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Abstract: AMOVA is a widely used approach that focuses on variance within and among strata
to study the hierarchical genetic structure of populations. The recently developed Shannon Infor-
mational Diversity Translation Analysis (SIDTA) instead tackles exploration of hierarchical genetic
structure using entropic allelic diversity. A mix of artificial and natural population data sets (includ-
ing allopolyploids) is used to compare the performance of SIDTA (a ‘q = 1’ diversity measure) vs.
AMOVA (a ‘q = 2’ measure) under different conditions. An additive allelic differentiation index
based on entropic allelic diversity measuring the mean difference among populations (ΩAP) was
developed to facilitate the comparison of SIDTA with AMOVA. These analyses show that the genetic
population structure seen by AMOVA is notably different in many ways from that provided by
SIDTA, and the extent of this difference is greatly affected by the stability of the markers employed.
Negative among group values are lacking with SIDTA but occur with AMOVA, especially with
allopolyploids. To provide more focus on measuring allelic differentiation among populations, addi-
tional measures were also tested including Bray–Curtis Genetic Differentiation (BCGD) and several
expected heterozygosity-based indices (e.g., GST, G′′4ST, Jost’s D, and DEST). Corrections, such as
almost unbiased estimators, that were designed to work with heterozygosity-based fixation indices
(e.g., FST, GST) are problematic when applied to differentiation indices (eg., DEST, G′′4ST, G′STH).

Keywords: AMOVA; allele metric diversity; diversity; almost unbiased estimators; FST; GST;
Jost’s D; DEST; expected heterozygosity; population structure; q = 1; q = 2; Shannon Index; Shannon
informational diversity translation analysis; variance

1. Introduction

The genetic structure of populations has been studied by many approaches, and these
have been considered to fall into two classes: fixation measures (e.g., FST, GST) and allelic
differentiation measures (e.g., Jost’s D, DEST, entropy differentiation) [1]. The two classes
have been shown to focus on different aspects of population structure, with the former
primarily reflecting the relative degree of fixation present, and the latter focusing on the
relative extent of differentiation [1]. In contrast to fixation measures, the development and
application of allelic differentiation measures in populations has been recent, occurring
primarily within the past 15 years [2–10]. Not surprisingly, there have been several studies
comparing the strengths and weaknesses of these two classes [11–16]. However, prior to
the advent of allelic differentiation measures, fixation measures were, and still are, often
misconstrued as being differentiation measures [1], and I am among the many who have
had this misinterpretation at some point in my career.

Analysis of Molecular Variance (AMOVA) [17] is a widely used method which employs
variance to study the hierarchical genetic structure of populations. It yields F statistics
including FST, which is a widely used, and oldest, measure of population structure [1]. As
FST may also be based on heterozygosity, I use FSTv to refer to variance-based FST and FSTh
to refer to heterozygosity-based FST. Both AMOVA and heterozygosity-based indices are
q = 2 measures. Recently an entropic differentiation measure using allelic diversity based
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on Shannon informational diversity translation analysis (SIDTA, which is a q = 1 measure)
to explore the hierarchical genetic structure of populations has been articulated [2–10].

As AMOVA (variance based) and SIDTA (based on entropic q = 1 allelic diversity)
are used to study the genetic hierarchical structure of populations, it would be useful to
compare their respective outcomes, particularly given the confusion about just what FSTv
measures. SIDTA expresses allelic diversity (D) within a stratum as the mean effective
number of alleles (EFNA) within a stratum (e.g., effective number of alleles within a
population) at a given marker and allelic diversity between strata as the effective number
of subgroups within a group (e.g., effective number of populations within a region) at a
given marker [3,4,8]. The product of these values yields the grand total of EFNA (Equation
(1)), and SIDTA-based allelic diversity is thus multiplicative (Equation (1)). The hierarchical
population structure based upon SIDTA, adapted from [8], is shown in Table 1. D′ is
a differentiation measure which converts D values into [0, 1] scaled proportions of the
theoretical maximum diversity possible with a given data set [8]. When sample size is
balanced across all populations, D′AP is calculated by Equation (2) (where k = number
of populations).

DT = (DWI·DAI·DAP·DAR) (1)

D′AP = (1 − (1/DAP))/(1 − (1/k)) (2)

Table 1. Hierarchical population structure based on SIDTA (adapted from [8]). (EFNA: effective
number of alleles). The theoretical minimum DT (DT-MIN) occurs when just one allele is present across
all populations, and the theoretical maximum DT (DT-MAX) occurs with no allelic overlap within and
among all samples across all populations.

Allelic Diversity within Strata
(as Effective Number of Alleles)

Differentiation between Strata [Multiplicative]
(as Effective Number of Groups)

DT = (grand total EFNA) DAR = (EFN regions within study)
DAR = (DT/DWR) (3)

DWR = (mean EFNA within regions) DAP = (EFN populations within regions)
DAP = (DWR/DWP) (4)

DWP = (mean EFNA within populations) DAI = (EFN individuals within populations)
DAI = (DWP/DWI) (5)

DWI = (mean EFNA within individuals)

In contrast, AMOVA yields additive results, using mean estimated variance per hap-
lotype to refer to variance both within a stratum and between strata. This difference
complicates a direct comparison of the two approaches. One way around this problem is
by translating the multiplicative ‘among strata’ diversity components of D (e.g., effective
number of subgroups within a group) into an equivalent, but additive, effective number
of alleles among subgroups within a group (e.g., mean effective number of alleles among
populations within a region). This approach is described and implemented in two recent
studies [18,19]. These additive ‘between strata’ diversity analogues are referred to as allelic-
metric diversity (AMD, denoted as ∆) to distinguish them from the typical multiplicative
between strata diversity components (denoted as D). The equations for the calculation of ∆
are shown in Table 2. The relationship between the multiplicative D among group indices
and the additive ∆ among group is shown in Equation (10). This slight tweaking of SIDTA
allows for a more in-depth exploration of the hierarchical structure of populations as well
as for a more direct comparison with AMOVA, as well as with other measures having
additive results (e.g., heterozygosity-based fixation indices such as FSTh and GST).
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Table 2. Hierarchical population structure based on AMD (∆). (EFNA: effective number of alleles).

Allelic Diversity within Strata
(as Effective Number of Alleles)

Allelic Diversity between Strata [Additive]
(as Effective Number of Alleles)

DT = grand total EFNA ∆AR = mean EFNA among regions
∆AR = (DT − DWR) (6)

DWR = mean EFNA within regions ∆AP = mean EFNA among pops. within regions
∆AP = (DWR − DWP) (7)

DWP = mean EFNA within pops. ∆AI = mean EFNA among inds. within pops.
∆AI = (DWP − DWI) (8)

DWI = mean EFNA within inds.
∆TAP = total EFNA among pops.

∆TAP = ∆AP/((k − 1)/k) (9)

DT = (DWI·DAI·DAP·DAR) = (DWI + ∆AI + ∆AP + ∆AR) (10)

Another approach to calculate the AMD (∆) among groups is shown in Equation (11):

∆AP = ((DAP − 1)·DWP) = (DAP −1)·DAI·DWI (11)

In this study, I compare the entropic q = 1 level SIDTA approach using AMD, with
a variance-based approach (AMOVA) in the exploration of the genetic structure in popu-
lations, with a focus on all of the components of genetic structure, not just the difference
among populations. The comparison is across different levels of marker variability and
across ploidy levels. Given its emphasis in many studies, several other indices estimating
difference among populations are included for comparison with both ∆AP and FSTv (based
on variance). Seven of these other indices are based on expected heterozygosity, which
uses a q = 2 approach. They include: FSTh, GST, G′STN (Nei’s standardized GST), G′STH
(Hedrick’s standardized GST), G′′4ST (Hedrick’s standardized GST, further corrected for
bias when population number is small), Jost’s D, and DEST. Additionally, included is Allele
Frequency Difference (AFD) [20,21], an approach based on either allele frequency or relative
allele frequency data and hereafter referred to as Bray–Curtis Genetic Difference (BCGD).

Finally, a further goal is to present the information in a way that allows readers who
are not statisticians to more easily grasp and understand the outcomes.

2. Materials and Methods
2.1. Formats Used to Present Difference among Populations

Three formats are commonly used to present the difference between strata by studies
of the genetic hierarchical structure of populations. They are the mean difference among
groups (MDAG, [0, 1] scaled): mean difference among populations = MDAP; mean dif-
ference among regions = MDAR; the total difference among groups (TDAG, [0, 1] scaled);
and the effective number of groups (ENG [1, G] scaled, with G = the number of groups).
For differences among populations these formats would be: (1) the mean difference per
population expressed as a proportion of the total difference in a given data set (MDAP for-
mat: e.g., FSTv, FSTh, GST); (2) the overall total (not mean per population) difference among
all populations expressed as a proportion of the theoretical maximum difference possible
(i.e., [0, 1] scaled indices) for a given data set (TDAP format: e.g., D′AP, F′STv, G′STH, Jost’s
D. DEST, BCGD); (3) the overall total difference among all populations expressed as the
effective number of populations (‘ENP’ format: e.g., DAP). The TDAP indices are based on
the total difference among populations (and not the mean difference among populations)
and are thus optimal for differentiation studies. In contrast, the MDAP format provides
information directly relating to the hierarchical structure of populations. Two weaknesses
of the MDAP format are (1) that it only shows a portion of the total difference among popu-
lations, and (2) the commonly used heterozygosity- and variance-based MDAP indices (i.e.,
FSTv, FSTh, GST) are fixation measures, not differentiation measures.
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2.2. Nomenclature for ‘MD’ Formatted Indices with SIDTA

As noted above, AMOVA has both ‘MDAP’ formatted (e.g., FSTv) and TDAP-formatted
indices (F′STv) for among populations. By design SIDTA has ENP formatted (i.e., DAP) and
TDAP-formatted (i.e., D′AP) indices, but lacks an MDAP-formatted index. With AMD (∆),
however, the creation of an additive ‘MDAP’ formatted index is possible. Thus, to facilitate
the comparison of SIDTA with the ‘MDAP’ formatted FSTv associated with AMOVA, an
MD-formatted system of measures (referred to as ‘Ω’) based on ∆ values was developed
for SIDTA data (Table 3). In contrast to MDAP-formatted indices based on heterozygosity
and variance (e.g., FSTv, FSTh, and GST), which are fixation measures, ΩAP is a [0–0.5]
scaled differentiation measure representing the mean allelic diversity among populations
expressed as a proportion of the grand total diversity for a given data set (DT) (Equation
(12)). The range of values and expected behavior for Ω and the other indices used in this
study are presented in Supplemental Table S2.

Table 3. Hierarchical population structure based on the mean allelic diversity (∆) among groups
expressed as a proportion (Ω) of the grand total allelic diversity (DT).

Mean [0, 5] Differentiation between Strata

ΩAP: Mean [0–0.5] scaled proportion of DT represented by DAP
ΩAP = ∆AP/DT (12)

ΩAI: Mean [0–0.5] scaled proportion of DT represented by DAI
ΩAI = ∆AI/DT (13)

ΩAIT = Mean [0–0.5] scaled proportion of DT represented by D among all inds.
ΩAIT = ∆AIT/DT (14)

ΩAIP = Mean [0–0.5] scaled proportion of DWP represented by DAI
ΩAIP = ∆AI/DWP (15)

In addition to Equation (2), when all populations have a balanced number of sam-
ples, the TDAP index D′AP can also be calculated based on both ∆ data and Ω data
(Equations (16) and (17)). Thus, these three equations (Equations (2), (16) and (17)) all yield
the same result.

D′AP = ∆TAP/DT (16)

D′AP = ΩAP/((k − 1)/k) (17)

D′AP can, in turn, be apportioned among populations to yield the MDAP-formatted
ΩAP. For a data set without a regional stratum, and when all populations (k) have an equal
number of samples, ΩAP can be directly derived from D′AP by Equation (18):

ΩAP = D′AP·((k − 1)/k) (18)

In addition to the traditional F values, I use FT to refer to the grand total variance.
I also use FWI and FAI to refer to the proportion of FT represented by variance within
individuals and by variance among individuals within populations, respectively. Na stands
for the grand total number of different alleles in a data set (or subset) and is a q = 0 diversity
index. Na-MIN is the theoretical minimum (Na-MIN = 1 = DT-MIN) for a given data set (or
subset) and Na-MAX stands for the theoretical maximum Na possible (Na-MAX = DT-MAX).
For data sets I–III, each subset has (Na-MAX = 40 = DT-MAX). Finally, N′a is the proportion of
Na-MAX present in a given data set (or subset).

2.3. Data Sets
2.3.1. Data Set I (DS-I): No Allelic Overlap between Each Pair of Artificial Populations in a
Subset and with ΩAP = 0.50 for Each Subset

Nine pairs (subsets) of artificial diploid populations were created, each representing
two populations and based on one ‘marker’. Each subset had the following properties:
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ten samples per population; no allelic overlap between populations, and with equal AMD
(∆), equal heterozygosity, and equal variance within each population. By design, ΩAP was
50% for each subset, and the corresponding TDAP-formatted indices were at the theoretical
maximum (i.e., F′STv = 1.0 = D′AP). The N′a for the subsets ranged from 10% to 90% of
Na-MAX (i.e., subsets had 10%, 20%, . . . , 90% of Na-MAX). Two additional subsets were
created, one having Na-MIN and one having Na-MAX. This data set is available online in
Supplemental File S1.

2.3.2. Data Set II (DS-II): Allelic Overlap between Each Pair of Artificial Populations in a
Subset, with ΩAP Varying across Subsets

Ten (10) pairs of artificial populations (subsets) were created based on the same
parameters as the subsets in DS-I with the exceptions of (1) allelic overlap occurring
between the two populations in each subset, and (2) TDAP indices were not at the theoretical
maximum. This data set is available online in Supplemental File S1.

2.3.3. Data Set III (DS-III): Allelic Overlap between the Two Populations in Each Subset
Plus an Imbalance in Heterozygosity, Variance, and the ∆ between Them

Eleven (11) pairs of artificial populations (subsets) were created based on the same
parameters used for the subsets in DS-II except that heterozygosity, variance, and ∆ are
not balanced between the two populations in each subset. The N′a for the subsets ranged
from 0.05–0.95 (i.e., subsets had 5%, 10%, 20%, . . . , 90%, 95% of Na-MAX). All of the
changes in N′a were limited to one population (population A) across the subsets having
N′a = 0.90–0.50, with the second population (population B) being unchanged across these
subsets. The change in N′a for subset N′a = 0.40 resulted from changes in Na made in both
populations. For this subset, there was no variance and heterozygosity in the population
A (i.e., Na = 1.0). For subsets N′a = 0.3–0.05, change in N′a was limited to population B.
This pattern yields an infection point at N′a = 0.5. Change in Na was required in both
populations to achieve N′a = 0.95. This data set is available online in Supplemental File S1.

2.3.4. Data Sets Based on Natural Populations

The first three data sets were designed as stress tests to see how well SIDTA and
AMOVA performed in extreme conditions and included the heterozygosity-based differ-
ence ‘among population’ indices as well as BCGD. To compare the findings of the artificial
data sets with that of natural populations, SIDTA and AMOVA were run on microsatellite
(SSR) data sets from prior studies on Sphagnum (peat moss) gametophytes: haploid data
set [22], gametophytically allodiploid data set [23,24], gametophytically allotriploid data
set [18], and a ‘semi-natural’ diploid data set. The latter was created by pairing haploid
haplotypes (from 22) of one species to make diploid genotypes and then arbitrarily placing
the genotypes into two ‘semi-natural’ populations. In one semi-natural population, dif-
ferent haplotypes were paired. This was also followed in part for the second population,
which also included some pairing of haplotype copies (to allow for the occurrence of in-
tragametophytic fertilization). For each ploidy level, the SSRs were grouped into highly
stable SSRs (STAB subset), moderately variable SSRs (MOD subset), and hypervariable
SSRs (HYPE subset), with each subset being analyzed separately. The SSR data sets are
available online in Supplemental File S2.

2.4. Mathematical Analyses

AMOVA and Shannon informational diversity translation analysis (SIDTA) were
carried out on each natural data set using GenAlEx 6.52b1 [25–27]. The ENP formatted
between strata values (‘D’) were converted to AMD values (both ∆ and Ω) by hand, fol-
lowing the method described in [18] and outlined in the Introduction. Data sets I–III were
also analyzed by BCGD and several heterozygosity-based indices (all but one implemented
and documented by GenAlEx, where they are placed under the G statistics tab). With the
exception of FSTh and Jost’s D, calculations of the other heterozygosity-based indices are
adjusted (estimated) by GenAlEx by applying the corrections for small population size
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(almost unbiased estimations) [28] and inbreeding [29] in the calculations of HS (mean
heterozygosity within populations) and HT (total heterozygosity pooled across popula-
tions). The adjusted indices are: GST, G′STN (Nei’s standardized GST), G′STH (Hedrick’s
standardized GST), G′′4ST (Hedrick’s standardized GST, further corrected for bias when
population number is small), and DEST. In addition to providing almost unbiased estima-
tions for these indices, two other outcomes of this adjustment are that it (1) allows for the
possibility of negative values with indices having this adjustment, and, (2) for analyses
with just one marker, results in FSTh have higher values than those of the corresponding
adjusted GST and also for Jost’s D to have higher values than DEST. As they were not an
option with the GenAlEx implementation of SIDTA, almost unbiased estimators were not
used with the SIDTA-based indices. Jost’s D was calculated manually in Excel using sample
frequency data generated by GenAlEx.

An additional index, the Bray–Curtis index of dissimilarity [30] was also included.
Originally formulated to assess differences between communities based on species im-
portance values, this index has also been used to measure allelic differentiation between
populations, using either an allele frequency format or a proportion format in place of
species importance values (albeit with each format requiring different, but equivalent, equa-
tions) [20,21]. I will refer to this approach as Bray–Curtis genetic differentiation (BCGD).
BCGD may be expressed in both [0, 1] scaled TDAP format (BCGD, Equation (19)) and a
[0, 2] scaled (BCGD2, Equation (20)) format. Calculation of BCGD followed an approach
noted in [31] and used by [20], which is analogous to the approach based on species
importance values presented in [32]. Calculations of BCGD values were performed manu-
ally using Excel and applied to the proportions (relative frequency) of alleles generated
by GenAlEx. The proportion of an allele in one population is referred to as ‘p1’ and its
proportion in the second population as ‘p2’.

[0, 1] scaled BCGD = 1 −∑ min (p1 or p2) = 0.5·∑|(p1 − p2)| (19)

[0, 2] scaled BCGD2 = ∑|(p1− p2)| (20)

Linear regression comparing selected indices against N′a across the subsets of a data set
was calculated using Excel.

3. Results

To start off, as implemented by GenAlEx, it was found that (FSTv = G′STN) and
(F′STv = G′′4ST) across all of the data sets analyzed for this study. This indicates a close rela-
tionship between the variance-based AMOVA and heterozygosity-based indices. Accord-
ingly, for the balance of the paper, FSTv and F′STv will each also represent the corresponding
G statistic. In addition, G′STN is clearly an MDAP-formatted fixation measure.

3.1. Analyses of Data Set 1
3.1.1. Among Population Indices
MDAP-Formatted Indices

Figure 1 shows the outcome of the analyses for among population indices based on
DS-I. One thing that clearly stands out is that ΩAP and FSTv are unequivocally measuring
different aspects of population structure. ΩAP is constant at 50% of the N′a across the range
of allelic diversity present within these subsets while FSTv ranges from 1.0 (near Na-MIN)
to 0.0 (at/near Na-MAX). At the minimal allelic diversity (Na-MIN), when there is just one
allele across both populations, ΩAP = 0 while FSTv is undefined (online Supplemental
Table S1). The pattern for ΩAP (Figure 1) shows that it is a differentiation measure. Based
on DS-I, ΩAP is independent of the level of DT when there is no allelic overlap among
populations. In sharp contrast, FSTv has an inverse relationship with the level of N′a
present in each subset, being highest at minimal levels of N’a and having a sigmodal
decrease as N′a increases. At N′a-MAX, when every individual in a subset has unique alleles
for a given marker, all pairwise comparisons are identical and net variance only occurs
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within individuals (online Supplemental Table S1). In other words, at N′a-MAX AMOVA is
completely blind to the corresponding ∆AI and ∆AP that is present. This pattern indicates
that FSTv is a fixation measure that tracks the relative degree of fixation in each population
pair and that is strongly affected by the level of DT. In strong contrast, ΩAP shows that each
population has half of the total allelic diversity present in each subset. Although measuring
different things, ΩAP ≈ FSTv when N′a = 0.03 to 0.035 (Figure 1), indicating that the extent
of differentiation (ΩAP) and degree of fixation (FSTv) have comparable values around this
level of N′a with DS-I.
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Figure 1. Results of five MDAP and seven TDAP indices based on SIDTA, AMOVA, and heterozy-
gosity measures across a wide range of N′a for the nine pairs of artificial populations (subsets)
of Data Set I (DS-I). Values for the MADP indices (ΩAP, FSTv (=G′STN), FSTh, GST) measure the
mean proportion of total difference between two populations and the values for the TDAP indices
(D′AP, F′STv (=G′′4ST), G′STH, Jost’s D, DEST, BCGD) measure the proportion of the theoretical
maximum difference between two populations. The MDAP-formatted ΩAP measures both.

TDAP-Formatted Indices

By design F′STv and D′AP both = 1.0 across all subsets (Figure 1) and these
two TDAP-formatted indices, consequently, fail to show that the two approaches are
measuring different aspects of population structure with this data set.

Other among Population Indices

Results for the other ‘among population’ indices show that FSTh and GST both follow
a pattern across the nine subsets similar to that shown by FSTv (=G′STN) (Figure 1). This
indicates that, similar to FSTv, the heterozygosity-based MTAP-formatted indices are also
tracking the fixation present among populations. As with D′AP and F′STv (=G′′4ST), the four
other TDAP indices (G′STH, Jost’s D, DEST, and BCGD) all equal ‘1.0’ across the nine subsets
with this data set.

3.1.2. Among Individuals within Populations (ΩAI and FAI)

The percentage of total DT and FT represented among individuals nested within
populations (ΩAI and FAI, respectively) across the maximum range of Na possible with
these subsets is shown in Figure 2A. FAI shows a pattern similar to that of an optimum
response curve, with FAI = 0.0 at/near Na min and also at/near Na-MAX and peaking at
FAI ≈ 0.22 in subsets around N′a ≈ 0.55%. At low values for N′a in a subset, both variance
among individuals (FAI) and that within individuals (FWI) rise (Figure 2B) as N′a increases.
However, as N′a continues to increase, a point is reached where a large percentage of the
combinations of the different alleles present results in the maximum value for the basal
stratum (FWI). This saturation redundancy for FWI is one reason why AMOVA is blind to
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allelic diversity. Further increases in N′a will lead to both increasing levels of saturation
redundancy and also to decreasing levels of variance among all individuals (FIT) until the
only net variance remaining is that within individuals (occurring when DT = N′a-MAX).
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Figure 2. Mean proportion of total allelic diversity and total variance represented based on Data Set I.
(A) among individuals within populations (ΩAI and FAI, respectively), and (B) within individuals
(ΩWI and FWI, respectively) between ten pairs of ‘artificial’ diploid populations across a wide range
of N′a.

The pattern for ΩAI indicates that it measures differentiation among individuals, with
ΩAI increasing as DT increases, reaching a peak at N′a = 1. Thus, every allele is counted
and the problem of saturation redundancy associated with AMOVA is lacking with SIDTA.
ΩAI exceeds the corresponding FAI value across the subsets, with the divergence between
the two measurements increasing notably at very high levels of DT. When ΩAI is maximal
with DS-I (at N′a = 1.0) the corresponding value is FAI = 0.0 (Supplemental Table S1).

3.1.3. Within Individuals (ΩWI and FWI)

With diploid data, the proportion of total variance found within individuals (‘FWI’)
increases as N′a increases, with ‘FWI’ = 1.0 at N′a = 1.0 (=Na-MAX) for these data sets
(Figure 2B). This pattern suggests that FWI is tracking the extent of fixation, but in the
opposite direction that is measured by FSTv. In contrast, the proportion of DT found within
individuals (ΩWI) follows a curvilinear decrease with increasing N′a, with ΩWI = 1.0 at the
theoretical minimum N′a and decreasing τo ΩWI = 0.05 at the maximum (N′a = 1) with
these data sets (Supplemental Table S1).
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3.2. Analyses of Data Set II

The results for DS-II are shown in Figure 3, which focuses only on among popula-
tion indices. By having the level of heterozygosity and variance balanced between each
population pair, the differentiation between each population pair is minimal. Thus FSTh,
FSTv, and GST are minimal (close to ‘0’) across all subsets. A distinct demarcation exists
between the three entropic based diversity indices (ΩAP, D′AP, DAP (not shown) and also
by BCGD, which are all positive while, with the exception of FSTh and Jost’s D, all of the
other heterozygosity and variance-based indices (FSTv, GST, G′STH, F′STv, and DEST) are
all negative (Figure 3). The presence of positive and negative values among the various
heterozygosity-based indices for the same subset is addressed in Section 4.
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Figure 3. Results of five MDAP and seven TDAP indices based on SIDTA, AMOVA, and heterozy-
gosity measures across a wide range of N′a for the ten pairs of artificial populations (subsets) of
Data Set II (DS-II). (A) Values for the MADP indices with (FSTv = G′STN) and (B) values for the
TDAP indices (with F′STv = G′′4ST). The MDAP-formatted ΩAP represents both the mean proportion
of total difference between two populations and the mean maximum difference possible between
two populations. G′STH lies between F’STv and DEST and is barely visible.

3.2.1. MDAP Indices

ΩAP closely tracks changes in N′a, being half of D′AP and positive across all subsets
(Figure 3A). In contrast, FSTv is negative and very close to ‘0.0’ across all subsets, differ-
ing greatly from ΩAP. Divergence between these two indices increases notably as N′a
approaches N′a-MAX. The heterozygosity-based MDAP indices closely follow the same
pattern as that shown by FSTv, with all values tracking very close to 0.0 across all subsets.
However, the unadjusted FSTh is positive across all subsets while the adjusted heterozygos-
ity MDAP indices (GST and G′STN (=FSTv)) are slightly negative across all subsets. These
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patterns clearly show the difference between what the fixation indices (FSTv (=G′STN), FSTh,
GST) measure and what is measured by ΩAP, which is a differentiation measure.

3.2.2. TDAP Indices

By design, the TDAP indices vary across the subsets with DS-II (Figure 3B). D′AP is
twice as large as ΩAP (Figure 3A) and closely tracks changes in allelic diversity as N′a
increases across the subsets. In striking contrast to the results of DS-I, D′AP differs notably
from all of the TDAP-formatted heterozygosity- and variance-based indices (Figure 3B).
Jost’s D stands out from the adjusted heterozygosity-based TDAP indices in being pos-
itive across all subsets of DS-II, showing a sigmoidal increase as N′a increases, with a
prolonged slow rate of increase across subsets having a low N′a (Figure 3B). Notably, this
sigmodal response, which is typical of q = 2-based diversity indices, lies well below the
corresponding D′AP and BCGD values for all of the subsets, except near the two end points.
It even falls below ΩAP up until N′a = 0.78. F′STv is negative and becomes more negative
as N’a increases across the subsets. G′STH, G′′4ST, and DEST diverge from the pattern
shown by Jost’s D as N′a increases across the subsets and instead closely track F′STv, with
(G′′4ST = F′STv). BCGD closely tracks the level of N′a across the nine subsets, yielding values
very close to those of D′AP. Linear regression shows that of the TDAP indices, BCGD has the
tightest fit with N′a (y = x − 0.0025; R2 = 1.0; p < 0.001), with D′AP falling very close behind
(y = 1.0245x + 0.0256; R2 = 0.9938; p < 0.001).

3.3. Analyses of Data Set III
3.3.1. MDAP-Formatted Indices

Figure 4A shows the results for the MDAP-based indices based on Data Set III. What
stands out in this figure is that although ΩAP increases as N′a increases across all subsets
of DS-III, FSTv at first increases as N′a increases and it then decreases abruptly above
N′a = 0.5. The three MDAP heterozygosity-based indices (FSTh, GST, and G′STN) follow a
similar pattern, or an identical pattern in the case of G′STN, to that of FSTv. As seen with
DS-II (Figure 3A), the adjusted GST closely tracks FSTh across all subsets (Figure 4A). In
comparison with the heterozygosity-based values (except for G′STN), FStv more closely
compares to ΩAP between N′a = 0.2–0.5 with this data set than either FSTh and GST do. Both
FSTv and GST become slightly negative above N′a = 0.8, while FSTh remains positive across
all subsets. This pattern conforms with the information in Supplemental Table S2.

3.3.2. TDAP-Formatted Indices

As found with DS-II, D′AP differs notably from all of the TDAP-formatted heterozy-
gosity and variance-based indices with DS-III (Figure 4B). D′AP increases as N′a increases
across all subsets. Although comparable to D′AP across all subsets, the TDAP-formatted
BCGD flatlines (at BCGD = 0.9) across subsets N′a = 0.5–0.9. In contrast, F′STv and the
heterozygosity-based indices all show both increases and decreases across the subsets of DS-
III (Figure 4B), with FSTh always being positive while FSTv and the adjusted heterozygosity-
based indices are both positive and negative.

All of the TDAP indices coincide around N′a = 0.5, occurring due to one population
having very low diversity (e.g., high homozygosity) at that point, while the second popu-
lation has a very high allelic diversity (high heterozygosity). F′STv most closely matches
D′AP up to N′a = 0.5 and then greatly deviates from that index. After closely tracking Jost’s
D up to N′a = 0.5, the adjusted heterozygosity indices (DEST G′STH, and G′′4ST) above that
point all greatly diverge from Jost’s D and instead closely track F′STv (Figure 4B).

3.4. Analyses of Natural Populations

The patterns of genetic structure associated with the three data sets using ‘artificial’
populations are unique to those data sets. Although differing from the patterns associated
with the artificial populations in some respects, analyses of the natural population data sets
all show ΩWI decreasing with increases in N’a.
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Figure 4. Results of five MDAP and seven TDAP indices based on SIDTA, AMOVA, and heterozygos-
ity across a wide range of N′a across 11 pairs of artificial populations based on Data Set III (DS-III):
(A) MDAP indices (with G′STN = FSTv) and (B) TDAP indices (with G′ ′ST = F′STv). The MDAP-
formatted ΩAP represents both the mean proportion of total difference between two populations and
the mean maximum difference possible between two populations.

3.4.1. Monomorphic Markers

To study the influence of monomorphic markers on SIDTA and AMOVA, analysis
of STAB subsets of haploid data was undertaken (Supplemental File S2). One set of
ten STAB SSRs (STAB-10) included two monomorphic SSRs. The second set (STAB-8) had
the same SSRs excluding the monomorphic SSR-16 and SSR-19. Because AMOVA sums
variance across markers, monomorphic markers, for which variance = 0, do not affect
FST. Consequently, FST is identical with both the STAB-8 and STAB-10 sets (FST = 0.53). In
contrast, ΩAP = 0.26 based on the STAB-8 set and ΩAP = 0.21 with the STAB-10 set. This
difference results from two things: (1) monomorphic markers have a diversity value of
1.0, and (2) SIDTA averages the diversity across markers. Consequently, the presence of
monomorphic markers in a data set has the potential to reduce ΩAP. The larger the propor-
tion of monomorphic markers included in a data set the greater the potential reduction.
However, the inclusion of monomorphic markers in a data set allows for that level of
diversity to be counted in studies on genetic structure. With the exception of the STAB-10
set used here and the data set showing theoretical minimum allelic diversity (where there
is just one allele present), all of the data sets used in this study lack monomorphic SSRs to
allow for a more direct comparison of SIDTA and AMOVA.
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3.4.2. Haploid Data Set

Figure 5A shows the genetic structure across the three data sets for the haploid
gametophytes of Sphagnum comosum Müll. Hal. and of S. novo-zelandicum Mitt. (14 samples
each). The relationship between ΩAP and FSTv basically conforms with the pattern seen
in Figure 1, with (ΩAP � FSTv) at lower N′a values, (ΩAP ≈ FSTv) at moderate N′a values,
and (ΩAP � FSTv) at very high N′a values. The extent of fixation between populations
(FSTv) greatly exceeds the differentiation between populations (ΩAP) with the STAB subset,
with the reverse being the case with the HYPE set. D′T for the three data sets is 0.49 for
the STAB subset, 0.79 for the MOD subset, and 0.94 for the HYPE subset. Both ΩAP and
FSTv are significant across all three data sets (α = 0.05) with p values for ΩAP being more
significant with the MOD and HYPE subsets than the corresponding p values for FSTv.
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Figure 5. Population genetic structure (black: within individuals; no fill: among individuals within
populations; orange: between populations) yielded by SIDTA and AMOVA and based on STAB,
MOD, and HYPE SSR subsets for haploid and diploid populations. (A) between regional popula-
tions of haploid gametophytes of Sphagnum comosum and S. novo-zelandicum (14 samples each) and
(B) between regional artificial populations of diploid sporophytes of S. novo-zelandicum (6 samples
each). The [0, 1] scaled diversity (D′T) for the total allele metric diversity detected with each data set
is shown by the blue line. Beta refers to both ΩAP and FSTv.
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As there is typically no variance within haploid individuals, all variance is among
individuals with AMOVA at that ploidy level. In contrast, ΩWI = 1 with haploid data, and
this allows for allelic diversity to occur both within and among individuals. This increases
the difference between FSTv and ΩAP values with haploid data, particularly at lower levels
of N′a. However, as ΩWI = 1 across the STAB, MOD, and HYPE subsets, this difference
is largely offset by the higher levels of N′a associated with the MOD and HYPE subsets
(Figure 5A).

3.4.3. Diploid Data Set

Figure 5B shows the genetic structure of two artificial diploid populations of
Sphagnum novo-zelandicum (six samples each) based on both SIDTA and AMOVA across
the three SSRsub sets. With diploid data, both SIDTA and AMOVA have the potential for
a within individual stratum. The diploid data follow the same general pattern present in
the haploid data, with the exception of the inclusion of the ‘within individual’ stratum
with AMOVA. There is an increase in ΩAP and a corresponding decrease in FSTv as N′a
increases, with ΩWI and FWI following the opposite pattern along that gradient. As with
the haploid data, (ΩAP � FSTv) at lower N′a values, (ΩAP ≈ FSTv) at moderate N′a values,
and (ΩAP > FSTv) at very high N′a values. The diploid SIDTA data differs from the haploid
data in that ΩWI is higher and ΩAP is lower than that for the haploid data across the three
data sets. The increase in ΩAIT as N’a increases mostly occurs in ΩAI, while the decrease
in FIT as N’a increases lies in FSTv. The diploid AMOVA data shows that the majority of
variance within populations occurs within individuals with this data set. Both ΩST and
FSTv are significant (α = 0.05) for the STAB and MOD subsets but differ with the HYPE
subset, with the p value being not significant for ΩAP (p = 0.206) and significant with the
corresponding p value for FST (p = 0.014).

3.4.4. Allopolyploid Data Sets

Figure 6 shows the population structure based on SIDTA and AMOVA across three
SSR subsets for gametophytic populations of allopolyploid Sphagnum species. Figure 6A
is based on regional populations of two gametophytically allodiploid Sphagnum species:
the Hawaiian population of S. × palustre L. and the South Island, NZ population of
S. ×cristatum Hampe, each with 31 samples. Figure 6B is based on two South Island, New
Zealand populations of the gamtetophytically allotriploid Sphagnum × falcatulum Besch.,
each with f21 samples. AMOVA yields negative FAI values for both allopolyploid data
sets, resulting in complex and puzzling population structures. In strong contrast, lacking
negative values, SIDTA shows that both the allopolyploids follow the same general pattern
for population structure as seen for SIDTA applied to the non-allopolyploid data sets: with
(1) ΩWI decreasing with increasing allelic diversity, and (2) ΩAP increasing along the same
gradient (Figure 6).

Based on AMOVA, negative estimated variance among individuals nested within
populations occurs and it is included in the calculation of FSTv, FAI, and FWI for both
ploidy levels, resulting in negative FAI values. Negativity in FAI decreases as marker
variability increases. While negative FAI values occur across all three SSR subsets with the
allodiploid data, they are limited to the STAB and MOD SSR subsets with the allotriploid
data (Figure 6A,B). The greatly distorted population structure that AMOVA sees in the
presence of negative F values is evident in these figures. For instance, the presence of
negative values results in FWI > 1.0. With AMOVA, negative FAI values arise when the
mean square within individuals exceeds the mean square among individuals nested within
populations. Finally, both the allodiploid and allotriploid data sets show FWI being highest
with the STAB subset and declining as SSR variability increases, the opposite pattern of
that seen in the non-allopolyploid data sets.

For comparison purposes, F statistics based on negative estimated variance among
individuals nested within populations treated as 0.0 were also calculated and are indicated
with an asterisk (e.g., FST*). The values for FWI* are indicated by yellow dots in Figure 5A,B,
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and they are all higher than the corresponding FWI seen with the STAB and MOD subsets
with the diploid data (Figure 5B) and also at comparable N’a values in Figure 2B.
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Figure 6. Population genetic structure (black: within individuals; no fill: among individuals
within populations; orange: between populations) yielded by SIDTA and AMOVA and based on
STAB, MOD, and HYPE SSR sets for allodiploid and allotriploid data. (A) regional populations of
two gametophytically allodiploid species (South Island, NZ population of Sphagnum × cristatum and
Hawaiian population of S.× palustre) and (B) two South Island, NZ populations of the gametophyt-
ically allotriploid Sphagnum × falcatulum. The [0, 1] scaled diversity (D′) for the total allele metric
diversity detected with each data set is shown by the blue line. Beta refers to both ΩAP and FSTv.
WI* refers to FWI* which is calculated by ignoring negative FAI values (i.e., treating them as 0.0).

4. Discussion

AMOVA and SIDTA (Shannon informational diversity translation analysis) are shown
to yield highly different assessments of the hierarchical genetic structure of populations,
with all levels of the hierarchy being affected. Thus, using either diversity or variance to
explore the genetic structure of populations is akin to studying a species using a visual
assessment versus using one based on scent. Differences between the two approaches are
most pronounced when markers are highly stable and also when hypervariable markers
are employed. Furthermore, wrestling with negative among group variance values and
F statistic values frequently arises in population studies based on AMOVA, particularly



Entropy 2023, 25, 492 15 of 21

with allopolyploids. This problem is a non-issue with SIDTA, which lacks negative among
group differentiation values.

AMOVA also yields the [<0, 1] MDAP-formatted PHiPT index (an estimate of ΦPT,
an analogue of FSTv) [27]. PHiPT calculates population differentiation simply based on
genotypic variance by suppressing variation within individuals. Thus, PhiPT is typically
larger than FSTv (or more negative) and its behavior as N′a changes closely tracks that of
FSTv. It was excluded from this study because it ignored variance within individuals. A
similar [0, 1] index could be created for SIDTA:

ΨAP =∆AP/(∆AP + ∆AI) (21)

Unlike the heterozygosity- and variance-based MDAP-formatted indices (e.g., FSTv,
FSTh, GST, G′STN), which measure fixation, the MDAP-formatted ΩAP index yields an
assessment of differentiation among populations based on allelic diversity. The addition of
ΩAP provides SIDTA with MDAP-, TDAP-, and ENP-based indices. Additionally, the suite
of MD-formatted differentiation indices (e.g., ΩAI, ΩAP, ΩAR, etc.) allows for SIDTA-based
analyses of the hierarchical genetic structure of populations to be clearly and effectively
presented, as shown in Figures 5 and 6.

4.1. Formats of Measurement

In addition to distinguishing between indices that measure fixation from those mea-
suring differentiation, it is also useful to group them by how they express this (e.g., focus
on the mean difference among populations (MDAP) vs. focus on the total difference among
populations (TDAP)). For instance, a recent paper notes that Jost’s D is often mistakenly
used as an estimator of GST [1]. Such a misunderstanding would be less likely if, in addition
to knowing that GST is a fixation index and Jost’s D is a differentiation index, it was also
understood that the former has an MDAP format, and the latter has a TDAP format.

4.2. Effective Number of What?

It has been shown that expected homozygosity data can be translated into effective
number of alleles [2,33]. Although both the q = 1-based SIDTA and the q = 2-based
expected heterozygosity measures can be associated with effective numbers data, just what
the effective numbers of alleles represents differs between the two approaches. The q = 1
effective number of alleles (exponential of Shannon entropy) is the number of equally
common alleles needed to achieve the entropy of allele identity in the population. It is not
tied to a given ploidy level and is also not focused on the extent of heterozygosity that is
present. In contrast, the q = 2 effective number of alleles is the number of equally common
alleles needed to achieve the expected heterozygosity of the alleles in a population of
diploid organisms. Thus, D′AP and Jost’s D (and DEST) clearly measure different parameters.
They only yield the same value when (1) two populations have identical alleles and allele
frequencies (DEST = Jost’s D = D′AP = 0.0), and when (2) there are no shared alleles between
two populations (DEST = Jost’s D = D′AP = 1.0). Between these two extremes, and based
on DS-II and DS-III, D′AP is typically both greater than, and also tracks closer to N′a than
either Jost’ D or DEST do (see Figures 3 and 4B).

4.3. Comparison with Other among Population Indices

The only MDAP index to measure differentiation examined in this study is ΩAP. The
other widely used heterozygosity-based and variance-based MDAP indices are all fixation
measures. Based on this survey, ΩAP is the sole choice if one needs an assessment of mean
differentiation among populations.

The TDAP indices examined in this study all measure allelic differentiation, but they
differ in the parameters that they measure: D′AP tracks allelic diversity, the heterozygosity-
based indices (G′STH, G′′4ST (=F′STv), Jost’s D, DEST) focus on the probability of alleles being
in a heterozygous pairing, F′STv measures variance among genotypes. Not a part of the
Hill-number family of diversity measures [21,34], BCGD measures allelic differentiation by
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comparing the similarity of simple allele frequencies (or relative allele frequency) between
two populations. Although BCGD was found by [21] to have close a relationship to GST
and FST, this study unequivocally shows that BCGD yields results close to those of the
q = 1-based SIDTA D′AP and that they are highly divergent from those of the q = 2 indices
(both expected heterozygosity based and variance based).

Although all of the TDAP-formatted indices are equal to 1.0 with DS-I, that is what they
were designed to do at the maximum values of the respective parameters that they measure.
However, there are striking differences among their overall respective performances in
DS-II and DS-III (Figures 3 and 4B). The most notable demarcation among the TDAP indices
shows two primary subgroups, with D′AP and BCGD in one group (subclass I) and all of
the q = 2 indices in a second grouping (F′STv (=G′′4ST), G′STH, Jost’s D, DEST) (subclass
II). Subclass I indices track ‘q = 0’ far more closely than the ‘q = 2’ subclass indices do.
This reflects how the subclass I indices are related to ‘q = 0’ diversity values, where each
allele has the same weight (1). BCGD is based on simple allelic frequency (or relative
allele frequency), which is related to q = 0 data (where each allele has equal weighting)
by ‘1·pi’, where pi is the relative frequency of an allele in a population. BCGD differs
from the q = 1 SIDTA indices, which are related with q = 0 data by ‘1·pi·(ln pi)’. The
SIDTA approach tends to dampen (i.e., make more equitable) the differences in frequency
among the alleles in a population. Thus, these two subclasses I indices typically remain
relatively close to q = 0 diversity data. Although BCGD closely tracks changes in allelic
diversity among populations with DS-I and DS-II, it fails to always do so with DS-III. This
indicates that BCGD does not track changes in allelic diversity in some cases. In contrast,
the SIDTA-based D′AP closely tracks changes in allelic diversity across all three of the stress
test data sets.

In contrast, the incorporation of q = 2 data with q = 0 data is achieved by ‘1·pi
2’, with

the squaring of relative frequency data typically greatly increasing the difference between
q = 0-based data and q = 2-based data, particularly when compared to that associated
with the subclass I indices. Squaring the relative frequency of each allele results in more
weight being given to alleles having high frequency and very little weight being given to
uncommon alleles. This results in q = 2 indices measuring notably different parameters than
those measured by the subclass I indices. The heterozygosity-based TDAP indices, which
include Jost’s D, DEST, G′STH. and G′′4ST (=F′STv), are unequivocally shown to be tracking
changes in the probability of expected heterozygosity by their performance in DS-II and
DS-III. Another difference between the two subclasses is that subclass I indices are positive
across the three stress test data sets while the adjusted heterozygosity-based indices and
the variance-based indices of the subclass II have both positive and negative values.

The two unadjusted heterozygosity indices, FSTh and Jost’s D, which are restricted
to lie within the interval from 0 to 1, are both positive across all three stress test data
sets. In contrast, negative values occur in the ‘adjusted’ expected heterozygosity indices
(MDAP: GST, G′STN (=FSTv); TDAP: G′STH, G′′4ST (=FSTv), DEST). The ‘adjusted’ expected
heterozygosity indices are all positive in DS-1, all negative in DS-II, and both negative and
positive with DS-III. The negative values result from the adjustments for small population
size and inbreeding in the calculations made by GenAlEx for these indices. The adjustment
leads to increases in both HS and HT relative to the corresponding unadjusted HS and HT
values, but with HS being increased more than HT. The imbalance between the adjusted
HS and HT values becomes greater with increases in N′a and negative values for estimated
heterozygosity occur when HS > HT. With DS-II, this adjustment results in the adjusted
estimated heterozygosity values always being negative. The occurrence of negative ‘among
population’ values in the ‘adjusted’ heterozygosity indices closely tracks the occurrence of
negative values in FSTv and F′STv. Consequently, one of the notable outcomes of ‘adjustment’
made by GenAlEx to several of the heterozygosity-based indices is that it allows for
heterozygosity-based indices to more closely match the entire spectrum of FSTv and F’STv
based values. Indeed, a bit of additional tweaking results in two heterozygosity-based
indices being equivalent to variance-based indices (i.e., G′STN = FSTv and G′′4ST = F′STv).
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4.4. Drawbacks to ‘q = 2’ Indices

Although it is not an issue for q = 1 differentiation measures, one drawback for
q = 2-based differentiation measures is that an incremental change in allele number and
frequency has a much smaller change on the resulting value of a given index when N′a
is lower than when that same incremental change occurs when N′a is very high, given
their sigmoidal nature. This is problematic for a differentiation measure to have. Another
drawback to the q = 2 differentiation measures is that they were primarily designed for
diploid genotypic data. Thus, their application to allopolyploids is problematic, especially
with gametophytic data. For instance, negative variance values are considered as represent-
ing excess heterozygosity [35] and/or the absence of population structure [36]. However,
homologous chromosomes are typically lacking in the gametophytes of allopolyploid
plants having disomic inheritance. Thus, ‘true’ heterozygosity does not usually occur in
the gametophytes of such allopolyploids. Differences among/between the component
monoploid genomes of alloploid gametophytes, which is measured by the allelic diversity
within individuals (∆WI), represents the allelic differentiation (ΩWI) among/between the
ancestral monoploid genomes, not heterozygosity [37]. In such cases, negative F statistics
should unequivocally not be considered as having excessive heterozygosity. In terms of
negative variance values reflecting a lack of population structure, the data presented here
shows that, based on SIDTA, structure is often present in allopolyploid gametophytes when
negative variance occurs based on AMOVA. In the absence of population structure, SIDTA
would yield ‘0.0’, not a negative value.

4.5. Impact of Marker Variability

Marker variability has a major effect on the genetic structure of populations and the
nature of this influence differs markedly when based on SIDTA versus AMOVA. Some of
these effects are discussed in the section on negative F statistics below.

With both haploids and diploids, the proportion of total allelic diversity within indi-
viduals (ΩWI) decreases with increasing marker variability while the reverse is the case for
the proportion of variance within individuals (FWI). This pattern also holds true for ΩWI in
allopolyploids, and, in the absence of negative values, it is also true for FWI. However, the
frequent occurrence of negative values with AMOVA-based F statistics both greatly confuse
this pattern for allopolyploids, and, also, notably distort the genetic structure of a popula-
tion. The negative values are often associated with, but not limited to, FAI (the proportion
of total variance (FT) represented by variance among individuals within populations). The
most negative values occur with highly stable markers and then decline with increasing
marker variability and, in some cases negative F values may be lacking with hypervariable
markers. In contrast, negative values are lacking altogether in SIDTA-based indices.

Careful consideration needs to be given to the variability of markers selected to study
genetic structure as well as their influence on the method(s) of analysis used. In terms
of marker variability, a strong focus on highly variable markers leads to a high degree of
divergence among individuals within a stratum, and this has the potential to minimize, or
completely mask, strong evolutionary signals that may be found in markers having lower
variability [18,19,37]. In addition, the resulting high divergence among individuals within a
stratum obtained by highly variable markers yields notably lower overall similarity among
its members. As the level of divergence among its individuals increases, the cohesive
nature of a species decreases.

4.6. Notes on Negative ‘F’ Statistics with AMOVA

Although lacking with SIDTA, negative F statistics are ‘part and parcel’ of AMOVA and
are notably particularly an issue with allopolyploids. Negative values notably distort the
interpretation of the genetic structure of a population, making interpretation difficult. They
are often associated with, but not limited to, FAI. As noted above, the most negative
‘F’ values occur with highly stable markers and then decline with increasing marker
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variability. The following is a brief discussion about the negative ‘F’ statistics associated
with allopolyploids.

Based on DS-I, FWI is directly closely tied to N′a (Figure 2A), with high values of FWI
only occurring at correspondingly high values of N′a. This is not always the case, however,
as can be seen with the allopolyploid data where, in addition to the HYPE SSRs, high values
of FWI* are also associated with the STAB and MOD subsets (Figure 6). In allopolyploids
having disomic inheritance, the difference among the component monoploid genomes
typically result in a very high a mean diversity and variance within individuals (DWI), and
these particular values are largely independent of marker variability. For instance, based
on SIDTA, D′WI for the allodiploid data is (D′WI ≥ 0.97) across the STAB, MOD, and HYPE
subsets, and that for allotriploid data is (D′WI ≥ 0.87). This implies that the corresponding
estimated variance within each individual is close to maximum. Furthermore, negative
estimated variance among individuals augments both FWI and FWI*. Both ΩAI and FAI in
contrast, are highly affected by marker variability. In allopolyploids, markers having low
to moderate variability (such as the STAB and MOD subsets) frequently yield mean square
among individuals within populations values that are less than the corresponding high
mean square within individual values with AMOVA, which results in negative FAI values.
Markers having a sufficiently high variability (such as the HYPE subset) may yield mean
square among individuals within populations values that exceed the high mean square
within individual values, and thus provide positive FAI values in allopolyploids, as is the
case for the allotriploid data (Figure 6B).

4.7. Influences of Ploidy Level

Ploidy level has two major influences in a comparison of AMOVA and SIDTA. One is at
the haploid level, where there is allelic diversity within individuals (DWI = 1.0), while there
is no variation among individuals (FWI = 0.0) with AMOVA. The second influence occurs
primarily at diploid and higher ploidy levels where high divergence occurs among the
respective component monoploid genomes. In such cases, AMOVA and the foundationally
adjusted heterozygosity measures often yield negative values. Negative among group
F values can occur with haploid data, but they occur more frequently at higher ploidy
values, particularly with allopolyploids. Although this aspect is primarily a result of the
extent of divergence among the component monoploid genomes, it is also influenced by
ploidy level.

4.8. Interpreting FST Data from Prior Studies

Studies misinterpreting FST (both FSTv and FSTh) and GST as measuring differentiation
have the major problem that their conclusions unequivocally do not measure differentiation.
Based on marker variability one can gain some general information to partially mitigate
this issue. Generally, but not always, highly stable markers are likely to have FST and GST
values exceeding the corresponding allelic differentiation between/among populations
(ΩAP). When highly variable markers are used, there is a high probability that the FST
values are much lower than corresponding ΩAP values. Additionally, when moderately
stable markers are used it is possible that their associated FST values may be somewhat
comparable to ΩAP, despite measuring different things. The above is based on haploid
and diploid ploidy levels. This pattern does not always apply to allopolyploids, where
the frequent occurrence of negative F values, particularly FAI, distorts the interpretation of
population structure.

4.9. Possible Issue with Adjustments Made for Small Population Size and Inbreeding

For both the fixation and differentiation heterozygosity-based indices, adjustments for
the almost unbiased estimators of heterozygosity [28] and for inbreeding [29] result in the
adjusted heterozygosity-based indices (1) typically being smaller than the corresponding
unadjusted values (e.g., Jost’s D > DEST), and (2) yielding both positive to negative values
while the unadjusted heterozygosity-based indices are always positive. However, the
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adjustments affect these fixation and differentiation indices differently. All three of the
stress test data sets show the adjusted heterozygosity-based fixation indices (GST, G′STN) to
closely follow FSTh across all subsets. In contrast, the heterozygosity-based differentiation
indices show a more variable pattern. This is most clearly shown in Figure 4B, where
positive DEST (as well as G′ ′ST and G′STH) values closely track Jost’s D when N′a ≤ 0.5,
but they greatly diverge from Jost’s D when N′a > 0.5, and ultimately become highly
negative. These findings indicate that corrections, such as almost unbiased estimators,
that are designed for fixation indices are problematic when applied to differentiation
indices, particularly at high levels of allelic diversity. Given that the differentiation and
fixation indices greatly differ in what they measure, it is not surprising that this is the case.
Exploring why such adjustments result in such a complex relationship between Jost’s D
and the adjusted heterozygosity-based differentiation indices (DEST, G′ ′ST and G′STH) is
beyond the scope of this study.

4.10. Final Thoughts

As the various allelic differentiation indices measure notably different parameters, it is
clear that one size does not fit all. Thus, it is important to select the index (or indices) that
match the focus of research being undertaken. If heterozygosity or variance are important
causal variables in the given application, then heterozygosity-based q = 2 differentiation
measures (e.g., Jost’s D, DEST, F′ST) should be used [15]. If alleles should be weighed by
their population share, then q = 1 differentiation measures (e.g., D′AP, ΩAP) would be the
clear choice. Finally, if the presence or absence of alleles is what matters, then a q = 0
differentiation measure should be used. In addition, there are other aspects to consider,
including: (1) when the focus is on the hierarchical genetic structure of populations and
not simply on differentiation among populations; (2) avoidance of the problem of negative
values; (3) when studying allopolyploids. For these issues, the q = 1-based SIDTA suite of
indices clearly fits the bill.

Because the subclass II (q = 2) differentiation measures (1) can decline with increases
in allelic diversity and (2) can be negative, they unequivocally have limitations in the
measurement of differentiation. Given this, studies focused primarily on how different
two or more groups (e.g., populations, sub-species, species, etc.) are would most likely be
best served by subclass I differentiation measures (e.g., BCGD, SIDTA). This is especially
true when comparing groups above the population level, where allelic diversity likely
plays a bigger role than either heterozygosity or variance do.
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