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Abstract: Chaotic systems are hard to synchronize, and no general solution exists. The presence of
hidden attractors makes finding a solution particularly elusive. Successful synchronization critically
depends on the control strategy, which must be carefully chosen considering system features such
as the presence of hidden attractors. We studied the feasibility of fuzzy control for synchronizing
chaotic systems with hidden attractors and employed a special numerical integration method that
takes advantage of the oscillatory characteristic of chaotic systems. We hypothesized that fuzzy
synchronization and the chosen numerical integration method can successfully deal with this case of
synchronization. We tested two synchronization schemes: complete synchronization, which leverages
linearization, and projective synchronization, capitalizing on parallel distributed compensation (PDC).
We applied the proposal to a set of known chaotic systems of integer order with hidden attractors.
Our results indicated that fuzzy control strategies combined with the special numerical integration
method are effective tools to synchronize chaotic systems with hidden attractors. In addition, for
projective synchronization, we propose a new strategy to optimize error convergence. Furthermore,
we tested and compared different Takagi–Sugeno (T–S) fuzzy models obtained by tensor product
(TP) model transformation. We found an effect of the fuzzy model of the chaotic system on the
synchronization performance.

Keywords: synchronization; chaos; hidden attractor; fuzzy control; T–S fuzzy model

1. Introduction

Synchronization of chaotic systems has received substantial attention theoretically
and experimentally in recent years. Such attention is justified by the potential applica-
tions in secure communication [1–3], the control of chemical reactions with the aim of
determining the favorable conditions for practical implementation [4], the stability of the
chaotic wind power system in finite time [5], the synchronization of chaotic finance systems
with known and unknown systems parameters [6,7], authentication from brain signals [8],
chaotic attitude synchronization and anti-synchronization for master–slave satellites under
unknown moments of inertia and disturbance torques [9], regulation of glucose–insulin
concentrations from a chaotic regime (an illness) to a disorder-free equilibrium [10], and the
relation between a meteorological phenomenon and influenza pandemics [11].

The synchronization of dynamic systems is the problem of enforcing several systems
to match and converge [12]. Chaotic systems are deterministic nonlinear dynamic systems
that exhibit a prominent sensitivity to initial conditions, noise, and system parameters [13].
Such characteristics of chaotic systems make the problem of synchronizing these systems
particularly challenging. In the case of chaotic systems, it is known that a chaotic solution
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is neither asymptotically stable, nor totally unstable, but it alternates between two or more
attractors over time.

Moreover, the synchronization of chaotic systems with hidden attractors is even more
challenging as they can lead to erroneous coupling behavior and instability. Besides,
the system analysis can be complicated [14–16]; on the one hand, hidden attractors have
been observed in systems without no equilibrium points, with no unstable equilibrium
points, with one stable equilibrium point, or with a line equilibrium. On the other hand,
the basins of attraction of the hidden attractors do not intersect with small neighborhoods
of any equilibrium points (if any) and are located far from such points. To avoid or reduce
the risk of a sudden jump to unwanted behavior, it is helpful to know the properties of
hidden attractors.

In order to carry out the synchronizations, it is necessary to leverage numerical
systems so as to approximate the solutions of the systems involved. The global error
en(t) = yn − y(tn), where yn is the approximation to the theoretical value y(tn) at time tn,
of the numerical method is upper bounded by the error made on the initial conditions,
the truncation error, and the rounding-up error [17,18]. The inadequate choice of the
integration step may result in the growing of the truncation error and/or the rounding
error. Consequently, the system may be perturbed, yielding undesired behaviors or even
making the system inoperable in the presence of hidden attractors.

The goal of this research is to afford a new methodology to carry out the synchroniza-
tion of two identical chaotic systems with hidden attractors by means of fuzzy control and
a special integration method that exploits the oscillating property of the chaotic systems for
numerical integration.

Based on our previous expertise, we opted for complete and projective synchroniza-
tion schemes. The complete synchronization employs the linear matrix inequality (LMI),
whilst the projective synchronization employs parallel distributed compensation (PDC).
The former proposal was applied to a set of chaotic systems with hidden attractors known
in the literature.

The main contribution of this research is to provide a new methodology to synchronize
chaotic systems with hidden attractors through complete and projective fuzzy controls,
evidencing that those fuzzy control strategies combined with such special integration
method boost robustness over other popular approaches and, hence, are more likely
successful in the task of synchronizing chaotic systems with hidden attractors.

The convergence to zero of the error in the synchronization varies depending on the
strategy used for the control. Projective synchronization depends on two parameters, α
and γ. We further propose here a new strategy for selecting the control parameter γ, then
we manipulated the scaling parameter α, as well as the initial conditions to modulate the
speed of convergence according to the demands of the application. For this, we supported
our findings with numerical simulations.

Another contribution is to evidence that fuzzy controls used in this work are robust
in handling multistable systems with hidden attractors, and the fuzzy controls used are
also robust to changes in the initial conditions. Another contribution is that the tested
chaotic systems were chosen arbitrarily from the literature. Therefore, these systems are
interchangeable with any other continuous integer-order chaotic system with nonlinear
terms with a state variable in common. Few works in the literature emphasize the numer-
ical methods used to simulate chaotic systems since they can generate problems such as
superstability. Our proposal is to use a special fixed-step numerical method that exploits
the oscillatory characteristic of chaotic systems and where the integration step is easy to
choose. Furthermore, an analysis of the performance of the synchronizations using different
Takagi–Sugeno (T–S) fuzzy models was conducted. The results showed an effect of the
fuzzy model of the chaotic system on the synchronization performance.
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2. Related Work

There are two configurations in synchronization: bidirectional or mutual coupling sys-
tems, where both systems must adapt to each other, and master–slave systems or unidirec-
tional coupling in which one system must adapt to another [19,20]. In both configurations,
the synchronization efforts can be categorized by the type of error being minimized [12],
such as complete or identical synchronization, anti-synchronization, phase synchronization,
and projective synchronization, among other synchronizations.

The literature reports several efforts regarding the synchronization of chaotic systems
in the presence of hidden attractors. One of the most-used controls is feedback control
with complete error [16,21–23], synchronizing with one or two state variables with the
master–slave and bidirectional approach [20,24]. To use this control, it is necessary to adjust
the coupling parameter to achieve synchronization. This can be done through bifurcation
diagrams, but they are very computationally expensive. This control intentionally fails
when synchronizing Chua’s system with hidden attractors to show that the existence of
hidden attractors significantly affects synchronization [15]. Another control is sliding
mode control (SMC) with complete error or anti-synchronization [25–28]. However, this
control requires studying and understanding the theory, which has strong mathematical
foundations. Most of the time, researchers focus on solving the problem of synchronizing
systems with perturbations and unknown system parameters. Another used control is
adaptive control with complete error or anti-synchronization, where they focus on the time
of convergence of the error in the synchronization [29] or the problem where the system
parameters are unknown [30–34]. Another control proposal is the fixed-time synchronization
observer, which emphasizes the time of convergence of the error in the synchronization
under complete error [35]. Finally, another control, back-stepping control, synchronizes two
different systems with complete error by setting an extra variable [36].

Most of the controls reviewed are specific regarding the set of chaotic systems that
they synchronize. For example, SMC works with perturbed systems and with unknown
parameters. Other controls are interested in the analysis of the convergence time of the
synchronization. In this article, we addressed the problem of synchronizing two identical
chaotic systems with hidden attractors considering the complete and projective errors.
To solve this problem, it is necessary to have a control, but the choice of this control is not
straightforward in the presence of hidden attractors [16]. In addition, a general control was
sought that guarantees the solution to a broad range of chaotic systems, avoiding ad hoc
controls, which particularize the solution.

On the other hand, fuzzy control is an efficient and effective tool in nonlinear systems
and has been successfully applied to chaotic synchronization before [37]. Fuzzy control
theory is widely studied. Furthermore, the part that is used to perform the synchronization
does not require a priori knowledge of fuzzy control, nor specific skills to use it [38]. Fuzzy
control applied to the synchronization of chaotic systems is a general and unified control
because it synchronizes a variety of chaotic systems, unlike controls such as linear feedback
control, nonlinear feedback control, and impulsive control, which deal with one or two
kinds of specified chaotic systems [37].

3. Global Error

A known result in the literature is how the global error en(t) of the numerical ap-
proximation of a solution of ordinary differential equations with initial values is bounded
according to

|en(t)| < {Aδ + Bhp + Chq}

where A, B, C are constants that depend on the methods’ coefficients and the Lipschitz
constant of ordinary differential equations and δ is the bound initial conditions [17,18].

The bounds of the global error are then given in terms of the error in the initial
values δ, the discretization or truncation error, and the round-off error. The choice of the
integration step ought to maintain a compromise between the later two. Besides, the error
in the initial values in the floating point arithmetic ought to be of the same order as that
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of the integration method. Because of the sensitivity to the initial conditions, in the case
of dynamic chaotic systems, the integration step h and the error in the representation
are of utmost importance. If we choose an integration step that keeps the discretization
error bounded, but which does not bound the growing of the round-off error, the later
can alter the chaotic system; for example, the chaos may be lost (superstability) or make
the system attracted to a different attractor, thus changing the system’s behavioral regime.
Even the variable step numerical integration methods with error control exhibit difficulties
when choosing the integration step to constrain the growth of the error e(t), leading to the
so-called computational chaos of systems that are not originally chaotic. For example, Skufca
reported how the Runge–Kutta–Fehlberg method implemented with error control and a
variable step (ode45 in Matlab) when applied to a system that models the coupling of two
oscillators originates the computational chaos [39].

4. Special Numerical Methods

Whenever some characteristic or property of the dynamical systems is known, said
property can be exploited by the numerical method. Special numerical methods are those
that exploit some specific property present in the dynamical system. In such circumstances,
the numerical approximation to the solution of the ordinary differential equations with
some initial values can be enhanced capitalizing on such prior knowledge about the dynam-
ical system. It follows that, since chaotic systems exhibit oscillations, it is convenient when
integrating them to use a method that leverages such an oscillatory property. Therefore,
in this research, we opted for using the numerical method developed by Gautschi [40]. This
is a well-known method based on trigonometric polynomials that effectively exploits this
oscillatory property.

Gautschi’s method has been described and analyzed in detail in [17,40], but briefly, it
is an explicit method of trigonometric order q = 1 and algebraic order p = 2, given by

yn+2 − yn+1 = h(β1 fn+1 + β0 fn)

where

β0(ν) = −1
2
(1 +

1
12

ν2 +
1

120
ν4 + . . .)

β1(ν) =
3
2
(1− 1

4
ν2 +

1
120

ν4 + . . .)

with ν = ωh, the integration step h constant, and the truncation error 5
12 h3(y(3) + ω2y(1)).

If the frequency ω is unknown, it is safer to underestimate it than to overestimate it [17].

5. Fuzzy Control

Fuzzification translates crisp inputs into fuzzy values for the inference system. The fuzzy
inference system applies the fuzzy rules and generates the system outputs in fuzzy form.
The counterpart, defuzzification, proceeds to recover crisp values for the outputs.

5.1. Fuzzification

Here, the fuzzy inference system employs the T–S fuzzy dynamic model [41]. The T–S
model is described by a set of rules: IF–THEN. These rules are capable of exactly describ-
ing nonlinear systems within some region of interest. Nonlinearities are expressed as
inferred fuzzy outputs by indicating the fuzzy membership function in the premise and
the associated coefficients in the consequence [42].

Consider the continuous-time chaotic system given by

ẋ = f(x(t)) (1)
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where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn is the state vector and f is a nonlinear function
of appropriate dimensions. The T–S fuzzy model is composed of a set of rules of the form:

Rule i : IF z1(t) is Fi1 and . . . and zp(t) is Fip

THEN ẋ = Aix(t) + bi, i = 1, 2, 3, . . . , I
(2)

where z1(t) . . . zp(t) are the premise state variables, Fi,j (j = 1, . . . , p) are fuzzy sets, Ai is
a constant system matrix with the appropriate size, and bi ∈ Rn is a constant vector; it
represents the bias generated by the exact fuzzy model. The number of rules I depends on
the variables exhibiting the nonlinearities.

5.2. Defuzzification

Using the singleton fuzzifier, fuzzy inference by the product, and defuzzification by
the weighted average, the final outputs are calculated according to

ẋ =
∑I

i=1 ωi(z(t)){Aix(t) + bi}
∑I

i=1 ωi(z(t))
(3)

where z(t) = [z1(t) z2(t) . . . zp(t)]T , with wi(z(t)) = ∏
p
j=1 Fij(zj(t)) in which Fij(zj(t))

is the degree of membership of zj(t) in Fij, with ∑I
i=1 ωi(z(t)) > 0, and ωi(z(t)) ≥ 0,

i = 1, 2, 3, . . . , I.
By employing µi(z(t)) = ωi(z(t))/ ∑I

i=1 ωi(z(t)) instead of ωi(z(t)), System (3) is
rewritten as

ẋ =
I

∑
i=1

µi(z(t)){Aix(t) + bi} (4)

where ∑I
i=1 µi(z(t)) = 1 with µi(z(t)) ≥ 0 (i = 1, 2, . . . , I).

When modeling a chaotic system using a T–S fuzzy surrogate, the goal is to build
a T–S model following (2), representing exactly the nonlinear system in (1). The vector
function f(x(t)) is expressed as the inferred fuzzy output ∑I

i=1 µi(z(t)){Aix(t) + bi} in (4).
There exist several ways to implement fuzzy modeling [38,42,43]. Here, we chose the one
described in [42,43]. Because each chaotic test system has nonlinear terms with a state
variable in common, we only need two rules to model them in a fuzzy manner. Other
chaotic systems may require a larger number of rules. For instance, in the transformed
Rossler system, it is not possible to extract two linear terms from the premise variable [43],
and therefore, more than two rules are required for the fuzzification of this system.

5.3. Fuzzy Modeling of Chaotic Systems

In this paper, we considered the fuzzy modeling of chaotic systems of integer order
with hidden attractors, as listed in Table 1. Since the derivatives that appear in chaotic
systems are of integer order, it is said that the chaotic systems are of integer order. The first
column reports the name of the system and the author of the system. In the second column,
the mathematical model is listed. In the third column, the parameters of the system are
listed; in case these do not come from the seminal work, we cite the source from which we
took them. In the last column, it is indicated if the chaotic system has equilibrium points.
Below, we present the fuzzy modeling of each of the systems.
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Table 1. Chaotic systems with hidden attractors. In the first column, the name of each system is
presented. In the second column, the mathematical model is given. In the third column, the parame-
ters of the system are cited if they do not come from the seminal work. The fourth column indicates
whether the systems have equilibrium points.

System Name Mathematical Model Parameters Eq. Point

Chua ẋ1 = α(x2 − x1 − ψ(x1)) α = 8.4562,
[44] ẋ2 = x1 − x2 + x3 β = 12.0732,

ẋ3 = −(βx2 + γx3) γ = 0.0052, Yes
ψ(x1) = m1x1+ m0 = −0.1768,

(m0 −m1) m1 = −1.1468
sat(x1) [45]

Sprott A ẋ1 = x2
[46] ẋ2 = −x1 + x2x3 No

ẋ3 = 1− x2
2

NE6 ẋ1 = x2
[47] ẋ2 = x3 No

ẋ3 = −x2 − x1x3−
x2x3 − a a = 0.75

LE4 ẋ1 = x2
[48] ẋ2 = −x1 + x2x3 a = 4 Line

ẋ3 = −ax1x2 − bx1x2− b = 0.6
x2x3

The chaotic system given by Chua [44,49] was one of the earliest to be investigated
with hidden attractors [50]. This three-dimensional dynamical system is known to exhibit
nonlinearities [49]. For the Chua system with hidden attractors, assume that x1 ∈ [−d, d]
and d > 0. Then, the fuzzy model that exactly represents the chaotic system under
x1 ∈ [−d, d] is given by

Rule 1 : IF x1(t) is F1 THEN ẋ(t) = A1x(t) + b1

Rule 2 : IF x1(t) is F2 THEN ẋ(t) = A2x(t) + b2
(5)

where x = [x1, x2, x3]
T , b1 = b2 = [0, 0, 0]T , d = 1.1, F1(x1) = 1

2

(
1− φ(x1)

d

)
, F2(x1) =

1− F1(x1), and

A1 =

α(d− 1) α 0
1 −1 1
0 −β −γ

 A2 =

−α(d + 1) α 0
1 −1 1
0 −β −γ



φ(x1) =

{
ψ(x1)

x1
x1 6= 0

m0 x1 = 0
sat(x1) =


−1 if x1 ≤ −1
x1 if | x1 |< 1
1 if x1 ≥ 1

The final output of the Chua fuzzy system is inferred by

ẋ =
2

∑
i=1

Fi(x1(t)){Aix(t) + bi}.

The chaotic behavior of the Chua system around the hidden attractor is illustrated in
Figure 1a.
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Analogous to the Chua system, the Sprott A system assumes that x2 ∈ [−d, d] and
d > 0, then the fuzzy model is

Rule 1 : IF x2(t) is F1 THEN ẋ(t) = A1x(t) + b1

Rule 2 : IF x2(t) is F2 THEN ẋ(t) = A2x(t) + b2

where x = [x1, x2, x3]
T , b1 = b2 = [0, 0, 2]T , d = 5.0, F1(x2) = 1

2
(
1 + x2

d
)
, F2(x2) =

1
2
(
1− x2

d
)
, and

A1 =

 0 1 0
−1 0 d
0 −d 0

 A2 =

 0 1 0
−1 0 −d
0 d 0


The final output of the Sprott A fuzzy system is inferred by

ẋ =
2

∑
i=1

Fi(x2(t)){Aix(t) + bi}

and the phase space of the Sprott A system is shown in Figure 1b.

(a) (b)

(c) (d)

Figure 1. Hidden attractors of the test systems. (a) Chua system; the three equilibrium points are
shown with black color to highlight the presence of the hidden attractor. (b) Sprott A system. (c) NE6

system. (d) LE4 system; the line of equilibrium x3 has is plotted in black.

For the NE6 system, assume that x3 ∈ [−d, d] with d > 0, then the fuzzy model is

Rule 1 : IF x3(t) is F1 THEN ẋ(t) = A1x(t) + b1

Rule 2 : IF x3(t) is F2 THEN ẋ(t) = A2x(t) + b2
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where x = [x1, x2, x3]
T , b1 = b2 = [0, 0,−0.75]T , d = 3.0, F1(x3) = 1

2
(
1 + x3

d
)
, F2(x3) =

1
2
(
1− x3

d
)
, and

A1 =

 0 1 0
0 0 1
−d −1− d 0

 A2 =

0 1 0
0 0 1
d −1 + d 0


The final output of the NE6 fuzzy system is inferred by

ẋ =
2

∑
i=1

Fi(x3(t)){Aix(t) + bi}

and the phase space of this system is shown in Figure 1c.
The LE4 system can be fuzzy modeled as follows. Assume that x2 ∈ [−d, d] with d > 0,

then the fuzzy model is

Rule 1 : IF x2(t) is F1 THEN ẋ(t) = A1x(t) + b1

Rule 2 : IF x2(t) is F2 THEN ẋ(t) = A2x(t) + b2

where x = [x1, x2, x3]
T , b1 = b2 = [0, 0, 0]T , d = 0.8, F1(x2) = 1

2
(
1 + x2

d
)
, F2(x2) =

1
2
(
1− x2

d
)
, and

A1 =

 0 1 0
−1 0 d

−d(a + b) 0 −d

 A2 =

 0 1 0
−1 0 −d

d(a + b) 0 d


The final output of the LE4 fuzzy system is inferred by

ẋ =
2

∑
i=1

Fi(x2(t)){Aix(t) + bi}

and its phase space is shown in Figure 1d.

6. Fuzzy Synchronization

The general master–slave feedback control utilized to synchronize chaotic systems is
summarized in Figure 2. In this paper, we used fuzzy control due to the characteristics that
we explained in Section 1. The two fuzzy controls used to synchronize chaotic systems are
described below.

𝑥𝑖
𝑖 = 1,2, … 𝑛

Control

Plant 

Chaotic 

slave 

system

𝑒𝑖
𝑖 = 1,2, … 𝑛

𝑢𝑖
𝑖 = 1,2, … 𝑛

𝑦𝑖
𝑖 = 1,2, … 𝑛

Chaotic

master 

system

Reference 

signal(s) 

(Set point)
OutputControl

Error: 

Difference between 

the output and the 

reference

The output is required 

to follow the reference

Figure 2. Synchronization scheme. Depiction of a master–slave feedback control where the output
variables yi are required to follow the references (set points) generated by the master system xi.
The error ei is the difference between the output and the reference. The control ui forces the output to
follow the reference.
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6.1. Complete Fuzzy Synchronization

Let us consider the fuzzy representation of the chaotic system (2) as the master system
and the system (6) as the slave system:

Rule 1 : IF y1(t) is F1 THEN ẏ(t) = A1y(t) + b1 + Bu(t)

Rule 2 : IF y1(t) is F2 THEN ẏ(t) = A2y(t) + b2 + Bu(t)
(6)

where y = [y1, y2, y3]
T are state variables and A1, A2, b1, b2, F1, F2, and d have the same

values as the master system (2). B is an input matrix, and u(t) is the control.
Defuzzification is given by

ẏ =
2

∑
i=1

µi(y1(t)){Aiy(t) + bi}+ Bu(t), µi(y1(t)) = Fi(y1(t)).

The error is e(t) = y(t)− x(t). The error can be estimated from

ė(t) =
2

∑
i=1

µi(y1(t)){Aiy(t) + bi} −
2

∑
i=1

µi(x1(t)){Aix(t) + bi}+ Bu(t). (7)

The goal of the synchronization is to design the fuzzy control:

u(t) = −
2

∑
i=1

µi(y1(t)){Ciy(t) + bi}+
2

∑
i=1

µi(x1(t)){Cix(t) + bi} (8)

such that ‖e(t)‖ → 0 when t → ∞. Substituting the fuzzy control (8) in the error (7),
one obtains

ė(t) =
2

∑
i=1

µi(y1(t)){(Ai − BCi)y(t)} −
2

∑
i=1

µi(x1(t)){(Ai − BCi)x(t)}

The gain matrices Ci are calculated during the design process. With the idea of linearization
given in [38,42], if there exists gain matrices such that

{(A1 − BC1)− (A2 − BC2)}T × {(A1 − BC1)− (A2 − BC2)} = 0

then the total error of the system becomes linear when ė(t) = Ge(t) according to the
fuzzy control (8), where G = A1 − BC1 = A2 − BC2. Moreover, if G < 0, the the error is
asymptotically stable. This convergence was proven in [42].

6.2. Projective Fuzzy Synchronization

In the projective synchronization, the drive system is scaled to a scalar factor α. Let
the master system (1) and the slave system be ẏ = g(y(t), u(x(t), y(t))). If there exist a
constant α 6= 0 such that limt→∞‖y(t)− αx(t)‖ = 0, then the synchronization is referred to
as projective, and α is called the scaling factor.

In particular, for the case study at hand, our master system is given by its T–S fuzzy
modeling (9) and the slave system (11).

Rule 1 : IF x1(t) is F1 THEN ẋ(t) = A1x(t)

Rule 2 : IF x1(t) is F2 THEN ẋ(t) = A2x(t)
(9)

The final output of the fuzzy system (9) is inferred from

ẋ =
2

∑
i=1

µi(x1(t))Aix(t) (10)
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where µ satisfies the same conditions as (4).

Rule 1 : IF x1(t) is F1 THEN ẏ(t) = A1y(t) + u(t)

Rule 2 : IF x1(t) is F2 THEN ẏ(t) = A2y(t) + u(t)
(11)

The final output of the slave fuzzy system (11) is given by

ẏ =
2

∑
i=1

µi(x1(t)){Aiy(t) + u(t)} (12)

Let the error e(t) = y(t)− αx(t). Substituting the final outputs of the fuzzy systems
(10) and (12), we obtain the derivative of the error:

ė(t) =
2

∑
i=1

µi(x1(t)){Aie(t) + u(t)} (13)

By means of PDC, which creates a controller fuzzy system with rule premises identical
to those of the plant fuzzy system [51], the next fuzzy control is obtained:

Rule 1 : IF x1(t) is F1 THEN u(t) = −γA1[y(t)− αx(t)]− γ[y(t)− αx(t)]

Rule 2 : IF x1(t) is F2 THEN u(t) = −γA2[y(t)− αx(t)]− γ[y(t)− αx(t)]

where γ is a control parameter.
The final output of the fuzzy control is given by:

u(t) =
2

∑
i=1

µi(x1(t)){−γAi[y(t)− αx(t)]− γ[y(t)− αx(t)]} (14)

Substituting the fuzzy control (14) in the error (13), one obtains

ė(t) =
2

∑
i=1

µi(x1(t))[(1− γ)Ai − γI]e(t) (15)

where I is the identity matrix.
A condition for the convergence of the error (15) is that, if there exists a positive

definite symmetric constant matrix P and constant c > 0, such that [(1− γ)Ai − γI)]T P +
P[(1− γ)Ai − γI)] ≤ −cI, i = 1, 2, then the error (15) is globally exponentially stable.

Another convergence condition for the error (15) concerns the characteristic values λj,
j = 1, . . . , n of the symmetric matrices (1− γ)(AT

i + Ai)− 2γI, i = 1, 2. If every λj has a
strictly negative real part, then the error (15) is globally exponentially stable, which implies
that (9) and (11) can asymptotically achieve projective synchronization. For the proof of
these conditions, the reader is referred to the original work [52].

7. Projective Synchronizations with an Emphasis on Error Convergence

For projective synchronization, it is possible to find the value of the control parameter
γ analytically so that the convergence of the synchronization error to zero can be made
faster or slower according to the application. Through matrices (1− γ)(AT

i + Ai)− 2γI,
i = 1, 2, the characteristic values are found as a function of γ, and its range of variation
is determined. Parameter γ is selected, ensuring the characteristic values have a strictly
negative real part, and so, the second condition stated at the end of Section 6.2 is met.
By means of the standard deviation of the characteristic values σ(λ), λ = (λ1, . . . , λn),
found in the valid range of γ, the set of characteristic values that gives us the sought
convergence (fast or slow). When σ(λ) = 0, the set of associated characteristic values is very
similar and not small in magnitude (due to the spectrum of variation of the values), and the
convergence error quickly goes to zero. Then, determining the λ∗ = arg min σ(λ) = 0,
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in the range of variation of γ, the value of λ∗ is found so that the error converges as fast as
possible. Otherwise, λ∗ = arg max σ(λ) is found.

The aforementioned procedure was carried out using known strategies to determine
the maxima and minima of a scalar function with a vector argument. However, when
the expressions as a function of γ are polynomials of a degree greater than 1, finding λ∗

is laborious in practice. In these cases (such as the ones discussed in this article), it is
recommended to obtain the plot of γ vs. σ(λ(γ)) to determine the desired λ∗ and the range
of variability of γ.

8. Simulation Results

In this section, we present the results of the numerical simulations of the chaotic systems
with hidden attractors in Table 1 using the proposed fuzzy control approaches. We used
the complete fuzzy and projective fuzzy synchronizations described in Sections 6.1 and 6.2
to synchronize two identical chaotic systems with hidden attractors and different initial
conditions. In the case of projective synchronization, we applied the strategy described
in Section 7.

We further studied the rate of convergence by both control strategies applied to Chua’s
system across a new set of initial conditions. The different initial conditions that we gener-
ated followed the methodology proposed by Danca [53]. With projective synchronization,
we fixed the control parameter γ to the value that affords the fastest convergence, and we
varied the scaling parameter and the different initial conditions. In each simulation, we
looked for the first iteration from which each synchronization error was less than 2% for all
subsequent iterations. With complete synchronization, we also varied the initial conditions
and looked for the iterations that satisfy each synchronization error to be less than 2%.
Finally, we compared the iterations found in order to analyze the convergence of the errors
through them.

In addition, we analyzed different T–S fuzzy models and we found an effect of the
fuzzy model of the tested chaotic system on the synchronization performance.

All the simulations were carried out on a personal computer with machine precision
2.2204× 10−16 in Fortran with the GNU Fortran 10.3.0 compiler for Windows. No compiler
options and optimizations were selected. The graphs were made with matplotlib 3.5.1.

In all numerical simulations, the differential equations were solved by using the
Gautschi integration method [40] based on trigonometric polynomials. Unlike other fixed-
step integration methods such as Euler or Runge–Kutta, the Gautschi method is a special
integration method that takes the oscillations of chaotic systems into account. Gautschi’s
method has been shown to exhibit accuracy closest to the variable-step method with control
error ode45 and requires fewer evaluations of the chaotic system than Runge–Kutta 4
(RK4) [54,55].

In order to employ the Gautschi integration method, we ought to establish the system
frequency and the integration step. If the system frequency is unknown, it is possible
and advisable to underestimate it [40]. In the simulations carried out here, we used an
underestimated frequency equal to 1 and an integration step of 1/128. With these values,
we obtained the expected attractors, which we confirmed with the phase spaces of the
test systems reported in the source articles. The simulation time was 150 time units for
the systems Chua, NE6, and LE4 and 250 time units the Sprott A system. Despite their
popularity, time units may be ambiguous, and we, therefore, report our simulations in
terms of iterations instead. The total number of iterations was calculated as (final time—
initial time)/integration step. In our case, 150 time units correspond to 19,200 iterations and
250 time units correspond to 32,000 iterations.

8.1. Results of Fuzzy Complete Synchronization

We synchronized each test system with another identical system, but with different
initial conditions. First, we used the fuzzy models of each chaotic system with hidden
attractors given in Section 5.3. Then, we applied the fuzzy control presented in Section 6.1.



Entropy 2023, 25, 495 12 of 23

The gain matrices C1 and C2 of each synchronization were obtained by solving the
LMIs using the Matlab R2021b LMI toolbox (The MathWorks, Inc. Natick, MA, USA).
Choose the input matrix B as the identity matrix.

Upon every synchronization, the partial errors converged to zero as the simulation
progressed, that is all synchronizations were successful. The proposed control is robust
and capable of synchronizing chaotic systems with hidden attractors.

8.1.1. Chua

Two Chua systems with hidden attractors were synchronized under error-complete
and initial conditions x0 = [−3.7727,−1.3511, 4.6657]T for the master system and y0 =
[0.01, 0, 0]T for the slave system [15]. In order to emphasize the difficulty of selecting a
control to synchronize systems with hidden attractors, these systems were considered with
the given initial conditions and feedback control to obtain synchronization failure [15].

To carry out the synchronization the gain matrices for the Chua chaotic system of
integer order with hidden attractors with the chosen initial conditions were calculated.
The matrices (16) were obtained. With these matrices, the error was asymptotically stable.

C1 =

0.3364 1.1820 0
1.1820 −0.1250 −1.3841

0 −1.3841 0.1237

, C2 =

−4.3145 1.1820 0
1.1820 −0.1250 −1.3841

0 −1.3841 0.1237

 (16)

Substituting the gain matrices in the fuzzy control (8) and using the Gautschi integra-
tion method, we synchronized the two Chua chaotic systems of integer order with hidden
attractors. The phase space is shown in Figure 3a. It can be appreciated that the slave
system (dotted magenta line) successfully followed the master system (solid green line).

(a) (b) (c)

(d) (e) (f)

Figure 3. Cont.
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(g) (h) (i)

(j) Phase space (k) Error (l) Control

Figure 3. Results of complete synchronizations. (a) Phase space, (b) error, and (c) control of the Chua
system. Analogously for the Sprott A system (d–f), NE6 system (g–i), and LE4 system (j–l). For Chua’s
system, the synchronization errors were less than 2% from Iteration 12,301 onwards. For all other
systems, this happened around Iteration 3000. If the units of time are seconds(s), 3000 iterations
would be equivalent to 23.43 s, representing 15% of the total simulated time (150 s).

Figure 3b presents the evolution of the error in the three state variables in the full
simulation. Leveraging the theoretical guarantees, since ‖e(t)‖ → 0 when t→ ∞, it was
concluded that the systems were successfully synchronized using the proposed fuzzy
control plotted in Figure 3c. Further, all synchronization errors were lower than 2% from
Iteration 12,301. This case asserts the feasibility of fuzzy control for synchronizing chaotic
systems in the presence of hidden attractors. This fuzzy control overcomes the difficulties
presented by chaotic systems with hidden attractors such as unexpected behaviors, sudden
changes, or even system inoperability.

8.1.2. Sprott A

Analogous to the previous synchronizations over the Chua system, we proceeded
to synchronize the Sprott A system. The initial conditions used were x0 = [0, 5, 0]T for
the master system [56] and y0 = [1.1, 6.1,−0.1]T for the slave system. The calculated gain
matrices for this system are

C1 = C2 =

0.5 0 0
0 0.5 0
0 0 0.5


In Figure 3d, the phase space where the slave system (dotted line) mimics the master

system (solid line) is shown. Figure 3e plots the three synchronization errors, all of which
converged to 0. Furthermore, from Iteration 2792, all were less than 2%. Finally, Figure 3f
depicts the behavior of the control in the three state variables. We thus concluded that the
synchronization was successful.
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8.1.3. NE6

In the complete fuzzy synchronization of the NE6 system, we used as the initial
conditions x0 = [0, 3,−0.1]T for the master system [47] and y0 = [2.4, 1.4,−0.6]T for the
slave system. The gain matrices obtained with this system are

C1 =

 0.5 0.5 −1.5
0.5 0.5 −1.5
−1.5 −1.5 0.5

, C2 =

0.5 0.5 1.5
0.5 0.5 1.5
1.5 1.5 0.5


Figure 3g shows the phase space, in which the slave system (dotted line) mimics the

master system (solid line). Figure 3h plots the three synchronization errors, each converging
to zero. From Iteration 1885, the three errors were less than 2%. In Figure 3i, the behavior of
the fuzzy control used is presented. The controls u1 and u2 have the same behavior; hence,
the graphs overlap. For all of the above, this synchronization was also successful.

8.1.4. LE4

The initial conditions used to synchronize this system were x0 = [0.2, 0.7, 0]T for
the master system [48] and y0 = [−0.1, 0.3, 0.1]T for the slave system. The gain matrices
obtained are

C1 =

 0.5 0 −1.84
0 0.5 0.4
−1.84 0.4 −0.3

, C2 =

 0.5 0 1.84
0 0.5 −0.4

1.84 −0.4 1.3


Figure 3j presents the phase space. The correct synchronization of the slave system

(dotted line) with the master system (solid line) can be appreciated. Figure 3k shows
the convergence of the errors to 0. From Iteration 3383, all errors were less than 2%. In
Figure 3l, the behavior of the fuzzy control used is graphed. In this sense, synchronization
was successful.

8.2. Results of Fuzzy Projective Synchronization

In this section, we present the results of the projective fuzzy synchronization for
the test systems in Table 1. We considered the fuzzy models of the systems reported in
Section 5.3. We applied the control in Section 6.2.

Fuzzy projective control (presented in Section 6.2) has the constraint that none of
the chaotic systems involved, neither the master nor the slave, can have constant terms.
Therefore, the only systems that can be synchronized with this control of those in Table 1
are Chua and LE4.

Here, we present the results of applying the strategy given in Section 7 to choose γ
and that allows modulating the speed of convergence.

8.2.1. Chua System

With those parameters presented in Section 5.3, we calculated the symmetric matrices
(1− γ)(AT

i + Ai)− 2γI, i = 1, 2, which are1.69124(1− γ)− 2γ 9.4562(1− γ) 0
9.4562(1− γ) −2(1− γ)− 2γ −11.0732(1− γ)

0 −11.0732(1− γ) 0.0104(1− γ)− 2γ


−35.516(1− γ)− 2γ 9.4562(1− γ) 0

9.4562(1− γ) −2(1− γ)− 2γ −11.0732(1− γ)
0 −11.0732(1− γ) −0.0104(1− γ)− 2γ


Subsequently, we looked for the characteristic values of each matrix to determine the

range of values in which γ must lie to satisfy that the symmetric matrices have strictly
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negative characteristic values. The equation to find γ is nonlinear. Clearing γ analytically
can be cumbersome. Hence, instead, we opted to plot the standard deviation of the
characteristic values by varying the parameter γ in the interval [0.88, 1] in Figure 4a. Such
an interval can be found with trial and error with educated guesses; the sought γ values
are those complying with the required convergence conditions.

Following the selection of the interval of the γ values that ensure convergence, we
now present the synchronization under the lower and upper values of the function σ(λ(γ))
within the interval where the convergence requirements are met: γ = 0.88 and γ = 1.0,
respectively, in the case of Chua. As the process involved some trial and error, we fur-
ther show the synchronization for nearby values: γ = 0.89 and γ = 0.99. The same
initial conditions used for the complete synchronization were used here: x0 = [−3.7727,
−1.3511, 4.6657]T for the master system and y0 = [0.01, 0, 0]T for the slave system [15].
The scaling factor used was α = 0.5. The errors of each state variable of the synchroniza-
tions are plotted in Figure 5a–c. The error in the synchronizations with γ = 0.99 and
γ = 1 converged to zero in fewer iterations than with γ = 0.88 and γ = 0.89 in each error.
It can be appreciated how the value of γ affected the speed of convergence: faster with
γ = 0.99 and γ = 1 and slower with γ = 0.88 and γ = 0.89, with implications for the
domain application.

(a) (b)

Figure 4. Standard deviation of the characteristics’ values. (a) Standard deviation of the Chua system.
(b) Standard deviation of the LE4 system. Each one of the functions in its respective interval presents
an absolute minimum and an absolute maximum.

(a) (b) (c)

Figure 5. Cont.
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(d) (e) (f)

Figure 5. Errors of projective synchronizations. (a) Error in first state variable, (b) in the second
variable, and (c) in the third variable of the Chua system. Analogously for the LE4 system (d–f).
For the Chua system, the synchronizations with γ = 0.99 and γ = 1.00 reached zero faster than with
γ = 0.88 and γ = 0.89. For the LE4 system, the fastest convergences were with γ = 0.99 and γ = 1.0
and slowest with γ = 0.70 and γ = 0.71. The range of variation for γ was [0.88, 1] for Chua and
[0.70, 1] for LE4. The maximum difference between the synchronization errors was approximately
0.25 in Chua and 0.04 in LE4.

8.2.2. LE4

When synchronizing this system projectively, we used the same initial conditions
as for complete synchronization: x0 = [0.2, 0.7, 0]T for the master system [48] and y0 =
[−0.1, 0.3, 0.1]T for the slave system. We chose the scaling factor α = 0.5.

The symmetric matrices of this system are −2γ 0 −3.68(1− γ)
0 −2γ 0.8(1− γ)

−3.68(1− γ) 0.8(1− γ) −1.6(1− γ)− 2γ


 −2γ 0 3.68(1− γ)

0 −2γ −0.8(1− γ)
3.68(1− γ) −0.8(1− γ) 1.6(1− γ)− 2γ


Using again the strategy described in Section 7, when calculating the characteristic

values of the matrices, we also found polynomials of the third degree, as happened with the
Chua system. The plots γ vs. σ(λ(γ)) for γ ∈ [0.7, 1.0] are shown in Figure 4b. Analogously,
as we did with Chua, this interval was found by trial and error following educated guesses.
The lower and upper values of the function where the convergence requirements were met
occurred at γ = 0.77 and γ = 1.0, respectively. Again, because of the trial and error process,
we also synchronized with nearby values: γ = 0.78 and γ = 0.99.

Figure 5d–f plot the error for each state variable, and again, we show how the value
of γ affects the speed of convergence;: faster with γ = 0.99 and γ = 1.0 and slower with
γ = 0.70 and γ = 0.71, in agreement with the strategy in Section 7.

8.3. A New Set of Initial Conditions

In this section, we analyze numerically the error convergence of both the complete and
projective synchronizations of the Chua system with different initial conditions, and further,
we investigate whether the scaling factor has an impact on the projective synchronizations.

To design further numerical simulations, like [53], first, we found the equilibrium points
of the chaotic system; this system has three: two unstable [6.58831, 0.0028364,−6.58547],
[−6.58831,−0.0028364, 6.58547] and one stable [0, 0, 0], plotted in Figure 1a. Then, we verified
numerically the solutions that start from neighborhoods of the unstable equilibrium points,
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which are attracted to the point of stable equilibrium or tend to infinity. Finally, we visualize the
hidden attractors by trial and error by choosing the starting points for the numerical simulation
outside the neighborhoods of the unstable equilibrium points. The list of initial conditions used
is listed in Appendix A. These simulations were also carried out using Gautschi integration
with an underestimated frequency of 1 and an integration step of 1/128. Again, the simulated
time spanned 150 time units, equivalent to 19,200 iterations per simulation.

Afterwards, we conducted both the complete and the projective synchronizations.
For the case of complete synchronization, we also used the gain matrices given in (16). For
the projective synchronization, we chose to simulate scaling factors α equal to 0.5, 1, 2, 3,
4, and 8. The control parameter was fixed to γ = 0.99 in all projective simulations, which
gave the fastest convergence, as estimated with the strategy given in Section 7.

In principle, the complete synchronization and the projective synchronization with
α = 1 are equivalent. However, the design of the respective control differed. We emphasize
here such differences in our simulations.

All simulations were successful. Of course, some converged faster than others. To ob-
jectively establish this, we looked for the first iteration from which each synchronization
error was less than 2% for each of the 30 newly found initial conditions. Figure 6 shows the
box plot. Comparing the complete and projective synchronizations, there was a difference
of 10,000 iterations between them, approximately, representing∼50% of all 19,200 iterations.

Figure 6. Iteration at which error synchronization is less than 2% for all 30 of the newly found
initial conditions. While the complete and projective synchronizations with α = 1 are theoretically
analogous, note that the control design differs and, hence, the observed differences.

A paired-samples right-tailed t-test was conducted to compare the results between
the complete and the projective α = 1 synchronizations. There was a significant difference
between the scores for the complete (mean (µ) ± standard deviation (σ): µ± σ = 13, 573±
2032.9) and projective (µ± σ = 1641.2± 256.85) conditions; t(29) = 32.5046, p < 0.001.

We conducted a repeated-measures ANOVA test (Matlab’s R2021b ranova) to analyze
the effect of the scaling factor α on the six tested projective synchronizations α = 0.5, 1, 2, 3, 4,
8. We obtained F(5, 140) = 22.05, p < 0.001. The post hoc comparison was conducted using
a multiple comparison test (Matlab’s R2021b multcompare), where a Dunn and Sidak’s
adjusted alpha revealed significant differences between α = 0.5, and the remaining αs,
p < 0.05, as well as α = 8 and the others αs, p < 0.05. The anterior can be appreciated
in Figure 6.



Entropy 2023, 25, 495 18 of 23

8.4. Alternative T–S Fuzzy Models

In the synchronizations presented so far, we used the T–S fuzzy models provided in
Section 5.3. However, for a given dynamical system, the fuzzy model is not unique [42,43].
A proposal to systematically obtain other T–S fuzzy models is the tensor product (TP)
model transformation [57–59]. In order to establish the effect of the fuzzy model on the
performance of the synchronization, using TP model transformation [58], we obtained
two further variants of the T–S fuzzy models from each test system and compared their
performances. These fuzzy models are the sum normalization non-negativeness (SNNN)
type and the close-to-normality (CNO) type. In this article, we call the T–S fuzzy models
presented in Section 5.3 Base, the SNNN type SNNN, and the CNO type CNO.

All synchronizations with the different T–S fuzzy models were successful with the
errors converging to zero. To objectively compare the simulations, we used the synchro-
nization error and looked for the first iteration that satisfied that each error was less than
2% for all subsequent iterations.

The results of these simulations are reported in Table 2. The results showed that,
with the alternative T–S fuzzy models in complete fuzzy synchronization, the performances
of the simulations improved or were equal. With the Chua system, an improvement of
79.7% was obtained. For the Sprott A system, it was 4.6%. With the NE6 and LE4 systems,
the performances of Base and the alternatives SNNN and CNO matched. In the case of
projective fuzzy synchronization, this was only carried out with the Chua and LE4 systems
due to the constraints of the fuzzy projective control, as explained in Section 8.2. With the
Chua system, an improvement of 23.2% was obtained, while with the LE4 system, 8.5%
more iterations were required with the alternative SNNN, and the results of the alternative
CNO and Base coincided.

Table 2. Performance comparison of fuzzy synchronizations using different Takagi–Sugeno (T–S)
fuzzy models. The name of the chaotic system is in the first column. The T–S fuzzy models are in the
second column: Base refers to the T–S fuzzy models given in Section 5.3. Sum normalization non-
negativeness (SNNN) and close-to-normality (CNO) are the variants obtained with the transformation
of the tensor product (TP) model. The first iterations in which the synchronization errors satisfied the
given comparison criteria using complete and projective fuzzy control are reported in the third and
fourth columns, respectively.

System T–S Fuzzy Model Complete Projective

Base 12,301 1670
Chua SNNN 2496 1281

CNO 2496 1281

Base 2792
Sprott A SNNN 2663

CNO 2663

Base 1885
NE6 SNNN 1885

CNO 1885

Base 3383 1771
LE4 SNNN 3383 1923

CNO 3383 1771

9. Discussion

In this research, multistable chaotic systems [60] with hidden attractors were consid-
ered. When the hidden attractors of the systems are unknown, unexpected behaviors could
be more frequent. The challenge of synchronizing them can be blamed on the fact that,
currently, there is no standard strategy for the identification of all possible attractors, thus
escaping unwanted behaviors. Determining the basins of attraction is a daunting task and
highly time-consuming in most cases. The fuzzy controls used in this work evidenced
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robustness in handling multistable systems with hidden attractors. Specifically, we studied
systems without equilibrium points (Sprott A and NE6), with a line of equilibrium points
(LE4) and with a stable equilibrium point (Chua). All the synchronization efforts were suc-
cessful, even in the case of the Chua system, where the synchronization through feedback
control must take special care in the selection of its coupling parameter to avoid leaving
the hidden attractor [15].

The tested chaotic systems were chosen arbitrarily from the literature. These systems
are interchangeable with any other continuous integer-order chaotic system with nonlinear
terms with a state variable in common. Chaotic maps and continuous systems of fractional
order were excluded in this study. Chaotic systems with delay or with unknown parameters
and/or initial conditions were not considered either. These latter would require a different
design for the fuzzy controls used.

Regarding the initial conditions, 30 new initial conditions for the Chua system were
found and presented in Section 8.3 and Appendix A. The corresponding synchronizations
were performed, evidencing that the fuzzy controls used are also robust to changes in the
initial conditions.

In this work, the Gautschi special method of numerical integration was used. This
method exploits the oscillatory characteristic of chaotic systems. This is a fixed-step method
that can use integration steps up to 10−1 and resources almost comparable to Euler’s
method, providing competitive results to a fixed-step method with error control [54,55].
Few works in the literature pay attention to this fundamental aspect in numerical simu-
lations of chaotic systems, but even variable-step methods with error control can present
problems [39].

In traditional controls, pole assignment is a standard strategy to maximize the conver-
gence rate (of the control). However, in fuzzy projective synchronization, this strategy is
unfeasible because the equations of the fuzzy control (14) and the dynamics of the error (15)
do not allow moving the poles in a simple manner. Instead, the values of the gamma pa-
rameter that satisfy the convergence conditions are sought. Therefore, a new strategy was
proposed to optimize the convergence of the error in the fuzzy projective synchronizations
through the analysis of the control parameters statistics.

Every dynamical system has infinitely many fuzzy models that can approximate it.
Considering this, we also showed that the synchronization performance was influenced by
the choice of this model.

10. Conclusions and Future Work

We studied the feasibility of synchronizing chaotic dynamic systems with hidden
attractors using fuzzy control. We exemplified the success of such an approach with
a case study on the Chua system, a case where a previous attempt using a different
control strategy was difficult. We did not intend to send the message that fuzzy control is
somehow superior to other forms of controls, but instead, we just intended to highlight that,
under some circumstances, this strategy might present specific advantages. For instance,
to apply the fuzzy controls presented here, it suffices to fuzzify the system (analogously
to Sections 5.1 and 5.2) and then continue with Section 6 to calculate the gain matrices or
the control parameter. Importantly, the control design in this manner does not depend on
the initial conditions. This is in contrast to the effort by [16] on the coupling variant of the
problem for this same system.

We showed the flexibility of the approach by designing controls over two different
synchronization errors; complete and projective. We stated the conditions that provide
theoretical guarantees for the convergence to the solution. These conditions were previously
reported in the literature. Here, we went one step further by empirically showing the
practical consequences.

For projective synchronization, we proposed a new strategy for error convergence
optimization. This strategy capitalizes on the theoretical conditions of the control through
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the parameter γ. Consequently, the proposed strategy can be applied to any chaotic system
that is synchronized with projective fuzzy control.

We focused on four case studies. However, when reviewing the literature, we did
not find theoretical limitations for this approach to be applicable to other cases of chaotic
systems with hidden attractors. Moreover, for our case studies, the results behaved as
predicted by theory. Hence, we believe it may be possible to extend our fuzzy control
strategy to other chaotic systems.
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Appendix A

We found a new set of boundary conditions following the methodology suggested
in [53]. These are listed in Table A1. These were used for the results reported in Section 8.3.
Figure A1 presents the phase spaces of the first and eighth master systems in Table A1.

(a) (b)

Figure A1. Some hidden attractors of master systems with new initial conditions. (a) First initial
condition and (b) eighth initial condition of the master system.
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Table A1. Set of 30 newly found initial conditions.

x1 x2 x3 y1 y2 y3

1 4.5000 1.0000 −5.0000 0.0100 0.0100 0.0100
2 4.4000 0.9000 −4.9000 0.0100 0.0100 0.0100
3 4.3000 0.8000 −4.8000 0.0100 0.0100 0.0100
4 4.2000 0.7000 −4.7000 0.0100 0.0100 0.0100
5 4.1000 0.6000 −4.6000 0.0100 0.0100 0.0100
6 4.0000 0.5000 −4.5000 0.0100 0.0100 0.0100
7 3.9000 0.4000 −4.4000 0.0100 0.0100 0.0100
8 3.8000 0.3000 −4.3000 0.0100 0.0100 0.0100
9 3.7727 1.3511 −4.6657 0.0100 0.0100 0.0100

10 3.5000 0.1500 −6.1000 0.0100 0.0100 0.0100
11 3.4000 0.2500 −6.5000 0.0100 0.0100 0.0100
12 3.2000 0.3500 −6.3000 0.0100 0.0100 0.0100
13 3.1800 0.2000 −6.3000 0.0100 0.0100 0.0100
14 3.1500 0.2500 −6.5000 0.0100 0.0100 0.0100
15 3.1300 0.0500 −6.6600 0.0100 0.0100 0.0100
16 3.1000 0.3500 −6.4000 0.0100 0.0100 0.0100
17 3.0700 0.1500 −6.0000 0.0100 0.0100 0.0100
18 −3.0700 −0.1500 6.0000 0.0100 0.0100 0.0100
19 −3.1300 −0.0500 6.6600 0.0100 0.0100 0.0100
20 −3.1500 −0.2500 6.5000 0.0100 0.0100 0.0100
21 −3.1800 −0.2000 6.3000 0.0100 0.0100 0.0100
22 −3.2000 −0.3500 6.3000 0.0100 0.0100 0.0100
23 −3.3000 −0.0700 7.0000 0.0100 0.0100 0.0100
24 −3.4000 −0.2500 6.5000 0.0100 0.0100 0.0100
25 −3.5000 −0.1500 6.1000 0.0100 0.0100 0.0100
26 −3.6000 −0.9000 5.2000 0.0100 0.0100 0.0100
27 −3.7727 −1.3511 4.6657 4.0000 0.5000 −4.5000
28 −3.9000 −0.4000 4.4000 3.1000 0.3500 −6.4000
29 −4.0000 −0.5000 4.5000 3.3000 0.0700 −7.0000
30 −4.5000 −1.0000 5.0000 4.2000 0.7000 −4.7000
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