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Abstract: We study the performance of an endoreversible magnetic Otto cycle with a working
substance composed of a single quantum dot described using the well-known Fock–Darwin model.
We find that tuning the intensity of the parabolic trap (geometrical confinement) impacts the proposed
cycle’s performance, quantified by the power, work, efficiency, and parameter region where the
cycle operates as an engine. We demonstrate that a parameter region exists where the efficiency at
maximum output power exceeds the Curzon–Ahlborn efficiency, the efficiency at maximum power
achieved by a classical working substance.

Keywords: magnetic cycle; quantum Otto cycle; quantum thermodynamics

1. Introduction

The study of quantum thermal machines, devices such as quantum engines and refrig-
erators that operate on working mediums composed of quantum systems, has proved to be
a fruitful research area in the last decade [1–5]. These efforts have been focused principally
on the study of the different thermodynamic cycles, such as the Otto and the Stirling cycles,
in different regimes [6–10] and on the use of different quantum working substances such
as spins [11–15], quantum dots [16,17], and quantum harmonic oscillators [18–22]. Recent
work has also examined the role that quantum properties, such as quantum coherence
and quantum correlations, play in the performance of quantum thermal machines [23–28].
A primary feature of interest of quantum thermal machines is their potential to surpass
the performance of their classical counterparts [29,30], which open the door to a new gen-
eration of highly efficient quantum engines and refrigerators for application in emerging
quantum technologies.

While recent years have seen the experimental implementation of some quantum
thermodynamic cycles [11,13,31,32], these devices serve primarily as proof-of-concept
prototypes rather than a practical means of extracting useful energy in the form of work.
This is since coupling a quantum thermal machine to another device to extract and use the
work is a complex and challenging task within the frameworks in which these quantum
engines have been implemented. A promising platform for surpassing these difficulties is
quantum dots, whose easy fabrication and controllability have led to significant progress
in studying their thermoelectric properties [16,33,34]. A thermodynamic cycle can be
implemented with a quantum dot working medium by manipulating external parameters
such as magnetic fields, resulting in an electrical current in the quantum dot during the
different steps of the cycle [16,35–38]. In principle, this current can be extracted for use in
another device with currently available technology.
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In the context of one-electron systems and quantum dots, the famous Fock–Darwin
model is very well studied. This model describes an electron in a circular semiconductor
quantum dot confined by a parabolic potential under a perpendicular external magnetic
field [39]. The Fock–Darwin model is fundamental to understanding the behavior of
quantum dots under an external magnetic field and demonstrates the competition be-
tween geometrical confinement and the confinement induced by the external field [40].
The Fock–Darwin energy spectra for conventional quantum dots have also been verified
experimentally using transport spectroscopy [40–43].

Thermodynamic endoreversibility corresponds to a nonequilibrium approximation
that assumes internally reversible subsystems that then exchange energy irreversibly among
themselves [44]. Thus, any dissipation arises purely from the interactions of these sub-
systems [45–49]. The common feature of endoreversible engine analysis is an additional
limitation on the cycle efficiency caused by the finite rate at which heat can be exchanged
between the working substance and the thermal reservoirs. By applying the endoreversible
model to the Carnot cycle, Curzon and Ahlborn (CA) demonstrated that the efficiency at
maximum power of the classical Carnot cycle is,

ηCA = 1−

√
Tc

Th
, (1)

where Tc and Th are the cold and hot reservoirs temperatures, respectively. Notably, like the
Carnot efficiency, the CA efficiency is independent of the nature of the working substance.

Recently, in [19], Deffner showed that applying the endoreversible approach to the
case of an Otto cycle with a single classical or quantum harmonic oscillator as the working
medium yielded an efficiency at maximum power equal to CA for the classical working
medium, and an efficiency at maximum power greater than CA for the quantum working
medium. One of the main conclusions of that work was that, unlike the Carnot efficiency, the
Curzon–Ahlborn efficiency was not a general upper bound on the efficiency at maximum
power. That is, it is entirely possible to find working substances for which the efficiency at
maximum power may exceed the CA efficiency, as has been shown to be true in the case of
continuous engines operating outside the linear regime [50,51]. With this in mind it is of
interest to explore whether other quantum working mediums, such as quantum dots, may
allow for similar boosts in engine performance.

In this work, we study a finite-time endoreversible magnetic Otto cycle, using a
Fock–Darwin model quantum dot as a working substance. We find that modifying the
dot geometry strongly impacts all examined cycle characteristics, including increasing
the efficiency at maximum power beyond the CA efficiency. These results indicate that
quantum dots can serve as a viable platform of technological interest for implementing
endoreversible quantum thermodynamic cycles.

This manuscript is organized as follows. In Section 2, we introduce the model that
describes our working substance, including the energy spectrum, the partition function,
entropy, and internal energy. In Section 3, we describe the thermodynamic cycle under
consideration, obtaining the expressions for work, heat, efficiency, and power. In Section 4,
we determine the efficiency at maximum power and identify the conditions under which
our system can surpass the CA efficiency. Finally, in Section 5, we provide a summary of
the main conclusions of our work.

2. Model

Our working substance is described by the Fock–Darwin (FD) model. The FD Hamil-
tonian corresponds to a cylindrical quantum dot subject to an external magnetic field
perpendicular to the plane in which the dot is present,

H =
1

2m∗

[(
px −

eyB
2

)
+

(
py +

exB
2

)]
+

1
2

m∗ω2
0

(
x2 + y2

)
, (2)
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where e is the electron charge, m∗ is the effective mass of the electron (characteristic of each
material), ω0 is an effective parameter for the strength of the harmonic trap, and B is the
intensity of the magnetic field in the z direction. The problem has cylindrical symmetry
and eigenenergies,

Enm = h̄Ω(2n+ | m | +1) +
1
2

h̄ωcm, (3)

where ωc = eB/m∗ is the cyclotron frequency, n and m are the radial and magnetic
quantum numbers (n = 0, 1, 2, . . . and m = −∞, . . . , +∞), respectively, and Ω is the effective
frequency of the system,

Ω = ω0

(
1 +

(
ωc

2ω0

)2
) 1

2

. (4)

Notice that when the parameter ω0 → 0, the energy levels of Equation (3) take the usual
form of the Landau energy levels in cylindrical coordinates. For high magnetic fields,
(ωc/2ω0 >> 1), Equation (3) simplifies to,

En,m =
h̄ωc

2
(n + 1/2 + |m|+ m) , (5)

as |m| + m = 0 for m < 0. We note that each Landau level, labeled by n, is infinitely
degenerate in this limit.

In this paper, we considered a low-frequency coupling for the parabolic trap given by
ω0 ∼ 2.637 THz, which in terms of energy units corresponds to a coupling of approximately
1.7 meV. This value is comparable to the typical energy of intraband optical transitions of
quantum dots [39]. The order of this transition is approximately ∼1 meV for cylindrical
GaAs quantum dots with effective mass m∗ ∼ 0.067me [39,52,53]. The quantum dot length
can be calculated using ldot =

√
h̄/m∗ω0 ∼ 25 nm for the above values. The effective mass

gives a cyclotron frequency of ωc(B = 1) ∼ 2.62 THz for an intensity of B = 1 T. It is
important to mention that we neglected the Zeeman splitting and the spin–orbit interaction,
which is very small for GaAs systems [39,52].

The partition function for our working substance can be written as [54],

Zd =
ω+ω−

4ω2
0

csch
(

h̄βω+

2

)
csch

(
h̄βω−

2

)
, (6)

where β = 1/kBT is the inverse temperature and the frequencies ω± are given by,

ω2
± =

1
2

(
ω2

c + 2ω2
0 ±ωc

√
ω2

c + ω2
0

)
. (7)

Note that if ω0 → 0, then ω− → 0 and ω+ → ωc, recovering the typical partition function
for the Landau problem.

The entropy, S(T, B), and internal energy, U(T, B), are derived from the partition
function using,

S(T, B) = kB lnZd + kBT
(

∂ lnZd
∂T

)
B

, (8)

and,

U(T, B) = kBT2
(

∂ lnZd
∂T

)
B

. (9)

In particular, the internal energy is expressed entirely in terms of β, ω+, and ω−,

U(T, B) =
1
2

[
h̄ω+ coth

(
h̄βω+

2

)
+ h̄ω− coth

(
h̄βω−

2

)]
. (10)
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Note that this expression is simply the sum of the internal energies of two oscillators, one
with frequency ω+ and the other with frequency ω−. Conversely, the entropy cannot
be decomposed in this manner due to the prefactor present in the partition function in
Equation (6). This prefactor accounts for the degeneracy of the energy levels and depends
on the external magnetic field. Only in the absence of this term can the entropy be expressed
as the sum of the entropies of two independent oscillators with frequencies ω+ and ω−.

While these thermodynamic quantities are widely discussed in the literature, here,
we pay special attention to the conditions under which the entropy remains constant, as
this will prove a key aspect of our analysis of the cycle performance. With this in mind,
we seek a relationship between the temperature and the external magnetic field that holds
the entropy constant. In Figure 1, we plotted the isentropic trajectories as a function of the
temperature and magnetic field. From this plot, we see that the temperature and magnetic
field are inversely related, i.e., when we increase the magnetic field, the temperature must
decrease if we wish to hold the entropy constant. In Figure 2, we plotted the entropy as a
function of temperature for a range of magnetic field strengths. From this plot, we observe
that, at low temperatures, there is a large region where the entropy remains almost constant.
In this region, the entropy depends only on the partition function degeneracy term, which
is proportional to the value of the external field. Thus, to observe changes in entropy,
a considerable increase in the temperature is required. This results in the near-vertical
isentropic lines observed at low temperatures in Figure 1.

(a)
(b)

(c) (d)

Figure 1. (a–d) Contour maps showing constant entropy curves as a function of temperature,
T, (in Kelvin) and the external magnetic field B (in Tesla) for different values of the geometric
confinement with ω0 = 2.67 THz.
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Figure 2. Entropy as a function of temperature for magnetic field strengths of B = 0 T (blue), B = 2 T
(orange), B = 4 T (magenta), and B = 6 T (red).

3. The Endoreversible Otto Cycle

The Otto cycle sketched on an entropy–magnetic field diagram in Figure 3, consists
of four strokes: two isentropic (horizontal lines) processes and two isochoric processes
(vertical lines). During the first process (1 → 2), the working substance is disconnected
from the thermal reservoir, and the external magnetic field is changed adiabatically from
B1 to B2. Since B1 < B2 the internal energy of the working medium increases during this
process, despite the fact that the working medium temperature decreases. Thus, this stroke
is properly classified as an isentropic compression in which the magnetic field plays a role
analogous to the inverse of the volume. The next process (2→ 3) is an isochoric heating
stroke during which the working substance is put in contact with a thermal reservoir at
temperature Th and allowed to exchange heat while the magnetic field remains constant.
The next stroke (3→ 4) is accomplished by disconnecting the working substance from the
thermal reservoir and changing the magnetic field adiabatically from B2 back to B1. As the
internal energy of the working medium decreases during this stroke, despite increasing in
temperature, it corresponds to an isentropic expansion. Finally, the last process (4→ 1) is
an isochoric cooling stroke, during which the working substance is put in thermal contact
with a reservoir at temperature Tc < Th and allowed to exchange heat while the magnetic
field is again held constant. We note that the inverted behavior of the temperature during
the compression and expansion strokes (in comparison to the typical Otto cycle) arises
due to the inverse relationship between the temperature and magnetic field necessary to
maintain a constant entropy, as observed in the negative slope of the isentropic curves in
Figure 1.

The fact that the temperature decreases during the isentropic compression stroke can
have negative impacts on the cycle performance, especially in the parameter regions where
the decrease is significant, such as the low-temperature, low-magnetic field regimes seen
in Figure 1. In these regimes the isentropic curves become nearly vertical in temperature,
indicating that a small increase in the magnetic field must correspond to a large decrease in
the temperature if the compression stroke is to remain isentropic. The low temperature of
the working medium will then result in a large amount of heat being absorbed from the
hot reservoir during the subsequent heating stroke. Since the efficiency is measured by
the ratio of total work to heat absorbed from the hot reservoir, a cycle implemented in this
region will have a significantly reduced efficiency.
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Figure 3. Entropy versus external field diagram for the endoreversible Otto Cycle. Note that the
system is only in contact with the thermal reservoirs during the isochoric (vertical) strokes. Under the
assumptions of endoreversibility, the working substance does not fully thermalize to the temperatures
of the hot and cold reservoirs, Th and Tc, at points 3 and 1.

Thermodynamically, the cycle is characterized by the temperatures of the two thermal
reservoirs (Th and Tc) and by the initial and final values of the magnetic field (B1 and B2).
Under the assumption of endoreversibility, we note that the working medium is assumed
to always be in a state of local equilibrium with a well-defined temperature but that it
never fully thermalizes with the reservoirs. Following the analysis established in [19],
we determine the heat exchanged with the reservoirs during the isochoric heating stroke
(2→ 3) using,

Qin = U3(T3, B2)−U2(T2, B2), (11)

where we note T3, T2 6= Th. The temperatures T2 and T3 satisfy the following conditions,

T(0) = T2 and T(τh) = T3 with T2 < T3 ≤ Th, (12)

where τh is the duration of the heating stroke. We can explicitly model the temperature
change from T2 to T3 by applying Fourier’s law of heat conduction,

dT
dt

= −αh(T(t)− Th), (13)

where αh is a constant that depends on the working medium’s thermal conductivity and
heat capacity. Solving Equation (13) results in

T3 − Th = (T2 − Th)e−αhτh . (14)

The isentropic expansion stroke (from 3→ 4) is performed identically to the case of
a quasi-static cycle. Since the working medium is decoupled from the thermal reservoirs
during this stroke, the work is determined entirely from the change in internal energy,

Wexp = U4(T4, B1)−U3(T3, B2). (15)

The isochoric cooling stroke (4→ 1) can be modeled identically to the heating stroke.
The heat exchanged with the cold reservoir is

Qout = U1(T1, B1)−U4(T4, B1), (16)
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where T1 and T4 satisfy the conditions

T(0) = T4 and T(τc) = T1 with T4 > T1 ≥ Tc. (17)

As in the heating stroke, the temperature change can be modeled by Fourier’s law,

dT
dt

= −αc(T(t)− Tc), (18)

By solving Equation (18), we obtain

T1 − Tc = (T4 − Tc)e−αl τc . (19)

Finally, the work done during the adiabatic compression stroke (1→ 2) can be found
from the change in internal energy,

Wcomp = U2(T2, B2)−U1(T1, B1). (20)

The efficiency of the engine can then be found from the ratio of the total work and the
heat exchanged with the hot reservoir,

η = −
Wcomp + Wexp

Qin
. (21)

The power output is given by the ratio of the total work to the cycle duration,

P = −
Wcomp + Wexp

γ(τh + τc)
, (22)

where γ > 1 is a multiplicative factor that incorporates the duration of the isentropic strokes [19].
As the entropy remains constant during the isentropic process, we can obtain a re-

lationship between T and B from the condition dS(T, B) = 0. This first-order differential
equation is given by,

dB
dT

= −

(
∂S
∂T

)
B(

∂S
∂B

)
T

. (23)

For the case of a Fock–Darwin model quantum dot, even though the analytic form
of the partition function is known, as given in Equation (6), this equation does not yield
a straightforward analytical solution. Nevertheless, it can be solved numerically, as was
done to determine the constant entropy curves in Figure 1. In addition, it is useful to define
the “magnetic length” as

lB =

√
h̄

eB
. (24)

By taking the ratio of the magnetic lengths,

r =
lB2

lB1

=

√
B1

B2
, (25)

we obtain a quantity analogous to the compression ratio for the classical Otto cycle.
In the limit of τh, τc → ∞, the working medium will fully thermalize and we expect to

recover the quasi-static cycle behavior. We see that in this limit,

lim
τh→∞

(
T3 − Th = (T2 − Th)e−αhτh

)
→ T3 = Th,

lim
τc→∞

(
T1 − Tc = (T4 − Tc)e−αcτc

)
→ T1 = Tc.

(26)
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However, this limit also results in a vanishing power output, as seen from Equation (22).

4. Results and Discussions

We began by considering a specific example with bath temperatures of Tc = 13 K
and Th = 25 K in order to illustrate the cycle performance. These results are presented in
Figure 4, for the work extracted and in Figure 5 for the efficiency. In Figure 4, we observe
that as the parabolic trap parameter ω0 decreases, the amount of work extracted increases.
Conversely, the efficiency presented in Figure 5 follows the opposite behavior, growing as
ω0 increases. This comparison demonstrates a clear trade-off between work and efficiency.
In addition, we observe in Figure 4 that there exists a region in which the total work
becomes negative for the case of 2ω0, indicating that our cycle is no longer behaving as an
engine in this regime. With this in mind, we next turned to explore the parameter regimes
where the cycle functioned as different types of thermal machines.

(a)
(b)

Figure 4. Total work as a function of (a) the external field and (b) the compression ratio for geometric
confinement frequencies of 0.5ω0 (blue), ω0 (orange), 1.5ω0 (magenta), and 2ω0 (red). We used
Tc = 13 K, Th = 25 K, and B1 = 1 T. Note the clear decrease in the net work with increasing values of
the dot confinement. In particular, for these values a transition to negative net work is observed for
the case of 2ω0 (red curve). At this transition point the cycle switches from behaving as an engine to
behaving as a refrigerator.

Figure 5. Efficiency as a function of r for geometric confinement frequencies of 0.5ω0 (blue), ω0

(orange), 1.5ω0 (magenta), and 2ω0 (red). We used Tc = 13 K and Th = 25 K. We observe that the
system’s efficiency increases as we increase the geometric confinement.

In general, there exist four possible types of thermal machines, corresponding to all
possible combinations of heat and work flow consistent with the first and second laws of
thermodynamics. An engine corresponds to a positive work output, along with a heat flow
from the hot bath into the working medium and from the working medium into the cold
bath. A refrigerator corresponds to a negative work output, along with a heat flow from
the cold bath into the working medium and from the working medium into the hot bath. A
heater corresponds to a negative work output and a heat flow from the working medium
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into both baths. Finally, an accelerator corresponds to a negative work output along with
a heat flow from the hot bath into the working medium and from the working medium
into the cold bath. We note that the heater and accelerator regimes generally emerge due to
nonequilibrium behavior, and thus we do not expect a cycle operating endoreversibly to
act as either of these types of thermal machines.

By numerical calculation, we determined the results of Equations (11), (15), (16),
and (20) across the parameter space. By comparing the signs of the resulting heat and work
flows, we determined the regions where the cycle behaved as an engine, refrigerator, heater,
or accelerator.

Figure 6 shows the regions where the cycle operates as an engine or as a refrigerator
as a function of the cold bath temperature and the external magnetic field for two different
values of ω0 while holding the temperature of the hot reservoir constant at Th = 25 K. We
observe that by increasing the frequency of geometric confinement, the region in which
the cycle operates as an engine is reduced. This behavior can be understood from Figure 4,
where it is observed that as the trap frequency increases, the extracted work decreases,
resulting in a transition into the regime of negative work. From Figure 6, we see that
increasing the value of Tc increases the value of the magnetic field at which the transition
to the refrigerator regime occurs. Recalling Figure 4b, increasing Tc corresponds to shifting
the peak to the left, and thus also shifting to the left the critical point at which the transition
to the negative work regime occurs while maintaining the same qualitative behavior.

1.1 2. 3. 4. 5. 6.

10.1
12.
14.
16.
18.
20.
22.
24.

1.1 2. 3. 4. 5. 6.
10.1
12.
14.
16.
18.
20.
22.
24.

B2[T]

T
c[
K
]

0.5ω0

(a)

1.1 2. 3. 4. 5. 6.

10.1
12.
14.
16.
18.
20.
22.
24.

1.1 2. 3. 4. 5. 6.
10.1
12.
14.
16.
18.
20.
22.
24.

B2[T]

T
c[
K
]

2.0ω0

Engine
Refrigerator

(b)
Figure 6. Cycle behavior as a function of the external magnetic field strength and cold bath tempera-
ture for a geometric confinement of (a) 0.5ω0 and (b) 2ω0. Note the increased size of the refrigerator
region as the value of the parabolic trap frequency increases.

To numerically determine the EMP, we fixed the temperature of the hot bath at
Th = 25 K and the high magnetic field value at Bh = 12 T. We then varied the cold
bath temperature across the range Tc ∈ [0 K, 25 K] and the low magnetic field value from
Bl ∈ [0 T, 12 T]. This range of parameter space was selected to ensure that the peak in the
work as a function of the compression ratio (see Figure 4b) was captured for all combina-
tions of bath temperatures. For each bath temperature ratio, we scanned the parameter
space to determine the magnetic field strengths that produced the maximum power output
and then determined the efficiency at that maximum power. In Figure 7, we plotted the
EMP as a function of the bath temperature ratio Tc/Th for different values of ω0. These
EMPs were then compared with the CA efficiency, found in Equation (1).



Entropy 2023, 25, 518 10 of 13

0.2 0.4 0.6 0.8 1.0
Tc/Th

0.2

0.4

0.6

0.8

1.0
EMP

Figure 7. Efficiency at maximum power as a function of the bath temperature ratio for 0.5ω0 (blue,
short dashed), 1.0ω0 (green, dot-dashed), 1.5ω0 (brown, long dashed), and 2.0ω0 = (cyan, dot-dash-
dashed). The Carnot (black, dotted) and Curzon-Ahlborn (red, solid) efficiencies are provided for
comparison. We observe that the efficiency at maximum power exceeds CA for lower values of dot
confinement frequency at low bath temperature ratios. Parameters are Th = 25 K and magnetic field
Bh = 12 T.

From Figure 7, we can see that the geometric confinement frequency has a significant
impact on the EMP at low bath temperature ratios. Lower values of the confinement
frequency yield higher EMPs. In particular, for the case of ω0 = 0.5, we see that there exists
a range of bath temperatures where the EMP exceeds the CA efficiency. At higher bath
temperatures, we see the EMP converges towards the CA efficiency for all values of the
confinement frequency, as is expected in the high-temperature, classical limit.

Previous results have shown that the EMP of an endoreversible quantum Otto engine
with a pure harmonic oscillator as the working medium exceeds the CA efficiency [19].
As the partition function in Equation (6) simplifies to that of a two-dimensional isotropic
harmonic oscillator in the limit ω0 → 0 [54], finding that a low ω0 leads to a region where the
CA efficiency can be exceed is consistent. Here, we further demonstrated that the addition
of a geometric confinement had a strictly detrimental impact on the engine performance.

An additional feature of note is the asymptotic flattening of the EMP as the bath
temperature ratio approaches zero. This behavior again arises from the structure of the
isentropic curves seen in Figure 1. As the entropy is nearly independent of temperature
in the low temperature regime, the value of the compression ratio that maximizes the
power output (and thus the value of the EMP) does not change significantly until the
system moves out of this regime. This explains why the asymptotic behavior is especially
pronounced at high values of the confinement frequency, which display larger ranges of
temperatures under which the isentropic curves are nearly vertical with respect to the
magnetic field.

5. Conclusions

In this work, we analyzed the performance of an endoreversible Otto cycle using a
quantum-dot-trapped electron in the presence of an external magnetic field as a working
substance. Modeling our working substance using the Fock–Darwin Hamiltonian, we
found that the net work, power, and efficiency depended strongly on the intensity of the
parabolic trapping frequency, as well as influencing whether the cycle behaved as either
an engine or a refrigerator. In particular, we found that larger values of the trapping
frequency led to an increased efficiency but reduced work, power, and EMP. Despite this,
we demonstrated that there existed a parameter regime in which the cycle EMP exceeded
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the Curzon–Ahlborn efficiency for small values of the trapping frequency. Furthermore,
we found that the strongly nonlinear temperature dependence of the entropy for the Fock–
Darwin model quantum dot had distinct signatures in the engine performance, namely an
asymptotic behavior of the EMP at low temperatures.
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