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Abstract: Social networks constitute an almost endless source of social behavior information. In fact,
sometimes the amount of information is so large that the task to extract meaningful information
becomes impossible due to temporal constrictions. We developed an artificial-intelligence-based
method that reduces the calculation time several orders of magnitude when conveniently trained.
We exemplify the problem by extracting data freely available in a commonly used social network,
Twitter, building up a complex network that describes the online activity patterns of society. These
networks are composed of a huge number of nodes and an even larger number of connections,
making extremely difficult to extract meaningful data that summarizes and/or describes behaviors.
Each network is then rendered into an image and later analyzed using an AI method based on
Convolutional Neural Networks to extract the structural information.
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1. Introduction

The everyday use of social media leaves behind, as waste, vast deposits of data that can be
exploitable to better understand social dynamics on the internet if used correctly [1,2]. In social
media, people interact with each other building up communities through networks of
friends and interactions, diffusing information, sharing ideas, and closing up physical barri-
ers. The new age of Big Data offers new possibilities on how research is performed, posing
new frameworks and key questions that are revolutionizing the field of computational
social science [3]. Using tools from network science and mathematical models, we can
transform all this data into rich insight on human behavior dynamics. In the past decade,
many works have been devoted to analyzing data from social media sites such as Facebook,
LinkedIn, or Twitter. Some examples include studies that have focused on understanding
online personality patterns [4], usage behavior of social media [5,6] or its effect on human
behavior and management [7–10]. In the field of rumor spreading, data from Twitter has
been used to explore the opinion formation processes [11], opinion polarization [12–14],
emergence of echo chambers [12,15–17], misinformation diffusion [18–21], or viral spread-
ing of memes [22,23]. Other interesting works have measured sentiment metrics [24,25],
state of opinions [26,27], or tracked the evolution of certain topics or conflicts [28–30].

Here, we implement an approach to transform daily information from Twitter into
interaction networks between users. As an online plaza where constant debates are held
and news ranging from the cultural spectra to political updates are commented on, Twitter is
a rapidly changing network where trending topics have a mean lifetime of merely days [22].
New fresh topics appear quickly and the whole cascade of interactions resets and starts
anew. We are interested in examining these interaction networks, how they change in
time, and if they have relevant information from the structural point of view of network
science [31]. In order to tackle this, we have computed properties that characterize their
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graph structure and that are directly related with the interaction patterns and information
spreading, observing their time evolution from daily generated networks, with a time span
of months. This task, however, had an important drawback since both the complexity of
these calculations and the computational resources needed scale quickly with the network
size. Thus, the task becomes impossible if we try to scale up our analysis. This can become
quite unfeasible considering that we are talking about thousands and thousands of users
posting on a daily basis, which results in heavy memory loads and considerably long
computations. In order to overcome these handicaps, we additionally propose to introduce
techniques based on artificial intelligence that can compute the same metrics in a quick
and more efficient way. We used the parameters computed in the previous step and the
visualization of the downloaded networks to train a convolutional neural network (CNN)
to then make a prediction on those. We found that the CNN performed well with the test
set, with most of the predictions falling within the confidence interval and the remarkable
result that the computational times were reduced from minutes to milliseconds.

The manuscript is organized as follows. First, we describe the method to construct the
social network of a single day and the protocol used to construct the hundreds of complex
networks used along this manuscript. With this information, we define the structural
parameters that characterized each network and present the convolutional neural network
used to obtain this information using machine learning techniques. The results of our study
are presented in the next section, and the manuscript ends with some conclusions.

2. Methods & Materials
2.1. Social Network Construction

Twitter is a microblogging website that allows users to post metadata composed of
text, images, videos, sound, or a combination of the former, in the form of so-called tweets.
In order to keep up with the content of other users, one user can follow another to read
their daily feed that comprises what is being published by the people one is following.
This establishes unidirectional links that begin to form a directed network of the followed
(usually called “friends”) and followers. In addition, when a user posts a tweet, another
user can interact with it adding a response (a mention) or forwarding it to the feed of their
followers (with a retweet or a quote). These types of interactions are the ones we will be
focusing on since they are the ones that can be retrieved back in time using the Twitter API
for Academic Research, a free-access plan to the Twitter API destined for research-focused
employees at academic institutions. The information on how the follower network has
evolved in time would probably offer more insights on a user’s online behavior and the
website’s structure, but, sadly, it is not available for download. You can only download the
friends and followers of a given user at the time of the download.

For the data collection, we developed python code based on the library tweepy, which
was crucial in order to translate raw data from the Twitter API to python data structures.
Going back from June 2019 to March 2021, we searched the first five key words or hashtags
that had been the most popular in Spain for each day, and then used our software to
collect at least 10,000 interactions per topic (some examples of the Hashtags used are in
the Supplementary Materials Section S1). Then, we built a network for each day (being
around 660 days the total analyzed) where users were placed as nodes and interactions as
directed links by merging the datasets obtained from the hashtags. A concept of special
importance for computing the network metrics is that of the network being connected. This
means that there were no isolated nodes or disconnected small islands. For this, we made
sure that some “bridging users” existed between the sub-networks given by the different
hashtags that connected both sub-networks by having interactions with people collected
from two different hashtags (details and some graphical examples are presented in the
Supplementary Materials Sections S2 and S6). We did this by tracing the largest connected
components of the whole network and filtering out the rest of the nodes. The reason behind
merging different topics was an assumption so that the overall relevant activity of that
day was captured in a statistical way along our network. After the network was built, all



Entropy 2023, 25, 507 3 of 14

the content information of the tweets and their users was discarded so only the topology-
related mathematical information was left, which was relevant for our study. Building a
different network for each day (an example can be seen in Figure 1a), we collected a set
of snapshots of the Spanish activity pattern on the website for almost a year and a half,
then we measured our selected observables and observed how they evolved. Note that the
contents of the hashtags used were not relevant, as we were mainly interested in gathering
a significant number of users and observing how they interacted between themselves. In
fact, the number of hashtags considered was enough to reach statistical significance, as
the calculated parameters reached a plateau and became independent on additional users
added to the network (via incorporating additional hashtags). This is observed in Figure 1d
and discussed below.
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Figure 1. (a) Example of a social network visualized with Gephi, corresponding to 23 January 2020, 
where the colors represent the hashtag in which each user was more involved. (b) Example of a 
linear fit to the power law distribution of the in-degrees (with a calculated value of 𝛾 = 1.67). 
Note that only the solid-colored points are the ones considered in the fit. (c) Example of a linear fit 
to the power law distribution of the out-degrees (with a calculated value of 𝛾 = 2.55). Conver-
gence of the scaling exponent (d) 𝛾  and (e) 𝛾  as we merge the different hashtags of the same 
day. The error bar represents the standard deviation of the fits among all the possible merging com-
binations. (f) Distribution of the mean distances for all the nodes in the same network as in panel 
(a). Note that ℓ is just the mean value of these data (marked with the vertical green line) and ℓ  
is the average of the 10 largest values (marked with the red vertical line). 
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Figure 1. (a) Example of a social network visualized with Gephi, corresponding to 23 January 2020,
where the colors represent the hashtag in which each user was more involved. (b) Example of a linear
fit to the power law distribution of the in-degrees (with a calculated value of γout = 1.67). Note
that only the solid-colored points are the ones considered in the fit. (c) Example of a linear fit to the
power law distribution of the out-degrees (with a calculated value of γin = 2.55). Convergence of
the scaling exponent (d) γout and (e) γin as we merge the different hashtags of the same day. The
error bar represents the standard deviation of the fits among all the possible merging combinations.
(f) Distribution of the mean distances for all the nodes in the same network as in panel (a). Note that
l is just the mean value of these data (marked with the vertical green line) and lmax is the average of
the 10 largest values (marked with the red vertical line).

2.2. Complex Network Analysis and Metrics of Interest

The structure of the interaction network was fully encoded in the adjacency matrix,
where Aij = 1 if there existed an interaction from user i to user j, and 0 otherwise. We
recovered the activity of each user by summing up their interactions in what was called the
connectivity degree, or, simply, degree ki of each user. Since our network was directed, we
distinguished between the out-degree kout

i = ∑N
j Aij, the number of interactions produced

by user i, and the in-degree kin
i = ∑N

i Aij, which sums the number of interactions that user
i received. This was a first-order measure of network centrality that distinguished how
active the different nodes were. The mathematical form of the degree distribution p(k)
depended on the network, which, for real networks, usually followed an exponential law,

p(kout) = Ck−γout
out , p(kin) = Ck−γin

in , (1)

with γ, the scaling exponent usually ranged between 2 and 3. Networks that exhibit this
type of distribution were termed scale-free [32] and were formed by a majority of nodes that
had only a few connections, while a few nodes, named hubs, were involved in most of
the interactions. In general, γout may differ from γin, with the hubs of each distribution
representing totally different concepts. The hubs of kout represented extremely active users
that interacted heavily with others, while the ones of kin were popular or controversial
users that were receiving a lot of attention. In any case, the difference in size between the
smallest node to the largest hub could be of orders of magnitude, making notions such
as the average degree make not much sense since there would be a very large deviation
from the mean. The exponent γ would be then the quantity of interest as it described how
the activity in the network was distributed. If the exponent was lower, closer to two, the
degree distribution had a long tail, indicating that there would be more presence of hubs or
high-activity users, while the distribution of interactions will be either narrower or with
larger difference between the frequency of smaller nodes and the hubs if the exponent is
higher. If one applied logarithms at both sides of Equation (1), the exponent γ was easily
obtained as the slope of a linear fit (an example of these values and how they are calculated
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is plotted in Figure 1b,c). Note that the data marked with a lighter color were not used in
the linear fits, as those points were endowed with larger uncertainty.

We were also interested in another important metric that involved the distance between
nodes, meaning the minimal number of links needed to reach one user from another. This
metric was called the shortest path length between a pair of nodes, and what we used in our
study was the average shortest path length l of all the network. For this purpose, we used
the functions of the python library networkx that found the shortest paths between every
two nodes in the network through Dijkstra’s algorithm [33].

We considered an additional structural parameter that was related with the previous
one. We calculated, for each of the networks considered, the so-called diameter of the net-
work lmax that was defined as the largest of the shortest paths connecting every two nodes
in the network. Figure 1e shows an example of such calculation. This parameter provided
information about the centrality of the network that was some sort of measurement of
the extent of the social dynamics of that particular day in our context (represented by the
network considered).

2.3. Convolutional Neural Networks (CNN)

As we pointed out earlier, one of our main goals in this study is to show that we can
make use of machine learning techniques to compute these network properties. For that
purpose, all the information gathered from Twitter for each day is summarized in a single
picture (such as that in Figure 1a). This is the input for a machine learning tool that should
provide us with the structural parameters describing the network. The choice of CNN
is mainly due to its particular suitability for obtaining the main properties or features of
images by means of feature maps [34,35]. In addition, CNNs have already proven their
capabilities in network classification problems [36].

Although an initial attempt was made to tackle the problem using directly as input
the adjacency matrices of the networks, the process was too inefficient because of memory
problems trying to handle the large sizes of the matrices, which could usually weight in
the order of 10 gigabytes. Computing network properties also require the building up of
the adjacency matrix, and it is important to note that large networks with lots of nodes
also increase the computational time of the Dijkstra’s algorithm which, in its simplest form,
scales as O(

∣∣N2
∣∣). Instead, from the adjacency lists of the networks one can generate a graph

visualization through the open-source software Gephi [37], which is already optimized and
disposes of multiple parameters to display the networks clearly. These parameters are fixed
for all the images, highlighting that we use a repulsive distribution of type ForceAtlas 2,
a scaling of 0.3 and the gravity parameter is set to 2.0. In any case, preliminary tests were
made with other types of networks such as DNN (Dense Neural Networks) and RNN
(Recurrent Neural Networks), specifically LSTM and GRU but, as expected, acceptable
results are not achieved with these neural types of networks.

We build our CNN with convolutional layers interspersed with pooling layers and
activation layers, dedicated to discovering the patterns in the images. Then, another layer
is used to transform two-dimensional information into one-dimensional (the flatten layer),
and finally a last one is used to convert all the information into a list of n holes where each
one takes a value between 0 and 1 (the dense layer, with 100 neurons). Since the values of
the exponents of a scale free network range between 2 and 3, each number between these
two is associated with a place in a list. To refer to that number, only its position is made
to be worth 1, while the rest of the gaps are made zero. The size of this list will depend
on the accuracy level desired. This accuracy, however, is not related to the uncertainty
of the value, since it is not an adjustment by itself, but an estimation. In this work, the
neural network was allowed to estimate exponents to the second decimal number. More
than 100 of the calculated networks have an exponent outside the range 2 < γ < 3, as they
cannot be considered to have a scale-free topology, including them would only impoverish
the training of the network. Each of the 100 neurons in the final layer is associated with a
label corresponding to an exponent between 2.01 and 3.00 (limits chosen to train the neural
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network with as few labels as possible). Using 41 neurons to expand the values that can be
taken by the exponents predicted by the neural network to the whole interval (1.00, 5.00)
gives predictions identical to those of the first case, so that both networks are equally valid.
The only difference is the computational power needed to handle them.

A summary diagram of the neural network’s architecture is presented in the
Supplementary Materials, Section S3, Figure S2.

The procedure followed in this work has been summarized in Figure 2. Once the data
is collected from Twitter, the networks are constructed (and plotted using Gephi) and two
paths are followed. First, we calculate the structural parameters characterizing the network
using conventional/mathematical techniques. Additionally, secondly, we use the machine
learning techniques described above to perform the same calculations in a much shorter
time. The agreement is shown below. Our aim is, not only to reduce the computation
time to calculate the network parameters, but also to prove the possibility of extracting
them from pictures of networks, a non-trivial operation made possible by our proposed
architectures for Deep Learning models.
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Figure 2. Flow chart of the process followed along the manuscript. Data can be extracted from any
social media, in this work Twitter was chosen as source. From the data, in this work unfiltered to
remove biases, adjacency matrixes can be built. The state-of-the-art method to calculate structural
parameters consists of obtaining them analytically from the adjacency matrix. Our proposed method
consists of using Gephi to turn said adjacency matrixes into images, much lighter than their matrix
counterparts, which can be evaluated with the simple AI architecture we propose to obtain an
approximation to the analytical values. This method, potentially, represents a way to compress data
with dedicated computational units (generating images) to allow any device to calculate fast any
parameter using the proper Deep Learning model.

3. Results
3.1. Social Network Analysis

We have gathered a total of 656 social networks from the time span between June 2019 and
March 2021, with a daily average of N = 17800 ± 9300 nodes per network, which we assume is
a reasonable enough size to conduct our analysis. Figure 1a shows, as an example, a visualization
of one of the networks, where we have highlighted the different hashtags and see that they are
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distributed evenly among all the subgraphs (additional details showing the process to construct
this graph are shown in the Supplementary Materials, Section S2, Figure S1). Panels (b) and
(c) show the typical degree distribution that the obtained networks follow, which we fit
in a logarithmic scale to a line in order to obtain the exponent γ as the slope. This figure
(Figure 1b) corresponds with the in-degree calculations or the network, describing how
users influence the others. The equivalent results, considering the out-degree distribution,
are shown for the same network in Figure 1c. Note that the scaling exponents calculated
for each case are significantly different (γout = 2.55 and γin = 1.67), as we anticipated
earlier in Section 2.2. The in-connectivity presents a smaller density of very low connected
individuals and a bigger presence of highly connected ones, resulting in a less sharp
distribution and thus a smaller scaling coefficient. Differences between these values,
therefore, show important differences in the connectivity patterns and overall activity of
different days, which is the case in many of the networks we build up.

Figure 1d,e show how the scaling exponent of the network converges to a certain value
as we expand the network increasing the number of hashtags considered. Note that the
value has converged after five hashtags, which is the standard number of hashtags that we
consider for constructing each network. We assume that the exponent γ gives us accurate
and relevant information on the activity pattern of that day once this value has converged.
Figure 1f illustrates the calculation of the other two parameters for this example network,
the average shortest path length l, and the diameter of the network lmax.

As we mentioned in the Section 2, we built daily networks with the data collected
from Twitter and computed the metrics explained in Section 2.2; the in-and-out scaling
exponents, the average shortest path, and the network diameter for each one. In addition,
in Figure S3 in the Supplementary Materials (Section S4), we also plotted the time evolution
of the network size N in order to show that the size along the time series was comparable.
At a first glance, we noticed significant differences between γin and γout and how they
evolved in time (see Figure 3a,b). The γin scaling exponents were closer to two, describing
scale-free distributions with a longer tail and a larger difference in the inward-connectivity
between the hubs (popular users in this case) and the smaller users. In time, we see that it
is a very regular time series: noisy but with no important spikes. This could suggest that
there is always a similar proportion between the number of accounts that receive lots of
attention and the ones that do not, independently of the content. The γout scaling exponent,
however, was closer to three and showed increasing and decreasing local trends, with more
abrupt spikes, indicating differences in how users engage with each other depending on
the trends. This could make sense from the point of view of the hashtag’s content. There
are relatively calm weeks where trending topics are usually related only to TV shows or
to cultural and sport events, where, usually, there is an official account promoting the key
words to which the users of its community engage with. There are others, however, rich
in some hashtags related to moral, controversial, or political news that can persist longer
since they appeal to users from many different communities. This would involve either
an increase in the activity of smaller nodes (that were engaging more in the network) or
an increase in the frequency of lower-activity nodes (that entered the hashtag but only
left a couple of interactions), both of which result in the increase of the γout exponent.
Understanding exactly how the tweets’ content alter the network structure is, however,
slightly beyond the scope of this work, since a more dedicated analysis with hands-on data
would be more appropriate. Furthermore, we saw that it was very difficult to find in this
series any trace of deterministic patterns, such as oscillations or chaos. For that, in case
they do exist, it would be necessary to look at the evolution of the exponent over many
years or even consider a different approach to the selection of data.
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ordered by the government of Spain due to the COVID-19 pandemic. Horizontal lines show the
average value of each parameter before and after 15 March 2020.

Attending to the evolution of the average shortest path (Figure 3c), it does not seem
to follow any particular trend either. This ensures that the information flow of the graph
stays very similar independently of the day we choose, showing that reaching one node
from any other node of the network takes always less than five connections. In scale-free
networks, hubs represent strong shortcuts that drastically reduce the distance between
nodes, and it would make sense that the shortest path would not change much either, since
the γin scaling exponent showed that the size of popular users barely changed in time.

The yellow vertical line plotted in Figure 3 marks the date when mandatory confine-
ment was ordered by the government in Spain due to the COVID-19 pandemic. This is a
crucial historical landmark that one can assume had also an important impact on social
networks as well. Observation of the figures shows some impact, more relevant in the γout
scaling exponent (the horizontal red lines plotted in Figure 3 show the average value of
each parameter before and after 15 March 2020), but further analysis with filtered data and
paid attention to the media content should be conducted to verify this point. Note that it is
not casual that the scaling exponent γout is more affected by this historical landmark. As we
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mentioned earlier, this significant increase of the exponent could indicate that users decided
to engage more with the hashtags appearing right after the beginning of the pandemic,
which related more to healthcare issues and overall concern about the situation.

All the data presented in Figure 3 is shown as calculated without any filtering. The
solid lines correspond with the average values and the shadow areas mark the uncer-
tainties. Figure 3a,b show the scaling exponents that are calculated via a linear fit of the
connectivities of each node (uncertainty comes natural as the uncertainty in the fitted
parameters). Figure 3c,d show the average shortest path length l (thus, the uncertainty is
just the dispersion of all the values) and the network diameter lmax that is averaged over
the ten tops (and the dispersion is also calculated among those).

3.2. Prediction of the CNN

In this section, we present the results as calculated using the CNN tool developed in
the Section 2, following the scheme in Section S3 in the Supplementary Materials.

This work is focused on characterizing networks using only the information available
in their visual representations. Two different layer activation functions have been used:
ReLU for convolutional layers and Softmax for the dense layer. The cost function has
been based on the cross-entropy (as it tries to categorize the network parameters) and
the mean square error (as it also regresses the value associated with this parameter after
categorization against the calculated value), and the Adam algorithm has been chosen as
optimizer. Of the total 656 networks, some had to be discarded because of issues with their
Image rendering, and only 480 have been used here with their corresponding parameters.
From these 480, 70% have been used for training and 30% for testing the different trained
models. From the trained dataset, 10% have been selected to validate the fit. Thus, a
validation split of the trained data has been set as 0.1, and the model has been trained
with 200 epochs. Data has not been filtered even when non-ideal images were spotted in
the dataset.

CNN is chosen given its high performance in data acquisition from images and because
acceptable results can be achieved from just a simple neural network architecture, using
low resolution images and combining categorization and regression. With better image
resolutions, filtering the data, and after training more complex neural network models,
parameters could be obtained with even more precision.

In order to evaluate the robustness of the model, we evaluated the cost functions
during successive training epochs. The plots are presented in Figure S6 in Section S7 of the
Supplementary Materials.

From each network, we generated an image of 256 × 256 pixels similar to Figure 1a,
building a dataset with a total of 480 images. Some examples of the images used to train the
CNN are shown in Figure S5 of the Supplementary Materials (Section S6). Figures 4 and 5
show the performance of the neural network predicting the in and out scaling exponents
as well as the average shortest path and the network diameter compared to the actual
calculated parameters. At first glance, it appears that most of the values are in good
agreement with the fitted exponents (within the margins of error), so the predictions seem
fairly accurate, especially considering that the exponents used to train the network had
uncertainties as large as those used to test the results. The large values for the uncertainties
can be explained by the fact that the networks with which the exponents are fitted are
fragments of much larger networks, meaning that the fit to a free scale is not perfect, and
thus uncertainty is high.

Note that the model was able to acquire the ability to estimate the values of the
parameters of complex networks through their images and obtain a value close to the one
calculated analytically in a much faster way. Again, our objective in this work was to show
that this type of neural network is a tool that has this capability, even with a very basic
architecture, with hardly any optimization of its hyperparameters. Of course (but this is
beyond the scope of this paper), with optimized and more conscientious training, values
could be predicted much more accurately.
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We compared the results between the original test values and their predictions in
Figure 5. For each of the four parameters we presented (along the diagonal), the distribution
of values was directly calculated from the test networks and using CNN. Note that the
distributions were similar, meaning that the model was able to statistically reproduce
the set of possible values in all four cases. In most events, the prediction and test were
in good agreement (see antidiagonals in Figure 5), demonstrating the applicability of
this procedure.

In general, a Spearman’s coefficient value of ρ = 0.21 seemed to indicate a positive
correlation. On closer inspection, the cases where the prediction failed were images in
which all the nodes were agglomerated in a large mass, making it difficult to clearly discern
the connections between them. Thus, the method seems to fail mainly when the image was
not recognizable. Further improvement on the predictability could be obtained directly
using more images of networks, i.e., with a broader time window of analysis or considering
larger-size detailed images.
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Antidiagonal graphs show how similar both datasets are for each parameter. The ideal outcome
would be a distribution centered in the line of the type f(x) = x.

4. Discussion/Conclusions

We reconstructed a representative sample of the daily network of Twitter interactions
in Spain for a time window of more than a year, with the purpose of reflecting the way
society interacts and its temporal evolution. This required the development of software that
automated the download of huge amounts of freely-available data from the Twitter API to
construct the temporal evolution of the network. The tool designed to extract information
from Twitter had been registered as a result of this work, and their registration numbers are
SC-35-2022 and SC-36-2022. The developed method to construct the networks consisted
of adding the resulting subnetworks of the trending hashtags of the day. As the hashtags
were chosen by popularity, this presented an example of a network that we considered
representative of the total network. The fact that the exponent of the network converged to
a given value as more subnetworks were added (Figure 1d) confirms this hypothesis.

Each of the networks obtained was characterized in terms of topological parameters,
finding that the activity pattern persistently followed a scale-free distribution of interactions,
as was already observed in previous analyses of this website [22,38]. This is, now, also
confirmed for the Spain case over a significantly large period of time. Attending to the
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inwards direction of links (γin Figure 3a), which reflected the popularity of users, we
observed that the distribution did not change much in time, thus the presence of large
popular hubs with similar sizes was roughly constant independently of the trend. On the
contrary, the overall activity pattern reflected by the outward direction of the links (γout
Figure 3b), showed noticeable fluctuations around local trends in the time series. These
fluctuations in the average activity did not, however, show an important effect on the
average shortest path of the networks, since the latter mainly depended on the hubs. The
other parameter that was tracked was the network diameter (lmax). The observation of
Figure 3d showed some average increase in the values right after the considered temporal
landmark (the beginning of mandatory confinement in Spain ordered by the government in
Spain due to COVID-19 pandemic around 15 March 2020). Additionally, at the same time,
the out-scaling exponent (γout) exhibited a noticeable increase that remained along the
rest of the analyzed days. The combination of both results signified the direction that the
mandatory confinement could have taken to affect social networks and that our structural
measurements seem to be able to detect it. It is important to note that the machine learning
tool developed that reduces computational times by several orders of magnitude also
successful identifies this phenomenon. Note that the increase of the scaling exponent
γout was related to an increase in the connectivity of the average (less active) user at the
expense of less singular individuals with very-high presences (the out-hubs) in the network.
This was confirmed by the fact that the network diameter lmax had also increased at the
same time.

Thus, the technique presented here to build statistically relevant social networks
proves to be relevant and able to describe and detect significant phenomena that affects
social networks. We believe that our studies shown here demonstrate that it is possible to
detect significant events in the studied society without the necessity to access the contents
of the messages exchanged between the users, based on structural properties of the social
networks. This is a novel idea that opens many future possibilities.

Additionally, machine learning tools were introduced to reduce the decompression
time of the networks and the numerical computation of their exponents. Once the neural
network was trained, it was possible to reduce these average times by a factor of 10,000
(from 1 min to 50 ms), although the greatest improvement was observed in the calculation
of the other four properties. This work can be put in contrast with the work in [39], where
they also focused on the calculation of the exponents that had been shown to be the most
significant for the study of complex networks.

The potential of convolutional neural networks for their application in the analysis of
complex networks from images of these networks was revealed. Although the creation of
such images was not extremely practical due to current methodology, simply the ability to
compress TBs of information into MBs makes the idea tremendously attractive because,
although there was already the parquet format that achieves something very similar, to date,
we have found no other way to directly use compressed files in this way. The technology
developed along this manuscript opens the possibility of extensive studies using freely
available data.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/e25030507/s1. The contents are: S1.—Examples of hashtags used to
build up the networks. S2.—Graph construction from hashtags. S3.—Diagram of the architecture
of our convolutional neural network. S4.—Temporal evolution of the morphological parameters
calculated. S5.—Examples of plots with different networks. S6.—Animations for the Supplementary
material. S7.—Cost functions for the CNN used.
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