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Abstract: The non-Markovianity of open quantum system dynamics is often associated with the bidi-
rectional interchange of information between the system and its environment, and it is thought to be
a resource for various quantum information tasks. We have investigated the non-Markovianity of the
dynamics of a two-state system driven by continuous time random walk-type noise, which can be
Markovian or non-Markovian depending on its residence time distribution parameters. Exact analytical
expressions for the distinguishability as well as the trace distance and entropy-based non-Markovianity
measures are obtained and used to investigate the interplay between the non-Markovianity of the noise
and that of dynamics. Our results show that, in many cases, the dynamics are also non-Markovian when
the noise is non-Markovian. However, it is possible for Markovian noise to cause non-Markovian dynam-
ics and for non-Markovian noise to cause Markovian dynamics but only for certain parameter values.

Keywords: two-state system; non-Markovianity; continuous time random walk; non-Markovian noise

1. Introduction

Quantum non-Markovianity refers to the existence of memory effects in the dynamics
of open quantum systems and has been the subject of many studies with the aim of defining,
quantifying, and investigating various schemes to utilize it as a resource for quantum
information tasks. Non-Markovianity has been discussed as a possible resource for quantum
information tasks such as quantum system control [1], efficient entanglement distribution [2],
perfect state transfer of mixed states [3], quantum channel capacity improvement [4], and
efficiency of work extraction from the Otto cycle [5]. Miller et al. [6] carried out an optical
study of the relation between non-Markovianity and the preservation of quantum coherence
and correlations, which are essential resources for quantum metrology applications. Various
approaches, from environmental engineering to classical driving to controlling the non-
Markovianity of quantum dynamics, have been proposed, analyzed, and experimentally
realized in recent years. Most non-Markovianity measures invoke a bidirectional exchange
of information between the system and its environment at the root of the memory effects
in the dynamics. The seeming contradiction between such an interpretation and the fact
that even external classical noise could induce non-Markovian dynamics [7,8] was mostly
resolved by showing that random mixing of unitary dynamics might lead to memory
effects [9,10]. Representing the quantum environment of a finite-dimensional quantum
system using classical stochastic fields has a long history. One of the drawbacks of such an
approximation is the effective infinite temperature, which can be resolved by augmenting
the master equation with extra terms to restore the correct thermal steady state. Another
seemingly difficult task is to account for the lack of feedback from the system to the classical
field. Despite these shortcomings, the stochastic Liouville equation (SLE) approach has
produced various interesting physical models of open quantum systems [11–16].

There have been several studies on the effect of classical noise on the non-Markovianity
of the quantum dynamics of two-state systems. For example, a study by Cialdi et al. investi-
gated the relationship between different classical noises and the non-Markovianity of the
dephasing dynamics of a two-level system [17]. The study found that non-Markovianity
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is influenced by the constituents defining the quantum renewal process, such as the time-
continuous part of the dynamics, the type of jumps, and the waiting time. In addition,
other studies have explored how to measure and control the transition from Markovian to
non-Markovian dynamics in open quantum systems, as well as how to evaluate trace- and
capacity-based non-Markovianity. It has been shown that classical environments that exhibit
time-correlated random fluctuations can lead to non-Markovian quantum dynamics [18,19].
Costa-Filho et al. investigated the dynamics of a qubit that interacts with a bosonic bath and
under the injection of classical stochastic colored noise [20]. The dynamic decoupling of
qubits under Gaussian noise and RTN was investigated by Bergli et al. in [21,22]. Cai et al.
showed that the environment being non-Markovian noise does not guarantee that the sys-
tem’s dynamics are non-Markovian [23]. When the coupling of the bath to its thermalizing
external environment is very strong or on time scales longer than the characteristic micro-
scopic times of the bath, we expect that even fully quantum system-bath models reduce
to this case [24]. The addition of non-equilibrium classical noise to dissipative quantum
dynamics can be helpful in describing the influence of non-equilibrium environmental
degrees of freedom on the transport properties [25]. Goychuk and Hanggi developed a
method to average the dynamics of a two-state system driven by non-Markovian discrete
noises of the continuous-time random walk type (multi-state renewal processes) [26].

The transition from Markovian to non-Markovian dynamics via tuning of the system-
environmental coupling in various quantum systems has been reported [27–31]. The aim of
the present study is to provide an answer to the question of whether there is any connection
between the non-Markovianity of classical noise and the non-Markovianity of quantum
dynamics of a two-state system (TSS) driven by such a noise source. Toward that end,
we study the dynamics of a TSS driven by a continuous-time random walk (CTRW)-type
stochastic process which is characterized by its residence time distribution (RTD) function.
We investigate the effect of biexponential and manifest non-Markovian RTDs. The first
one is a simple model of classical non-Markovian noise as a linear combination of two
Markovian processes and allows one to study random mixing-induced quantum non-
Markovianity, while the latter one can be tuned to study a large number of noise models.
We find that exact analytical expressions for the trace distance and entropic measures of non-
Markovianity of the dynamics can be obtained for a restricted set of system parameters. It is
well known that Markovian classical noise can lead to non-Markovian quantum dynamics.
Here, we show that when the driving noise is chosen to be expressively non-Markovian,
one can still observe the Markovian quantum dynamics, depending on the noise and
system parameters, albeit in a very restricted set. Hence, we show that the existence of
non-Markovianity in classical noise does not guarantee quantum non-Markovianity of the
dynamics of a TSS driven by that noise.

The outline of this paper is as follows. In Section 2, we describe the TSS and CTRW
noise process and the noise averaging procedure that leads to the exact time evolution
operator in the Laplace transform domain. The analytical and numerical results of the
study for the biased and unbiased TSS for Markovian, as well as the non-Markovian CTRW
process, are presented and discussed in Section 3. Section 4 concludes the article with a
brief summary of the main findings.

2. Model and Non-Markovianity Measures

The main aim of this section is to introduce the TSS model which will be used to study
the effect of the non-Markovianity of the classical noise on the non-Markovianity of the
quantum dynamics of the TSS driven by the noise and to summarize the trace distance and
entropy-based quantum non-Markovianity measures.

2.1. Model

We consider a two-state system (TSS) with the Hamiltonian

H =
1
2

h̄ε0σz +
1
2

h̄(∆0 + ξ(t))σx +
1
2
(E1 + E2)I (1)
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where the σi values are the Pauli operators, E1,2 are the energies of states |1〉 and |2〉 of the
TSS, ∆0 is the static tunneling matrix element, ε0 = (E2− E1)/h̄, and I is the identity opera-
tor. The TSS is driven by two-state non-Markovian noise with amplitudes ξ(t) = {∆+, ∆−}
and stationary-state probabilities pst

± = 〈τ±〉/(〈τ+〉 + 〈τ−〉), where 〈τ±〉 represents the
average residence time of the noise in states ∆±. The stationary autocorrelation function of
the noise is defined as k(t) = 〈δξ(t)δξ(0)〉/〈[δξ]2〉, where δξ(t) = ξ(t)− 〈ξ〉st and can be
expressed in terms of the RTDs in the Laplace space as follows [25,26]:

k(s) =
1
s
−
(

1
〈τ+〉

+
1
〈τ−〉

)
1
s2

(1− ψ+(s))(1− ψ−(s))
(1− ψ−(s)ψ+(s))

(2)

where ψ±(s) are Laplace transforms of the residence time distribution of the noise in
the ∆− and ∆+ states and the autocorrelation time of the noise is defined using k(t) as
τcorr =

∫ ∞
0 |k(t)| dt. If k(t) is strictly positive for all t, then τcorr can be obtained from k(s)

as τcorr = lims→0 k(s).
The dynamics of the density matrix ρ(t) of the TSS with the Hamiltonian in Equation (1)

can be obtained by expressing it as ρ(t) = [I + ∑i Pi(t)σi]/2, where Pi(t) = Tr[ρ(t)σi] is

Ṗ(t) = F(t)P(t) (3)

where P(t) =
[
Px(t), Py(t), Pz(t)

]T and

F[ξ(t)] =

 −ε0 0 0
ε0 0 ξ(t)
0 ξ(t) 0

 (4)

The noise propagator S±(t) = exp (F[∆±]) for the static values of noise ξ = {∆−, ∆+} is

S±(t) = ∑
k

R(k)
± exp

(
iλ(k)
± t
)

(5)

where λ0
± = 0, λ1

± = Ω± =
√

ε2
0 + ∆2

±, λ2
± = −Ω±, and

R(0)
± =

1
Ω2
±

 ∆2
± 0 ε0∆±

0 0 0
ε0∆± 0 ε2

0



R(1)
± = [R(2)

± ]∗ =
1
2


ε2

0
Ω2
±

i ε0
Ω± − ε0∆±

Ω2
±

i ε0
Ω± 1 i ∆±

Ω±

− ε0∆±
Ω2
±
−i ∆±

Ω±
∆2
±

Ω2
±

 (6)

The problem of obtaining the stationary noise average of the propagator in Equation (5)
involves both averaging over the initial stationary probabilities. It was shown by Goy-
chuk that this can also be performed exactly in the Laplace space for non-Markovian
processes [25]. The noise-averaged propagator can be expressed as follows:

S(s) = p+S+(s) + p−S−(s)−
(

1
τ+

+
1

τ−

)
{C+ + C−

[A+(s)B−(s) + A−(s)][I − B+(s)B−(s)]
−1 A+(s) (7)

[A−(s)B+(s) + A+(s)][I − B−(s)B+(s)]
−1 A−(s)

}
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where

S±(s) = ∑
k

R(k)
±

s− iλ(k)
±

A±(s) = ∑
k

R(k)
±

1− ψ±
(

s− iλ(k)
±

)
s− iλ(k)

±

B±(s) = ∑
k

R(k)
± ψ±

(
s− iλ(k)

±

)

C±(s) = ∑
k

R(k)
±

1− ψ±
(

s− iλ(k)
±

)
(

s− iλ(k)
±

)2 (8)

where ψ(s) is the Laplace transform of the distribution of the residence time of the noise.

2.2. Non-Markovianity Measures

Non-Markovianity of random processes has a well-established and widely accepted
definition. The non-Markovianity of quantum dynamics, on the other hand, although
the subject of an immense number of studies in recent years, has not reached a similar
consensus. The trace distance-based measure of non-Markovianity developed in [32,33]
quantifies the memory effect in the dynamics with the system’s retrieval of information
from its environment, which shows up as nonmonotonic behavior in the distinguishability
of quantum states. Given two density operators ρ1 and ρ2, the trace distance (TD) between
them is defined as follows [34]:

D(ρ1, ρ2) = Tr
√
(ρ1 − ρ2)†(ρ1 − ρ2) (9)

where Tr stands for the trace operation. TD is bounded from below by D(ρ1, ρ2) = 0 for
ρ1 = ρ2 and from above by D(ρ1, ρ2) = 1 if ρ1 ⊥ ρ2. As a measure of distinguishability
between two quantum states, it can be related to the probability of distinguishing two
states with a single measurement [35].

Entropy-based Jensen–Shannon divergence (JSD) between two quantum states is an-
other distinguishability measure used to quantify non-Markovianity [36,37] and is defined
as the smoothed version of relative entropy:

J(ρ1, ρ2) = H
(

ρ1 + ρ2

2

)
− 1

2
(H(ρ1) + H(ρ2)) (10)

where H(.) is the von Neumann entropy H(ρ) = −Trρ log ρ. J(ρ1, ρ2) has the same bounds
as the trace distance in the same limiting cases, but it is not a distance because, contrary
to TD, it does not obey the triangle inequality.

√
J(ρ1, ρ2) is shown to be a distance

measure [38] and can be used to quantify the non-Markovianity of the quantum dynamics.
The non-Markovianity quantifiers based on a state distinguishability measure Dd(ρ1, ρ2)

are defined as follows [32,33]:

N d = max
ρ1(0),ρ2(0)

∫
σd(t)>0

σd(t) dt (11)

where
σd(t) =

d
dt

Dd(ρ1(t), ρ2(t)) (12)

where the exponent d stands for either the trace distance distinguishability (T) or the
Jensen–Shanon entropy divergence (E). Maximization in Equation (11) is carried out over
all possible initial states ρ1,2(0). Wissmann et al. [39] showed that ρ1(0), ρ2(0), chosen
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from the antipodal points of the Bloch sphere, maximizes the non-Markovianity measure
based on the trace distance for two state systems [32,37]. For the problem studied, both
the trace distance and Jensen–Shannon entropy divergence distinguishability measures
could be expressed in terms of the population difference Pz(t) and coherences Px(t) and
Py(t) as follows:

DT =
√

P2
x + P2

y + P2
z (13)

DE =
1√

log 4

√
2DT arctanh (DT) + log (1− (DT)2) (14)

If the chosen distinguishability measure between any two initial states is a monotonic
function of time, then the dynamics is said to be Markovian. Otherwise, N d quantifies the
memory effects in the dynamics.

3. Results and Discussion

We first present the results for TSS, whose state energies were degenerated. When
ε0 = 0, the Laplace transformed components of the evolution operator could be expressed
in a simple form:

Syy(s) =
s
(
2s2 + ∆2

− + ∆2
+

)
2
(
s2 + ∆2

−
)(

s2 + ∆2
+

) + ∆2

τ
[Ψ(s) + Ψ∗(s)] (15)

Syz(s) = −
∆0
(
s2 + ∆−∆+

)(
s2 + ∆2

−
)(

s2 + ∆2
+

) − i
∆2

τ
[Ψ(s)−Ψ∗(s)] (16)

Szz(s) = Syy(s), Szy(s) = −Syz(s) (17)

where

Ψ(s) =
[1− ψ(s + i∆−)][1− ψ(s + i∆+)]

(s + i∆−)
2(s + i∆+)

2[1− ψ(s + i∆−)ψ(s + i∆+)]
(18)

We considered a symmetric two-state discrete noise process such that ∆+ = ∆ = −∆−
was the amplitude, τ+ = τ− = τ was the mean residence time, and ψ(s) = ψ+(s) = ψ−(s)
was the residence time distribution function of the noise. Since one of the aims of the
study was to investigate the relation between the non-Markovianity of the driver noise
and the quantum dynamics it created, for the residence time distribution of the noise,
we considered two non-Markovian models, namely the bi-exponential and manifest non-
Markovian models, which have Markovian-limiting cases.

3.1. Markovian Noise

First, we considered the Markovian noise case, having an RTD ψ(s) = 1/(1 + sτ)
which can be obtained with θ = 0, 1 for the limit of noise with a biexponentially distributed
residence time (Equation (27)) or td → 0 for the limit of the manifest non-Markovian RTD
(Equation (31)), both of which are discussed in Sections 3.2 and 3.3, respectively. For such
an RTD, the inverse Laplace transform of the noise propagators in Equations (15)–(17), can
be performed exactly to obtain the following:

Py(t) = S(t) sin (∆0t + φ) (19)

Pz(t) = S(t) cos (∆0t + φ) (20)

where the initial values of Py(t) and Pz(t) are parameterized in terms of φ as Py(0) = sin φ
and Pz(0) = cos φ. S(t) in Equations (19) and (20) is the stochastic evolution operator of
the Markovian two-state noise:

S(t) = e−t/τ

[
cosh

(√
1− ∆2τ2 t

)
+

1√
1− ∆2τ2

sinh
(√

1− ∆2τ2 t
)]

(21)
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The trace distance distinguishability of the dynamics can be calculated with Equation (13)
by inserting the population and coherence expressions from Equations (19) and (20)
as follows:

D(ρ1, ρ2) = |S(t)| (22)

One should note that S(t) is a monotonously decreasing function of t for ∆τ < 1 but
displays decaying oscillations when ∆τ > 1 as the hyperbolic trigonometric functions
inside the parentheses transform to ordinary trigonometric functions when ∆τ > 1. The
non-Markovianity measure (Equations (11) and (12)) is defined as the integral of the positive
values of the time derivative of D, N = 0 for ∆ τ < 1. Interestingly, the trace distance
distinguishability-based non-Markovianity measure for this particular D and ∆ τ > 1 can
be obtained analytically in a simple form as follows:

N =
1

e
π√

∆2τ2−1 − 1
(23)

Here, the non-Markovianity is found to be independent of the static value of the
coupling coefficient ∆0. A similar expression for N was reported in [18] for a similar
Markovian two-state noise. It is also easy to obtain an analytical expression for the Jensen–
Shannon entropy divergence for the present case as follows:

J(t) =
1

log 4

{
log
[
1− S2(t)

]
+ 2S(t) arctanh [S(t)]

}
(24)

Although it is possible to derive an exact expression for an entropy-based non-
Markovianity measure by using Equations (11) and (24), the expression is not compact
enough to be helpful in deciphering the relation between N E and the noise parameters.
Therefore, we display only the calculated entropy-based N E along with the one derived
from the trace distance distinguishability in Figure 1.

(a) Trace distance (b) Jensen–Shannon divergence

Figure 1. Non-Markovianity of the dynamics for the unbiased TSS as a function of the Markovian
noise with an auto-correlation time τ and the amplitude ∆ based on the trace distance (a) and Jensen–
Shannon divergence distinguishability (b). The red dotted line is the zero contour, while the straight
lines denote N equal to 0.1, 0.25, and 0.5.
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The contours of non-Markovianity are plotted in Figure 1 as functions of the mean
residence time τ and noise amplitude ∆. As can be seen in Equation (23) and the plot, N is
nonzero as long as the Kubo number of the noise is greater than one, which is known as a
slow noise, strong system noise coupling, or strongly colored noise regime [40] Interestingly,
both measures were found to signal the same limits (∆τ > 1) for the existence of non-
Markovianity in the dynamics. Furthermore, even the magnitudes of N and N E were
found to be comparable. We observed the same behavior for all the other noise models
reported in the following, and for the remainder of the paper, we will report the results
only for the trace distance-based measure N .

An interesting dynamics and non-Markovianity behavior was observed if the noise RTD
was chosen to have the α→ 0 limit of the manifest non-Markovian RTD in Equation (31), which
reduced ψ(s) to a form similar to that of Markovian noise with a modified mean residence
time. It is easy to perform an exact analytical inverse Laplace transform of the propagator
expressions in Equations (15)–(17) for ψ(s) = 1/(1 + sτ tanh(1)) and find the population
difference as follows:

Pz(t) =
1

1 + e2

(
2 cos(∆t) +

(
e2 − 1

)
S2(t)

)
(25)

where

S2(t) = e−ct/τ

cosh (tC/τ) +
1 + e2√

(1 + e2)
2 − (e2 − 1)2∆2τ2

sinh (tC/τ)

 (26)

where C =
√

coth2 1− ∆2τ2 and c = coth 1. As t approaches infinity, S2(t) approaches
zero, while Pz(t) exhibits oscillations with an amplitude of 2/(1 + e2) and a frequency
of ∆. The non-Markovianity of the dynamics, as assessed by both the trace distance and
Jensen–Shannon entropy, was found to be unbounded. It is worth noting that the long-term
limit of Pz(t) was insensitive to both the noise amplitude ∆ and the mean residence time τ.
This result contradicts the findings obtained for Markovian noise, for which we found that
N is zero for ∆τ < 1 and tends toward a finite value for ∆τ > 1. It should be noted that the
α→ 0 limit of a manifest non-Markovian process describes a noise with 1/ω as the power
spectrum [41] near ω = 0, which is similar to the widely studied 1/ f noise. Benedetti et
al. studied [18] the non-Markovianity of colored 1/ f α noise-driven quantum systems and
reported finite values for N , in contrast to our findings.

3.2. Biexponentially Distributed Residence Time

The biexponential RTD in the time domain is defined as follows [41]:

ψ(t) = θα1 exp (−α1t) + (1− θ)α2 exp (−α2t) (27)

where θ and (1− θ) are the probabilities of the realization of the transition rates α1 and α2,
respectively. The mean residence and autocorrelation times of this noise can be expressed
as follows:

〈τ〉 = θ/α1 + (1− θ)/α2 (28)

τcorr =
∫ ∞

0
|k(t)| dt (29)

where θ = 0 and θ = 1 correspond to Markovian noise with mean residence times 1/α1
and 1/α2, respectively. The two-state noise with biexponential residence time distribution
allows one to define a non-Markovianity quantifier, denoted by CV , which can be tailored
by tuning the parameter θ. This quantifier is given by the ratio of the mean autocorrelation
time of the non-Markovian noise, 〈τcorr〉 =

∫ ∞
0 k(t)dt, to the autocorrelation time of the

Markovian process τM
corr = 〈τ〉/2 through the mean residence time 〈τ〉 as in Equation (30):
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C2
V =

2
〈τ〉τcorr (30)

The Laplace-transformed expressions for the noise propagator in Equations (15)–(17)
for the biexponential RTD are amenable to be transformed back to the time domain for the
unbiased TSS. However, the resulting population, coherence, and trace distance expressions
are tedious to display here. On the other hand, for the manifest non-Markovian RTD,
the only way to perform the inverse transformation is to use numerically exact inverse
Laplace transformation (ILT) methods. We tested the CME [42], Crump [43], Durbin [44],
Papoulis [45], Piessens [46], Stehfest [47], Talbot [48], and Weeks numerical ILT algorithms
and found that the method based on concentrated matrix exponential (CME) distributions
reported in [42] had the best performance in terms of computational cost for a given
accuracy. The convergence of the computed quantities as a function of the number of
included terms and the working precision was carefully checked, and 300 terms and 64 bit
precision were found to be adequate for all the reported calculations to converge to 0.1%.

N of the TSS dynamics as a function of the noise non-Markovianity parameters CV is
shown in Figure 2a for a noise amplitude ∆ = 1/4 with ∆0 = 0, 1 and ε0 = 0, 1. Remarkably,
it was observed that for the four combinations of the site energy difference ε0 and the static
coupling ∆0, the non-Markovianity of the quantum dynamics displayed a broad resonance
structure as a function of CV , which indicates that increasing the non-Markovianity of the
classical driving noise beyond a certain threshold would decrease the non-Markovianity
of the driven quantum dynamics. Figure 2b shows the trace distance distinguishability at
two chosen CV values and indicates that the main effect of increasing CV is to increase the
dissipation rate of the dynamics. These results indicate that the increasing non-Markovian
nature of the driving noise might increase, but it might also decrease the non-Markovianity
of the quantum dynamics of the system studied, depending on the magnitude.

(a) Non-Markovianity (b) Trace distance

Figure 2. Noise non-Markovianity CV ’s dependence on the trace-distance based non-Markovianity
measure N (a) and trace distance distinguishability DT (b) for the two-state discrete noise with
bi-exponential residence time distribution. The noise parameters were ∆ = 1/4, α1 = 1/20, and
α2 = 1. θ values were chosen such that CV ranged from 1 to 10. N and DT for four combinations of
TSS transition energy ε0 and electronic coupling ∆0 values are displayed. Note that for the unbiased
case (ε0 = 0), the difference in N between ∆0 = 0 and ∆0 = 1 is minimal and indistinguishable on
the plots. The straight (dashed) lines in DT plots of (b) were calculated at CV = 4 (10).

3.3. The Manifest Non-Markovian Noise

The other residence time distribution we will investigate is a manifest non-Markovian
noise with the RTD defined in the Laplace space as follows [26,41]:
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ψ(s) =
1

1 + sτg(s)
(31)

with

g(s) =
tanh

[
(std)

α/2
]

(std)
α/2 (32)

where τ is the mean residence time of the noise and td is another time constant that can be
used to control the non-Markovianity of the noise. (At the limit td = 0, ψ(t) is exponential).
The parameter α, which is limited to the range 0 < α < 1, characterizes the noise-power
distribution, where ψ(s) describes noise that shows 1/ω1−α features in its spectrum as
ω → 0 and encompasses various power-law residence time distributions. α = 1 describes
normal diffusion, while the 0 < α < 1 case corresponds to subdiffusion with an index
α in the transport context [41]. One of the interesting properties of discrete, manifestly
non-Markovian noise is that its correlation time is infinite for α < 1, which means that
the Kubo number is effectively infinite, and no perturbative treatment would produce any
reasonably accurate dynamics. The current method based on the Laplace transform is the
only way to investigate the dynamics for such residence time distributions. We discussed
the two limiting cases, namely td → 0 (Markovian) and α→ 0 (infinite C), of the manifest
non-Markovian RTD above. Here, we present and discuss how the RTD parameters α and
td affect the trace distance distinguishability and non-Markovianity of the TSS dynamics
with different system parameters.

First, we present the trace distance distinguishability along with the associated non-
MarkovianityN for the manifestly non-Markovian noise for various td and mean residence
time τ values in Figure 3 for a biased and unbiased TSS at α = 0.5 and ∆ = 0.5. As td is a
rough measure of the non-Markovianity of manifest non-Markovian noise, one can infer,
from a comparison of the insets in Figure 3a,c as well as Figure 3c,d, that N increases with
an increasing td for both the unbiased and biased TSS. The mean residence time dependence
of N was found to be independent of td. N increased with an increasing τ for all three
values considered in this work for the biased as well as the unbiased TSS. Furthermore,
N in the biased case is always found to be lower than that of the unbiased case. Another
interesting observation from Figure 3b is that the trace distance distinguishability for the
TSS driven by the highly non-Markovian noise tended toward a nonzero constant instead
of the expected zero value.

To further delineate the relationship between N and the noise parameters α and td,
we present the trace distance-based non-Markovianity measure N as a function of the
exponent α and the td time parameter of the noise residence time distribution for the
dynamics of the unbiased TSS in Figure 4 in two different combinations of noise amplitude
and mean residence time. The mean residence time of the noise is τ = 1, 20 in these
graphs, and the amplitude of the noise chosen is ∆ = 0.1, 0.5 for the subgraphs. The most
important observation from Figure 4 is that the Kubo number was the most important noise
parameter that determined the magnitude of the non-Markovianity of the TSS dynamics.
The larger ∆ led to a larger N for given α and td values. This finding is similar to the one
we discussed above for Markovian noise; the existence of non-Markovianity in that case
depended on if ∆τ > 1. For the manifest non-Markovian noise, the dynamics were found to
be non-Markovian even for ∆τ < 1. However, the magnitude of N still strongly depended
on the Kubo number K = ∆τ. Figure 4 also indicates that N depends on td weakly above a
threshold (around td = 15), and N increases smoothly with α for a constant td in most of
the α− td plane. It should also be noted that N can be zero under manifest non-Markovian
noise driving as α→ 1 when ∆� 1. This limit corresponds to white noise with a constant
power spectrum at all frequencies.
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(a) ε0 = 0, td = 1
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(c) ε0 = 0, td = 100
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(d) ε0 = 1, td = 1
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(e) ε0 = 1, td = 10
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(f) ε0 = 1, td = 100

Figure 3. Trace distance as a function of time for the manifestly non-Markovian noise at different td
parameters and average residence times τ. Insets show the trace distance-based non-Markovianity
measure as a function of τ. The other parameters of the noise and the system are α = 1/2, ∆0 = 0,
and ∆ = 1/2.

(a) ∆ = 0.1, τ = 1 (b) ∆ = 0.5, τ = 20

Figure 4. Dependence of α and td of trace distance-based non-Markovianity N on the dynamics of
TSS driven with manifest non-Markovian two-state noise at different Kubo numbers: K = 0.1 (a) and
K = 10 (b). The same color map is used for both plots, and the iso-N values are shown as the contour
labels. The red contour line in (a) is the N = 0.1 contour.

4. Conclusions

We studied Jensen–Shannon entropy divergence and trace distance-based measures of
non-Markovianity of the dynamics of a two-level system under continuous-time random
walk-type stochastic processes with Markovian and non-Markovian residence time distribu-
tions to delineate whether there was any connection between the Markovianity of the noise
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and that of the dynamics. We were able to obtain analytically exact expressions for both
measures for the unbiased TSS driven by Markovian CTRW noise. This expression indicates
that, above a critical Kubo number for the noise, even Markovian noise can lead to non-
Markovian quantum dynamics. The numerical study of a biased TSS with the same external
noise was found to be mainly a smearing of the exact boundary between the Markovian and
non-Markovian boundary in the noise frequency-noise amplitude or the classical noise-TSS
coupling coefficient plane. We used non-Markovian noise with a biexponential distribution
as a model of the non-Markovianity produced by random mixing of Markovian dynamics
and found that increasing the non-Markovianity of the noise might not lead to increased
N values for the dynamics. We also considered a CTRW with a manifest non-Markovian
residence time distribution and showed that the dynamics can be Markovian even for such
noise. An interesting finding of this study was obtained at the α→ 0 limit of manifest non-
Markovian noise. The exact expression obtained for the trace distance at this limit showed
thatN was infinite at this limit. As the discussion on the proper definition and measure of
the non-Markovianity of quantum dynamics has not been settled yet, the results reported in
this study provide a case study for answering the question “does the non-Markovianity of
the classical driver determine the non-Markovianity of the driven”?

Funding: This study was supported by the Scientific and Technological Research Council of Türkiye
(TUBITAK), project no. 1002-120F011.

Institutional Review Board Statement: It is not relevant for the present study.

Data Availability Statement: Data are available from the author upon reasonable request.

Acknowledgments: The author acknowledges many useful comments from and discussions with
Resul Eryiğit.
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