm

MICE
PMM MICE RF missForest missForest

PMM Mean

EN-LR

10%

Haberman 0.007 0.008 0.008 0.008 0.007 0.008 0.007
Phoneme 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Pima Indians 0.004 0.004 0.004 0.005 0.005 0.005 0.004
Skin 0.000 0.000 0.000 0.000 0.001 0.000 0.000
SPECT 0.013 0.011 0.012 0.011 0.011 0.011 0.011
Wilt 0.034 0.036 0.030 0.036 0.031 0.040 0.028

30%

Haberman 0.006 0.008 0.008 0.007 0.007 0.007 0.007
Phoneme 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Pima Indians 0.004 0.004 0.005 0.005 0.005 0.004 0.005
Skin 0.000 0.000 0.000 0.000 0.002 0.001 0.000
SPECT 0.012 0.012 0.010 0.011 0.010 0.012 0.011
Wilt 0.000 0.019 0.014 0.019 0.007 0.000 0.000

50%

Haberman 0.007 0.008 0.007 0.008 0.007 0.007 0.008
Phoneme 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Pima Indians 0.005 0.005 0.004 0.004 0.005 0.005 0.004
Skin 0.001 0.000 0.000 0.000 0.002 0.002 0.000
SPECT 0.014 0.011 0.011 0.011 0.011 0.011 0.012
Wilt 0.000 0.001 0.001 0.009 0.000 0.000 0.000

RF

10%

Haberman 0.011 0.011 0.011 0.012 0.010 0.012 0.011
Phoneme 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Pima Indians 0.007 0.007 0.006 0.007 0.007 0.007 0.006
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.011 0.011 0.010 0.012 0.013 0.012 0.011
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

30%

Haberman 0.016 0.011 0.012 0.014 0.012 0.013 0.012
Phoneme 0.002 0.002 0.002 0.003 0.002 0.002 0.002
Pima Indians 0.006 0.006 0.007 0.006 0.007 0.007 0.007
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.011 0.011 0.011 0.012 0.012 0.012 0.011
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

50%

Haberman 0.015 0.014 0.015 0.014 0.014 0.013 0.013
Phoneme 0.003 0.003 0.002 0.002 0.002 0.003 0.002
Pima Indians 0.008 0.007 0.006 0.006 0.007 0.008 0.007
Skin 0.000 0.000 0.000 0.000 0.001 0.001 0.000
SPECT 0.012 0.011 0.011 0.012 0.011 0.012 0.011
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

SVM

10%

Haberman 0.010 0.009 0.008 0.009 0.009 0.009 0.009
Phoneme 0.003 0.003 0.003 0.003 0.003 0.003 0.002
Pima Indians 0.006 0.006 0.006 0.006 0.006 0.006 0.007
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.012 0.015 0.012 0.011 0.012 0.014 0.013
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

30%

Haberman 0.010 0.010 0.009 0.008 0.011 0.008 0.009
Phoneme 0.003 0.003 0.003 0.003 0.003 0.003 0.004
Pima Indians 0.006 0.006 0.007 0.006 0.007 0.006 0.006
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.013 0.013 0.013 0.012 0.013 0.013 0.013
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

50%

Haberman 0.008 0.009 0.008 0.010 0.009 0.008 0.009
Phoneme 0.003 0.003 0.003 0.003 0.003 0.003 0.003
Pima Indians 0.007 0.007 0.006 0.006 0.006 0.007 0.007
Skin 0.000 0.000 0.000 0.000 0.001 0.001 0.000
SPECT 0.014 0.013 0.013 0.013 0.014 0.014 0.013
Wilt 0.001 0.001 0.001 0.001 0.002 0.001 0.001
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Table A2. Cont.

Classifier % Miss. Dataset Hot
Deck

MICE
Norm

MICE
PMM MICE RF missForest missForest

PMM Mean

XGB

10%

Haberman 0.015 0.014 0.013 0.015 0.015 0.013 0.015
Phoneme 0.002 0.003 0.002 0.003 0.002 0.002 0.002
Pima Indians 0.009 0.010 0.008 0.008 0.009 0.009 0.009
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.012 0.012 0.012 0.012 0.012 0.012 0.012
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

30%

Haberman 0.015 0.015 0.015 0.016 0.015 0.015 0.014
Phoneme 0.003 0.003 0.003 0.003 0.003 0.003 0.003
Pima Indians 0.009 0.009 0.009 0.008 0.008 0.008 0.008
Skin 0.001 0.000 0.000 0.000 0.001 0.001 0.000
SPECT 0.012 0.011 0.012 0.013 0.012 0.011 0.012
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

50%

Haberman 0.016 0.015 0.015 0.015 0.015 0.016 0.016
Phoneme 0.003 0.003 0.003 0.003 0.003 0.003 0.003
Pima Indians 0.008 0.009 0.009 0.009 0.010 0.009 0.008
Skin 0.001 0.001 0.001 0.000 0.001 0.001 0.000
SPECT 0.012 0.012 0.013 0.013 0.011 0.011 0.012
Wilt 0.001 0.001 0.001 0.001 0.001 0.002 0.001

Table A3. Standard deviations of MMCE values for imputation methods under a MAR mechanism
with One at a Time pattern.

Classifier % Miss. Dataset Hot
Deck

MICE
Norm

MICE
PMM MICE RF missForest missForest

PMM Mean

EN-LR

10%

Haberman 0.007 0.007 0.007 0.008 0.008 0.008 0.007
Phoneme 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Pima Indians 0.005 0.004 0.004 0.004 0.004 0.005 0.004
Skin 0.000 0.000 0.000 0.000 0.001 0.001 0.000
SPECT 0.012 0.011 0.012 0.010 0.011 0.011 0.011
Wilt 0.014 0.041 0.036 0.033 0.016 0.021 0.000

30%

Haberman 0.007 0.008 0.008 0.008 0.008 0.007 0.007
Phoneme 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Pima Indians 0.005 0.004 0.005 0.004 0.004 0.005 0.005
Skin 0.000 0.000 0.000 0.000 0.002 0.002 0.000
SPECT 0.012 0.010 0.012 0.012 0.011 0.012 0.012
Wilt 0.000 0.015 0.037 0.026 0.016 0.001 0.000

50%

Haberman 0.007 0.008 0.008 0.007 0.008 0.006 0.007
Phoneme 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Pima Indians 0.005 0.004 0.004 0.005 0.005 0.004 0.005
Skin 0.001 0.000 0.000 0.000 0.003 0.002 0.001
SPECT 0.013 0.010 0.012 0.011 0.011 0.011 0.011
Wilt 0.000 0.006 0.010 0.016 0.006 0.000 0.000
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Table A3. Cont.

Classifier % Miss. Dataset Hot Deck MICE
Norm

MICE
PMM MICE RF missForest missForest

PMM Mean

RF

10%

Haberman 0.010 0.012 0.012 0.012 0.012 0.011 0.013
Phoneme 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Pima Indians 0.006 0.006 0.006 0.007 0.006 0.006 0.006
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.012 0.011 0.012 0.012 0.011 0.011 0.011
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

30%

Haberman 0.013 0.013 0.011 0.013 0.014 0.014 0.014
Phoneme 0.002 0.002 0.002 0.002 0.002 0.003 0.003
Pima Indians 0.006 0.007 0.007 0.007 0.007 0.007 0.006
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.011 0.011 0.010 0.012 0.011 0.011 0.011
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

50%

Haberman 0.015 0.014 0.015 0.015 0.013 0.014 0.014
Phoneme 0.003 0.003 0.003 0.002 0.003 0.002 0.002
Pima Indians 0.007 0.007 0.007 0.007 0.007 0.007 0.007
Skin 0.001 0.000 0.000 0.000 0.001 0.001 0.000
SPECT 0.012 0.011 0.011 0.011 0.011 0.011 0.012
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

SVM

10%

Haberman 0.010 0.010 0.010 0.010 0.011 0.009 0.009
Phoneme 0.003 0.003 0.003 0.002 0.003 0.003 0.003
Pima Indians 0.006 0.005 0.007 0.007 0.006 0.006 0.006
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.014 0.013 0.013 0.012 0.013 0.014 0.014
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

30%

Haberman 0.009 0.011 0.009 0.009 0.010 0.011 0.009
Phoneme 0.003 0.004 0.004 0.003 0.003 0.003 0.004
Pima Indians 0.006 0.007 0.006 0.006 0.007 0.007 0.006
Skin 0.000 0.000 0.000 0.000 0.001 0.001 0.000
SPECT 0.013 0.012 0.013 0.013 0.013 0.013 0.012
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

50%

Haberman 0.009 0.010 0.008 0.011 0.008 0.009 0.008
Phoneme 0.003 0.003 0.003 0.003 0.004 0.003 0.003
Pima Indians 0.007 0.007 0.007 0.007 0.007 0.007 0.007
Skin 0.001 0.000 0.000 0.000 0.001 0.001 0.000
SPECT 0.016 0.013 0.014 0.013 0.012 0.013 0.014
Wilt 0.001 0.001 0.001 0.001 0.002 0.001 0.001

XGB

10%

Haberman 0.013 0.013 0.014 0.015 0.014 0.016 0.013
Phoneme 0.002 0.002 0.002 0.002 0.003 0.002 0.003
Pima Indians 0.008 0.009 0.008 0.008 0.009 0.010 0.009
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.013 0.013 0.012 0.012 0.012 0.013 0.012
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

30%

Haberman 0.014 0.013 0.014 0.016 0.015 0.014 0.015
Phoneme 0.003 0.003 0.003 0.003 0.003 0.003 0.003
Pima Indians 0.010 0.009 0.009 0.008 0.008 0.010 0.008
Skin 0.000 0.000 0.000 0.000 0.001 0.001 0.000
SPECT 0.013 0.013 0.013 0.014 0.013 0.013 0.012
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

50%

Haberman 0.016 0.015 0.015 0.016 0.016 0.013 0.014
Phoneme 0.003 0.003 0.003 0.003 0.003 0.003 0.002
Pima Indians 0.009 0.010 0.010 0.009 0.009 0.009 0.008
Skin 0.001 0.000 0.000 0.000 0.001 0.001 0.000
SPECT 0.013 0.012 0.012 0.013 0.013 0.012 0.012
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001
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Table A4. Standard deviations of MMCE values for imputation methods under a MAR mechanism
with One Third pattern.

Classifier % Miss. Dataset Hot
Deck

MICE
Norm

MICE
PMM MICE RF missForest missForest

PMM Mean

EN-LR

10%

Haberman 0.007 0.007 0.007 0.007 0.007 0.007 0.008
Phoneme 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Pima Indians 0.004 0.005 0.005 0.005 0.005 0.005 0.004
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.011 0.011 0.012 0.013 0.012 0.012 0.012
Wilt 0.001 0.029 0.033 0.019 0.037 0.037 0.001

30%

Haberman 0.008 0.007 0.008 0.008 0.008 0.007 0.007
Phoneme 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Pima Indians 0.005 0.005 0.005 0.004 0.006 0.005 0.005
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.011 0.011 0.013 0.011 0.013 0.013 0.012
Wilt 0.000 0.001 0.002 0.022 0.002 0.002 0.001

50%

Haberman 0.007 0.007 0.008 0.008 0.008 0.007 0.007
Phoneme 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Pima Indians 0.005 0.005 0.005 0.005 0.006 0.005 0.005
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.011 0.011 0.013 0.012 0.013 0.014 0.012
Wilt 0.000 0.001 0.001 0.001 0.002 0.001 0.000

RF

10%

Haberman 0.011 0.012 0.012 0.011 0.011 0.011 0.013
Phoneme 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Pima Indians 0.006 0.007 0.007 0.007 0.006 0.006 0.007
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.011 0.011 0.012 0.013 0.012 0.012 0.011
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

30%

Haberman 0.012 0.013 0.013 0.012 0.014 0.014 0.013
Phoneme 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Pima Indians 0.007 0.007 0.008 0.007 0.007 0.007 0.007
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.013 0.011 0.011 0.011 0.011 0.011 0.012
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

50%

Haberman 0.013 0.015 0.015 0.014 0.012 0.014 0.013
Phoneme 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Pima Indians 0.008 0.007 0.007 0.007 0.007 0.008 0.007
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.013 0.012 0.012 0.011 0.013 0.012 0.013
Wilt 0.002 0.001 0.001 0.001 0.001 0.001 0.001

SVM

10%

Haberman 0.010 0.011 0.010 0.010 0.011 0.009 0.010
Phoneme 0.003 0.003 0.002 0.003 0.003 0.003 0.002
Pima Indians 0.006 0.006 0.006 0.007 0.006 0.006 0.006
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.013 0.014 0.013 0.014 0.013 0.014 0.015
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

30%

Haberman 0.010 0.011 0.010 0.012 0.011 0.012 0.010
Phoneme 0.003 0.003 0.003 0.003 0.003 0.003 0.003
Pima Indians 0.007 0.007 0.007 0.007 0.007 0.007 0.007
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.013 0.013 0.014 0.014 0.015 0.013 0.017
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001



Entropy 2023, 25, 521 18 of 21

Table A4. Cont.

Classifier % Miss. Dataset Hot
Deck

MICE
Norm

MICE
PMM MICE RF missForest missForest

PMM Mean

50%

Haberman 0.011 0.011 0.010 0.010 0.012 0.011 0.010
Phoneme 0.003 0.003 0.003 0.003 0.003 0.003 0.003
Pima Indians 0.008 0.008 0.006 0.009 0.009 0.006 0.007
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.016 0.015 0.015 0.014 0.015 0.014 0.018
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

XGB

10%

Haberman 0.015 0.015 0.014 0.014 0.014 0.013 0.013
Phoneme 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Pima Indians 0.008 0.009 0.008 0.009 0.008 0.010 0.010
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.012 0.014 0.012 0.013 0.014 0.012 0.012
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

30%

Haberman 0.014 0.015 0.014 0.014 0.015 0.015 0.015
Phoneme 0.003 0.003 0.002 0.002 0.002 0.002 0.002
Pima Indians 0.008 0.009 0.010 0.008 0.009 0.008 0.009
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.014 0.013 0.012 0.013 0.013 0.012 0.012
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

50%

Haberman 0.016 0.014 0.015 0.013 0.015 0.013 0.015
Phoneme 0.003 0.002 0.002 0.003 0.002 0.003 0.003
Pima Indians 0.008 0.008 0.009 0.009 0.010 0.009 0.008
Skin 0.001 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.013 0.011 0.014 0.012 0.013 0.014 0.014
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Table A5. Standard deviations of MMCE values for imputation methods under a MAR mechanism
with Two Thirds pattern.

Classifier % Miss. Dataset Hot
Deck

MICE
Norm

MICE
PMM MICE RF missForest missForest

PMM Mean

EN-LR

10%

Haberman 0.008 0.008 0.009 0.008 0.009 0.008 0.007
Phoneme 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Pima Indians 0.005 0.005 0.005 0.005 0.005 0.005 0.005
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.013 0.013 0.013 0.011 0.012 0.014 0.012
Wilt 0.001 0.027 0.015 0.009 0.013 0.003 0.000

30%

Haberman 0.007 0.008 0.007 0.009 0.009 0.007 0.009
Phoneme 0.005 0.005 0.006 0.002 0.001 0.005 0.002
Pima Indians 0.006 0.005 0.005 0.006 0.005 0.006 0.007
Skin 0.002 0.000 0.001 0.001 0.001 0.003 0.000
SPECT 0.015 0.015 0.015 0.014 0.014 0.014 0.015
Wilt 0.000 0.001 0.016 0.009 0.001 0.002 0.000

50%

Haberman 0.005 0.009 0.010 0.009 0.009 0.005 0.010
Phoneme 0.001 0.000 0.002 0.006 0.005 0.002 0.007
Pima Indians 0.009 0.007 0.007 0.006 0.006 0.008 0.006
Skin 0.000 0.002 0.003 0.002 0.003 0.012 0.001
SPECT 0.015 0.020 0.017 0.015 0.015 0.014 0.016
Wilt 0.000 0.002 0.000 0.000 0.009 0.000 0.000
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Table A5. Cont.

Classifier % Miss. Dataset Hot
Deck

MICE
Norm

MICE
PMM MICE RF missForest missForest

PMM Mean

RF

10%

Haberman 0.012 0.011 0.013 0.012 0.013 0.013 0.012
Phoneme 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Pima Indians 0.008 0.007 0.006 0.007 0.007 0.008 0.006
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.012 0.012 0.012 0.012 0.011 0.014 0.012
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

30%

Haberman 0.012 0.012 0.013 0.012 0.013 0.014 0.012
Phoneme 0.003 0.003 0.003 0.003 0.003 0.003 0.003
Pima Indians 0.008 0.008 0.007 0.007 0.008 0.009 0.007
Skin 0.000 0.000 0.000 0.000 0.000 0.001 0.000
SPECT 0.015 0.016 0.012 0.014 0.012 0.014 0.014
Wilt 0.002 0.001 0.001 0.001 0.001 0.001 0.001

50%

Haberman 0.014 0.012 0.015 0.014 0.014 0.015 0.014
Phoneme 0.004 0.003 0.003 0.004 0.003 0.003 0.003
Pima Indians 0.010 0.008 0.010 0.009 0.008 0.009 0.009
Skin 0.001 0.001 0.000 0.000 0.000 0.001 0.000
SPECT 0.016 0.016 0.014 0.014 0.015 0.015 0.014
Wilt 0.001 0.001 0.001 0.001 0.001 0.002 0.001

SVM

10%

Haberman 0.009 0.011 0.009 0.009 0.010 0.010 0.009
Phoneme 0.003 0.003 0.003 0.003 0.003 0.003 0.003
Pima Indians 0.007 0.006 0.006 0.007 0.006 0.007 0.006
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.012 0.013 0.014 0.014 0.013 0.014 0.014
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

30%

Haberman 0.007 0.009 0.008 0.009 0.010 0.008 0.010
Phoneme 0.004 0.004 0.003 0.004 0.003 0.004 0.003
Pima Indians 0.009 0.007 0.007 0.008 0.008 0.008 0.008
Skin 0.000 0.000 0.000 0.000 0.001 0.001 0.000
SPECT 0.015 0.017 0.016 0.015 0.017 0.016 0.015
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

50%

Haberman 0.007 0.008 0.008 0.009 0.010 0.006 0.012
Phoneme 0.005 0.003 0.004 0.004 0.004 0.004 0.004
Pima Indians 0.012 0.009 0.010 0.010 0.011 0.013 0.010
Skin 0.001 0.000 0.000 0.000 0.001 0.003 0.000
SPECT 0.015 0.016 0.018 0.015 0.014 0.016 0.012
Wilt 0.002 0.001 0.001 0.001 0.001 0.002 0.001

XGB

10%

Haberman 0.012 0.015 0.013 0.013 0.013 0.014 0.014
Phoneme 0.003 0.003 0.003 0.003 0.003 0.003 0.003
Pima Indians 0.010 0.009 0.009 0.010 0.008 0.011 0.009
Skin 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPECT 0.015 0.014 0.012 0.014 0.013 0.014 0.012
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

30%

Haberman 0.015 0.013 0.014 0.014 0.015 0.015 0.016
Phoneme 0.004 0.003 0.003 0.003 0.003 0.004 0.004
Pima Indians 0.010 0.010 0.011 0.010 0.008 0.012 0.009
Skin 0.001 0.001 0.000 0.000 0.000 0.001 0.000
SPECT 0.014 0.015 0.013 0.014 0.016 0.017 0.015
Wilt 0.001 0.001 0.001 0.001 0.001 0.001 0.001

50%

Haberman 0.015 0.013 0.014 0.014 0.016 0.016 0.013
Phoneme 0.005 0.004 0.004 0.005 0.004 0.006 0.004
Pima Indians 0.013 0.010 0.012 0.013 0.011 0.012 0.010
Skin 0.002 0.001 0.001 0.001 0.001 0.002 0.001
SPECT 0.016 0.016 0.014 0.015 0.014 0.016 0.014
Wilt 0.002 0.001 0.001 0.001 0.002 0.002 0.001
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