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Abstract: Electrical impedance tomography (EIT) is a non-invasive imaging modality used for es-
timating the conductivity of an object Ω from boundary electrode measurements. In recent years,
researchers achieved substantial progress in analytical and numerical methods for the EIT inverse
problem. Despite the success, numerical instability is still a major hurdle due to many factors, includ-
ing the discretization error of the problem. Furthermore, most algorithms with good performance are
relatively time consuming and do not allow real-time applications. In our approach, the goal is to
separate the unknown conductivity into two regions, namely the region of homogeneous background
conductivity and the region of non-homogeneous conductivity. Therefore, we pose and solve the
problem of shape reconstruction using machine learning. We propose a novel and simple jet intrigu-
ing neural network architecture capable of solving the EIT inverse problem. It addresses previous
difficulties, including instability, and is easily adaptable to other ill-posed coefficient inverse prob-
lems. That is, the proposed model estimates the probability for a point of whether the conductivity
belongs to the background region or to the non-homogeneous region on the continuous space Rd ∩Ω
with d ∈ {2, 3}. The proposed model does not make assumptions about the forward model and
allows for solving the inverse problem in real time. The proposed machine learning approach for
shape reconstruction is also used to improve gradient-based methods for estimating the unknown
conductivity. In this paper, we propose a piece-wise constant reconstruction method that is novel in
the inverse problem setting but inspired by recent approaches from the 3D vision community. We also
extend this method into a novel constrained reconstruction method. We present extensive numerical
experiments to show the performance of the architecture and compare the proposed method with
previous analytic algorithms, mainly the monotonicity-based shape reconstruction algorithm and
iteratively regularized Gauss–Newton method.

Keywords: inverse problems; electrical impedance tomography; implicit solutions; deep learning;
neural networks; continuous domains

1. Introduction

The electrical impedance tomography (EIT) inverse problem is a severely ill-posed
inverse problem that attempts to reconstruct the unknown conductivity of an object Ω
from boundary electrode measurements. EIT is a great alternative to CT scans, particularly
for neonatal brain imaging, where CT can be harmful. EIT has been successfully used in
medical imaging [1,2], monitoring soil [3], or crack detection [4]. The EIT forward problem
is an elliptic differential equation:

−∇ · (σ∇u) = 0 in Ω, (1)
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where u ∈ H1(Ω) is the electric potential, σ ∈ L∞(Ω) is the known conductivity with
0 < σ1 ≤ σ ≤ σ2 < ∞, and there are no current sources inside Ω. We assume the
electric conductivity σ is a bounded, positive, and isotropic conductivity distribution with
σ ≥ σ0 > 0 for some σ0 ∈ R. Before solving (1), we must formulate a forward model that
incorporates boundary conditions about the EIT forward problem. Once we have the EIT
forward model, we can proceed to solve its inverse problem. In theory, the EIT inverse
problem is exponentially ill posed and highly nonlinear. Even if a solution exists for (1),
it will be highly sensitive to any noise or perturbations in the data. Therefore, in practice,
we must impose a priori knowledge through some form of regularization. In the past,
research topics in EIT mainly focused on analytical and numerical methods. Typically,
the conductivity is discretized into triangles (2D) or tetrahedrons (3D). This discretization
allows solving the PDE of the forward problem via the finite element method (FEM).

To address the poorly posed EIT inverse problem, significant research has been dedi-
cated to developing deterministic and statistical reconstruction methods to improve the
recovered tomographic images [5–9]. Deterministic and statistical methods enforce regu-
larization to provide reasonable image reconstructions. However, in many applications,
tomographic images of decent quality do not suffice. Often, high-resolution tomographic
reconstructions are required for accurate diagnostic analyses or the detection of anomalies.

1.1. Contributions

We propose a new formulation of the EIT inverse problem. In particular, instead of
reconstructing the conductivity function at each point, we find a function that predicts
if a point p ∈ Ω belongs to the background conductivity or not. Here, the background
conductivity refers to the known conductivity that the homogeneous portion of Ω should
have. The assumption that such conductivity is known is also common in the analyti-
cal/numerical setting. Some regularization use this conductivity as an a priori assumption
for parametrization [7]. Furthermore, most optimization algorithms require some knowl-
edge of the background conductivity as an initialization of the unknown conductivity [10].

Our goal is to define a function f : Rd → {0, 1} with d ∈ {2, 3} that for any point
p ∈ Rd estimates if p is a background conductivity. We parametrize f with a neural network.
In detail, this neural network requires three network blocks. We call the first neural network
the measure encoder fmeasure. It takes the measurements m of an EIT experiment and
maps them to a measurement embedding me ∈ M ⊆ Rdim(me). Here, dim(me) refers to the
dimension of the embedding space. A second neural network called the point encoder fpoint

takes a point p ∈ Rd and maps it to a point embedding pe. We call the third network the
decoder network fdecoder. It takes the point embedding conditioned on measure embedding
to predict if a point p is from the background conductivity. In summary, we write the
novel network architecture as f : Rd ×M→ {0, 1}. See Figure 1 for a visualization of the
method. Observe that for solving one inverse problem, the measurement embedding me
only has to be computed once. On the other hand, we compute the point encoder fpoint

and the decoder network fdecoder for every point p ∈ Rd on that for which we solve the
inverse problem.

To show the use of the shape estimation method for reconstructing the unknown
conductivity distribution σ, we combine it with gradient-based optimization methods. In
detail, we introduce a constraint and a piecewise optimization problem.
In summary, we make the following contributions:

• We present a novel method to solve the EIT shape estimation problem in a continuous
domain using machine learning.

• We introduce a constraint and a piece-wise gradient-based optimization problem by
using the shape reconstruction from the proposed machine learning algorithm.

• We show that the proposed method using machine learning outperforms the bench-
mark approaches which do not involve machine learning.
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Figure 1. The image represents a schematic description of the proposed network architecture. Here,
d ∈ {2, 3} is the dimensionality of the EIT inverse problem. The implicit architecture is based on
two main fully connected networks, a measurement encoder tanking measurements as input and a
point encoder that has a point in Rd as input. The outputs are added. Then a fully connected decoder
network predicts the probability of a point (the input of the point encoder) being of the background
or anomaly type.

1.2. Related Work

An EIT experiment involves applying an electrical current (Neumann data) on ∂Ω,
the boundary of the body Ω, to measure the corresponding electrical potential differences
on ∂Ω. Hereby, the information on the Neumann-to-Dirichlet (NtD) operator Λσ is ob-
tained. The estimate of the unknown conductivity σ is then reconstructed from a set of EIT
experiments [11–14].

The are many applications of EIT, including medical imaging [1,2], monitoring soil [3],
or crack detection [4]. There is also work on hardware design in related problems [15]. It is
well known that EIT is highly nonlinear and strongly ill posed. Therefore, EIT requires regu-
larization for proper reconstruction [5,6]. In the literature, there are abundant deterministic
approaches for solving the EIT inverse problem, including the factorization method [16],
d-bar method [17], or variational methods for least-square fitting [5,6,10,18]. There also ex-
ists previous work on statistical methods for solving the EIT problem [7,10,19,20]. There are
deterministic approaches to reconstructing the shape of the abnormalities, for example,
the monotonicity shape estimate [21] or the level set method [22,23]. Due to the sim-
plicity and computational speed, we choose to compare our method in this paper with
the monotonicity shape estimate [21] and iteratively regularized Gauss–Newton (IRGN)
method [10].

With the rise of deep learning, it has become state of the art in many tasks, such as
image recognition [24], strategy board games [25], or protein folding problems [26]. While
these results have been impressive, deep learning did not become state of the art in EIT
or other ill-posed inverse problems. However, solving the EIT inverse problem with deep
learning is receiving increasing attention, for example, with radial bases functions [27],
fully connected neural networks [28], and in particular by using convolutional neural
networks [29–31]. While convolutional neural networks are attractive in the 2D inverse
problem, they start having a limitation in resolution when solving the 3D problem. This
limitation is because the number of voxels grows cubically as does the computational cost of
the voxel representation. In 3D computer vision, many applications work in a voxelization
of usually around 323 or 643 [32]. It is questionable whether this is sufficient for applications
of EIT. Since 2019, in the computer vision community, implicit representations of 3D objects
via neural networks replaced voxel-based and mesh-based methods as the state of the art for
several applications. Some of these results include single image 3D reconstructions [33,34],
representing texture on 3D objects [32], representing surface light fields in 3D [35], or 3D
reconstructions from many images [36].
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1.3. Rationale for Proposed Shape Reconstruction Using Machine Learning

It is well known that the EIT shape reconstruction inverse problem for piecewise-
constant conductivity suffers from logarithmic instability as shown in [37]. The stability
of the shape reconstruction for the EIT inverse problem also depends on the type of
assumptions on the parameter space and the analytical technique used, for example, if
we consider conductivity that belongs to a finite-dimensional set of piecewise-analytic
functions that are bounded from above and below by a priori known constants and use
theoretical technique using monotonocity. Then the stability is of the type Lipschitz [21].
There is no constructive estimate on C, and the assumption is that infinite information on
the Dirichlet-to-Neumann map Λ is known. Here, C refers to the right hand side constant
used in the following Lipschitz stability inequality ||σ1 − σ2||L∞(Ω) ≤ C||Λσ1 − Λσ2 ||∗,
where ∗ represents the operator norm of Λ : L2

�(∂Ω)→ L2
�(∂Ω) and L2

�(∂Ω) is the L2(∂Ω)
space with vanishing integral mean on the boundary [38].

Using a completely different approach using the Bayesian formulation, one can obtain
the (locally) Lipschitz stability of the probability distribution of unknown domains for the
general shape identification inverse problem for a heat cavity problem that in principle
should also be applicable to EIT [39]. Therefore, the proposed machine learning approach
combining both statistical and deterministic shape reconstruction techniques should pro-
vide better stability. The focus of this manuscript is to demonstrate the efficacy of the
proposed approach computationally.

2. Materials and Methods

In this section, we first describe the preliminary neural network blocks. Hereby, we
aim to unify the basic knowledge of the terms needed to describe our network architecture.
Then we describe the proposed network architecture in detail. This is followed by an
explanation of how the training data are generated, what noise setting is used, and how
the neural network is trained.

2.1. Leaky Rectified Linear Units

Leaky rectified linear units (Leaky ReLu) [40] is a nonlinear function used as an
activation function in our architecture. We write Leaky ReLu as

LeakyReLu(x) :=

{
0.01x if x < 0
x else.

2.2. Residual Neural Network Blocks

A residual neural network (ResNet) is a neural network with shortcuts between
layers [41]. We use fully connected ResNet blocks with Leaky ReLu activations. It is among
the most common building block in state-of-the-art networks. Here, we use the following
variant: if the input and output sizes differ, we use a single fully connected network as a
shortcut instead of copying the input data. Find a visualization of ResNet in Figure 2.
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Figure 2. A schematic picture of the residual neural network (ResNet) versions that we use as the
main building block in our implicit architecture. On the left-hand side is the standard ResNet block
with Leaky ReLu activation. On the right-hand is a modified ResNet block that can handle different
input–output sizes.

2.3. Softmax

One uses the softmax function to convert an array x = (x1, ..., xn) into a probability
distribution. We write softmax as

softmax(x) :=
(

exp(x1)

∑i exp(xi)
, ...,

exp(xn)

∑i exp(xi)

)
.

2.4. Implicit Network Architecture for EIT

The proposed network architecture requires three network blocks that operate on each
other. Find the visualization of the network architecture in Figure 1.

When we perform an EIT experiment, we obtain the boundary electrode measurements
m. We represent these measurements in the form of an array. Then, we use a network
architecture called the measure encoder network fmeasure to map m to its corresponding
embedding me ∈ M ⊆ Rdim(me). Here, the embedding me is an array that stores the relevant
information of the measurements. We write the fmeasure as a series of ResNet blocks. See
Table 1 for the exact setup.

For us, to solve the EIT inverse problem implicitly means to estimate if a point
p ∈ Rd ∩Ω with d ∈ {2, 3} belongs to the background conductivity. To find this estimate,
we first define a point encoder fpoint. The point encoder takes a point p ∈ Rd ∩Ω and maps
it to a point embedding pe. The point embedding is an array of the same dimensionality
as the measure embedding me. We describe the architecture of the point encoder fpoint in
Table 2.

We call the last part of the implicit architecture the decoder network fdecoder. The input
array of fdecoder is computed by adding the point and measure embedding pe + me. Hence,
we condition the point embedding pe on the measure embedding me. With the conditioning
term, we want to emphasize that the measure embedding only needs to be computed once,
while we compute the point embedding for every point at which we solve the inverse
problem. The decoder network consists of a series of ResNet blocks mapping to a two-
dimensional array. We apply the softmax function to the output to obtain a probability.
Then the network predicts that the point is in the background if the first probability is
larger than the second in the array. Otherwise, it predicts that the point is anomalous.
The network architecture is summarized in Table 3.
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Table 1. Measure encoder architecture.

Network Block Input Dimension Output Dimension

ResNet 208 128 * scale
ResNet 128 * scale 128 * scale
ResNet 128 * scale 128 * scale
ResNet 128 * scale 64 * scale
ResNet 64 * scale 64 * scale
ResNet 64 * scale 64 * scale

Table 2. Point encoder architecture.

Network Block Input Dimension Output Dimension

ResNet 2 or 3 32 * scale
ResNet 32 * scale 64 * scale

Table 3. Decoder architecture.

Network Block Input Dimension Output Dimension

ResNet 64 * scale 32 * scale
ResNet 32 * scale 2
Softmax 2 2

2.5. Generating Training Data

In this section, we briefly describe the well-studied EIT forward problem. We empha-
size that, here, our goal is not to provide a complete description of the forward problem.
Refer to [11–13] for a theoretical discussion and [42] for a description of the the finite
element method. Based on the EIT forward problem, we describe how to generate data
suitable for training the network architecture in Figure 1.

2.6. The EIT Forward Problem

The EIT forward problem finds the boundary electrode measurements for a known
conductivity distribution σ on Ω. We write the partial differential equation as

∇ · (σ∇u) = 0 on Ω

σ
∂u
∂n

= g1 on ∂Ω (Neumann Input Current)

u = g2 on ∂Ω (Dirichlet Measured Voltage)∫
∂Ω

u = 0.

where g1 is the injected current and g2 is the measured voltage.
Our experiments use a simple electrode model, where current flows into Ω through

a set of boundary electrodes. Specifically, we use a point electrode model, where we use
one electrode as a source and its right-hand neighbor as a sink and repeat this for each
possible setup. For one source-sink setting, we compute the voltage difference between
each electrode and its right-hand neighbor if none of the electrodes is a source nor a sink
electrode. Our experiments used 16 electrodes on ∂Ω. Hence, we have 13 measurements
per source–sink setting, which results in 208 voltage differences for all source–sink settings
that we call the measurements m.

As described in [42], the finite element method solves the EIT forward problem for a
known into a mesh discretized conductivity distribution σ. However, to train the proposed
network architecture, one needs the measurements m, a point p ∈ Rd ∩Ω, and whether or
not the p belongs to the background conductivity.
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2.7. Sampling Point Clouds

To train our neural network, we need to generate a data set of points and their labels.
One can sample a point cloud from Rd ∩Ω in many different ways, for example, by taking
uniform distributed points. We found that uniform distributed points do not produce
the best performance for training the network. For abnormalities with a small area, few
elements of the point cloud will be within that anomaly. Hence, the resulting network is
not strong in detecting these abnormalities.

The object Ω is separated into the background and abnormal strata. We sample
uniformly the same number of points from each group. In the experimental part, we used
512 points per group of a given conductivity σ. This sampling procedure lets the neural
network better perform for detecting small abnormal areas correctly.

2.8. Data Sets

We generate a training dataset consisting of 16,384 discretized conductivities and their
corresponding measurements {mi}16,384

i=1 . The training data set contains 4096 conductivities
with one, two, three, and four circular abnormalities, respectively. We randomly chose
the radius and the conductivities of each circular object. The background conductivities
are constant 1 in the entire dataset. Similarly, we build an analog validation data set of
1024 conductivities and their measurements m. Finally, we handcraft a small test data set to
compare our methods with baseline approaches.

2.9. Noise

In this document, Gaussian measurement noise of a specific noise level of δ% refers to

mnoisy = m +NSize(m)(0, max(m)) ∗ δ

100
.

Note that m refers to the measurement array of length 208.

2.10. Training

In this section, we describe the training procedure of the proposed neural network
architecture. We use the cross-entropy loss [43],

loss(y, q) = −(y log(q) + (1− y) log(1− q)),

where y is the binary indicator of a point being anomalous and q the computed probability
of being anomalous. All neural networks are trained for 1000 epochs. One epoch refers to
moving once over the entire training data set. We use batch size 64. During training for
each batch element, we sample a point cloud of 1024 points. Hence, one batch requires
64 forward operations of the measure encoder fmeasure, while it requires 65,536 forward
operations of the point encoder fpoint and the decoder fdecoder.

All measurements m are 0–1 normalized with the maximum–minimum from the
training data. We also 0–1 normalize the points p. During training, different results, some
with and some without noise, are presented. Training with noise implies that we add new
Gaussian noise to each measurement m in each epoch.

For training, the ADAM optimizer [44] is used with a starting learning rate of 5e−4.
We reset the optimizer every ten epochs and multiply the learning rate by 2/3. All pa-
rameters provided in this section aim to make the method reproducible. Most parameters
were chosen ad hoc, but some key parameters, such as the learning rate, were iteratively
improved to increase the training speed/stabiliy. We trained all networks on a single
Nvidia GeForce RTX 2060.
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3. Results

In this section, we present our experimental results. We first show some numerical
results on the training noise and an ablation study on the architecture choice. Then the
network architecture is compared with baseline methods.

3.1. Noise Study

In a first experiment, we evaluate what level of training noise lets the network architec-
ture perform best on the validation data set. Hence, we train multiple different models by
adding different levels of noise to the training data. The noise is generated independently
in every training epoch. For simplicity, we consider the network architecture with a scale
of 2. Please see Tables 1–3 for the meaning of the scale value.

In Table 4, we compute the accuracy and standard deviation by evaluating the network
on the center of the triangles of the original mesh. Hereby, we do not commit an inverse
crime because the network is capable of solving the inverse problem in the entire domain
R2 ∩Ω. The accuracy for one measurement m is the ratio of points correctly labeled as

either background or inclusion, i.e., accuracy =
∑i∈points I(Predictioni==Truthi)

Number of points , where I is the
indication function. We observe that the network has the best accuracy with a training
noise of around 0.1%. For validation noise levels over 3%, larger training noise increases the
performance by reducing the standard deviation. See Figure 3 for several reconstructions
of the validation data set.

Table 4. Noise study.

Accuracy: Mean ± Standard Deviation

Noise Training 0.0% Training 0.1% Training 1.0% Training 2.0%

Validation 0.0% 0.9737± 0.0143 0.9778 ± 0.0123 0.9623± 0.0170 0.9591± 0.0182
Validation 1.0% 0.9711± 0.0160 0.9754 ± 0.0139 0.9617± 0.0175 0.9584± 0.0187
Validation 2.0% 0.9643± 0.0189 0.9686 ± 0.0168 0.9590± 0.0184 0.9566± 0.0194
Validation 3.0% 0.9571± 0.0219 0.9612 ± 0.0199 0.9540± 0.0199 0.9529± 0.0206
Validation 4.0% 0.9503± 0.0241 0.9545± 0.0223 0.9485± 0.0217 0.9476± 0.0221
Validation 5.0% 0.9444± 0.0261 0.9487± 0.0247 0.9430± 0.0234 0.9423± 0.0236

For the rest of this document, we train all networks with 0.1% training noise. Note
that we considered 5% as the largest noise level for the validation and test data because the
reconstructions tend to become unstable, both the location and shape of the inclusions, for
larger noise levels.

3.2. Ablation Study

Here, we provide a comparison of several architecture choices. For simplicity, we only
present experiments on different scale values (see Table 1–3) for the measurement noise
level of 0.1%. Hence, we trained a network independently on each scale value of 1, 2, and 4.

Table 5. Ablation study.

Accuracy: Mean ± Standard Deviation

Noise Scale 1 Scale 2 Scale 4

Validation 0.0% 0.9638± 0.0203 0.9778 ± 0.0123 0.9546± 0.0274
Validation 1.0% 0.9614± 0.0219 0.9754 ± 0.0139 0.9530± 0.0292
Validation 2.0% 0.9548± 0.0244 0.9686 ± 0.0168 0.9478± 0.0316
Validation 3.0% 0.9477± 0.0279 0.9612 ± 0.0199 0.9423± 0.0344
Validation 4.0% 0.9420± 0.0307 0.9545 ± 0.0223 0.9378± 0.0371
Validation 5.0% 0.9372± 0.0332 0.9487 ± 0.0247 0.9343± 0.0394
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In Table 5, we observe that the architecture with scale 2 outperforms the other scale
values for all validation noise levels. Hence, for all further experiments, we use the scale
value 2. See Figure 3 for several reconstructions of the validation data set with scale 2.
Observe that the reconstructions are relatively robust. As expected, they become less
accurate in positioning and shape of the anomalies for larger noise levels.

Figure 3. Shape reconstruction using the proposed algorithm with scale 2 and training noise 0.1%.
The ground truth images are randomly chosen from the validation data set with 1, 2, 3, and 4 inclusion.
The reconstructions are performed at different noise levels. They are evaluated at points at the center
of the triangles of the ground truth mesh. Hereby, we do not commit an inverse crime because our
method solves the problem on the continuous domain.

3.3. Comparison with Baseline Approaches

In this section, we compare our method with several benchmark algorithms on simu-
lated test conductivities. Note that the validation data set contains conductivities generated
from the same distribution as the training data set. This does not hold for the handcrafted
test conductivities. Hence, in this section, we also test the generalization capabilities of
the network.
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3.3.1. Comparison with Monotonicity-Based Shape Reconstruction

In this paper, we compare our method with the algorithm proposed in [21]. It uses a
monotonicity test that comes from the simple relation that for two conductivities σ1 and
σ2 we have that if σ1 ≤ σ2 implies Λσ1 ≥ Λσ2 where Λ is the Neumann-to-Dirichlet (NtD)
operator. The second term is to be understood as Λσ1 −Λσ2 being positive semi-definite.
The idea is to test if the equation holds for many different small balls. Thus, we tested
which balls are inside the anomalous region of the unknown conductivity distribution of
interest. See [21] for a detailed description of the theory and algorithm. To speed up the
method, we precomputed the NtD operator of all small balls on that we perform the test.

In Figure 4, it can be seen that our proposed method outperforms the monotonicity
approach in all examples. The monotonicity-based shape reconstruction approach was only
evaluated on 0% measurement noise. This is because even for small noise there is typically
no positive semi-definite matrix in the tests, thus predicting that there is no anomalous
area anywhere.From the numerical results, the proposed method also outperforms the
monotonicity test in almost all examples (see Table 6). The computational speed is about
25 times faster using the deep learning approach. In detail, our approach took about 0.007 s
while solving the monotonicity test, which about 0.178 s.

Table 6. Comparison with monotonicity.

Accuracy

Image Monotonicity: 0% Noise Ours: 0% Noise Ours: 3% Noise

Figure 4, Row 1 0.9843 0.9929 0.9954
Figure 4, Row 2 0.9705 0.9871 0.9754
Figure 4, Row 3 0.9501 0.9695 0.9675
Figure 4, Row 4 0.8975 0.8910 0.8966
Figure 4, Row 5 0.7535 0.9538 0.9511

Figure 4. Cont.
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Figure 4. Shape reconstruction comparing our method with the monotonicity-based shape recon-
struction algorithm. Due to the noise sensitivity of the monotonicity method, we only evaluated it at
a noise level of 0.0% and with the same simulation and reconstruction mesh.

3.3.2. Comparison with Iteratively Regularized Gauss-Newton Method

In this section, we compare with the iteratively regularized Gauss–Newton (IRGN)
method as described in [10] with IRGN methods that make use of our shape reconstructions.
In detail, we reconstruct the true conductivity on a reconstruction mesh. First, we use
the standard Tikhonov-regularized IRGN method, see [10] for a good description of the
method. Then, we use a constrained IRGN method. Here, constrained means that we first
reconstruct the problem with our shape reconstruction approach. Then, the IRGN method
is used to reconstruct the mesh only on the abnormal areas of the predicted shape. Lastly,
we use the piecewise IRGN method. By piecewise, we mean that we use the proposed
shape reconstruction algorithm and optimize all abnormal areas as separate conductivity
parameters, thus obtaining a piecewise constant reconstruction.

Some reconstructions can be seen in Figure 5 and the corresponding numerical results
in Table 7. We see that both visually and numerically, it is advantageous to incorporate
the shape reconstruction into the IRGN method. The constraint method outperforms
the other methods numerically. Visually, the piecewise IRNG method seems to be the
most informative.

Figure 5. Cont.
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Figure 5. Comparison of the IRGN method with several IRGN methods that are using our
shape reconstruction.

Table 7. Comparison with iteratively regularized Gauss–Newton method.

L2 Norm

Image IRGN: 1%
Noise Constraint IRGN: 1% Noise Piecewise IRGN: 1% Noise

Figure 5, Row 1 1.1635 0.7413 0.7690
Figure 5, Row 2 1.8013 1.3332 1.8467
Figure 5, Row 3 2.5513 2.0178 2.0959
Figure 5, Row 4 3.0121 2.8924 3.1042
Figure 5, Row 5 3.8958 2.8328 2.9130

3.4. Super-Resolution Shape Reconstruction

In the previous experiments, we only evaluated our method on the reconstruction
mesh for providing a fair comparison. Here we use, similarly to the IRGN experiments in
Figure 5, a much finer mesh than the one on that which our method is trained. We then
evaluate our method on the same mesh. We note that this is not an inverse crime because
our method directly solves the problem in the continuous domain.

In Figure 6, we see that even though the method was trained on data from a less fine
mesh. It performs very well on data on the finer mesh. While for large noise levels the
shape becomes less accurate, it still finds the correct position of the anomaly. This indicates
that one could train the network with easily accessible simulated data and still obtain good
performance on real experimental data.

Figure 6. Super-resolution experiments are evaluations of the model trained on a less fine mesh. Here,
the data are generated in a fine mesh and reconstructed on the same mesh. This is not an inverse
crime because our method directly solves the problem in the continuous domain.

3.5. Difficulties of the Proposed Method

The main difficulty of the proposed method is that it assumes that the background
conductivity is known. However, we note that many other methods also assume this to
some extent. Further, problems with this and any other method based on neural networks
are that they require an extensive training set to perform well. This is, in particular,
problematic when one wants to use real training data because it is costly and time intensive
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to create a large number of phantoms and measurements for such an approach. Hence, our
training is entirely on simulated training data.

4. Discussion and Conclusions

We presented a novel neural network-based approach for reconstructing the shape
of anomalies for the EIT inverse problem. The method is capable of solving the problem
implicitly in the continuous domain. We discussed the theoretical results on the level of ill
posedness of the shape reconstruction algorithm to provide some context for the proposed
method. The proposed design flow can be used for any coefficient inverse problem, such
as EIT. It can be easily applied to any inverse problem that aims to reconstruct unknown
images or physical properties from some measurements. The only requirement for using
this method is the existence of a properly defined forward model.

Numerical experiments showed that low measurement noise during training the neu-
ral network improved the performance on noisy test data. Further numerical experiments
with different network parameters were performed to find a good network architecture.
Our shape reconstruction algorithm outperformed the monotonicity-based shape recon-
struction numerically, visually, and in terms of computational speed. We also proposed
using the reconstructed shapes to improve gradient-based methods. In particular, we
presented a piecewise and a constrained iteratively regularized Gauss–Newton (IRGN)
method. We found that the constrained method outperforms the piecewise and the stan-
dard IRGN algorithm numerically. However, the piecewise method was visually the most
informative and provided a piecewise constant reconstruction of the conductivity. Further-
more, we presented high-resolution reconstruction with different noise levels and found
that the reconstructions using the proposed algorithm are very robust.

In summary, we demonstrate the efficacy of our approach. The proposed approach
is simple, easy to transfer to other inverse problems, efficient in terms of computational
speed, and able to solve the EIT problem directly in the continuous domain.
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